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Foreword

What is a model?
From the Oxford English dictionary: A model is “a simplified or idealised description, repres-

entation or conception of a particular system, situation, or process, often in mathematical terms,
that is put forward as a basis for theoretical or empirical understanding, or for calculations, pre-
dictions, etc.” Models should be as simple as possible, yet as complex as necessary to address a
given question of interest.

• “All models are wrong, but some of them are useful”, George Box.

• “Everything should be made as simple as possible, but no simpler”, Albert Einstein.

• “Entia non sunt multiplicanda praeter necessitatem” (entities must not be multiplied beyond
necessity), William of Ockham.

In other words, a mathematical model is a representation of the essential aspects of an existing
system (or a system to be constructed) which presents knowledge of that system in usable form.
Thus, models are not replicas of reality, they are simplified representations of it. Simplification
allows us to comprehend the essential features of a complex process without being burdened and
overwhelmed by unnecessary details.

Often when engineers analyse a system to be controlled or optimised, they use a mathematical
model. In analysis, engineers can build a descriptive model of the system as a hypothesis of how
the system could work, or try to estimate how an unforeseeable event could affect the system.
Similarly, in control of a system, engineers can try out different control approaches in simulations
based on a constructed model.

Modelling, mathematically analysing and simulating complex systems in silico is typically
much more time and resource effective than actually constructing real-life systems and prototypes
for the same purposes.

Typically, the modelling process results from the inspection/investigation of a problem and a
series of trade-offs. This analysis identifies the most important processes shaping the problem as
well as some less important ones that may be neglected (at least in a first iteration of the model).
The effect of each process is then modelled, i.e., described mathematically with some equations
(or any tools borrowed from mathematics) and their combination is then mathematically analysed
and/or simulated.

Mathematical modelling is typically the result of a trade-off between accuracy and simplicity
since large, complex models may be more accurate in theory, but in practice they are hard to
simulate and require many parameters that may not be available or identifiable.

The modelling process is considered successful when the obtained model possesses the following
characteristics:

• Accurate: the model should attempt to accurately describe current existing observations.

• Predictive: the model should allow to appropriately predict the behaviour of the system
(through analysis or simulation) in situations not already observed.

• Reusable: the model can be reused in another, similar case.

• Parsimonious: the model should be as simple as possible. That is, given competing and
equally good models, the simplest is preferred.

Models need not match experimental data to be useful. For instance, a model may be built
from a research hypothesis and its predictions compared to real data. Mismatches (whether
qualitative or quantitative) can then be used to falsify the working hypothesis (see Karl Popper
for more on falsification). More generally, a mismatch indicates that something worth looking into
is happening. For instance a process that was overlooked might play a larger role than expected.
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1 Introduction

In this introduction, we will give a broad overview of the essential features of most common
mathematical models.

1.1 Essential features of a modelling approach

Isolate your system of interest.

• Identify what is important (and therefore what needs to be included in your model).

• List the quantities that can be observed/measured (they are the outputs).

• List the quantities that can be controlled/acted upon (they are the inputs).

• Define the environment and the constraints it places upon the system.

System of interest
Inputs Outputs

Outside

Remark 1. You place in the system what is of interest. The parts that can be neglected are
placed outside of the system of interest and considered as small perturbations. However, if these
perturbations become too large to be neglected, they must be taken into account in the model.

Modelling of the system of interest
Typically, the model is composed of

• variables

– independent, e.g., time t

∗ 1 indep. var.: ODEs, e.g., time t

∗ more than 1 indep. var.: PDEs, e.g., time t and space (x, y, z) (examples include:
blood circulation, diffusion, growth)

– dependent (on the independent variable(s)),

e.g., concentrations functions of time {[E](t), [S](t), [P ](t)}

• parameters

– not dependent on independent variables

– can be varied/changed under experimental conditions (this can lead to a qualitative
change in the system behaviour)

• constants

– fixed, e.g., Avogadro constant, gravitational constant

Based on these concepts, different types of models can be built.
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1.2 Types of models

Continuous Discrete
• the independent variables are continuous

• ODEs, PDEs

• the independent variables are discrete

• Difference equations
Deterministic Stochastic

• var., param. and const. do not contain ran-
domness

• they are defined by a unique function

• dynamics contain an element of randomness
(described by probabilities, e.g., the variables
are random/stochastic processes)

• e.g., SDEs
Linear Nonlinear

• ẋ = dx
dt

= −kx

• Linear ODE

• ẋ = dx
dt

= −kx+ x3

• Nonlinear ODE
Autonomous Non-autonomous

• Without control input: ẋ = −kx • With control input: ẋ = −kx+ u
Constructive Data-driven

• mechanistic or deductive

• also called “equation-based” or “(first)
principle-based”

• phenomenological or inductive

Remark 2. Discrete models are typically used to model discrete events/discontinuous changes,
e.g., events/changes which occur at specific time instants (i.e., between two consecutive events
nothing changes/happens). They can also be obtained, as we will see, as the result of the discret-
isation of continuous models.

Remark 3. Stochastic models (e.g., SDEs) are typically used to model diverse phenomena such as
fluctuating stock prices, physical systems subject to thermal fluctuations, or intrinsic noise/stochastic
effects in cellular biology.1

Remark 4. Nonlinear, stochastic models are almost unavoidable in biological modelling.

Remark 5. We will mostly deal with autonomous, deterministic models obtained through a con-
structive approach. But we will also briefly introduce stochastic models.

Remark 6. Linear deterministic models can be solved analytically. This is typically not the case
for nonlinear or stochastic models, which, therefore, are often analysed using bifurcation and phase
space analysis tools (which we will cover in this course) and also through computer simulations,
e.g., MATLAB.

1.3 Summary

Continuous (indep. var. continuous)

ODE PDE

SDE

Discrete (indep. var. discrete)

Difference eqn.
Discretisation

Fokker-Planck
(Kolmogorov forward)

equation

(time) (time + space)

(randomness)

Hybrid models

Finite Element Methods

1A good review of stochastic modelling in cellular biology is the paper: D. J. Wilkinson, “Stochastic modelling
for quantitative description of heterogeneous biological systems”, Nature Reviews Genetics, vol. 10, no. 2, pp.
122-133, Feb. 2009, http://www.nature.com/nrg/journal/v10/n2/full/nrg2509.html
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Continuous
ODEs PDEs Deterministic (L or NL)

SDEs Stochastic (L or NL)

Discrete Difference equations
Deterministic (L or NL)
Stochastic (L or NL)

Remark 7. The Fokker-Planck equation is a PDE describing the time evolution of the probability
density function. It was initially used to give a statistical description of the Brownian motion of
a particle in a fluid.
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2 Linear models of order 1

A deterministic, continuous, linear model of order 1
Consider

ẋ(t) =
dx(t)

dt
= kx(t)

• For k > 0, this is known as theMalthusian population growth with k denoting the growth rate
per cell. The Malthusian population growth model is also known as the “simple exponential
growth model”.

Suppose that x(t) counts the population of a microorganism in culture, at time t. The
Malthusian population growth model is based on the following assumption: the increase in
population size during a (small) time interval is proportional to the population size.

Remark 8. This makes intuitive sense. Let’s take an example to illustrate it. Suppose that
we have a population of cells and that each cell is experimentally shown to duplicate every 3
minutes (which is also called the cell doubling time) and assume, for simplicity, that cells
never die. Let us call x0 the number of cells initially present, i.e., present at time t = 0 when
we start observing them multiply, and x(t) the number of cells at time t. We thus expect to
see the following time evolution:

t (in mins) x(t)
0 x0

3 2x0

6 4x0

9 8x0

. . . . . .

This time evolution can be described by a first order linear ordinary differential equation

(ODE) of the form: ẋ(t) =

(
ln(2)

3

)
x(t) whose solution is, as we will see later, x(t) =

x0e
ln(2)

3 t = x0

(
eln(2)

) t
3 = x02

t
3 , with ln(2)

3 denoting the growth rate per cell. This solution

x(t) = 2
t
3x0 indeed satisfies the values reported in the table above when t is measured in

minutes.

Remark 9. To ease the notation, we will, in the rest of this course, omit the explicit
dependence on time when this is obvious from the context and simply write ẋ = kx instead
of ẋ(t) = kx(t).

As we will see later, the Malthusian population growth is only valid under the assumption
that resources (such as nutrients or space) are available in unlimited quantity, i.e., that there
is no competition for resources in the population2.

• Other examples of Linear ODEs:

– Chemical Engineering: X
k

GGGGGA∅
This corresponds to a degradation reaction where k > 0 is a constant degradation rate.
Applying the law of mass action (we will explain it later), the dynamics associated

with this reaction are ˙[X] = −k[X] where [X] represents the concentration of chemical
species X.

– Electrical Engineering: RLC circuits

– Mechanical Engineering: Mass-Spring-Damper systems
2Strictly speaking, “resources” not only includes nutrients but space (e.g., petri dish) as well.
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2.1 Analytical solution of first order linear ODEs

Consider the model:

ẋ =
dx

dt
= kx, x(0) = x0 (1)

Its solution is given by

x(t) = x0e
kt

where x0 = x(0) (the initial condition).

x

t

x0
k = 0

k > 0

k < 0

Remark 10. For k > 0, the model exhibits exponential growth behaviour. Bacterial populations
tend to grow exponentially, so long as there is no competition for resources (e.g., nutrients or
space). Exponential growth in populations (not only cell populations) in the absence of competition
for resources was initially proposed by Malthus in 1798 as an empirical law, obtained by fitting an
exponential model to observed data of population growth.

Remark 11. We can find the solution of (1) by considering the “Ansatz” (i.e., an “educated
guess” that is verified later by its result) x(t) = Aekt which indeed verifies eq. (1). (This Ansatz
can be obtained by trying to guess what the solution of ẋ = kx should be. What we can say is that
a solution that satisfies this differential equation should be a function of time which is such that,
when you derive it with respect to time, you obtain the function itself multiplied by a constant. An
exponential function of time is such a function.)

Another method to find the solution of eq. (1) is to rearrange the equation so that both sides
can be integrated separately:

1

x
dx = kdt

∫
1

x
dx =

∫
k dt

ln(x(t)) = kt+ Ã, where Ã is an integration constant

x(t) = ekt eÃ︸︷︷︸
=A

= Aekt

Furthermore, by definition of the initial condition, we have x(0) = x0 which yields

x(0) = A ek·0︸︷︷︸
=1

= A = x0

2.2 Numerical solutions of ODEs: the Euler algorithm

If we want to solve ODEs numerically, i.e., using a computer, we need an algorithm. Here, we will
try to find one for solving ẋ = kx numerically. This can be done by considering the mathematical
definition of the time derivative:

dx

dt
= kx
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⇔ lim
∆t→0

x(t+∆t)− x(t)

∆t
= kx(t)

Suppose ∆t is fixed to a particular value h (doing this is called discretising the continuous ODE
model and h is called the discretisation step). We then have:

x(t+ h)− x(t)

h
≈ kx(t)

x(t+ h) ≈ x(t) + hkx(t) (2)

If h is “small”, then the recursive algorithm described by eq. (2) and initiated with x(0) = x0 will
agree “well” with the analytical solution x(t) = x0e

kt.
Eq. (2) is know as the “Euler algorithm”.

Remark 12. A better alternative to the Euler algorithm for numerical integration is the “Runge-
Kutta” family of algorithms (http: // en. wikipedia. org/ wiki/ Runge-Kutta_ method ). These
algorithms typically give more accurate numerical solutions for ODEs and converge faster to a
solution for a given desired accuracy. The Runge-Kutta numerical integration algorithms are
available in Matlab. In particular, these algorithms are used by the Matlab function ode45 (you
can get some information about ode45 by typing help ode45 at the Matlab prompt; if you want to
read the code implementing the function ode45 you can type type ode45 at the Matlab prompt).

2.3 Analytical solution of first order linear difference equations

x(t+ h) = x(t) + hkx(t)

is a discrete-time model which can also be looked at as a linear difference equation by taking
h = 1, and defining for ease of notation xt = x(t):

xt+1 = (1 + k)︸ ︷︷ ︸
α

xt = αxt (3)

(or equivalently xt+1 − xt = (α− 1)xt.)
Its non-zero solution is given by

xt = x0α
t

where x0 is the initial condition.

Remark 13. The non-zero solution of (3) can be found by iterating (3) from the initial condition
and generalising what is being observed in the sequence obtained. This sequence is x0, x1 = αx0,
x2 = αx1 = α2x0, x3 = αx2 = α3x0, . . . , xt = αtx0.

It can also be obtained by considering the Ansatz xt = Art which indeed verifies (3):

�Art+1 = α�Art

rt(r − α) = 0

⇒ r = α or r = 0

Furthermore, by definition of the initial condition, we have: x0 = Aα0 = A

Remark 14. Equation xt+1 = αxt with initial condition x0 is also know as a “ discrete-time
model”. Dicrete-time models are useful to model processes which occur at specific (discrete) time
instants. An example for which a discrete-time model can be useful is cell population growth.
To see this, define the number of cells at a certain discrete-time point t as the variable xt ∈ N.
Imagine that each cell divides and duplicates at each discrete-time step t = 1, 2, · · · and that cells
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never die. In this case the discrete temporal evolution of the number of cells can be described by
the following 1st order discrete-time model:

xt+1 = 2xt

with the initial condition x0 ∈ N. The non-zero solution is then given by:

xt = x02
t,

which, for t = 1, 2, · · · , satisfies the values reported in the table appearing in Remark 8.

2.4 Phase line analysis for a linear ODE of order 1

Phase plane

• The phase plane (a.k.a. phase space) is a representation that eliminates time as an explicit
variable.

• It is very useful for obtaining a qualitative understanding of the long-term or asymptotic
behaviour of nonlinear ODE models (for which, typically, analytical solutions cannot be
found).

Consider ẋ = kx

ẋ = kx

x

k > 0

x0 = 10

ẋ = kx

x0

k < 0

x0 = −1

ẋ = kx

x0
k = 0

1. Consider the case when k > 0:

(a) when x0 > 0: ẋ > 0 ⇒ x increases until x → ∞;

(b) when x0 < 0: ẋ < 0 ⇒ x decreases until x → −∞;

(c) when x0 = 0: ẋ = 0 ⇒ x remains at 0. But if x is slightly perturbed, it will move away
from 0 and diverge to ±∞.

Thus, the system is unstable for k > 0, except when it starts exactly at 0, i.e., when x0 = 0.3

This agrees well with the analytical solution x(t) = x0e
kt with k > 0.

This is know as the Malthusian explosion.

3The fixed point x∗ = 0 is said to be unstable since any perturbation from the fixed point will cause the solution
x(t) to go away from it.

Prof Guy-Bart Stan ©Imperial College London 13



Modelling in Biology V 9.2 Linear models of order 1

2. When k < 0:

(a) when x0 > 0: ẋ < 0 ⇒ x decreases until x → 0;

(b) when x0 < 0: ẋ > 0 ⇒ x increases until x → 0;

(c) when x0 = 0: ẋ = 0 ⇒ x remains at 0.

If x is slightly perturbed, it will return to 0. Again, this agrees well with the analytical
solution x(t) = x0e

kt with k < 0.4

3. When k = 0: wherever you start, you stay there since ẋ = 0, i.e., x(t) = x0, ∀t.

Remark 15. What we have done here is a (global) asymptotic stability analysis of the fixed point
x∗ = 0 on the phase line x. “Asymptotic stability” of a fixed point refers to the t → ∞ asymptotic
behaviour of the solution initially perturbed away from the fixed point. We say the fixed point is
asymptotically stable if the solution initially perturbed away from this fixed point is stable (i.e., it
stays in a close neighbourhood of the fixed point) and attractive (i.e., in the long-term (i.e., as
t → ∞) the solution comes back to the fixed point).

2.5 Bifurcation diagram for a linear ODE of order 1

Bifurcation diagram
We can summarise the information obtained through the phase plane stability analysis on a

bifurcation diagram, i.e., a diagram giving the long-term (i.e., asymptotic) behaviour of the system
when a parameter is varied. Here the parameter for the ODE model ẋ = kx is k.

0 k

x

k > 0

k < 0

+∞

−∞

ẋ = kx

2.6 Stochastic differential equations (SDEs) of order 1

Consider a stochastic version of the Malthusian growth model:

dx

dt
= kx+ η (4)

where η is a random variable that represents some uncertainties or stochastic effects perturbing
the system. Eq. (4) is a continuous version of a random walk. Similar types of equations can be
used to model the dynamics of diffusion-based phenomena or of stock prices.

Eq. (4) is known as a Langevin equation. In the absence of other knowledge about the
statistics of the random variable η, η is generally assumed to have a Gaussian or normal probability
distribution.

4The fixed point x∗ = 0 is said to be asymptotically stable since any perturbation from the fixed point will cause
the solution x(t) to return back to it.
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Eq. (4) can also be rewritten as

dx = [kx]dt+ ηdt︸︷︷︸
≈σdw

(5)

where w represents a standard (one-dimensional) Wiener process (also called Brownian motion),
distributed according to the normal distribution with mean 0 and variance t, i.e. N (0, t). dw
is known as the differential into the future of a Brownian motion, distributed as N (0, dt). As a
consequence, σdw is distributed according to N (0, σ2dt).

