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Essential features of a modelling approach
Isolate your system of interest.

What is important? This defines your “system of interest”

What can be measured? What are the “observables”? This defines
the “outputs” of the system.

What can be controlled or acted upon? This defines the “inputs” of
the system.

System of interest
Inputs Outputs

Outside
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Modelling of the system of interest

Typically, the model is composed of

variables
I independent, e.g., time t

F 1 indep. var.: ODEs, e.g., time t
F more than 1 indep. var.: PDEs,

e.g., time t and space (x , y , z)

I dependent
e.g., concentrations functions of time
{[E ](t), [S ](t), [P](t)}

parameters
I not dependent on independent

variables
I can be varied/changed under

experimental conditions

constants
I fixed, e.g., Avogadro constant,

gravitational constant

⇒ Different types of models

Based on these concepts, different types of models can be built.Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 5 / 77

Types of models

Continuous Discrete

the independent variables are
continuous

ODEs, PDEs

the independent variables are
discrete

Difference equations
Deterministic Stochastic

var., param. and const. do not
contain randomness

they are defined by a unique
function

dynamics contain an element of
randomness

e.g., SDEs

Linear Nonlinear

ẋ = dx
dt

= −kx
Linear ODE

ẋ = dx
dt

= −kx + x3

Nonlinear ODE
Autonomous Non-autonomous

Without control input: ẋ = −kx With control input: ẋ = −kx + u
Constructive Data-driven

mechanistic or deductive

also called “equation-based” or
“(first) principle-based”

phenomenological or inductive
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Summary

Continuous (indep. var. continuous)

ODE PDE

SDE

Discrete (indep. var. discrete)

Difference eqn.
Discretisation

Fokker-Planck
(Kolmogorov forward)

equation

(time) (time + space)

(randomness)

Hybrid models

Finite Element Methods

Continuous
ODEs PDEs Deterministic (L or NL)

SDEs Stochastic (L or NL)

Discrete Difference equations
Deterministic (L or NL)

Stochastic (L or NL)
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A deterministic, continuous, linear model of order 1

Consider

ẋ(t) =
dx(t)

dt
= kx(t)

Linear ODE.

For k > 0, this is known as the Malthusian population growth with k
denoting the growth rate per cell.

Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 9 / 77

Analytical solution of 1st order linear ODEs
Consider the model:

ẋ =
dx

dt
= kx , x(0) = x0 (1)

Its solution is given by

x(t) = x0e
kt

where x0 = x(0) (the initial condition).

x

t

x0
k = 0

k > 0

k < 0
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Numerical solution of ODEs: the Euler algorithm

dx

dt
= kx

⇔ lim
∆t→0

x(t + ∆t)− x(t)

∆t
= kx(t)

Suppose ∆t is fixed to a particular value h (doing this is called discretising
the continuous ODE model and h is called the discretisation step). We
then have:

x(t + h)− x(t)

h
≈ kx(t)

x(t + h) ≈ x(t) + hkx(t) (2)

Eq. (2) is know as the “Euler algorithm”.
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Linear difference equation

x(t + h) = x(t) + hkx(t)

is a discrete-time model which can also be looked at as a linear difference
equation by taking h = 1, and defining for ease of notation xt = x(t):

xt+1 = (1 + k)︸ ︷︷ ︸
α

xt = αxt (3)

(or equivalently xt+1 − xt = (α− 1)xt .)
Its non-zero solution is given by

xt = x0α
t

where x0 is the initial condition.
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Phase plane

The phase plane (a.k.a. phase space) is a representation that
eliminates time as an explicit variable.

It is very useful for obtaining a qualitative understanding of the
long-term or asymptotic behaviour of nonlinear ODE models (for
which, typically, analytical solutions cannot be found).