SDEs such as (5) are typically solved numerically through discretisation using the Euler al-
gorithm:

x(t+∆t) = [1 + k∆t]x(t)︸ ︷︷ ︸
deterministic part

+
(
σ
√
∆t

)
randn

︸ ︷︷ ︸
stochastic part

where the function randn (which is available in Matlab) provides a random number sampled from a
Gaussian distribution of mean 0 and variance 1. Hereafter, we show simulation “runs” for different
values of the variance. These runs are also called realisations of the stochastic process.

t

x

x0
σ1

k
run 1
run 2

t

x

x0
σ2

k
run 1
run 2

σ2 > σ1

Remark 16. If run infinitely many times, the average of the runs will converge to the determ-
inistic solution in both cases. However, when σ is (much) larger (for the same value of k), the
uncertainty/variance in each individual run is (much) larger, which in turns makes the prediction
of the time evolution for an individual run (much) more uncertain.

In the financial world the uncertainty/variance of a stock is known as the volatility. It provides
a measure of the risk associated with the (prediction of the price of the) considered stock.
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3 Nonlinear ODE models of order 1

3.1 Non-Malthusian population growth: the logistic equation

Nonlinear ODE models of order 1
First order nonlinear ODE models are written under the generic form:

ẋ = f(x), x ∈ R, f(·) : R → R, “smooth” function (6)

where f(·) : R → R is a “smooth” function .5

Finding the analytical solution of (6), i.e., finding x(t, x0), is, in general, no longer possible
unless a closed form solution can be obtained for

∫
1

f(x) dx =
∫

dt. Since finding the analytical

solution of nonlinear ODEs is in general not possible, we will focus in the rest of this chapter
on presenting analysis methods that allow to qualitatively understand the behaviour of nonlinear
ODE models without the need to find their solution explicitly.

In general, the asymptotic stability analysis of nonlinear models of order 1 is performed using
phase line and bifurcation diagrams as we will see next.

Non-Malthusian population growth: the logistic equation
We consider the non-Malthusian population growth model in which the reproduction rate takes

into account the “competition for resources”. Intuitively, the net growth rate or reproduction rate
per individual (or per cell) needs to decrease as the population increases due to this competition
for resources.

Consider that x(t) represents the number of cells at time instant t. The following ODE model
describes population growth under competition for resources:

ẋ =

=f(x)︷ ︸︸ ︷
rx

(
1− x

k

)

︸ ︷︷ ︸
Resources

=




r
(
1− x

k

)

︸ ︷︷ ︸
non-constant growth rate

per cell




x = rx︸︷︷︸
“growth rate”

−rx2

k︸ ︷︷ ︸
“death rate”

(7)

where r and k are positive parameters.
As we can see, the net growth rate per individual (or per cell) r

(
1− x

k

)
is not constant any

more and changes as the number of individuals in the population changes (it decreases as the
population increases).

Eq. (7) is also known as the logistic equation while k is known as the carrying capacity of the
environment (we will see why later).

In this particular case and rather exceptionally, a closed form solution to (7) can be found:

x(t) =
k

1 + 1
C e−rt

, C =
x0

k − x0

This solution indicates that x → k as t → ∞.

Remark 17. The solution of (7) can easily be obtained as follows.
Consider (7): dx

dt = rx
(
1− x

k

)
. This can be rewritten:

1

x
(
1− x

k

)dx = rdt

Furthermore, we can also write:
1

x
(
1− x

k

) =
a

x
+

b

1− x
k

5A function is said to be “smooth” if it is Ck, i.e., continuously differentiable at least k times, where k ≥ 2.
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By identification, this yields a = 1 and b = 1
k .

Therefore, eq. (7) becomes:

1

x
(
1− x

k

)dx = rdt

∫ (
1

x
+

1
k

1− x
k

)
dx = r

∫
dt

∫ (
1

x
+

1

k − x

)
dx = r

∫
dt

ln(x)− ln (k − x) = rt+ C̃

ln

(
x

k − x

)
= rt+ C̃

x

k − x
= ert eC̃︸︷︷︸

=C

k − x

x
=

e−rt

C
k

x
− 1 =

e−rt

C

x(t) =
k

1 + 1
C e−rt

Furthermore, using the definition of the initial condition, i.e., x(0) = x0, it is easy to show that
C = x0

k−x0
.

The logistic equation

Time solution: x(t) =
k

1 + 1
C e−rt

, C =
x0

k − x0

t

x

x0

k
2

k

Inflexion point

Carrying capacity

Looking at the time solution, we see that any initial condition (except x0 = 0) yields a solution
which asymptotically converges to k. We now understand why k is called the carrying capacity. It
represents the final population size that the resources present in the environment can sustainably
carry in the long-term.

Remark 18 (Gause’s 1934 Experiments). G.F. Gause carried out experiments in 1934, involving
Paramecium caudatum and Paramecium aurelia, which clearly show logistic growth:
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⇒ �c = N0/(B − N0) ⇒ N(t) =
N0B

N0 + (B − N0)e−rt

We can see that there is a B asymptote as t → ∞. Let’s graph with Maple:

with(plots):

f(t):=t->(0.2)/(0.2+0.8*exp(-t)):

p1:=plot(f(t),0..8,0..1.3,tickmarks=[0,2],thickness=3,color=black):

g:=t->1:

p2:=plot(g(t),0..8,tickmarks=[0,2],thickness=2,linestyle=2,color=black):

display(p1,p2);

Gause’s 1934 Experiments

G.F. Gause carried out experiments in 1934, involving Paramecium caudatum and Paramecium aure-
lia, which show clearly logistic growth:

(# individuals and volume of P. caudatum and P. aurelia, cultivated separately, medium changed daily,
25 days.)

1.1.5 Changing Variables, Rescaling Time

We had this equation for growth under nutrient limitations:

dN

dt
= κ (C0 − αN) N

which we solved explicitly (and graphed for some special values of the parameters C0,κ,α).
But how do we know that “qualitatively” the solution “looks the same” for other parameter values?

(Time evolution of # individuals and volume of P. caudatum and P. aurelia, cultivated separately,
medium changed daily, 25 days.)

3.2 Stability analysis of the logistic equation

ẋ = rx
(
1− x

k

)

• Fixed points and flow:

– Fixed points: ẋ|x=x∗ = 0 ⇔ f (x∗) = 0

∗ Here, f (x∗) = rx∗
(
1− x∗

k

)
= 0 ⇒

{
x∗ = 0

x∗ = k

– Flow: {
0 < x < k ⇒ ẋ > 0 ⇒ x ↗
x > k ⇒ ẋ < 0 ⇒ x ↘

• Phase plane: ẋ vs x

x

ẋ = − r
kx2 + rx

k
2

k

Inflexion point for x(t)

Since x represents the number of bacteria in a population, x must be positive and thus we
are not interested in the region x < 0.

• Asymptotic stability of fixed points: x∗ = 0 is unstable (any slight perturbation from the
fixed point x∗ = 0 will cause the solution to leave the neighbourhood of x∗ = 0);

x∗ = k is asymptotically stable, i.e.,

– stable (any slight perturbation from the fixed point x∗ = k will cause the solution to
remain in the vicinity of x∗ = k)

– attractive (any slight perturbation causes the solution to return to x∗ = k)

• Attractors: x∗ = k
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Remark 19. Again, we see through the phase plane analysis that the attractor is x∗ = k. k thus
represents the long-term population number that the system can sustainably carry in the long-term
– hence the name ‘carrying capacity’.

Remark 20. Looking at the phase plot of ẋ vs x we can confirm the “shape” of the time solution.
For x < k

2 , we see that x(t) increases faster and faster (since ẋ increases (i.e., ẍ > 0); look at

the plot of ẋ vs x) until x = k
2 , after that x(t) increases slower and slower (since ẍ < 0) until

x(t) → k. In other words, the population initially grows in an accelerating fashion (until reaching
half of the carrying capacity) and then the growth slows down until the carrying capacity is reached.
This is why we have an inflexion point at x = k

2 on the graph of the time solution x(t) vs t.

3.3 Stability analysis of nonlinear ODE models of order 1

Consider a nonlinear ODE model of order 1:

ẋ = f(x), x ∈ R, f(·) : R → R, “smooth” function

1. Global stability analysis (only for models of order 1)

• Find all the fixed points: {x∗ : f (x∗) = 0} and put them on the phase line x of the
plot ẋ vs x.

• Find the flow between the fixed points and indicate them on the phase line x of the
plot ẋ vs x.

• Conclude what the stability of the fixed point(s) is.

• Find the long-term behaviour of the system, i.e., its attractors. Note that +∞ and −∞
can be attractors.

2. Local/linear stability analysis (possible for all orders)

• Find the fixed points.

• Linearise the dynamics around each fixed point.

• Study the stability of the corresponding linear systems (eig(A)).

• Link together the local stability information around each fixed point to establish a
complete picture of the attractors.

Remark 21. Performing a global stability analysis using a phase line analysis is very useful for
models of order 1. The phase plane analysis only gives a local picture for models of order 2 (as we
will see in the next chapter). Finally, the phase space analysis is quite difficult to perform (and
not very useful) for models of order 3 and higher.

Remark 22. The long-term behaviour (also called the asymptotic behaviour) of the system is
typically dependent on the initial condition (this is true for models of any order).

3.4 Linear stability analysis of ODE models of order 1

For linear ODE models of any order, global stability analysis and local stability analysis are the
same. For nonlinear ODE models of order ≥ 2, local stability analysis is different from global
stability analysis.6

• Find the fixed points of the system: f (x∗) = 0.

6For nonlinear ODE models of order 1, local and global stability are the same since in this particular situation
the state variable is restricted to move on the real line (this will become clearer as we cover the next chapters).
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• Examine the close neighbourhood of the fixed points, i.e., analyse the local stability of the
fixed points by considering small perturbations around them.

x

ẋ = − r
kx2 + rx

Linear stability analysis of ODE models of order 1
Consider the dynamics of the system when x is “close to” the fixed point x∗, i.e., consider

ẋ = f(x) when x = x∗ + ξ with ξ = (x− x∗) “small”, i.e., |ξ| ≪ 1 :

dx

dt
=

dξ

dt
= f (x∗ + ξ)

= f (x∗)︸ ︷︷ ︸
=0

+
df

dx

∣∣∣∣
x=x∗

ξ︸︷︷︸
“small”

+
����O

(
ξ2
)

︸ ︷︷ ︸
H.O.T. (“very small”)

(Taylor series expansion)

So, we have:

dξ

dt
≈ df

dx

∣∣∣∣
x=x∗

ξ (linear system)

⇒ ξ(t) ≈ ξ0e
df
dx |x=x∗ t

Local stability analysis (only two possibilities):

• df
dx

∣∣∣
x=x∗

> 0 ⇒ ξ̇ξ > 0 ⇒ |ξ| ↗ ⇒ x = x∗ is unstable

• df
dx

∣∣∣
x=x∗

< 0 ⇒ ξ̇ξ < 0 ⇒ |ξ| ↘ ⇒ x = x∗ is locally asymptotically stable, i.e., locally

stable and attractive

Linear stability analysis of the logistic equation

For ẋ = rx
(
1− x

k

)
, we have

df

dx
= r − 2xr

k

• df
dx

∣∣∣
x=0

= r > 0 ⇒ ξ̇ξ > 0 ⇒ |ξ| ↗ ⇒ x = 0 is unstable

• df
dx

∣∣∣
x=k

= −r < 0 ⇒ ξ̇ξ < 0 ⇒ |ξ| ↘ ⇒ x = k is locally asymptotically stable, i.e., locally

stable and attractive

Remark 23. Note that if df
dx

∣∣∣
x=x∗

= 0 ⇒ x∗ is marginally stable and we cannot deduce the sta-

bility of the nonlinear system around x = x∗ using linear stability analysis. This is a consequence
of the Hartman-Grobman Theorem (also called the linearisation theorem). To illustrate this, con-
sider the system ẋ = ax3 where a ∈ R is a parameter and x ∈ R is the dependent variable. The
linearisation of ẋ = ax3 around its fixed point x∗ = 0 is given by ẋ = 0, which is marginally stable
irrespective of the parameter a. A graphical phase line analysis, however, shows that x∗ = 0 is
asymptotically stable for a < 0 and unstable for a > 0. As this example shows, the stability of the
fixed point x∗ = 0 of the initial nonlinear ODE ẋ = ax3 cannot be deduced from the stability of
ẋ = 0 (i.e., from the stability of the system linearised around the fixed point).
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Remark 24. Note that the fixed points can also be obtained graphically. For example, if f (x∗) =
x∗ − e−x∗

= 0, the solution x∗ = e−x∗
is difficult to find analytically (transcendental equation).

However, the solution can be easily approximated as the intersection of two graphs: the graphs
y = x and the graph y = e−x.

-0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

-0.8

0.8

1.6

2.4

y = x

y = e−x

Furthermore, MATLAB fuctions such as fsolve or solve can be used to find the zeros of f (x∗) =
0. Note that fsolve only gives you one solution, which is found based on a given initial guess.
Thus, to find all the zeros with fsolve you need to try several initial guesses.

3.5 Non-dimensionalisation (also called “renormalisation”)

The goal of non-dimensionalisation is to reduce the number of parameters appearing
in the equations.

Non-dimensionalisation can be very important in biological models where, typically, the number
of uncertain parameters can be very large in the original model. Non-dimensionalising the model
and therefore reducing the number of parameters is very useful to focus parameter-dependent
analyses (such as parameter sensitivity analysis and bifurcation analysis) on a fewer number of
parameters.

Consider the following population growth model where N(t) represents the number of cells in
the population at time t:

Ṅ = RN

(
1− N

K

)

︸ ︷︷ ︸
comp. for resources

− BN2

A2 +N2
︸ ︷︷ ︸

predatory action

(8)

This model contains 4 positive parameters R, K, A, and B.
As we will see in what follows, using non-dimensionalisation, we can reduce the number of

parameters from 4 to 2.
In order to reduce the number of parameters in (8), we will proceed as follows:

• Write each variable (dependent and independent – in this example, N and t) as a product
of a new variable and a still-to-be-determined positive constant.

• Substitute into the equations, simplify, and collect terms.

• Finally, pick values for the constants so that the equations (in this example, there is only
one differential equation, but in other examples there may be several) have as few remaining
parameters as possible.

The procedure can be done in many ways (depending on how you collect terms, etc.), so differ-
ent people may get different solutions. If everything is done properly, the new variables (here-
after N̂ and t̂) will be “non-dimensional”, i.e., they will have no units (hence the name non-
dimensionalisation).
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Let N(t) = αN̂(t) and t = βt̂. Eq. (8) then writes:

d
(
αN̂(t)

)
d
(
βt̂
) = RαN̂

(
1− αN̂

K

)
− Bα2N̂2

A2 + α2N̂2

⇔
d
(
N̂
(
t̂
))

dt̂
= RβN̂

(
1− α

K
N̂
)
−

B
α
βN̂2

A2

α2 + N̂2
(9)

Look at eq. (9). To reduce the total number of parameters, we’d like to make, for example,
A2

α2 = 1 and B
α β = 1 which can be obtained by taking α = A and β = α

B = A
B . We then have:

dN̂

dt̂
=

RA

B︸︷︷︸
=r

N̂

1− A

K︸︷︷︸
1
k

N̂

− N̂2

1 + N̂2

⇔ dN̂

dt̂
= rN̂

(
1− 1

k
N̂

)
− N̂2

1 + N̂2

As we can see the new parameters r = RA
B and k = K

A combine several parameters of the
initial model. Following the described procedure, we notice that, for each variable (dependent
and independent) of the model, we can eliminate one parameter of the model (this
property is true in general for any non-dimensionalisation). Therefore, using non-
dimensionalisation, the number of parameters can always be reduced by the total
number of variables (dependent + independent). Here, we started with 4 parameters
and reduced this number to 2 since there were 2 variables in total (the dependent
variable N and the independent variable t).

Once the model has been non-dimensionalised and, consequently, the number of parameters in
the model reduced to its minimum, one may wonder how the long-term behaviour of the system
changes when these remaining parameters are changed. This question is the basis of bifurcation
analysis and is introduced in the next section.

3.6 Bifurcations for nonlinear ODE models of order 1

Consider:
ẋ = f(x, r)

where r is a parameter and f(·) : R× R → R is a “smooth” function.

Bifurcation
A bifurcation occurs when a change in the parameter(s) of the model produces a qualitative (or
“large”) change in the long-term behaviour (of the attractors) of the system, e.g., :

• the number of attractors (e.g., fixed points) changes,

• the type of attractors changes (e.g., from fixed point to limit cycle),

• the stability of attractors (e.g., fixed points or limit cycles) changes.

3.6.1 Saddle-node Bifurcation (also called “Blue Sky” Bifurcation)

ẋ = r + x2, x ∈ R

Consider different values for the parameter r:
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x√−r

r < 0

ẋ

−√−r x

ẋ

x

ẋ

r = 0 r > 0

Saddle-node bifurcation diagram:

x

r

unstable

stable

x = �
p
�r

x =
p
�r

When increasing r from negative to positive values, the two fixed points coalesce at r = 0 and
disappear for r > 0. The saddle-node bifurcation is characterised by a merging and subsequent
disappearance (or sudden creation depending how the parameter is varied) of a stable and an
unstable fixed point. The name blue sky bifurcation has been coined to refer to the sudden
appearance (or disappearance) of two fixed points “out of the blue”.