Consider ẋ = kx

ẋ = kx

x

k > 0

x0 = 10

ẋ = kx

x0

k < 0

x0 = −1

ẋ = kx

x0
k = 0
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Bifurcation diagram
We can summarise the information obtained through the phase plane
stability analysis on a bifurcation diagram, i.e., a diagram giving the
long-term (i.e., asymptotic) behaviour of the system when a parameter is
varied. Here the parameter for the ODE model ẋ = kx is k .

0 k

x

k > 0

k < 0

+∞

−∞

ẋ = kx
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SDEs of order 1
Consider a stochastic version of the Malthusian growth model:

dx

dt
= kx + η (4)

where η is a random variable that represents some uncertainties or
stochastic effects perturbing the system.
Eq. (4) is known as a Langevin equation.
Eq. (4) can also be rewritten as

dx = [kx ]dt + ηdt︸︷︷︸
≈σdw

(5)

where w represents a standard (one-dimensional) Wiener process (also
called Brownian motion)
SDEs such as (5) are typically solved numerically through discretisation
using the Euler algorithm:

x(t + ∆t) = [1 + k∆t]x(t)︸ ︷︷ ︸
deterministic part

+
(
σ
√

∆t
)
randn

︸ ︷︷ ︸
stochastic part
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SDE of order 1 (cont’)

t

x

x0
σ1

k
run 1
run 2

t

x

x0
σ2

k
run 1
run 2

σ2 > σ1
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Nonlinear ODE models of order 1

First order nonlinear ODE models are written under the generic form:

ẋ = f (x), x ∈ R, f (·) : R→ R, “smooth” function (6)

Finding the analytical solution of (6), i.e., finding x(t, x0), is, in general,
no longer possible unless a closed form solution can be obtained for∫

1
f (x) dx =

∫
dt.
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Non-Malthusian population growth: the logistic equation
We consider the non-Malthusian population growth model in which the
reproduction rate takes into account the “competition for resources”.
Consider that x(t) represents the number of cells at time instant t.

ẋ =

=f (x)︷ ︸︸ ︷
rx
(

1− x

k

)

︸ ︷︷ ︸
Resources

=




r
(

1− x

k

)

︸ ︷︷ ︸
non-constant growth rate

per cell




x = rx︸︷︷︸
“growth rate”

− rx2

k︸ ︷︷ ︸
“death rate”

(7)
In this particular case and rather exceptionally, a closed form solution to
(7) can be found:

x(t) =
k

1 + 1
C e
−rt , C =

x0

k − x0

This solution indicates that x → k as t →∞.
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The logistic equation

Time solution: x(t) =
k

1 + 1
C e
−rt , C =

x0

k − x0

t

x

x0

k
2

k

Inflexion point

Carrying capacity

Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 20 / 77



Stability analysis of the logistic equation

ẋ = rx
(

1− x

k

)

Fixed points and flow:
I Fixed points: ẋ |x=x∗ = 0⇔ f (x∗) = 0

F Here, f (x∗) = rx∗
(

1− x∗

k

)
= 0⇒

{
x∗ = 0

x∗ = k

I Flow: {
0 < x < k ⇒ ẋ > 0⇒ x ↗
x > k ⇒ ẋ < 0⇒ x ↘

Phase plane: ẋ vs x

x

ẋ = − r
kx2 + rx

k
2

k

Inflexion point for x(t)

Asymptotic stability of fixed points: x∗ = 0 is unstable
x∗ = k is asymptotically stable, i.e.,

I stable
I attractive

Attractors: x∗ = k
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Stability analysis of nonlinear ODE models of order 1
Consider a nonlinear ODE model of order 1:

ẋ = f (x), x ∈ R, f (·) : R→ R, “smooth” function

1 Global stability analysis (only for models of order 1)
I Find all the fixed points: {x∗ : f (x∗) = 0} and put them on the phase

line x of the plot ẋ vs x .
I Find the flow between the fixed points and indicate them on the phase

line x of the plot ẋ vs x .
I Conclude what the stability of the fixed point(s) is.
I Find the long-term behaviour of the system, i.e., its attractors.