3.6.2 Transcritical Bifurcation

ẋ = rx− x2 = x(r − x), x ∈ R

In this case, there are always two fixed points: one at x = 0 and another at x = r
Consider different values for the parameter r:

x

ẋ

r

r > 0

x

ẋ

r = 0

x

ẋ

r

r < 0

Transcritical bifurcation diagram:

x

r

x = r

x = 0

At r = 0, there is a reversal in the stability of the fixed points: what used to be stable becomes
unstable and vice versa. The transcritical bifurcation is characterised by a merging and subsequent
stability reversal of a stable and an unstable fixed point.

Remark 25. This is the type of bifurcation we would observe for the logistic equation (7) if we
considered k as a parameter that could also take negative values.
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3.6.3 Pitchfork Bifurcation

ẋ = rx− x3 = x
(
r − x2

)
, x ∈ R

In this case, there is always one fixed point at x = 0. Furthermore, if r > 0, there are two other
fixed points at x =

√
r and x = −√

r.
Consider different values for the parameter r:

x

ẋ

x

ẋ

r < 0

x

ẋ

√
r−√

r

r = 0 r > 0

Pitchfork bifurcation diagram (supercritical):

x

r

x =
p

r

x = �p
r

x = 0

If, when changing the value of the parameter, two new stable fixed points appear while the
third fixed point is now unstable instead of stable, the corresponding pitchfork bifurcation is said
to be supercritical.

On the contrary, if, when changing the value of the parameter, two new unstable fixed points
appear while the third fixed point is now stable instead of unstable, the corresponding pitchfork
bifurcation is said to be subcritical.

Pitchfork bifurcation diagram (subcritical): ẋ = rx+x3 = x
(
r + x2

)
, x ∈ R

x

r

Remark 26. The pitchfork bifurcation is common to systems that present symmetry. For example,
the dynamics that we have considered here, i.e., ẋ = x

(
r ± x2

)
do not change under the change

of variable x̃ = −x.

3.7 Summary of behaviours for NL ODE models of order 1

• Motions (solutions) are on the real line, i.e., x ∈ R

• Attractors are either the fixed points or ±∞ (no oscillatory or other types of behaviour)

• Three types of bifurcation can occur:

– Saddle node

– Transcritical

– Pitchfork (subcritical or supercritical)
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3.8 Enzymatic reactions and the law of mass action

Now that we know how to analyse nonlinear ODEs of order 1, let us apply this knowledge to the
analysis of enzymatic reactions. In the next section, we will use the law of mass action to propose
a simple 4th order nonlinear ODE model for enzymatic reactions. We will then reduce this model
to a first order nonlinear ODE model that we will analyse using a phase line approach.

E

S
�

ES

→

E

P

In molecular biology, certain types of proteins, called enzymes act as catalysts for biochemical
reactions. In particular, they facilitate such reactions, converting substrates into products, while
remaining basically unchanged. In a simple enzymatic reaction, the enzyme E attaches to the
substrate S, thereby forming a complex ES. The complex formation produces bond changes and
distortions in the substrate shape which facilitate the creation of the product P . In other words,
the enzymes act as “pliers” that place an appropriate stress to help break a bond; they also may
bring substrates together, or they may help place a chemical group on a substrate.

Like all catalysts, enzymes work by lowering the activation energy for a reaction, thus dramat-
ically increasing the rate of the reaction. Most enzyme reaction rates are millions of times faster
than those of comparable uncatalyzed reactions.

Remark 27. Almost all processes in a biological cell need enzymes to occur at significant rates.
Since enzymes are selective for their substrates and speed up only a few reactions from among
many possibilities, the set of enzymes made in a cell determines which metabolic pathways occur
in that cell.

Remark 28. The modelling of (bio-)chemical reactions is typically done using the law of mass
action which gives ODEs for the concentrations of the species involved in the reactions. This law
states that, when two or more reactants are involved in a reaction, their reaction rates (at constant
temperature) are proportional to the product of their concentrations. For example, the following
chemical reaction:

X + Y
α

GGGGGAZ

yields, using the law of mass-action, the following dynamics:

d[X]

dt
= −α[X][Y ] (10)

d[Y ]

dt
= −α[X][Y ] (11)

d[Z]

dt
= +α[X][Y ] (12)

(13)

where [X] (resp. [Y ], [Z]) represents the concentration of chemical species X (resp. Y , Z).
The law of mass action relies on two assumptions:

• the medium must be well mixed: this allows to obtain ODEs instead of PDEs since, under
this assumption, the concentrations may depend on time but not on space.

• the number of each species must be large: this allows to obtain ODEs instead of SDEs. If the
number of species is small then stochastic models (e.g., SDEs) taking into account individual
random collisions between species must be used.
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Enzymatic reaction:

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P

Law of mass action: For a simple enzymatic reaction we have 4 species ⇒ 4 ODEs

d[ES]

dt
= k1[E][S]− k−1[ES]− k2[ES] (14)

d[E]

dt
= −k1[E][S] + k−1[ES] + k2[ES] (15)

d[S]

dt
= −k1[E][S] + k−1[ES] (16)

d[P ]

dt
= k2[ES] (17)

Remark 29. Note that the biochemical degradation of the 4 species involved in the reactions has
been neglected. This can be justified by the general stability of the species coupled with the typical
short time-scale of enzymatic reactions (less than an hour for the reactions to be complete whereas
degradation of the species involved in the enzymatic reaction typically takes tens of hours or several
days).

3.8.1 Elimination of variables – model reduction: the Michaelis-Menten and the Hill
equations

Elimination of variables – model reduction through time scale separation
The goal here is to reduce the number of dependent variables in the system by using the fact

that certain quantities are conserved or by making certain assumptions (e.g., the quasi-stationary
assumption as we will see shortly).

We will illustrate the procedure of elimination of variables on the particular example of the
enzymatic reaction, and show how the Michaelis-Menten model can be obtained as a result of
this.

1. Conservation laws

• (14) + (15) ⇒ d[ES]
dt + d[E]

dt = 0

⇒ [ES] + [E] = [E]0 (18)

• (15) - (16) - (17) ⇒ d[E]
dt − d[S]

dt − d[P ]
dt = 0

⇒ [E] = [S] + [P ] + κ (19)

where [E]0 is a constant representing the initial concentration of enzyme before the
reaction starts7, and κ is an integration constant.

Thus, just looking for conserved quantities, we have reduced the initial 4th order model to a
2nd order model.

2. Quasi-stationary approximation (time scale separation)

Leonor Michaelis and Maud Leonora Menten formulated in 1913 an approach that allows one
to reduce the problem even further, by doing an approximation called the “quasi-stationary”

7This conservation law is not surprising. Indeed, the enzyme is either free or present in the ES complex, but it is
neither produced nor consumed according to the model we are considering here for enzymatic reactions (remember
that we have neglected enzyme degradation and we also did not consider enzyme production, which could for
example occur through expression of the gene that codes for the enzyme).
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approximation. This approximation is typically used in multiple time scale systems where
some parts of the dynamics are very fast while others are rather slow.

In an enzymatic reaction, the time scales of the different reactions are typically very different.
This means that certain reactions will reach their equilibrium much faster than others. A
common assumption is then to neglect the short transient needed to reach equilibrium for
the fast reactions, and thus to consider that the corresponding species reach their steady
state almost instantaneously. This is known as the quasi-stationary approximation.

In particular, in an enzymatic reaction, the enzyme-substrate complex reaches its equilibrium
state very fast. A typical assumption is thus to assume that the enzyme-substrate complex
is almost instantly at steady state and therefore stays more or less constant at the time scale
of the product producing reaction.

• d[ES]
dt ≈ 0

(14) ⇒ [ES] ≈ k1
k−1 + k2︸ ︷︷ ︸

=K̃M

[E][S] = K̃M [E][S]

(18) ⇒ [ES] ≈ K̃M ([E]0 − [ES]) [S] ⇒ [ES] ≈ K̃M [E]0[S]

1+K̃M [S]

(17), (18), (19) ⇒ d[S]
dt = −d[P ]

dt − d[ES]

dt︸ ︷︷ ︸
≈0

≈ −k2[ES]

Using the conservation laws and the quasi-stationary approximation, we can thus reduce the
model (14)-(17) and end up with a first order nonlinear ODE model:

⇒ d[S]

dt
≈ −d[P ]

dt
≈ −Vmax

[S]

KM + [S]
(the Michaelis-Menten equation)

with

Vmax = k2[E]0, KM =
k−1 + k2

k1

Remark 30. Note that Vmax is proportional to [E]0, a fact that is commonly exploited in practice
(all it takes to increase the speed of the reaction is to increase the initial amount of enzymes
accordingly).

Remark 31. For small substrate concentrations, i.e., small [S], we see that d[S]
dt ≈ −Vmax

KM
[S] =

−k2[E]0
KM

[S].

3.8.2 The Michaelis-Menten equation

Let’s now analyse the behaviour of the Michaelis-Menten ODE by performing a phase line analysis
of it.

d[S]

dt
≈ −d[P ]

dt
≈ −Vmax

[S]

KM + [S]
(the Michaelis-Menten equation)
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Figure 1: Relationship between the rate of reaction for a simple Michaelis-Menten rate
law. The reaction rate reaches a limiting value (saturates) called the Vmax. Km is set to
4.0 and Vmax to 1.0. Note that the value of the Km is the substrate concentration that
gives half the maximal rate.
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Figure 2: Progress curves for a simple irreversible enzyme catalyzed reaction. Initial
substrate concentration is set at 10 units. The enzyme concentration is set to an initial
concentration of 1 unit (E and ES curves have been scale by two on the graph). In the
central portion of the plots one can observe the relatively steady concentrations of ES
and E (dES/dt ≈ 0). At the same time, the rate of change of S and P are constant over
this period. k1 = 100; k2 = 1; k3 = 10

On the phase line, we see that when the concentration of the substrate [S] is large, the rate of
depletion of [S] (i.e., [Ṡ]) is almost constant. On the contrary, we see that the rate of depletion of

substrate [Ṡ] becomes smaller when [S] is smaller (since
∣∣∣[Ṡ]

∣∣∣ becomes smaller).

Next to the phase line, we can see the plot of the time evolution of [E], [S], [ES], and [P ]. This
plot has been obtained by numerically integrating (14)-(17) in Matlab. In the central portion of
the plots one can observe the relatively constant concentrations of [ES] and [E] (which corresponds

to d[ES]
dt = −d[E]

dt ≈ 0). At the same time, the rate of change of [S] and [P ] are constant over this
period.

Justifying the quasi-stationary assumption through non-dimensionalisation and time-
scale separation

Reminder: the goal of non-dimensionalisation is to reduce the number of parameters appearing
in the equations.

Consider (14) and (16). Using (18) we get:

{
d[ES]
dt = k1[E]0[S]− (k1[S] + k−1 + k2) [ES]

d[S]
dt = −k1[E]0[S] + (k1[S] + k−1) [ES]

Dividing both equations by [E]0[S]0, and posing x = [ES]
[E]0

, y = [S]
[S]0

, and ϵ = [E]0
[S]0

leads to:





1
[S]0

dx
dt = k1y −

(
k1y +

k−1+k2

[S]0

)
x

1
[E]0

dy
dt = −k1y +

(
k1y +

k−1

[S]0

)
x

Finally, posing τ = k1[E]0t, we obtain




ϵdxdτ = y −

(
y + k−1+k2

k1[S]0

)
x

dy
dτ = −y +

(
y + k−1

k1[S]0

)
x

It is common for enzymatic reactions to have an initial concentration of substrates that is

much larger than the initial concentration of enzymes, i.e., ϵ = [E]0
[S]0

≪ 1.8 Therefore, we see that

the dynamics of x is much faster than the dynamics of y, since dx
dτ = 1

ϵ (. . . ) and
dy
dτ = (. . . ). The

assumption that x, i.e., [ES], reaches its steady state very quickly (almost instantaneously with
respect to the dynamics of y, i.e., [S]), is therefore justified and the Michaelis-Menten assumption
holds.

8It can be shown that another choice of non-dimensional variables can lead to the less conservative condition
ϵ =

[E]0
[S]0+KM

≪ 1. With this condition, we can see that one doesn’t need [E]0 ≪ [S]0 for the quasi-stationary

approximation to hold. It is enough that KM is very large, i.e., that the rate of formation of complex k1 is very
small compared to k−1 + k2 (sum of dissociation rates). An interesting paper about this is: L. A. Segel and M.
Slemrod, “The Quasi-Steady-State Assumption: A Case Study in Perturbation”, SIAM Review, vol. 31, no. 3, pp.
446–477, Sep. 1989.
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Enzymatic cooperative reactions – The Hill equation
Sometimes several substrates need to bind the enzyme for the enzymatic reaction to take place.

When this is the case, the enzymatic reaction is said to be cooperative.

E

S
�

ES

→

E

P
S

S

SS

A model for the enzymatic reaction with cooperativity is:

E + nS
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P

where ES represents the enzyme-n-substrates complex and n is called the cooperativity coefficient.
Law of mass action: 4 species ⇒ 4 ODEs

d[ES]

dt
= k1[E][S]n − k−1[ES]− k2[ES] (20)

d[E]

dt
= −k1[E][S]n + k−1[ES] + k2[ES] (21)

d[S]

dt
= n (−k1[E][S]n + k−1[ES]) (22)

d[P ]

dt
= k2[ES] (23)

3.8.3 The Hill equation

Using a similar model reduction approach as for the non-cooperative enzymatic reactions we saw
before (Michaelis-Menten), it is easy to see that the following 1st order nonlinear ODE model is
obtained:

d[S]

dt
≈ −d[P ]

dt
≈ −Vmax

[S]n

KM + [S]n
(the Hill equation)

with

Vmax = nk2[E]0, KM =
k−1 + k2

k1

[S]

[Ṡ]

−Vmax

−Vmax

2

n
√

KM

The Hill equation: effect of the cooperativity coefficient n
The Hill function is defined as h(x) = Vmax

xn

KM+xn . The effect of the Hill coefficient n is
illustrated hereafter for Vmax = 1 and KM = 1:
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For very large values of n, the Hill function approximates a step function9, i.e., a function h(x)
defined as

h(x) =

{
0, if x ≤ n

√
KM

Vmax, if x > n
√
KM

This is very useful for a cell which can then use this type of “step-regulated” reaction as a switch
since for low concentrations (i.e., x ≤ n

√
KM ) nothing happens, while for high concentrations (i.e.,

x > n
√
KM ) the enzymatic reaction happens at its maximal rate Vmax.

Remark 32. In the above simplified model for enzymatic reactions with cooperativity, we have
neglected the fact that the binding of the n molecules of substrate to the enzyme does not take place
at once but in a succession of steps:

E + S
k1,1

GGGGGGGBFGGGGGGG

k−1,1

ES

ES + S
k1,2

GGGGGGGBFGGGGGGG

k−1,2

ES2

...

ESn−1 + S
k1,n

GGGGGGGGBFGGGGGGGG

k−1,n

ESn

k2
GGGAE + P

Remark 33. If the first, second, . . . , nth steps (see Remark 32) are much faster than the last
(product producing) step, the pure Hill function is justified. In general however, one gets:

d[S]

dt
= −Vmax

P ([S])

KM +Q([S])
(24)

where both P ([S]) and Q([S]) are polynomials of the form:

P ([S]) = [S]n + αn−1[S]
n−1 + . . .+ α1[S]

Q([S]) = [S]n + βn−1[S]
n−1 + . . .+ β1[S]

It has however remained common to use a classic Hill function to model cooperative enzymatic

reactions, i.e., ˙[S] = −Vmax
[S]n

KM+[S]n . However, to fit data to this latter model you might need

to use a Hill function with a non-integer Hill coefficient (e.g., n = 2.8) instead of an integer

Hill coefficient. This is due to the fact that a model of the form ˙[S] = −Vmax
[S]n

KM+[S]n is a mere

approximation of the actual dynamics.

Remark 34. Another aspect which we have neglected here is the fact that the n binding sites on
the enzyme are usually not equivalent, which makes the biochemical model even more complicated.
The corresponding dynamic can however still be approximated with an equation of the form of
eq. (24).

9This is only an approximation as the Hill function is “smooth” for any value of the Hill coefficient “n” whereas
the step function is discontinuous at a point.
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4 Linear ODE models of order 2 and higher

4.1 Some examples

4.1.1 A chemical example of a linear ODE model of order 2

Consider the chemical reaction:

X
k

GGGGGBFGGGGG

k
Y

Using the law of mass action, the corresponding ODEs write:

[Ẋ] = −k[X] + k[Y ] (25)

[Ẏ ] = k[X]− k[Y ], k > 0 (26)

To solve (25)-(26) analytically, we define the vector x =

(
x1

x2

)
=

(
[X]
[Y ]

)
and rewrite the

equation under the form ẋ = Ax. We then use a change of variables in order to diagonalise the
matrix A.

Remark 35. The order of the model is defined as the number of dependent variables appearing
in the ODE, i.e., the dimension of the vector x. In our present case, the model is of order 2 since
there are 2 dependent variables: [X] and [Y ].

Before we proceed with the diagonalisation of A, we introduce a few more examples of second
order linear ODEs useful in (bio-)mechanics. The procedure to find the analytical solution of the
linear ODE system (25)-(26) through the diagonalisation of A is explained in Section 4.2.