2 Local/linear stability analysis (possible for all orders)
I Find the fixed points.
I Linearise the dynamics around each fixed point.
I Study the stability of the corresponding linear systems (eig(A)).
I Link together the local stability information around each fixed point to

establish a complete picture of the attractors.
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Linear stability analysis of ODE models of order 1

Find the fixed points of the system: f (x∗) = 0.

Examine the close neighbourhood of the fixed points, i.e., analyse the
local stability of the fixed points by considering small perturbations
around them.

x

ẋ = − r
kx2 + rx
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Linear stability analysis of ODE models of order 1
Consider the dynamics of the system when x is “close to” the fixed point

x∗, i.e., consider ẋ = f (x) when x = x∗ + ξ with ξ = (x − x∗) “small”,

i.e., |ξ| � 1 :

dx

dt
=

dξ

dt
= f (x∗ + ξ)

= f (x∗)︸ ︷︷ ︸
=0

+
df

dx

∣∣∣∣
x=x∗

ξ︸︷︷︸
“small”

+
�

���O
(
ξ2
)

︸ ︷︷ ︸
H.O.T . (“very small”)

(Taylor series expansion)

So, we have:

dξ

dt
≈ df

dx

∣∣∣∣
x=x∗

ξ (linear system)

⇒ ξ(t) ≈ ξ0e
df
dx |x=x∗ t

Local stability analysis (only two possibilities):
df
dx

∣∣
x=x∗

> 0⇒ ξ̇ξ > 0⇒ |ξ| ↗ ⇒ x = x∗ is unstable
df
dx

∣∣
x=x∗

< 0⇒ ξ̇ξ < 0⇒ |ξ| ↘ ⇒ x = x∗ is locally asymptotically
stable, i.e., locally stable and attractive

Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 24 / 77



Linear stability analysis of the logistic equation

For ẋ = rx
(
1− x

k

)
, we have

df

dx
= r − 2xr

k
df
dx

∣∣
x=0

= r > 0⇒ ξ̇ξ > 0⇒ |ξ| ↗ ⇒ x = 0 is unstable

df
dx

∣∣
x=k

= −r < 0⇒ ξ̇ξ < 0⇒ |ξ| ↘ ⇒ x = k is locally
asymptotically stable, i.e., locally stable and attractive
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Bifurcations for nonlinear ODE models of order 1

Consider:
ẋ = f (x , r)

where r is a parameter and f (·) : R× R→ R is a “smooth” function.

Bifurcation

A bifurcation occurs when a change in the parameter(s) of the model
produces a qualitative (or “large”) change in the long-term behaviour (of
the attractors) of the system, e.g., :

the number of attractors (e.g., fixed points) changes,

the type of attractors changes (e.g., from fixed point to limit cycle),

the stability of attractors (e.g., fixed points or limit cycles) changes.
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Saddle-node Bifurcation

ẋ = r + x2, x ∈ R

Consider different values for the parameter r :

x√−r

r < 0

ẋ

−√−r x

ẋ

x

ẋ

r = 0 r > 0

Saddle-node bifurcation diagram:

x

r

unstable

stable

x = �
p
�r

x =
p
�r
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Transcritical Bifurcation

ẋ = rx − x2 = x(r − x), x ∈ R

Consider different values for the parameter r :

x

ẋ

r

r > 0

x

ẋ

r = 0

x

ẋ

r

r < 0

Transcritical bifurcation diagram:

x

r

x = r

x = 0
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Pitchfork Bifurcation

ẋ = rx − x3 = x
(
r − x2

)
, x ∈ R

Consider different values for the parameter r :

x

ẋ

x

ẋ

r < 0

x

ẋ

√
r−√

r

r = 0 r > 0

Pitchfork bifurcation diagram (supercritical):

x

r

x =
p

r

x = �p
r

x = 0
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Summary of behaviours for NL ODE models of order 1

Motions (solutions) are on the real line, i.e., x ∈ R
Attractors are either the fixed points or ±∞ (no oscillatory or other
types of behaviour)

Three types of bifurcation can occur:
I Saddle node
I Transcritical
I Pitchfork (subcritical or supercritical)
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Enzymatic reactions and the law of mass action
E

S
�

ES

→

E

P

Enzymatic reaction:

E + S
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P

Law of mass action: For a simple enzymatic reaction we have 4 species ⇒
4 ODEs

d [ES ]

dt
= k1[E ][S ]− k−1[ES ]− k2[ES ] (8)

d [E ]

dt
= −k1[E ][S ] + k−1[ES ] + k2[ES ] (9)

d [S ]

dt
= −k1[E ][S ] + k−1[ES ] (10)

d [P]

dt
= k2[ES ] (11)
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Elimination of variables – model reduction through time
scale separation

1 Conservation laws
I (8) + (9) ⇒ d [ES]

dt + d [E ]
dt = 0

⇒ [ES ] + [E ] = [E ]0 (12)

I (9) - (10) - (11) ⇒ d [E ]
dt −

d [S]
dt −

d [P]
dt = 0

⇒ [E ] = [S ] + [P] + κ (13)

2 Quasi-stationary approximation (time scale separation)

I d [ES]
dt ≈ 0

⇒ d [S ]

dt
≈ −d [P]

dt
≈ −Vmax

[S ]

KM + [S ]
(the Michaelis-Menten equation)

with

Vmax = k2[E ]0, KM =
k−1 + k2

k1
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The Michaelis-Menten equation

d [S ]

dt
≈ −d [P]

dt
≈ −Vmax

[S ]

KM + [S ]
(the Michaelis-Menten equation)

[S]

[Ṡ]

−Vmax

−Vmax

2

KM

y

0.5

1

x4 8 12 16 20 24 28

Substrate Concentration

R
ea

ct
io

n
R

at
e

A

Km

Vmax

Figure 1: Relationship between the rate of reaction for a simple Michaelis-Menten rate
law. The reaction rate reaches a limiting value (saturates) called the Vmax. Km is set to
4.0 and Vmax to 1.0. Note that the value of the Km is the substrate concentration that
gives half the maximal rate.

0
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C
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n
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Time

P
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E
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Figure 2: Progress curves for a simple irreversible enzyme catalyzed reaction. Initial
substrate concentration is set at 10 units. The enzyme concentration is set to an initial
concentration of 1 unit (E and ES curves have been scale by two on the graph). In the
central portion of the plots one can observe the relatively steady concentrations of ES
and E (dES/dt ≈ 0). At the same time, the rate of change of S and P are constant over
this period. k1 = 100; k2 = 1; k3 = 10
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Enzymatic cooperative reactions – The Hill equation
E

S
�

ES

→

E

P
S

S

SS

A model for the enzymatic reaction with cooperativity is:

E + nS
k1

GGGGGGBFGGGGGG

k−1

ES
k2

GGGAE + P

where ES represents the enzyme-n-substrates complex and n is called the
cooperativity coefficient.
Law of mass action: 4 species ⇒ 4 ODEs

d [ES ]

dt
= k1[E ][S ]n − k−1[ES ]− k2[ES ] (14)

d [E ]

dt
= −k1[E ][S ]n + k−1[ES ] + k2[ES ] (15)

d [S ]

dt
= n (−k1[E ][S ]n + k−1[ES ]) (16)

d [P]

dt
= k2[ES ] (17)
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The Hill equation
Using a similar model reduction approach as for the non-cooperative
enzymatic reactions we saw before (Michaelis-Menten), it is easy to see
that the following 1st order nonlinear ODE model is obtained:

d [S ]

dt
≈ −d [P]

dt
≈ −Vmax

[S ]n

KM + [S ]n
(the Hill equation)

with

Vmax = nk2[E ]0, KM =
k−1 + k2

k1

[S]