4.1.2 A mechanical example of a linear ODE model of order 2

In this section, we consider a classical mechanical example: the mass-spring-damper system. Mass-
spring-damper systems are very useful in biomechanics to model the dynamics of musculo-skeletal
systems such as, for example, the dynamics of your arms in reaching tasks or of your legs in
walking, running or hopping motions.

Consider the mass-spring-damper system:

m

κ

η

x̃

κ

x̃

m
η

OR

where m is the mass (in kilograms), κ is the spring constant (in newtons per meter), η is the
damping coefficient (in newton-seconds per meter or kilograms per second), and x is the displace-
ment (in meters) with respect to the resting position of the spring x̃0, i.e., x = x̃− x̃0 where x̃ is
the displacement (in meters) of the mass relative to a fixed point of reference.

The equation of motion of the mass-spring-damper system is given by10:

mẍ = −κx− ηẋ (27)

which is equivalent to:

m

η

d2x

dt2
+

dx

dt
+

κ

η
x = 0 (28)

10For a quick reminder about the physics and equations of motion of the mass-spring-damper system, visit
http://en.wikipedia.org/wiki/Damping#Example:_mass-spring-damper.
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This is a second order linear ODE11. However, under some assumption, this second order linear
ODE model can be reduced to a first order linear ODE model.

Reduction to a first order model: In the overdamped limit, i.e., when η ≫ m, eq. (27)
reduces to

ẋ = −kx, k =
κ

η

√
η

m
> 0

This is easy to see by considering the following change of variables:

τ2 =
m

η
t2 ⇔ τ =

√
m

η
t (29)

Eq. (29) implies:

dτ

dt
=

√
m

η

dx

dt
=

dx

dτ

dτ

dt
=

√
m

η

dx

dτ
(30)

d2x

dt2
=

m

η

d2x

dτ2
(31)

Applying (29), (30), and (31) to (28), we obtain (when η ≫ m):

m2

η2︸︷︷︸
→0

d2x

dτ2
+

√
m

η

dx

dτ
+

κ

η
x = 0

dx

dτ
+

κ

η

√
η

m︸ ︷︷ ︸
=k

x = 0

dx

dτ
= −kx, k > 0

The solution and analysis of this first order linear ODE model has been described previously
(see the analysis of the Malthusian population growth model). Thus we see that the mass-spring-
damper system has a simple exponentially decaying behaviour in the overdamped limit.

Another mechanical example of a linear ODEs model of order 2
Consider the following mass-spring-damper system:

m

κ η

m
x̃1

x̃2

κ

m
η

m
OR

x̃1
x̃2

In the overdamped limit, i.e., when η ≫ m, the equations of motion are:

ẋ1 = −k(x1 − x2) (32)

ẋ2 = −k(x2 − x1), k > 0 (33)
11This can be seen by rewriting the system as:

ẋ = y

ẏ = − κ

m
x− η

m
y

which indicates that the order of the system is 2.
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Remark 36. Without the overdamped limit assumption, the corresponding linear ODE model is
of order 4.

Again, to solve (32)-(33) analytically, we define the vector x =

(
x1

x2

)
and rewrite the equation

under the form ẋ = Ax. We then use a change of variables in order to diagonalise the matrix A.

4.2 Diagonalisation, eigenvalues and eigenvectors

The system of equations (25)-(26) (or (32)-(33))
can be rewritten as: (

ẋ1

ẋ2

)
= k

(
−1 1
1 −1

)

︸ ︷︷ ︸
=A

(
x1

x2

)
⇔ ẋ = kAx (34)

To solve (34), we diagonalise A, i.e., we find its eigenvalues and eigenvectors.12

The diagonalisation allows to decouple the equations13, and therefore to reduce the problem
to finding the solution of 1st order linear ODEs (which we now know how to do).

1. Eigenvalues: Solutions of det(A− λI) = 0 . Here, we have: λ1 = 0 and λ2 = −2.

2. Eigenvectors (normalised): Solutions of Av = λv , for each eigenvalue λ. Here, we have:

v1 = 1√
2

(
1
1

)
corresponding to λ1 = 0 and v2 = 1√

2

(
1
−1

)
corresponding to λ2 = −2.

The eigenvalues are found easily. They are the solutions of det(A−λI) = det

(
−1− λ 1

1 −1− λ

)
=

0. This gives the algebraic equation (1 + λ)(1 + λ)− 1 = λ2 + 2λ = 0, whose solutions are λ1 = 0
and λ2 = −2.

Remark 37. For linear ODE models of order 2, the eigenvalues can also be easily found by noting
the following properties: det(A) = λ1λ2 and trace(A) = λ1 + λ2. Here we have λ1λ2 = 0 and
λ1 + λ2 = −2 which directly leads to λ1 = 0 and λ2 = −2.

The eigenvectors are found separately for each eigenvalue:

1. For λ1 = 0, we search the solution of Av1 =

(
−1 1
1 −1

)(
va
vb

)
= 0

(
va
vb

)
, i.e., the solution

of {
−va + vb = 0

va − vb = 0

which leads to va = vb. Now, under the normalisation constraint v2a + v2b = 1, we obtain the

normalised eigenvector v1 = 1√
2

(
1
1

)
.

2. Similarly, for λ2 = −2, we need to solve Av2 =

(
−1 1
1 −1

)(
vc
vd

)
= −2

(
vc
vd

)
, which, after

normalisation, gives v2 = 1√
2

(
1
−1

)
.

12The key requirement to be able to diagonalise a square matrix A of dimension n × n is to be able to find n
linearly independent eigenvectors for A (see theorem on diagonalisation of real matrices in any textbook on linear
algebra). A sufficient condition for this is that the eigenvalues of A are distinct, which indeed is the case here since
λ1 ̸= λ2. If it is not possible to find n linearly independent eigenvectors, one can still find an analytical expression
for the solution, however the procedure followed to do so is somewhat more involved (it typically requires to perform
a Jordan block decomposition of the matrix A) and the analytical solution x(t) has a different form.

13This means that, for all i, the equation for ẋi only depends on xi and not on any of the other state variables.
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From the eigenvectors of A, we construct a new matrix V having the eigenvectors of A as
columns:

V =




| |
v1 v2

| |


 =

1√
2

(
1 1
1 −1

)

We then have (theorem on diagonalisation of matrices):

V −1AV = Λ =

(
λ1 0
0 λ2

)
=

(
0 0
0 −2

)
(35)

Now, recall the initial model was ẋ = kAx. Multiplying this latter equation by V −1 on the left
gives:

V −1 d

dt
x =

d

dt
(V −1x)︸ ︷︷ ︸

=X

= k V −1AV︸ ︷︷ ︸
=Λ

(V −1x)︸ ︷︷ ︸
=X

= kΛX

⇒ dX

dt
= kΛX, X = V −1x (36)

Eq. (36) is now a system of decoupled linear ODEs (each of order 1) for which we can easily
compute the solutions in terms of X1 and X2.

(
Ẋ1

Ẋ2

)
= k

(
0 0
0 −2

)(
X1

X2

)
= k

(
λ1 0
0 λ2

)(
X1

X2

)
(37)

⇔
{
Ẋ1 = kλ1X1

Ẋ2 = kλ2X2

⇒
{
X1(t) = X1(0)e

kλ1t

X2(t) = X2(0)e
kλ2t

The last step is to transform back into the original coordinates using X = V −1x which implies

x = VX. Using x = VX, i.e., x =




| |
v1 v2

| |




(
X1

X2

)
= v1X1 + v2X2, we obtain

x(t) = v1X1(t) + v2X2(t) ⇔ x(t) = v1X1(0)e
kλ1t + v2X2(0)e

kλ2t

with λ1 = 0 and λ2 = −2 being the eigenvalues of A and v1 = 1√
2

(
1
1

)
and v2 = 1√

2

(
1
−1

)
being

the corresponding eigenvectors.
For a linear, 2nd order ODE of the form ẋ = Ax, x ∈ R2, where A is diagonalisable, the

solution is a linear combination of exponentials of the form eλit where λi are the eigenvalues of A,

i.e., the general solution is of the form x(t) = v1X1(0)e
λ1t + v2X2(0)e

λ2t = c1e
λ1t + c2e

λ2t.

Remark 38. Note that in the mass-spring-damper case (32)-(33), X1 and X2 have a physical
meaning14: Indeed, from X = V −1x, with, in this particular case, V = V −1 (check by verifying
V V = I), we have:

X1(t) =
1√
2
(x1 + x2)

which is proportional to the total displacement of the centre of mass with respect to the resting
position of the spring, and

X2(t) =
1√
2
(x1 − x2)

14This is typically not true, i.e., X typically does not have a physical meaning.
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which is proportional to the stretch or compression of the spring with respect to the resting position
of the spring.

Remark 39. From (32)-(33) and Remark 38 we have:

1. λ1 = 0 ⇒ Ẋ1 = 0 = 1√
2
(ẋ1 + ẋ2) ⇒ the centre of mass cannot move (because no net force

is applied).

2. λ2 = −2 ⇒ Ẋ2 = −2kX2 = 1√
2
(ẋ1 − ẋ2) with k > 0 ⇒ ẋ1 − ẋ2 < 0 if X2(t) > 0, i.e., the

spring will be compressed if the distance between the two masses is larger than the resting
distance, or ẋ1− ẋ2 > 0 if X2(t) < 0, i.e., the spring will be stretched if the distance between
the masses is smaller than the resting distance.

4.2.1 The mass-spring-damper system

Let us consider the mass-spring-damper system:

m

κ

η

x̃

κ

x̃

m
η

OR

for which the equation of motion is

mẍ+ ηẋ+ κx = 0 (38)

To solve (38), we put the model in the form ẋ = Ax and diagonalise A:

{
ẋ = y

ẍ = ẏ = − κ
mx− η

my
⇒

(
ẋ
ẏ

)
=

(
0 1

− κ
m − η

m

)

︸ ︷︷ ︸
=A

(
x
y

)

The eigenvalues ofA are λ± =
− η

m±
√

η2

m2 −4 κ
m

2 . The general solution is thus x(t) = c+e
λ+t + c−e

λ−t

where c± are proportional to the eigenvectors associated with λ±.

Remark 40. Note that if λ± are complex conjugate numbers, i.e., λ± = α± iβ then the gen-

eral solution writes x(t) = c+e
αteiβt + c−e

αte−iβt = eαt
(
c+e

iβt + c−e
−iβt

)
. The real exponen-

tial eαt can grow (if α > 0) or decay (if α < 0). On the contrary, the complex exponentials e±iβt

correspond to pure oscillations at frequency β
2π (or period 2π

β ) since e±iβt = cos(βt) ± i sin(βt)

(this relation is called “Euler’s formula”).

Remark 41. Note that we could here have also solved (38) using the Ansatz x(t) = Ceαt. Indeed,
using the Ansatz x(t) = Ceαt gives the equation mα2 + ηα+ κ = 0 which is the same equation as
the one obtained for the calculation of the eigenvalues of A, i.e., det(A− λI) = 0.

4.3 General solution for linear ODEs models of any order

What we have just seen is true in general for linear ODEs models of any order, i.e., if ẋ = Ax with

x ∈ Rn andA is diagonalisable15, then the solution is of the form x(t) =

n∑

i=1

viXi(0)e
λit =

n∑

i=1

cie
λit

where λi ∈ C are the eigenvalues of A and vi ∈ Cn are the corresponding eigenvectors of A.

15A real matrix A is always diagonalisable if all its eigenvalues are distinct. If this is not the case, the analytical
solution can still be always written but it takes a different form. See Strogatz book for more details.
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5 Nonlinear ODE models of order 2

5.1 Stability analysis of nonlinear ODE models of order 2

Consider a nonlinear ODE model of order 2:

ẋ = f(x), x ∈ R2 ⇔
(
ẋ1

ẋ2

)
=

(
f1 (x1, x2)
f2 (x1, x2)

)
, f(·) : R2 → R2, “smooth” function

1. Global stability analysis (difficult for models of order ≥ 2)

For models of order 1, the global stability analysis is quite easy since the motion of the
system is on the real line and thus we can predict the long-term behaviour of the system
from the fixed points, the flows, and the initial condition. For models of order 2 (or higher),
this is typically much more difficult to do since the motion of the system is on a plane (or
in Rn) and thus it may not be obvious where the trajectories will go from a given initial
condition.

2. Local stability analysis (possible for all orders)

• Find the fixed points: {x∗ : f (x∗) = 0}.
• Linearise the dynamics around each fixed point.

• Study the stability of the corresponding linear systems.

• Draw the local flows around each fixed point:

• Try to link together the local stability information around each fixed point to establish
a global picture of the attractors in the state space. Two important properties of
autonomous, time-invariant, ODE models are important here:

– Nullclines: the curves in the phase plane corresponding to individual first derivat-
ives being zero (ẋ1 = 0 or ẋ2 = 0), i.e., the curves f1 (x1, x2) = 0 and f2 (x1, x2) = 0.
Nullclines are very useful for models of order 2 to graphically find the location of
fixed points and to sketch the vector field (also called flow) on a phase plane.
Indeed, the fixed points are located at the intersection of the nullcllines. Further-
more, by definition of a nullcline, the vector field on a nullcline always has one of
its component equal to zero. For systems of order 2, this means that on a nullcline,
the vector field or flow can only be either horizontal or vertical (depending on
which component of the vector field is zero on the considered nullcline). Have a
look at Appendix A for more information. Note that nullclines are less useful for
graphically finding fixed points or sketching the vector field for models of order 3
or higher.

– Trajectories in the phase plane (phase space for models of order 3 or higher) cannot
cross, except at the fixed points. The non-crossing property is a consequence of the
theorem of existence and uniqueness of solutions of time-invariant ODEs, i.e., ODEs
where time does not appear explicitly in the dynamics: ẋ = f(x) (time-invariant
ODE) and not ẋ = f(x, t) (time-varying ODE). It basically corresponds to the
idea that, for these types of systems, you cannot have different pasts that lead to
the same future without this future being a fixed point, or, said differently, that
you cannot have different futures (or trajectories) starting from the same state (or
point in the state space). This non-crossing property makes it sometimes easier to
build a global picture of the attractors and their corresponding basins of attraction
for models of order 2. This property is however less useful for models of order 3 or
higher.

Have a look at the phase planes for the pendulum depicted on page 42 to get an idea
of a global picture of a phase plane that can be obtained by piecing together the local
phase plane information gathered around each fixed point.
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5.2 Linearisation of nonlinear ODE models of order 2

• Find the fixed points, i.e., the points x∗ s.t. ẋ = f (x∗) = 0 ⇔
{
f1 (x

∗
1, x

∗
2) = 0

f2 (x
∗
1, x

∗
2) = 0

Remark 42. The MATLAB functions fsolve or solve can be used to find the zeros of

a system of algebraic equations





f1 (x
∗
1, . . . , x

∗
n) = 0

...

fn (x
∗
1, . . . , x

∗
n) = 0

. Remember that fsolve only gives

you one solution which is found based on a given initial guess. Thus, to find all the zeros
with fsolve you need to try several initial guesses.

• Linearise the dynamics around each fixed point (using Taylor):

Consider ẋ = f(x) with x = x∗ + ξ where ξ ∈ R2 s.t. ∥ξ∥ ≪ 1:

ξ̇ = ẋ = f(x∗ + ξ) = f (x∗)︸ ︷︷ ︸
=0

+

 ∂f1(x1,x2)
∂x1

∣∣∣
x=x∗

∂f1(x1,x2)
∂x2

∣∣∣
x=x∗

∂f2(x1,x2)
∂x1

∣∣∣
x=x∗

∂f2(x1,x2)
∂x2

∣∣∣
x=x∗


︸ ︷︷ ︸

≜J(x∗)

ξ +
��

��
O

(
∥ξ∥2

)
︸ ︷︷ ︸

H.O.T.

We thus obtain:
ξ̇ = J (x∗) ξ (39)

where J (x∗) is the Jacobian matrix evaluated at the fixed point x∗, i.e., a constant matrix

whose (i, j) element is Jij (x
∗) = ∂fi(x)

∂xj

∣∣∣
x=x∗

.

• Study the stability of (39) at each fixed point x∗

⇒ Diagonalise J (x∗) (i.e., ξ̃ = V −1ξ)

Remark 43. An important result (the Hartman-Grobman theorem) justifies the study of linear-
isations. It states that solutions of the nonlinear system ẋ = f(x) in the vicinity of the steady
state x∗ look “qualitatively” just like solutions of the linearised equation ξ̇ = J (x∗) ξ do in the
vicinity of the point ξ = 0.16

5.3 Diagonalisation of the Jacobian for ODE models of order 2

Consider

J (x∗) =

(
a b
c d

)

The eigenvalues of J (x∗) are given by solving

det (J (x∗)− λI) = 0

which gives the algebraic equation

λ2 − (a+ d)︸ ︷︷ ︸
=τ

λ+ (ad− bc)︸ ︷︷ ︸
=∆

= 0

where

• τ is the trace of J (x∗), i.e., the sum of the diagonal elements of J (x∗) (= λ+ + λ−)

• ∆ is the determinant of J (x∗) (= λ+λ−)

16The theorem assumes that none of the eigenvalues of J (x∗) has a zero real part (i.e., as we will see later, that
the linearised fixed point ξ = 0 is not a center).