[Ṡ]

−Vmax

−Vmax

2

n
√

KM
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The Hill equation: effect of the cooperativity coefficient n

The Hill function is defined as h(x) = Vmax
xn

KM+xn . The effect of the Hill
coefficient n is illustrated hereafter for Vmax = 1 and KM = 1:

0 0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

Increasing n

n = 1

n = 20

This is very useful for a cell which can then use this type of
“step-regulated” reaction as a switch since for low concentrations (i.e.,
x ≤ n
√
KM) nothing happens, while for high concentrations (i.e.,

x > n
√
KM) the enzymatic reaction happens at its maximal rate Vmax.
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A chemical example of a linear ODE model of order 2

Consider the chemical reaction:

X
k

GGGGGBFGGGGG

k
Y

Using the law of mass action, the corresponding ODEs write:

[Ẋ ] = −k[X ] + k[Y ] (18)

[Ẏ ] = k[X ]− k[Y ], k > 0 (19)

To solve (18)-(19) analytically, we define the vector x =

(
x1

x2

)
=

(
[X ]
[Y ]

)

and rewrite the equation under the form ẋ = Ax . We then use a change of
variables in order to diagonalise the matrix A.
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Diagonalisation, eigenvalues and eigenvectors

The system of equations (18)-(19)
can be rewritten as:

(
ẋ1

ẋ2

)
= k

(
−1 1
1 −1

)

︸ ︷︷ ︸
=A

(
x1

x2

)
⇔ ẋ = kAx (20)

To solve (20), we diagonalise A, i.e., we find its eigenvalues and
eigenvectors.

1 Eigenvalues: Solutions of det(A− λI ) = 0 . Here, we have: λ1 = 0

and λ2 = −2.

2 Eigenvectors (normalised): Solutions of Av = λv , for each

eigenvalue λ. Here, we have: v1 = 1√
2

(
1
1

)
corresponding to λ1 = 0

and v2 = 1√
2

(
1
−1

)
corresponding to λ2 = −2.
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Diagonalisation, eigenvalues and eigenvectors (cont’)
From the eigenvectors of A, we construct a new matrix V having the
eigenvectors of A as columns:

V =



| |

v1 v2

| |


 =

1√
2

(
1 1
1 −1

)

We then have (theorem on diagonalisation of matrices):

V−1AV = Λ =

(
λ1 0
0 λ2

)
=

(
0 0
0 −2

)
(21)

Now, recall the initial model was ẋ = kAx . Multiplying this latter equation
by V−1 on the left gives:

V−1 d

dt
x =

d

dt
(V−1x)︸ ︷︷ ︸

=X

= k V−1AV︸ ︷︷ ︸
=Λ

(V−1x)︸ ︷︷ ︸
=X

= kΛX

⇒ dX
dt

= kΛX , X = V−1x (22)
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Diagonalisation, eigenvalues and eigenvectors (cont’)

(
Ẋ1

Ẋ2

)
= k

(
0 0
0 −2

)(
X1

X2

)
= k

(
λ1 0
0 λ2

)(
X1

X2

)
(23)

⇔
{
Ẋ1 = kλ1X1

Ẋ2 = kλ2X2

⇒
{
X1(t) = X1(0)ekλ1t

X2(t) = X2(0)ekλ2t

The last step is to transform back into the original coordinates using
X = V−1x which implies x = VX . Using x = VX , i.e.,

x =



| |

v1 v2

| |



(
X1

X2

)
= v1X1 + v2X2, we obtain

x(t) = v1X1(t) + v2X2(t)⇔ x(t) = v1X1(0)ekλ1t + v2X2(0)ekλ2t
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The mass-spring-damper system
Let us consider the mass-spring-damper system:

m

κ

η

x̃

κ

x̃

m
η

OR

for which the equation of motion is

mẍ + ηẋ + κx = 0 (24)

To solve (24), we put the model in the form ẋ = Ax and diagonalise A:

{
ẋ = y

ẍ = ẏ = − κ
mx − η

my
⇒
(
ẋ
ẏ

)
=

(
0 1
− κ

m − η
m

)

︸ ︷︷ ︸
=A

(
x
y

)

The eigenvalues of A are λ± =
− η

m
±
√

η2

m2−4 κ
m

2 . The general solution is thus

x(t) = c+e
λ+t + c−eλ−t where c± are proportional to the eigenvectors

associated with λ±.
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1 Introduction

2 Linear models of order 1

3 Nonlinear ODE models of order 1

4 Linear ODE models of order 2 and higher

5 Nonlinear ODE models of order 2

6 Nonlinear ODE models of order 3 and higher

7 Modelling gene regulation networks
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Stability analysis of nonlinear ODE models of order 2
Consider a nonlinear ODE model of order 2:

ẋ = f (x), x ∈ R2 ⇔
(
ẋ1

ẋ2

)
=

(
f1 (x1, x2)
f2 (x1, x2)

)
, f (·) : R2 → R2, “smooth” function

1 Global stability analysis (difficult for models of order ≥ 2)
2 Local stability analysis (possible for all orders)

I Find the fixed points: {x∗ : f (x∗) = 0}.
I Linearise the dynamics around each fixed point.
I Study the stability of the corresponding linear systems.
I Draw the local flows around each fixed point:
I Try to link together the local stability information around each fixed

point to establish a global picture of the attractors in the state space.
F Nullclines: the curves in the phase plane corresponding to individual

first derivatives being zero (ẋ1 = 0 or ẋ2 = 0), i.e., the curves
f1 (x1, x2) = 0 and f2 (x1, x2) = 0.

F Trajectories in the phase plane (phase space for models of order 3 or
higher) cannot cross, except at the fixed points.
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Linearisation of ODE models of order 2
Find the fixed points, i.e., the points x∗ s.t.

ẋ = f (x∗) = 0⇔
{
f1 (x∗1 , x

∗
2 ) = 0

f2 (x∗1 , x
∗
2 ) = 0

Linearise the dynamics around each fixed point (using Taylor):
Consider ẋ = f (x) with x = x∗ + ξ where ξ ∈ R2 s.t. ‖ξ‖ � 1:

ξ̇ = ẋ = f (x∗ + ξ) = f (x∗)︸ ︷︷ ︸
=0

+

 ∂f1(x1,x2)
∂x1

∣∣∣
x=x∗

∂f1(x1,x2)
∂x2

∣∣∣
x=x∗

∂f2(x1,x2)
∂x1

∣∣∣
x=x∗

∂f2(x1,x2)
∂x2

∣∣∣
x=x∗


︸ ︷︷ ︸

,J(x∗)

ξ +
���

��
O
(
‖ξ‖2

)
︸ ︷︷ ︸

H.O.T .

We thus obtain:
ξ̇ = J (x∗) ξ (25)

where J (x∗) is the Jacobian matrix evaluated at the fixed point x∗,
i.e., a constant matrix whose (i , j) element is Jij (x∗) = ∂fi (x)

∂xj

∣∣∣
x=x∗

.

Study the stability of (25) at each fixed point x∗

⇒ Diagonalise J (x∗) (i.e., ξ̃ = V−1ξ)
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Diagonalisation of the Jacobian for models of order 2

Consider

J (x∗) =

(
a b
c d

)

The eigenvalues of J (x∗) are given by solving

det (J (x∗)− λI ) = 0

which gives the algebraic equation

λ2 − (a + d)︸ ︷︷ ︸
=τ

λ+ (ad − bc)︸ ︷︷ ︸
=∆

= 0

where

τ is the trace of J (x∗), i.e., the sum of the diagonal elements of
J (x∗) (= λ+ + λ−)