Prof Guy-Bart Stan ©Imperial College London 37



Modelling in Biology V 9.2 Nonlinear ODE models of order 2

Eigenvalues:
λ2 − τλ+∆ = 0

⇒ λ± =
τ ±

√
τ2 − 4∆

2

Therefore, diagonalising J (x∗), we can see that the general solution is of the form:

ξ(t) = c+e
λ+t + c−e

λ−t , ξ(t) ∈ R2, c+, c− ∈ C2, λ+, λ− ∈ C (40)

where λ± are the eigenvalues of J (x∗) and c± are proportional to the corresponding eigenvectors.
Remember that to diagonalise J (x∗) appearing in ξ̇ = J (x∗) ξ you need to proceed as follows:

1. Compute the eigenvalues and corresponding eigenvectors of J (x∗)

2. Construct a matrix V having the eigenvectors of J (x∗) as columns

3. Perform the change of variables ξ̃ = V −1ξ

This then leads to:
˙̃
ξ = V −1ξ̇ =

(
V −1J (x∗)V

)
ξ̃ = Λξ̃

where Λ is a diagonal matrix with the eigenvalues of J (x∗) on the diagonal (in the same order as
the corresponding eigenvectors in the columns of V ). The diagonalisation allows to decouple the
equations, and therefore to reduce the problem to finding the solution of 1st order linear ODEs
(which we know how to do).

5.4 Local stability analysis for ODE models of order 2

The general solution for a linear ODE of order 2 is:

ξ(t) = c+e
λ+t + c−e

λ−t, λ± =
τ ±

√
τ2 − 4∆

2
, c± ∝ eigenvec. assoc. with λ± (41)

The local behaviours are dictated by the signs of τ(= λ++λ−), ∆(= λ+λ−), and τ2−4∆
(
= (λ+ − λ−)

2
)
.

1. ∆ > 0:
√
τ2 − 4∆ < |τ |

• τ > 0:

(a) τ2 − 4∆ > 0: λ+ > λ− > 0 (A)

(b) τ2 − 4∆ < 0: λ± complex conjugate with pos. real part (B)

• τ < 0:

(a) τ2 − 4∆ > 0: λ− < λ+ < 0 (C)

(b) τ2 − 4∆ < 0: λ± complex conjugate with neg. real part (D)

• τ = 0: λ± purely imaginary (E)

2. ∆ < 0: λ− < 0 < λ+ (F)

In the diagonalised coordinates, i.e., for ξ̃ = V −1ξ:

ξ̃1(t) = ξ̃1(0)e
λ+t, ξ̃2 = ξ̃2(0)e

λ−t, λ± =
τ ±

√
τ2 − 4∆

2

(A) λ+ > λ− > 0: Exponential growth in both directions: Repelling or unstable node
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x⇤

V�

V+

x2

x1

where V+ and V− represent the eigenvectors of J (x∗).

Remark 44. To understand this phase plane picture remember that ξ = V ξ̃ where V =


| |
V+ V−
| |


 with V+ and V− being the columns of V and representing the eigenvectors asso-

ciated with λ+ and λ− respectively. The relation ξ = V ξ̃ expresses ξ in the basis formed by
the eigenvectors V+ and V− since ξ = ξ̃1V+ + ξ̃2V−(= c+e

λ+t + c−eλ−t with c+ = ξ̃1(0)V+

and c− = ξ̃2(0)V−). Note that the divergence is faster in the eigenvector direction associated
with the largest eigenvalue.

(B) λ± complex conjugate with pos. real part: ξ̃1,2(t) = ξ̃1,2(0)e
τ
2 te±iωt with τ > 0, ω =√

|τ2−4∆|
2 : Unstable spiral

x∗

V−

V+

x2

x1

Remark 45. Non-real complex conjugate eigenvalues λ = a ± ib are associated to oscilla-
tions. They correspond to terms in solutions that involve complex exponentials eλt. Since
one has the general formula eλt = eat±ibt = eat(cos(bt) ± i sin(bt)), solutions, when re-
written in real-only form, contain terms of the form eat cos(bt) and eat sin(bt), and therefore
diverge to ∞ (with growing oscillations of “period” 2π

b ) provided that a > 0, that is to
say, that the real part of λ is positive. Another way to see this is to notice that asking
that eλt → ∞ is the same as requiring that the magnitude

∣∣eλt
∣∣ → ∞. Furthermore, since∣∣eλt

∣∣ = eat
√
(cos(bt))2 + (sin(bt))2 = eat, we see that a > 0 is the condition needed in order

to ensure that
∣∣eλt

∣∣ → ∞.

(C) λ− < λ+ < 0: Exponential decay in both directions: Attracting or stable node

x⇤
V�

V+

x2

x1

(D) λ± complex conjugate with neg. real part: ξ̃1,2(t) = ξ̃1,2(0)e
τ
2 te±iωt with τ < 0, ω =√

|τ2−4∆|
2 : Stable spiral
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x∗

V−

V+

x2

x1

Remark 46. As in Remark 45, since the solutions, when re-written in real-only form,
contain terms of the form eat cos(bt) and eat sin(bt), they converge to zero (with decaying
oscillations of “period” 2π

b ) provided that a < 0, that is to say, that the real part of λ is
negative. Another way to see this is to notice that asking that eλt → 0 is the same as
requiring that the magnitude

∣∣eλt
∣∣ → 0. Since

∣∣eλt
∣∣ = eat

√
(cos(bt))2 + (sin(bt))2 = eat, we

see that a < 0 is the condition needed in order to ensure that |eλt| → 0.

(E) λ± purely imaginary: ξ̃1,2(t) = ξ̃1,2(0)e
±iωt with ω =

√
∆: periodic oscillations: Center

x∗

V−

V+

x2

x1

Remark 47. In this case, the system is said to be marginally stable. This type of stability
is very fragile to perturbations since it only occurs when τ = 0, and the slightest perturbation
will typically either render x∗ stable and attractive, or unstable.

(F) λ− < 0 < λ+: exp. decay in one dir. and exp. growth in the other: Saddle point

x∗

V−

V+

x2

x1

Under the assumption that |λ+| > |λ−|, the divergence along V+ is faster than the convergence
along V−.

Remark 48. Summarising what we have seen, we now understand how the local stability analysis
of a nonlinear ODE of the form ẋ = f(x) is performed. This is done by linearising this nonlinear
ODE around each of its fixed points x∗, thereby obtaining linearised ODEs of the form ξ̇ = J (x∗) ξ
where ξ = x− x∗ with ∥ξ∥ “small”. As we have seen, the local behaviour around a fixed point x∗

is dependent on the eigenvalues and eigenvectors of J (x∗). In particular, diagonalising17 J (x∗)
through a change of coordinates ξ̃ = V −1ξ, we obtain a decoupled system of first order ODEs of

the form
˙̃
ξ 1

2
= λ±ξ̃ 1

2
whose solution is ξ̃ 1

2
(t) = ξ̃ 1

2
(0)eλ±t. Now, in general, the eigenvalues λ± will

be complex numbers: λ± = a± ib (with i2 = −1 and a, b ∈ R) and thus the general solution can be
written as: ξ̃ 1

2
(t) = ξ̃ 1

2
(0)eate±ibt. The complex exponential e±ibt = cos(bt)± i sin(bt) accounts for

“oscillations” of the solution around x∗ whereas the real exponential eat accounts for exponential
increases (a > 0) or decreases (a < 0) in the amplitude of the solution.

17Note that there are conditions for this to be possible.
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5.4.1 Summary of the possible local behaviours for models of order 2

τ

∆
Centers

τ2 − 4∆ = 0

τ2 − 4∆ = 0

Unstable
nodes

Stable
nodes

Stable
spirals

Unstable
spirals

τ2 − 4∆ > 0

τ2 − 4∆ > 0

(A)

(B)

(D)

(C)

(E)

Sa
dd

le
   

   
po

in
ts

(F)

As a general property for models of any order, the considered fixed point is stable
if all the eigenvalues of the Jacobian evaluated at this fixed point have negative real
parts. On the contrary, if one of the eigenvalues has a positive real part then the
corresponding fixed point will be unstable.

The phase plane behaviours, with the corresponding local flows around the considered fixed
point, are given in the following picture:

Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 25

solutions12 look like ellipses (or circles);

to decide if they more clockwise or counterclockwise, just pick one point in the plane and see
which direction Ax points to;

the plots of x(t) and y(t) vs. time look roughly like a graph of sine or cosine.

2. a < 0: spiral sink (stable spiral)

trajectories go toward the origin while spiraling around it, and direction can be figured out as
above;

the plots of x(t) and y(t) vs. time look roughly like the graph of a sine or cosine that is dying
out (damped oscillation).

3. a > 0: spiral source (unstable spiral)

trajectories go away from the origin while spiraling around it, and direction can be figured out
as above;

the plots of x(t) and y(t) vs. time look roughly like the graph of a sine or cosine that that is
exploding (increasing oscillation).

Trace/Determinant Plane

We next compute the type of the local equilibria for the chemostat example,
assuming that α1 > 1 and α2(α1 − 1) − 1 > 0 (so X̄2 is positive).

Recall that the we had computed the Jacobian at the positive equilibrium X̄2 =
�
α1

�
α2 − 1

α1−1

�
, 1
α1−1

�
:

A = F �(X̄2) =




0 β (α1 − 1)

− 1

α1

−β(α1 − 1) + α1

α1




where we used the shorthand: β = α2(α1 − 1) − 1.

We already saw that the trace is negative. Note that:

tr(A) = −1 −∆ , where ∆ = det(A) =
β(α1 − 1)

α1

> 0

and therefore tr2 − 4det = 1 + 2∆ + ∆2 − 4∆ = (1 −∆)2 > 0, so the point X̄2 is a stable node.13

Show as an exercise that X̄1 is a saddle.
12Centers are highly “non-robust” in a way that we will discuss later, so they rarely appear in realistic biological models.
13If ∆ �= 1; otherwise there are repeated real eigenvalues; we still have stability, but we’ll ignore that very special case.

Once you have a local picture around all the fixed points, the global behaviour of a system of
order 2 can be obtained by remembering that for models of the form ẋ = f(x) trajectories do
not cross. This non-crossing property makes it sometimes easier to build a global picture of the
attractors and their corresponding basins of attraction for models of order 2.

For example, the global phase portrait obtained by piecing together the local flows around the
fixed points of a simple ODE model of a pendulum is given in the following figure:
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Small periodic oscillations: “librations”

Large periodic oscillations 
(over the top): “hurling”

1. Undamped pendulum: !"#$"%& '#()&'((*")+,-#$&

2. Underdamped pendulum: .$$%'/$-#0)&+-%'*&)'#()
&'((*")+,-#$&

All trajectories end up in the 
attracting fixed points = 2k , 
where k is an integer

mlθ̈ = −η�lθ̇ − mg sin(θ)

⇔ θ̈ + ηθ̇ + k sin(θ) = 0

with η = η�

l and k = g
l

(η = 0)

θ

θ

m

l

mg

η
.

.

.
.

.

.
.

.
.

.

.
.

.

θ̇

θ̇

θ

As an exercise you can try to perform a global stability analysis (by piecing together info
obtained by local stability analysis around the various fixed points) of the pendulum ODE model:

θ̈ + ηθ̇ + k sin(θ) = 0

and see if you obtain the same global phase portrait as in the above picture. (See also the book
of Strogatz for more information.)

5.5 Periodic behaviour and limit cycles

5.5.1 Linear oscillations and their limitations

Periodic behaviors (i.e., periodic oscillations) are very important in biology, appearing in diverse
areas such as neural signaling, circadian rythms, heart beats, etc. In the case of linear ODEs
models of order 2, periodic oscillations can only be obtained if the system has a fixed point which
is a center. The typical set of linear ODEs in that situation is of the form:

{
ẋ = y

ẏ = −x
(42)
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whose trajectories are circles. More generally, linear ODE models of order 2 with eigenvalues that
are purely imaginary18 lead to ellipsoidal trajectories in the phase plane.

An example of system leading to this type of equations is the mass-spring system with no
damping.

The mass-spring-damper model with η = 0
Consider the model described in (38). If there is no damping, i.e., if η = 0 (e.g., the fluid in

which the mass-spring system is immersed is non-viscous) then (38) becomes:

mẍ+ κx = 0 ⇒
{
ẋ = y

ẏ = − κ
mx

(43)

For (43), an analytical solution can be obtained as follows:

dy

dx
= − κ

m

x

y∫
y dy = − κ

m

∫
x dx

y2

2
+ C1 = − κ

m

x2

2
+ C2

⇒ κ

m
x(t)2 + y(t)2 = C = 2(C1 + C2), ∀t (44)

The equation κ
mx(t)2 + y(t)2 = C corresponds to the definition of an ellipse in the x− y plane

(the phase plane).
Consider m = 1 and κ = 1. The phase plane is then:

y = ẋ

x

κ
mx(t)2 + y(t)2 = C

κ
mx(t)2+y(t)2 = C ⇔ κ

2
x(t)2

︸ ︷︷ ︸
Potential Energy

+
m

2
ẋ(t)2

︸ ︷︷ ︸
Kinetic Energy

= C̃ which makes sense since with no damping

(η = 0), the total energy of the system is conserved. We say that we have a conservative system.

Remark 49. Conservative systems cannot have attractors. Also, ODE models of order 1, even
nonlinear, cannot have periodic oscillations. Do you see why? (Think about the non crossing
property of solutions.)

Remark 50. In general, closed trajectories in the phase plane correspond to “purely periodic”
behaviours (periodic time trajectories).

Remark 51. C is defined by the initial condition since κ
mx(0)2 + y(0)2 = C.

Remark 52. How do we know in which direction we rotate on the phase plane? Well, this can
be easily seen from the ODEs evaluated on the x and y axes:

18Such linear systems are said to be marginally stable.
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• On the x-axis (i.e., when y = 0), we have y = 0 ⇒ ẋ = 0, ẏ = − κ
mx, which means that there

is no change in x, and the change in y is upward for x < 0 and downward for x > 0.

• A similar argument can be used on the y-axis.

Linear (or “harmonic”) oscillations have 2 serious limitations:

1. They are “fragile” or non-robust to small perturbations in the model

2. The oscillation characteristics (amplitude and phase) depend on the initial condition

A first serious limitation of such linear oscillators is that they are not robust to small per-
turbations in the model. Suppose that there is a small perturbation in the equations given in
(42): {

ẋ = y

ẏ = −x+ ϵy

where ϵ ̸= 0 is small, i.e., |ϵ| ≪ 1. The trajectories are not periodic anymore since the correspond-
ing fixed point is now a stable (ϵ < 0) or unstable (ϵ > 0) spiral. You can check this by computing

the eigenvalues and looking at the sign of their real part (the eigenvalues are λ± = ϵ±
√
ϵ2−4
2 with

ϵ “small”).
When dealing with electrical or mechanical systems, it is often possible to construct things

with precise components and low error tolerance. In biology, in contrast, things are too “messy”
and oscillators, if they are to be reliable, must be more “robust” than simple harmonic oscillators.

Another disadvantage of simple linear oscillations is that if, for some reason, the state “jumps”
to another position then the system will simply start oscillating along a different orbit and never
come back to the original trajectory19:

Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 67

1.8 Periodic Behavior

Periodic behaviors (i.e, oscillations) are very important in biology, appearing in diverse areas such as
neural signaling, circadian rythms, and heart beats.

You have seen examples of periodic behavior in the differential equations course, most probably
the harmonic oscillator (mass spring system with no damping)

dx

dt
= y

dy

dt
= −x

whose trajectories are circles, or, more generally, linear systems with eigenvalues that are purely
imaginary, leading to ellipsoidal trajectories:

A serious limitation of such linear oscillators is that they are not robust:

Suppose that there is a small perturbation in the equations:

dx

dt
= y

dy

dt
= −x + εy

where ε �= 0 is small. The trajectories are not periodic anymore!

Now dy/dt doesn’t balance dx/dt just right, so the trajectory doesn’t “close” on itself:

Depending on the sign of ε, we get a stable or an unstable spiral.

When dealing with electrical or mechanical systems, it is often possible to construct things with
precise components and low error tolerance. In biology, in contrast, things are too “messy” and
oscillators, if they are to be reliable, must be more “robust” than simple harmonic oscillators.

Another disadvantage of simple linear oscillations is that if, for some reason, the state “jumps” to
another position40 then the system will simply start oscillating along a different orbit and never come
back to the original trajectory:

To put it in different terms, the particular oscillation depends on the initial conditions. Biological
objects, in contrast, tend to reset themselves (e.g., your internal clock adjusting after jetlag).

40the “jump” is not described by the differential equation; think of the effect of some external disturbance that gives a
“kick” to the system

To put it in different terms, the particular oscillation depends on the initial conditions. Biological
systems, in contrast, tend to reset themselves (e.g., your internal circadian clock adjusting after a
jetlag).

5.5.2 Limit cycles

A stable limit cycle is a periodic trajectory which attracts other solutions to it (at least those
starting “close to” the limit cycle).

19To illustrate this consider again the mass-spring-damper system with zero damping (see (43)). In that case, we
saw that the trajectories are constrained by: κ

m
x(t)2 + y(t)2 = C with C = κ

m
x(0)2 + y(0)2. This clearly shows

that if we change the initial condition (i.e. if we force the trajectory to “jump” to a different point in the phase
plane), then a different closed trajectory will ensue.
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x2

x1

Thus, a member of a family of “parallel” periodic solutions (as for linear centers) is not called
a limit cycle, because other close-by trajectories remain at a fixed distance away, and do not
converge to it. Stable, attractive limit cyles are “robust” in ways that linear periodic solutions are
not:

• If a (small) perturbation moves the state to a different initial state away from the limit cycle,
the system will return to the limit cycle by itself.

• If the dynamics changes a little (e.g., small perturbation), a limit cycle will still exist, close
to the original one.

Remark 53. Limit cycles can only occur in nonlinear ODEs. They cannot happen in linear
ODEs.

Remark 54. In particular, if, no matter where we start, we end up on the limit cycle, then the
limit cycle is a global attractor of our system. On the contrary, if the limit cycle is only attracting
solutions starting in a particular region of the phase plane around it, then it is a local attractor
and the corresponding region is called the basin of attraction of the attractor (i.e., of the limit
cycle).

5.5.3 Limit cycles: an example

In order to understand the definition, and to have an example that we can use for various purposes
later, we will consider the following system:

ẋ = −ωy + x
(
µ− x2 − y2

)
(45)

ẏ = ωx+ y
(
µ− x2 − y2

)
(46)

where µ is a parameter while ω ̸= 0 is a constant.

• Fixed points: {
−ωy∗ + x∗ (µ− x∗2 − y∗2

)
= 0

ωx∗ + y∗
(
µ− x∗2 − y∗2

)
= 0

⇒ −�ω
y∗

x∗ =�ω
x∗

y∗
⇔ y∗2 + x∗2 = 0 ⇒ (x∗, y∗) = (0, 0)

• Linearisation around (0, 0):

J(x, y) =

((
µ− x2 − y2

)
+ x(−2x) −ω − 2xy

ω − 2xy
(
µ− x2 − y2

)
+ y(−2y)

)
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Local stability analysis of (0, 0):

J(0, 0) =

(
µ −ω
ω µ

)

⇒ λ± = µ± iω





τ = 2µ

∆ = µ2 + ω2 > 0

τ2 − 4∆ =�
�4µ2 −�

�4µ2 − 4ω2 < 0

τ

∆
Centers

τ2 − 4∆ = 0

Stable
spirals

Unstable
spirals τ2 − 4∆ < 0(B)

(D)

(E)





µ > 0, Unstable spiral

µ = 0, Center

µ < 0, Stable spiral

Global stability analysis for the limit cycle example (rare)
To perform the global analysis explicitly (which typically is very hard to do; the example we

have chosen here is an exception in that respect), we rewrite (45)-(46) in polar coordinates:

y

x

θ
r

0

�
r2 = x2 + y2

tan(θ) = y
x

�
x
y

�
↔

�
r
θ

�

i.e., transform ẋ = f(x) with x =

(
x
y

)
into ṗ = F (p) with p =

(
r
θ

)
.

Differentiating r2 = x2 + y2 with respect to time, we obtain:

�2rṙ = �2xẋ+ �2yẏ

rṙ = x
[
���−ωy + x

(
µ− r2

)]
+ y

[
��ωx+ y

(
µ− r2

)]

�rṙ = r �2
(
µ− r2

)

ṙ = r
(
µ− r2

)
(47)
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Differentiating θ = arctan
(
y
x

)
with respect to time, we obtain:

θ̇ =
d

dt

(
arctan

(y
x

))

=
d

d
(
y
x

)
(
arctan

(y
x

)) d
(
y
x

)

dt

=
1

1 +
(
y
x

)2
xẏ − ẋy

x2

=
x
[
ωx+�����y

(
µ− r2

)]
− y

[
−ωy +�����x

(
µ− r2

)]

r2

= ω
��r
2

��r
2

θ̇ = ω (48)

This gives:

ṙ = r
(
µ− r2

)
(49)

θ̇ = ω (50)

Global stability analysis for the limit cycle example (cont’)
The system of ODEs (49)-(50) is decoupled since ṙ depends only on r, and θ̇ = ω. We can

thus analyse these two ODEs separately using our knowledge for ODEs of order 1.
From θ̇ = ω, we have θ(t) = ωt + θ0, i.e., the phase grows linearly with time. From ṙ =

r
(
µ− r2

)
= rµ− r3, we see that the number of fixed points depends on µ.

r

ṙ

r

ṙ

r

ṙ

µ > 0

√
µ−√

µ

µ = 0µ < 0

y

x

θ
r

0

y

x0

√
µ

Hopf bifurcation
at µ = 0

When µ ≤ 0, the origin is the only fixed point, and every solution converges to r = 0. This
means that the full planar system is so that all trajectories spiral into the origin.

When µ > 0, the origin becomes unstable, as we can see from the phase plane of ṙ vs r. In
fact, ṙ is negative for r >

√
µ and positive for 0 < r <

√
µ, so that the fixed point r =

√
µ is an

almost global attractor (except for an initial condition at r = 0). This means that the full planar
system is so that all trajectories (except those starting at r = 0) spiral into the circle of radius√
µ, which is, therefore, a limit cycle. Note that the oscillation has magnitude

√
µ and frequency

ω
2π .

When we increase the values of µ from negative to positive we can see that, at µ = 0, we
transition from a situation where there is a change in the type of attractors. For µ < 0, the
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only attractor is the fixed point at the origin while for µ > 0, the only attractor is the limit
cycle of amplitude

√
µ. When, changing the value of a parameter, such a change occurs, a Hopf

bifurcation happens at the critical bifurcation value (i.e., the value where the qualitative change of
behaviour occurs; here this is µ = 0). The signature of a Hopf bifurcation is the emergence, when
a parameter is varied, of a limit cycle with increasing amplitude (at µ = 0 the amplitude of the
limit cycle is 0, while it is

√
µ for µ ⪆ 0). This typically happens when at the critical bifurcation

value (here, µ = 0), two complex conjugate eigenvalues of the Jacobian J cross the imaginary axis
(i.e., at the critical bifurcation value, two eigenvalues of J are purely imaginary). Note that this
property of the eigenvalues of J is not enough to ensure the emergence of a limit cycle as this is a
property that would also be true for linear systems and limit cycles can only occur for nonlinear
systems. We omit here the additional technical conditions that need to be satisfied to ensure the
emergence of a limit cycle. More details on these conditions and on the Hopf bifurcation can be
found in the book by Strogatz.

Stable

Limit cycle

Unstable

GAS Globally
Attractive

�

�

x

y

µ

Bifurcation diagramComplex plane

Eq. point Eq. point

2 complex conjugate eigenvalues
of the Jacobian cross the imaginary axis

Remark 55. In biology, periodic oscillations are typically the result of limit cycles.

Example of a limit cycle in a model of order 3
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5.6 Local (linear) and global stability are not equivalent for nonlinear
ODE models of order 2 and higher

Remark 56. In nonlinear ODE models of order 2 or larger, linear stability analysis is not equi-
valent to global stability analysis. This is especially true for center points:

τ

∆
Centers

τ2 − 4∆ = 0

τ2 − 4∆ = 0

In particular, the stability of a fixed point in a nonlinear system can be deduced from the local
stability analysis of the system linearised around this fixed only if this point is not a center (the
precise formulation of this statement is known as the Hartman-Grobman theorem). If this point is
a center then the stability property of the corresponding fixed point of the nonlinear system can only
be deduced by explicitly taking into account the nonlinarities (this is typically done by performing
a center manifold stability analysis – don’t worry, we will not cover this in this course).

To better understand the previous remark, consider the following example:

ẋ = −y + ax
(
x2 + y2

)
(51)

ẏ = x+ ay
(
x2 + y2

)
(52)

where a is a parameter.

• Fixed points:
(x∗, y∗) = (0, 0)

• Linearisation around (0, 0):

J(x, y) =

(
3ax2 + ay2 −1 + 2axy
1 + 2axy ax2 + 3ay2

)
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• Local stability analysis of (0, 0):

J(0, 0) =

(
0 −1
1 0

)
⇒ λ± = ±i , or

{
τ = 0

∆ = 1

The local stability analysis of (0, 0) indicates that the fixed point (0, 0) is a center for any value
of the parameter a. As we will see next the stability of (0, 0) in the original system (51)-(52) is
actually very different (i.e., in the original system the fixed point (0, 0) is not a center).

Rewriting the nonlinear ODEs (51) and (52) in polar coordinates, we obtain:

ṙ = ar3

θ̇ = 1

which, as was the case for (49) and (50), are decoupled. In particular, we see that θ(t) = t + θ0
and thus the phase variable θ(t) grows linearly with time.

r

ṙ

a < 0

r

ṙ

a > 0

Now looking at the dynamics of r, i.e., ṙ = ar3 and drawing the corresponding phase plane, we
can see that the stability of the fixed point (0, 0) depends on “a” and that, except for a = 0, (0, 0)
is actually never a center of the original nonlinear system.

Typically, it is quite difficult to actually prove that a limit cycle exists. But for models of order
2, there is a very powerful criterion called the Poincaré-Bendixson Theorem.

5.7 The Poincaré-Bendixson Theorem

The basic idea is the following:
For an ODE model of order 2, if you are able to find a region in the phase plane which does

not contain any fixed point and is attractive, then this region must contain a limit cycle.

y

x

D

A loose statement of the Poincaré-Bendixson Theorem
Suppose ẋ = f(x), x ∈ R2, is a continuously differentiable vector field20

and there exists a bounded subset D of the phase plane such that

20A vector valued function is said to be continuously differentiable if the partial derivatives of each of its component
functions with respect to each of the functions’ arguments all exist and are continuous functions of their arguments.
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• no trajectory can exit D, in which case D is said to be “forward-invariant” with respect to
ẋ = f(x) or a “trapping region” of ẋ = f(x),

• and there are no fixed points inside D.

Then, there exists at least one limit cycle in D and any trajectory that enters D converges to a
limit cycle.

The main idea behind the proof of this theorem comes from the fact that trajectories cannot
cross and that our movements are restricted to a plane since x ∈ R2. Since a trajectory starting in
D cannot escape D or cross itself (remember that trajectories cannot cross except at fixed points,
which D does not contain by definition), this trajectory must approach a closed orbit, i.e., a limit
cycle.

Remark 57. The Poincaré-Bendixson theorem is only valid for models of order 2. It does not
hold for models of order 1 (which cannot have limit cycles) or for models of order 3 or higher
(where the non-crossing property is insufficient to restrict the behaviour to a limit cycle).

The Poincaré-Bendixson theorem is a very powerful tool to establish the existence of attractive
limit cycles in models of order 2. The main difficulty is to find a set D that satisfies the assumptions
of the theorem.

The Poincaré-Bendixson Theorem: How can we find D?
Let A be defined as

A =

{
x =

(
x
y

)
∈ R2 : g(x) ≤ 0

}

for some continuously differentiable function g : R2 → R. Then the set A is forward invariant if
and only if

dg(x)

dt
=

∂g(x)

∂x

dx

dt
=

∂g(x)

∂x
f(x) ≤ 0 ∀x : g(x) = 0.

The above has a rather simple interpretation. If x starts inside A and, as time t evolves, x(t)
ever “reaches” the boundary of A, which is defined as Ā = {x ∈ R2 : g(x) = 0}, then g(x(t))

cannot increase any further since dg(x(t))
dt ≤ 0,∀x ∈ Ā. Thus x must remain in A.

y

x

A ∇g

Ā = {(x, y) ∈ R2 : g(x, y) = 0}

f(x)

ẋ = f(x), x =

�
x
y

�

A = {(x, y) ∈ R2 : g(x, y) ≤ 0}

B

∇g
f(x)

y

x

B = {(x, y) ∈ R2 : b(x, y) ≥ 0}
B̄ = {(x, y) ∈ R2 : b(x, y) = 0}

Alternatively, one can view the above geometrically by noting that the vector normal to the
boundary of A, at a point on the boundary x, (pointing outwards A, see Remark 59) is given by

∇g(x) =
(

∂g(x)
∂x

)T

. Thus, ∂g(x)
∂x f(x) = ∇g(x)Tf(x) ≤ 0,∀x ∈ Ā implies that the angle between

f(x), the direction in which x is moving, and ∇g(x), the vector normal to the boundary of A,
is greater than 90◦. Thus f(x) is always “pointing to somewhere inside of A” and hence x can
never leave A.

Remark 58. Equivalently, the set B = {x ∈ R2 : b(x) ≥ 0}, where b : R2 → R is a continuously
differentiable function, is forward invariant if and only if

db(x)

dt
=

∂b(x)

∂x

dx

dt
=

∂b(x)

∂x
f(x) ≥ 0 ∀x : b(x) = 0.
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Remark 59. The gradient of a scalar function, g(x, y), is given by ∇g(x, y) =

( ∂
∂xg(x, y)
∂
∂y g(x, y)

)
.

The gradient of a scalar function evaluated at a given point (x, y) is defined as the vector whose
direction is that of the greatest rate of increase of that scalar function at that point, and whose
magnitude is that rate of increase.

By noting that the intersection of two forward invariant sets (or regions) is also forward-
invariant, one can use several different forward invariant sets to construct more refined forward
invariant sets. This is easy to prove: if A and B are forward invariant sets with respect to ẋ = f(x)
and x is initialised in the intersection D = A ∩ B, then it may never leave A (since A is forward
invariant by assumption) and it may never leave B (since B is forward invariant by assumption).
Therefore, x may never leave the intersection of A and B which implies that the intersection set,
D, is also forward invariant.

y

x

D = A ∩ B
∇g

Ā = {(x, y) ∈ R2 : g(x, y) ≡ 0}

f(x)

ẋ = f(x), x =

�
x
y

�

∇g

f(x)

D = A ∩ B = {(x, y) ∈ R2 : g(x, y) ≤ 0, b(x, y) ≥ 0}

B̄ = {(x, y) ∈ R2 : b(x, y) ≡ 0}

The Poincaré-Bendixson Theorem: an example
Consider the second order model in example in (45)-(46) for µ > 0:

ẋ = −ωy + x
(
µ− x2 − y2

)

ẏ = ωx+ y
(
µ− x2 − y2

)

Suppose that we suspect there is a limit cycle encircling the origin. To prove its existence we
first have to find a trapping region that contains it. Consider as a candidate trapping region the
ball of radius R centred at the origin, that is AR = {(x, y) ∈ R2 : g(x) = x2+y2−R2 ≤ 0}. Then,

∇g(x, y)T
(
ẋ
ẏ

)
=

(
2x 2y

)(−ωy + x
(
µ− x2 − y2

)

ωx+ y
(
µ− x2 − y2

)
)

= 2(x2 + y2)(µ− x2 − y2)

By definition, if (x, y) ∈ ĀR (remember, ĀR denotes the boundary of AR), then x2 + y2 = R2.
So, for all x ∈ ĀR, we have ∇g(x, y)Tf(x) = 2R2(µ − R2) ≤ 0 for all R ≥ √

µ. Thus, any ball
centred at the origin which has a radius bigger than or equal to

√
µ is forward invariant.

Can we now conclude there exists a limit cycle around the origin? No! Not yet. As we
know, the system considered in (45)-(46) has a fixed point at (0, 0) and so the second condition
of the Poincaré-Bendixson Theorem is not satisfied. We can however attempt to define a set D
that “cuts out” a region around the origin. We do so by showing that the outside of some ball
centred at the origin and with small radius r ≤ R is forward invariant. Consider such a set,
Br = {(x, y) ∈ R2 : b(x) = x2 + y2 − r2 ≥ 0}. Similarly as before, we have that if (x, y) ∈ B̄r, then

x2 + y2 = r and ∇b(x, y)T
(
ẋ ẏ

)T
= 2r2(µ − r2) ≥ 0 for any r ≤ √

µ. Thus, the outside of any
ball centred at the origin with radius smaller or equal to

√
µ is forward invariant (see Remark 58).

Choosing any R ≥ √
µ and r ≤ √

µ we have shown that the doughnut D = AR∩Br = {(x, y) ∈
R2 : r2 ≤ x2+y2 ≤ R2, r ≤ √

µ ≤ R} is forward invariant. In addition, it contains no fixed points,
so applying the Poincaré-Bendixson Theorem we can conclude that there exists a limit cycle in D
and that any trajectory that enters D converges to a limit cycle. Indeed, in this case, we can go
a step further and by “squeezing” the doughnut, that is setting R = r =

√
µ, we can deduce that

the limit cycle is the circle defined by x2 + y2 = µ.
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y

x
D

The Poincaré-Bendixson Theorem: some final remarks
The first time we considered the system defined by (45)-(46), we established that if µ > 0,

then (0, 0) locally behaves like an unstable focus. Unstable focuses and unstable nodes share the
property that all trajectories not initialized on them, diverge away from them. Thus, it is not
surprising that we were able to “cut out” the fixed point from the trapping region (that is, find
a forward invariant Br). Indeed, it can be shown that one can always remove unstable focuses
and unstable nodes from trapping regions. Thus, in the example we didn’t even have to find Br

to conclude that a limit cycle exists. All that we had to do was linearise around the equilibrium,
verify that it behaves locally as an unstable focus (or node) and, once this is done, we can safely
ignore the fixed point when constructing the trapping region.

For some systems, the simplest trapping regions that can be found are polytopes (e.g., triangles,
rectangles, etc). Unfortunately, these sets cannot be described by a continuously differentiable
function as was assumed above (that is, they cannot be written as polytope P = {x ∈ R2 : g(x) ≤
0} where g(x) is continuously differentiable). However, a rather simple approach still allows to
construct trapping regions in that case: Suppose that the boundary of polytope P is given by m
line segments l1, l2, . . . , lm and let ni denote the vector normal to li (pointing towards the outside
of P). Then, similarly as before, one can show that the polytope is a trapping region by showing
that f(x) evaluated at the boundary of P always points “inside” P, that is by showing that
x ∈ li ⇒ ni

Tf(x) ≤ 0 for all i = 1, 2, . . . ,m.
For example, consider the system described by

ẋ = x(−x2 + y3 − y − 1) + 1

ẏ = y(x− 1− x2 − y2)

and the right-angle triangle, T , whose sides are given by l1 = {(0, α) : 0 ≤ α ≤ 1}, l2 = {(α, 0) :
0 ≤ α ≤ 1} and l3 = {(α, 1− α) : 0 ≤ α ≤ 1}.

The normal vectors are given by n1 = (−1, 0)T , n2 = (0,−1)T and n3 = (1, 1)T . Then all we
need to do is check that f(x, y) = (ẋ, ẏ)T points inside T , along each of the sides of T :

(x, y) ∈ l1 ⇒ n1
Tf(x, y) = −ẋ|(x,y)∈l1 = −x(−x2+y3−y−1)−1|(x,y)∈l1 = −(0)(−02+α3−α−1)−1 = −1 ≤ 0,

(x, y) ∈ l2 ⇒ n2
Tf(x, y) = −ẏ|(x,y)∈l2 = −y(x− 1−x2 − y2)|(x,y)∈l2 = −(0)(α− 1−α2 − 02) = 0,
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(x, y) ∈ l3 ⇒ n3
Tf(x, y) = (ẋ+ ẏ) |(x,y)∈l3 = x(−x2 + y3 − y− 1) + 1+ y(x− 1− x2 − y2)|(x,y)∈l3

= 1− x3 − y3 − x− y − yx2 + xy3|(x,y)∈l3

= 1− (x+ y)(x2+1)+ y3(x− 1)|(x,y)∈l3 = 1− (1)(α2+1)+ (1−α)3(α− 1) = −(1−α)4−α2 ≤ 0.

(where the last two equalities were obtained considering x = α and y = 1− α since x+ y = 1 for
all (x, y) ∈ l3)

Thus, T is forward invariant.
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5.8 Summary of behaviours for nonlinear ODE models of order 1 & 2

• Models of order 1

– Attractors: fixed points, or ∞
– Local (linear) and global stability analysis are equivalent

– Bifurcations: Saddle node, Transcritical, or Pitchfork

• Models of order 2

– Attractors: fixed points, limit cycles, or ∞
– Local stability analysis (linearisation) around fixed points ̸= global stability analysis

– Bifurcation: all those of order 1 + Hopf + others
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6 Nonlinear ODE models of order 3 and higher

ẋ = f(x), x ∈ Rd, d ≥ 3, f(·) : Rd → Rd, “smooth” function (53)

Behaviours for ODE models of order 3 and higher
In one sentence: everything that happens in lower order models + 2 other phenomena:

• quasi-periodicity

• deterministic chaos

Some good introductions to quasi-periodicity and deterministic chaos can be found in the book
of Strogatz and on the following webpages:

• Quasi-periodic oscillations:

– http://www.scholarpedia.org/article/Quasiperiodic_Oscillations

– http://en.wikipedia.org/wiki/Quasiperiodic_motion

• Deterministic chaos:

– http://en.wikipedia.org/wiki/Chaos_theory

– http://www.scholarpedia.org/article/Chaos_in_neurons

– http://en.wikipedia.org/wiki/Lorenz_system

– http://planetmath.org/LorenzEquation

– http://mathworld.wolfram.com/LorenzAttractor.html

If you want to see some really cool videos on experimental nonlinear dynamics and chaos, I
also recommend having a look at the following videos from Strogatz:

• Lorenz Waterwheel:

http://uk.youtube.com/watch?v=7iNCfNBEJHo

• Double pendulum:

http://uk.youtube.com/watch?v=anwl6OZ1UuQ

• Airplane wing vibrations (and instabilities!):

http://uk.youtube.com/watch?v=_Ys8qGxr--M

• Chemical oscillations (Belousov-Zhabotinsky):

http://uk.youtube.com/watch?v=8R33KWPmqlo

• Synchronised chaotic circuits and communications:

http://uk.youtube.com/watch?v=J-ca_bqWp4I

• Musical chaos:

– http://uk.youtube.com/watch?v=dL4VKuKNgXI

– http://uk.youtube.com/watch?v=Wz3cmlVwI30
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6.1 Summary for nonlinear ODE systems of order 1, 2, 3, and higher

1D 2D 3D and higher

Attractors
Only F.P.
or ±∞

Same as 1D
+ limit cycles

Same as 2D
+ quasi-periodic at-
tractor
+ chaotic attractor

Behaviours
Decay
or explosion

Same as 1D
+ robust periodic
oscillations

Same as 2D
+ quasi-periodicity
+ chaos

Bifurcations
Saddle-Node
Transcritical
Pitchfork

Same as 1D
+ Hopf
+ others

Same as 2D
+ many more

Remark 60. Discrete-time systems (also called maps) have a much wilder behaviour than continuous-
time systems. For example, one dimensional discrete-time systems (also called one dimensional
maps) such as xk+1 = rxk(1− xk) can exhibit limit cycles or even chaotic behaviours even though
xk ∈ R,∀k.
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7 Modelling gene regulation networks

7.1 The central dogma in molecular biology

Even if the entire genome of some model organisms can be (and indeed has been) decoded, the links
between genetic information and biological function are still far from being understood. In what
follows we briefly introduce and provide some modelling examples of gene regulation mechanisms.

We first start with a brief reminder of the central dogma of molecular biology.

The central dogma

Proteins are the workhorses of the cell. Most of the life-critical tasks of the cell are accomplished
by proteins, each protein having its own function and specificity. The information required to
synthesise proteins is found in a sequential genetic information carrying polymer called DNA
(deoxyribonucleic acid). A gene is a section of DNA, typically delimited by a promoter at its
beginning and a terminator at its end. The protein synthesis process is done in two phases:
transcription and translation.

• Transcription: Transcription is the process by which the information contained in a section
of DNA (e.g., a gene) is transferred to a newly assembled piece of messenger RNA (mRNA).
Transcription is triggered by the binding of RNA Polymerase to specific regions on the DNA
called promoters, and is enabled/facilitated or impeded by a range of promoter-specific
proteins called transcription factors.

• Translation: During translation, proteins are produced by ribosomes that bind to a specific
site of the mRNA (the ribosome binding site – RBS) and then move along the mRNA chain
converting triplets of bases or “codons” on the mRNA into the appropriate peptide chain
of amino acids defining the desired protein. The mRNA is read by the ribosome as triplet
of bases, usually beginning with an AUG, or an initiator methionine codon downstream
of the ribosome binding site. Complexes of initiation factors and elongation factors bring
aminoacylated transfer RNAs (tRNAs) into the ribosome-mRNA complex, matching the
codon in the mRNA to the anti-codon in the tRNA, thereby adding the correct amino acid
in the growing peptide sequence encoding the emerging protein. As the amino acids are linked
together into the growing peptide chain, they begin folding into the correct conformation.
This folding continues until the nascent polypeptide chain is released from the ribosome as
a mature protein.

Remark 61. In eukaryotic cells, the site of transcription (the cell nucleus) is usually separated
from the site of translation (the cytoplasm), so the mRNA must be transported out of the nucleus
into the cytoplasm, where it can be bound by ribosomes.
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In prokaryotic cells, there is no nucleus and translation and transcription are coupled: the
mRNA chains are being translated immediately as they are being synthesised.

Remark 62. Please note that not all RNA are translated. Certain RNA can perform other
important functions. For instance, ribosomes are made of non-translated RNAs (rRNAs).

7.2 Constitutive gene expression

As we have seen, the central dogma can be summarized as:

Gene GGGGGGGA

Transcr.
mRNA GGGGGGA

Transl.
Protein

mRNA GGGGGGGA

Degrad.
∅

Protein GGGGGGGA

Degrad.
∅

When gene expression is unregulated, it is said to be constitutive, and the gene is always on.
Using the law of mass action21, a model for constitutive expression is given as:

ṁ = k1 − d1m (54)

ṗ = k2m− d2p (55)

where m = [mRNA] and p = [Protein], where [X] represents the concentration of X.

• k1 is the constitutive transcription rate. It is considered to be constant, and it represents
the number of mRNA molecules produced per gene, per unit of time. (Here we consider that
there is only one copy of the gene in the cell (e.g., chromosomal gene); if there were several
copies (e.g., plasmid located gene) we would multiply k1 by the copy number N to obtain
to total transcription rate of the considered gene).

• d1 is the mRNA degradation rate. The typical half-life for mRNA, in E. coli, has been
measured to be between 2 min. and 8 min. (average 5 min.)

• k2 is the translation rate. It is considered to be constant, and it represents the number of
protein molecules produced per mRNA molecule, per unit of time.

• d2 is the protein degradation rate. In practice, the degradation rate of a protein is made
of two terms. The first term corresponds to the propensity of the protein to break down
per unit of time. The second term called the dilution term corresponds to the variation of
the cell volume (through cell expansion and division) per unit of time (remember that p
represents protein concentration and thus in that situation the volume of the cell influences
the protein concentration). Typically the division time of E.coli ranges from 20-40 mins.

The model (54)-(55) is a linear ODE model of order 2. It can be written under the form:

(
ṁ
ṗ

)
=

(
−d1 0
k2 −d2

)(
m
p

)
+

(
k1
0

)
(56)

This model is of the form ẋ = Ax+ b.

• Fixed point: (m∗, p∗) =
(

k1

d1
, k1k2

d1d2

)

21This is based on empirical studies since strictly speaking it does not really make sense to use the law of mass
action for gene expression.
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• Stability of the fixed point: the stability of a model of the form ẋ = Ax + b (such as the
model (56)) is also given by the eigenvalues of the A. This can easily be seen by rewriting

the system under the form ẋ = A


x+A−1b︸ ︷︷ ︸

=x̃


 which, posing x̃ = x+A−1b, gives ˙̃x = Ax̃.

So we have: λ1 = −d1 and λ2 = −d2: Stable node (or, if you want to use the τ -∆ approach:

τ = λ1+λ2 = −d1−d2 < 0, ∆ = λ1λ2 = d1d2 > 0, τ2− 4∆ = (d1 − d2)
2 ≥ 0: Stable node).

Remark 63. Before moving to other types of gene expressions, it is interesting to explore the
application of the quasi-stationary assumption on the expression of mRNA. Typically the concen-
tration of mRNA reaches steady state very quickly, compared to the protein concentration. This
suggests that we could neglect the fast transient required by the mRNA concentration to reach its
steady state and thus use the following quasi-stationary approximation: ṁ ≈ 0. Under this as-
sumption, we see that the corresponding model is now of order 1 and given by ṗ = c − d2p with
c = k1k2

d1
. This model has a stable fixed point at p∗ = c

d2
which is the same as previously.

Few genes are known to have a purely constitutive expression. Most genes have their expression
controlled by some outside signals (DNA-binding proteins, temperature, metabolites, RNA mo-
lecules, etc.). In the next section we will particularly focus on the study of DNA-binding proteins,
called transcription factors. These proteins, when binding to the promoter region of the gene, can
either have an activation effect on the gene (positive gene regulation action), or a repression effect
(negative gene regulation action). In prokaryotes, control of transcriptional initiation is considered
to be the major point of regulation in gene expression.

Remark 64. At least two arguments seem to indicate the need for regulation of gene expression:

• Each cell of a multicellular organism carries the same genetic information. Although the
genetic information is the same in all differentiated cells of a multicellular organism, the set
of genes expressed is different in each differentiated cell (Indeed, a neuron, a skin cell or a
liver cell do not exhibit the same phenotypes. This is a consequence of these cells expressing
different genes based on the same genetic code).

• Cells are subject to a large range of environmental perturbations/changes (e.g., pH, nutrients,
space, etc.) and have to react to them in order to survive. Such constraints can only be met
through appropriate spatio-temporal regulation of gene expression.

Gene expression must therefore be controlled by some mechanisms which determine at each instant
of time which gene (or set of genes) should or should not be expressed.

7.3 Gene transcription regulation

At the transcription level, gene expression can be controlled by certain proteins called transcription
factors:

Promoter Protein coding region Terminator

Gene

Transcription
Factor (TF)
(activator

or repressor)

TF binding site

DNA

... ...RBS
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Transcription factors are transcription regulation proteins which can bind certain sections of
the promoter, called transcription factor binding sites, thereby either preventing (inhibiting) or
facilitating (activating) the transcription of the gene, i.e., the binding of mRNA polymerase to the
promoter. When gene transcription is controlled by transcription factors, we talk about inducible
gene expression.

7.3.1 Gene transcription regulation by activators

Consider the case of a gene whose transcription is activated by the cooperative binding of activ-
ators to the transcription factor binding site of the gene.

Gene mRNA Protein

Activators

∅ ∅
The following model is commonly used to describe activator controlled gene transcription:

ṁ = k1
An

Kn +An
− d1m (57)

ṗ = k2m− d2p (58)

where m = [mRNA], p = [Protein], A = [Activator], k1 = maximal transcription rate, K =
activation coefficient, n = Hill coefficient (= number of activators that need to cooperatively bind
the promoter to trigger the activation of gene expression).

Exercise 1. As an exercise, plot the activating Hill function An

Kn+An as a function of A for
K = 1 and both n = 1 and n = 2. Explain why this shape is appropriate to model transcriptional
activation of gene expression as a function of the amount of activator A.

Remark 65. The activating (i.e., monotonically increasing) Hill function appearing in the dy-
namics of ṁ can be derived from considering the DNA/activators complex to very quickly reach
its steady state value (similarly to the enzyme-substrate complex quasi-stationary assumption in
the Michaelis-Menten enzymatic reaction). Indeed, the set of reactions for the mRNA dynamics
can be seen as:

nA+D
α

GGGGGBFGGGGG

β
C (+mRNAPol)

k̃1
GGGGGGAm+D + nA (+mRNAPol)

m
d1

GGGGGGA∅

where A = Activator, D = DNA, C = DNA/activators complex, and m = mRNA. Using the
law of mass action to write the ODEs and the following two assumptions:

• the quasi-stationary approximation Ċ ≈ 0, and

• the conservation law D+C = Dtotal where Dtotal is a positive constant (expressing that the
total amount of DNA is conserved),

it is easy to show that the dynamics for the concentration of mRNA is of the form given in (57).
The derivation is given in Appendix B.

As with enzymatic reactions, the real set of reactions describing the activation process is much
more complicated than shown above. It has however remained common to use a Hill function
to model activation. As a consequence of this unaccounted complexity of the regulated activation
process, instead of using an integer exponent as the model suggests, non-integer Hill coefficients
might need to be used (e.g., n = 2.8) to fit data appropriately.
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7.3.2 Gene transcription regulation by repressors

Consider the case of a gene whose transcription is repressed by the cooperative binding of
repressors to the transcription factor binding site of the gene.

Gene mRNA Protein

Repressors

∅ ∅

The following ODE model describes repressor-controlled gene transcription:

ṁ = k1
Kn

Kn +Rn
− d1m (59)

ṗ = k2m− d2p (60)

where m = [mRNA], p = [Protein], R = [Repressor], k1 = maximal transcription rate, K =
repression coefficient, n = Hill coefficient (= number of repressors that need to cooperatively bind
the promoter to trigger the inhibition of gene expression).

Remark 66. Repressor proteins often bind to DNA as dimers (i.e., n ≈ 2) or pairs of dimers
(effectively tetramers, i.e., n ≈ 4).

Exercise 2. As an exercise, plot the repressing Hill function Kn

Kn+Rn as a function of R for
K = 1 and both n = 1 and n = 2. Explain why this shape is appropriate to model transcriptional
repression of gene expression as a function of the amount of repressor R.

Remark 67. Similarly to what we saw for the activator case, the repressing (i.e., monotonically
decreasing) Hill function can be derived from considering the DNA/repressors complex to very
quickly reach its steady state value. Indeed, the set of reactions for the mRNA dynamics can be
seen as:

nR+D
α

GGGGGBFGGGGG

β
C

D (+mRNAPol)
k̃1

GGGGGGAm+D (+mRNAPol)

m
d1

GGGGGGA∅

where R = Repressor, D = DNA, C = DNA/repressors complex, and m = mRNA. Using the
law of mass action, the quasi-stationary approximation Ċ ≈ 0 and the conservation law D + C =
Dtotal where Dtotal is a positive constant, it is easy to show that the dynamics for the concentration
of mRNA is of the form given in (59). The derivation is given in Appendix C.

Again, the real set of reactions describing the repression process is much more complicated than
shown above and this might result in the need to use non-integer values for the Hill coefficient n
to fit data appropriately.

When genes interact with each other in a nonlinear fashion, new behaviours emerge. These
behaviours do not require many genes to appear as we will see in the next sections.
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7.4 Regulation of gene transcription: auto-activation and auto-inhibition

Auto-activation and auto-inhibition
Auto-activation or auto-inhibition occurs when the promoter of the considered gene is regulated

by the transcription factor (protein) that it encodes.

Gene Transcription
Factor (protein)

+ or -
mRNA

; ;

ṁ = k1f(p)− d1m (61)

ṗ = k2m− d2p (62)

where f(p) = f+(p) = pn

Kn+pn (monnotonically increasing Hill function) for an auto-activating

action of the transcription factor p, and f(p) = f−(p) = 1 − f+(p) = Kn

Kn+pn (monotonically

decreasing Hill function) for an auto-inhibiting action of the transcription factor p.

Remark 68. The activating Hill function f+(p) = pn

Kn+pn has two parameters:

• K which is the activation coefficient (units of concentration). In this case, K is equal to the
concentration of transcription factor p needed to activate by 50% the overall gene expression,
i.e., f+(K) = 1

2 .

• n which is the Hill coefficient. It represents the cooperativity of the considered reaction. In
this case, n corresponds to the number of p that need to cooperatively bind the promoter to
trigger the activation of gene expression.

Similar parameter definitions apply for the repressing Hill function f−(p) = 1− f+(p).

The model (61)-(62) is a nonlinear ODE model of order 2.

7.4.1 Auto-activation

In the auto-activation case, the model (61)-(62) writes:

ṁ = k1
pn

Kn + pn
− d1m (63)

ṗ = k2m− d2p (64)

We perform the analysis of the model (61)-(62) directly by looking at its phase plane.

pp

mm

ṁ = 0 ṁ = 0

ṗ = 0 ṗ = 0

n = 1 n ≥ 2
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The fixed points are located at the intersection of the two nullclines ṁ = 0 and ṗ = 0 (see
Appendix A for the definition of a nullcline). The stability of the fixed points can be checked by
(a) considering the direction of the vector field on each of the nullclines and within the regions
delimited by the nullclines and (b) by considering the sign of the real part of the eigenvalues of
the Jacobian evaluated at each fixed point (i.e., the linearisation of the system around each fixed
point) (or if you prefer the τ -∆ approach, by considering the signs of the trace τ(= λ1 + λ2) and
the determinant ∆(= λ1λ2) of the Jacobian).

Exercise 3. Consider the ODEs in (63) and (64). Draw the flow (1) on the nullclines and (2)
within each of the regions delimited by the nullclines. Note that on each nullcline the vector field
can only be either vertical or horizontal. Within each of the regions delimited by the nullclines,
the vector field can be deduced as a vectorial combination of the vector fields at the boundaries of
these regions, i.e., on the nullclines (see also Appendix A).

Can you infer the stability of the various fixed points from the vector field information that you
have represented on the phase plane?

Exercise 4. Perform a complete linear stability analysis around each fixed point for the model
given in (63)-(64) (i.e., compute the eigenvalues of the Jacobian of the linearised system associated
with each fixed point). Check that their local stability property agrees with the flow picture that
you have drawn in the previous exercise.

Remark 69. To understand the link between the linearisation around a fixed point and the slopes
of the nullclines intersecting at that fixed point, remember that linearising the nullclines around a
fixed point corresponds to considering the slopes of the nullclines at the considered fixed point. For
example, if we take the red fixed points in the phase planes, we see that the slope of the Hill nullcline
(ṁ = 0) at these points (let’s call it α) is larger than the slope of the linear nullcline (ṗ = 0) at

these points (let’s call it β). We have α =
linearisation of k1

pn

Kn+pn at the FP

d1
> β = d2

k2
. We thus have

τ = λ1+λ2 = −d1−d2 < 0 while ∆ = λ1λ2 = d1d2−k2 ∗
(
linearisation of k1

pn

pn+Kn at the FP
)
<

0. Therefore, the red fixed points are saddle points. A similar argument applied to the green fixed
points shows that these are stable nodes.

As we can see, if the cooperativity coefficient of the Hill activating function, i.e., n, is equal to
1, the model can have at most one stable fixed point22. On the contrary, if n ≥ 2, then two stable
fixed points can coexist (one corresponding to the gene being expressed and the other to the gene
not being expressed) and the system is said to be bistable. Which fixed point is asymptotically
reached depends on the initial condition of the system.

7.4.2 Auto-repression

In the auto-repression case, the model (61)-(62) writes:

ṁ = k1
Kn

Kn + pn
− d1m (65)

ṗ = k2m− d2p (66)

Once again, we perform the analysis of the model (61)-(62) directly by looking at its phase
plane.

22The number of fixed points depends on the parameters of the model. These parameters determine the shape
of the nullclines. For example, the shape of the nullcline ṁ = 0 is dictated by the parameters n, K, and k1, while
the slope of the nullcline ṗ = 0 is dependent on the ratio of parameters d2

k2
.
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pp

mm

ṁ = 0 ṁ = 0

ṗ = 0 ṗ = 0

n = 1 n ≥ 2

As we can see, in this case there always exists a single stable fixed point, for any value of the
cooperativity coefficient n.

Exercise 5. Consider the ODEs in (65) and (66). Draw the flow (1) on the nullclines and (2)
within each of the regions delimited by the nullclines. Can you infer the stability of the various
fixed points from this information?

Exercise 6. Perform a complete linear stability analysis around each fixed point for the model
given in (65)-(66) and check that their local stability property agrees with the flow picture that you
have drawn in the previous exercise.

7.5 Synthetic Biology gene regulation models

7.5.1 The toggle switch

The toggle switch is a synthetic biology construct composed of two genes which mutually repress
each other. In the initial construct proposed by a Boston research group (Gardner, Cantor and
Collins, Nature, 2000), one of the genes is LacI while the other one is TetR.

LacI TetR

Similarly to what we have seen in the previous section, a simple ODE model for this gene
regulatory network can be given as:

ṁL = kL,1
KnT

T

KnT

T + pnT

T

− dL,1mL

ṗL = kL,2mL − dL,2pL

ṁT = kT,1
KnL

L

KnL

L + pnL

L

− dT,1mT

ṗT = kT,2mT − dT,2pT

where mL (resp. mT ) is the concentration of LacI (resp. TetR) mRNA, and pL (resp. pT ) is the
concentration of LacI (resp. TetR) protein.

Using a quasi-stationary assumption for the mRNA dynamics, i.e., ṁL ≈ 0 and ṁT ≈ 0, we
obtain a model of order 2 whose equations are:

ṗL = kL,2
kL,1

dL,1

KnT

T

KnT

T + pnT

T

− dL,2pL (67)

ṗT = kT,2
kT,1

dT,1

KnL

L

KnL

L + pnL

L

− dT,2pT (68)
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The number and stability of the fixed points can be analysed by performing a nullcline analysis
since the system is two-dimensional. For certain values of the parameters, the nullclines intersect
in three points, which determine the steady states of this system.

For example, for nL = nT = 2, kL,1 = kT,1 = 10, and all other parameters equal to 1 the phase
plane looks like this:

pL

pT

ṗT = 0

ṗL = 0

Specifically, by setting ṗL = 0 and ṗT = 0, we obtain the nullclines shown on the above
depicted phase-plane. The nullclines partition the plane into 6 regions. By determining the sign
of ṗL and ṗT in each of these 6 regions, one can determine the direction towards which the vector
field is pointing in each of these regions23.

Exercise 7. Perform a phase plane analysis of the 2nd order toggle switch model given in (67)-
(68). To this end, choose parameter values such that the toggle switch has 3 fixed points, and plot
the vector field on the nullclines and within each of the 6 regions delimited by the nullclines. Can
you infer the stability of the 3 fixed points based on this information?

Exercise 8. Assuming that the parameter values have been chosen so that the toggle switch has
3 fixed points, perform a local stability analysis around each fixed point. To this end, linearise the
system around each fixed point and analyse the local stability of these fixed points. Check that your
stability results are coherent with the ones you obtained through the phase plane analysis in the
previous exercise.

Let’s consider the case for which the parameter values are chosen such that the toggle switch
system has 3 fixed points. From the direction of the vector field on the nullclines, one can deduce
that the middle steady state (i.e., the one for which p∗L = p∗T if all the corresponding parameters of
pL and pT are the same) is unstable. Performing a local stability analysis, one can check that the
other two fixed points are stable. This is thus a bistable system, i.e., the system converges to one
steady steady or the other depending on whether the initial condition is in the basin of attraction
of one of the stable fixed point or the other (note that the stable eigenvector of the saddle point (in
red on the phase plane) is a separatrix of the phase plane which delimits the basins of attraction
of the other two stable fixed points). In one of the fixed points, only LacI is expressed at a high
level while in the other, only TetR is expressed at a high level.

Once the system has converged to one of the two fixed points, it cannot switch to the other
unless an external stimulation is applied that moves the initial condition into the basin of attraction
of the other steady state. Typically this perturbation is applied by increasing the concentration
of an inducer, i.e., a molecule that inhibits the action of a repressor (either Inducer 1 or Inducer 2
in the diagram given hereafter). Using the appropriate inducer, the system can be switched from
one fixed point to the other.

23The phase plane analysis can be confirmed easily by visualising the vector field on the plane. For this the
matlab function quiver can be used. A Matlab tool that allows to visualise the vector field of a system of order 2 is
PPLANE which can be found online at: https://uk.mathworks.com/matlabcentral/fileexchange/61636-pplane.
You can visualise the phase plane of the toggle switch with the following default parameter values: nT = nL = 2,
kL,1 = kT,1 = 10, and all other parameter values equal to 1. With these parameter values, optimal visualisation
of the corresponding toggle switch vector field and nullclines in the phase plane can be obtained by considering pL
and pT both in the range [0, 10].
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LacI TetR

Inducer 1

Inducer 2

Note that a bistable system, when subject to noise, can give rise to noise-induced oscillations
since the noise can act as a perturbation on the system which can push the system from the basin
of attraction of one of the fixed points into the basin of attraction of the other. This noise-induced
oscillations property of the toggle switch has been observed experimentally in the wet-lab.

7.5.2 The repressilator

The repressilator is a synthetic biology construct composed of three genes which mutually repress
each other in sequence according to a ring structure. In the initial construct proposed by the
research group of Elowitz (Elowitz and Leibler, Nature, 2000), the three chosen genes were LacI,
TetR, and λ cI. The repressilator of Elowitz and Leibler exhibits sinusoidal, limit cycle oscillations
with periods of hours.

LacI TetR

λ cI

The corresponding model is of order 6 and can be written as (after non-dimensionalisation):

ṁi = −mi +
α

1 + pnj
+ α0 (69)

ṗi = −β (pi −mi) (70)

where (i, j) = {(LacI, cI), (TetR,LacI), (cI, TetR)}.
For certain values of the parameters, this system exhibits limit cycle oscillations as can be seen

on the following simulation (from the BioModels website: http://www.ebi.ac.uk/biomodels-main/
BIOMD0000000012).

Time evolution of protein concentrations
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Remark 70. Note that when the order of the model becomes larger than 2, its mathematical
analysis may become quite difficult. In such situations, numerical integration of the ODE model
(computer simulations) for various initial conditions together with bifurcation analysis (for example
using the Matlab toolbox Matcont) may become our first tools of choice for the analysis of high
dimensional models in order to gain some initial understanding of the underlying dynamics.

Remark 71. The repressilator belongs to the class of cyclic feedback systems for which results
have been proven mathematically, even when the number of genes in the ring is arbitrarily large24.
In particular, the Mallet-Paret and Smith Theorem and the Hastings Theorem can be applied to
cyclic feedback systems such as the repressilator to infer that if the system has a unique fixed point
which is unstable, then it admits a periodic solution.

7.6 Concluding remarks

So far, we have considered gene regulatory networks modelled using ODEs. This type of models
implicitly assumes that the underlying quantities, i.e., concentrations or molecule numbers, vary
in a continuous (i.e., real-valued) and deterministic fashion. However, at the molecular level these
assumptions are mere approximations which might not accurately reflect the underlying dynamics,
especially when the number of molecules involved is “small”, such as is the case for transcription
factors, which, in certain circumstances, can be expressed at low levels, i.e., a few tens of molecules,
or for chromosomal DNA, for which a single copy exists in the cell. Intrinsic stochasticity at the
molecular level may not be neglected any more when small numbers of molecules are involved
(since in this case the “averaging” out of stochastic effects due to the application of the law of
large numbers does not hold any more). Therefore, stochastic models have to be considered. For
gene regulation stochastic models, the dependent variable x is a random variable which represents
the number of molecules of the considered species at time instant t. The model then expresses the
dynamics of the joint probability p(x, t) of having x1 number of molecules of the first species at
time t, x2 number of molecules of the second species at time t, etc. (this type of model is called
the Master Equation of the system25). The analysis of such stochastic models is then realised by
mathematically deriving the most important moments (e.g., mean and variance of x) if possible and
also through stochastic simulation algorithms (SSA) such as the Gillespie stochastic integration
algorithm. These stochastic simulations are typically more realistic but they also require more
computer power to run and are more difficult to analyse. We will not cover stochastic gene
regulation models in this course.

24A good paper to read for this is by Hal Smith, “Oscillations and multiple steady states in a cyclic gene model”,
J. Math. Biol. (1985), 25: 169-190.

25In physics a master equation is a set of ODEs describing the time evolution of the probability of a system to
occupy each one of a discrete set of states.
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A Phase plane for ODE models of order 2

Phase plane for ODE models of order 2
An ODE model of order 2 can be written under the general form

ẋ1 = f1 (x1, x2)

ẋ2 = f2 (x1, x2)

A trajectory in its phase plane looks like this:

x1

x2

f1 (x1, x2)

f2 (x1, x2) f (x1, x2)

At each point (x1, x2) in the phase plane, the vector f (x1, x2) =

(
f1 (x1, x2)
f2 (x1, x2)

)
determines the

direction in which the trajectory evolves and is thus tangent to this trajectory at the considered
point (x1, x2).

26

The curves f1 (x1, x2) = 0 and f2 (x1, x2) = 0 are called nullclines. Along these curves, one
of the component of the vector field is zero. For ODE models of order 2, this means that on a
nullcline, the vector field (or flow) can only be either horizontal or vertical (depending on which
component of the vector field is zero on the considered nullcline). Fixed points are located at the
intersection of the nullclines.

x1

x2 f1 (x1, x2) = 0

f2 (x1, x2) = 0

The nullclines delineate regions in the phase plane within which the vector field points towards
one of the four directions which can be deduced from the vectorial composition of the vector field
directions at the boundaries of the considered region:

• ẋ1 > 0 and ẋ2 > 0 (North East direction)

• ẋ1 > 0 and ẋ2 < 0 (South East direction)

• ẋ1 < 0 and ẋ2 > 0 (North West direction)

• ẋ1 < 0 and ẋ2 < 0 (South West direction)

26An amazing vector field visualisation tool to show how the weather changes is available at https://earth.

nullschool.net: the animated weather map shows for each point on earth how weather currents change in real
time. This is a direct illustration of a phase plane of a dynamical system ẋ = f(x) used to predict the weather on
earth surface.
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The local stability analysis around a fixed point gives you a local picture of the vector field
around this fixed point (see section 5.4.1). Once you have a local picture around all the fixed
points, the global behaviour of a system of order 2 can be obtained by remembering that for
models of the form ẋ = f(x) trajectories do not cross.

B Gene transcription regulation by activators

In this section, we show how the dynamics (57) can be obtained from the following biochemical
reactions:

nA+D
α

GGGGGBFGGGGG

β
C (+mRNAPol)

k̃1
GGGGGGAm+D + nA (+mRNAPol)

m
d1

GGGGGGA∅

where A = Activator, D = DNA, C = DNA-activators complex, and m = mRNA. Using the
law of mass action to write the ODEs, we obtain:

ṁ = k̃1C − d1m

Ċ = αAnD − (β + k̃1)C

Now, using the following two assumptions:

• the quasi-stationary approximation Ċ ≈ 0, and

• the conservation law D+C = Dtotal where Dtotal is a positive constant (expressing that the
total amount of DNA is conserved),

we obtain:

• Ċ ≈ 0 ⇒ (β + k̃1)C = αAnD

• D + C = Dtotal ⇒ (β + k̃1)C = αAn (Dtotal − C)

This last equation yields:

C =
αDtotalA

n

β + k̃1 + αAn

which, when inserted in the equation of ṁ, gives:

ṁ = k̃1Dtotal
An

β+k̃1

α +An
− d1m = k1

An

Kn +An
− d1m

with k1 = k̃1Dtotal and Kn = β+k̃1

α .

C Gene transcription regulation by repressors

In this section, we show how the dynamics (59) can be obtained from the following biochemical
reactions:

nR+D
α

GGGGGBFGGGGG

β
C

D (+mRNAPol)
k̃1

GGGGGGAm+D (+mRNAPol)

m
d1

GGGGGGA∅

Prof Guy-Bart Stan ©Imperial College London 70



Modelling in Biology V 9.2 Gene transcription regulation by repressors

where R = Repressor, D = DNA, C = DNA-repressors complex, and m = mRNA. Using the
law of mass action to write the ODEs, we obtain:

ṁ = k̃1D − d1m

Ċ = αRnD − βC

Now, using the following two assumptions:

• the quasi-stationary approximation Ċ ≈ 0, and

• the conservation law D+C = Dtotal where Dtotal is a positive constant (expressing that the
total amount of DNA is conserved),

we obtain:

• Ċ ≈ 0 ⇒ αRnD = βC

• D + C = Dtotal ⇒ αRnD = β (Dtotal −D)

This last equation yields:

D =
βDtotal

β + αRn

which, when inserted in the equation of ṁ, gives:

ṁ = k̃1Dtotal

β
α

β
α +Rn

− d1m = k1
Kn

Kn +Rn
− d1m

with k1 = k̃1Dtotal and Kn = β
α .
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