∆ is the determinant of J (x∗) (= λ+λ−)
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Diagonalisation of the Jacobian for models of order 2
(cont’)

Eigenvalues:
λ2 − τλ+ ∆ = 0

⇒ λ± =
τ ±
√
τ2 − 4∆

2

Therefore, diagonalising J (x∗), we can see that the general solution is of
the form:

ξ(t) = c+e
λ+t + c−eλ−t , ξ(t) ∈ R2, c+, c− ∈ C2, λ+, λ− ∈ C (26)

where λ± are the eigenvalues of J (x∗) and c± are proportional to the
corresponding eigenvectors.
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Local stability analysis for models of order 2
The general solution for a linear ODE of order 2 is:

ξ(t) = c+e
λ+t + c−eλ−t , λ± =

τ ±
√
τ2 − 4∆

2
, c± ∝ eigenvec. assoc. with λ±

(27)
The local behaviours are dictated by the signs of τ(= λ+ + λ−),

∆(= λ+λ−), and τ2 − 4∆
(

= (λ+ − λ−)2
)

.

1 ∆ > 0:
√
τ2 − 4∆ < |τ |

I τ > 0:

1 τ 2 − 4∆ > 0: λ+ > λ− > 0 (A)
2 τ 2 − 4∆ < 0: λ± complex conjugate with pos. real part (B)

I τ < 0:

1 τ 2 − 4∆ > 0: λ− < λ+ < 0 (C)
2 τ 2 − 4∆ < 0: λ± complex conjugate with neg. real part (D)

I τ = 0: λ± purely imaginary (E)

2 ∆ < 0: λ− < 0 < λ+ (F)
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Local stability analysis for models of order 2 (cont’)
In the diagonalised coordinates, i.e., for ξ̃ = V−1ξ:

ξ̃1(t) = ξ̃1(0)eλ+t , ξ̃2 = ξ̃2(0)eλ−t , λ± =
τ ±
√
τ2 − 4∆

2

(A) λ+ > λ− > 0: Exponential growth in both directions: Repelling or
unstable node

(B) λ± complex conjugate with pos. real part: ξ̃1,2(t) = ξ̃1,2(0)e
τ
2
te±iωt

with τ > 0, ω =

√
|τ2−4∆|

2 : Unstable spiral
(C) λ− < λ+ < 0: Exponential decay in both directions: Attracting or

stable node
(D) λ± complex conjugate with neg. real part: ξ̃1,2(t) = ξ̃1,2(0)e

τ
2
te±iωt

with τ < 0, ω =

√
|τ2−4∆|

2 : Stable spiral

(E) λ± purely imaginary: ξ̃1,2(t) = ξ̃1,2(0)e±iωt with ω =
√

∆: periodic
oscillations: Center

(F) λ− < 0 < λ+: exp. decay in one dir. and exp. growth in the other:
Saddle point
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Summary of the possible local behaviours for models of
order 2

τ

∆
Centers

τ2 − 4∆ = 0

τ2 − 4∆ = 0

Unstable
nodes

Stable
nodes

Stable
spirals

Unstable
spirals

τ2 − 4∆ > 0

τ2 − 4∆ > 0

(A)

(B)

(D)

(C)

(E)

Sa
dd

le
   

   
po

in
ts

(F)
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Linear (or harmonic) oscillations (centers)
{
ẋ = y

ẏ = −x

Linear (or “harmonic”) oscillations have 2 serious limitations:

1 They are “fragile” or non-robust to small perturbations in the model

2 The oscillation characteristics (amplitude and phase) depend on the
initial condition

Eduardo D. Sontag, Lecture Notes on Mathematical Systems Biology 67

1.8 Periodic Behavior

Periodic behaviors (i.e, oscillations) are very important in biology, appearing in diverse areas such as
neural signaling, circadian rythms, and heart beats.

You have seen examples of periodic behavior in the differential equations course, most probably
the harmonic oscillator (mass spring system with no damping)

dx

dt
= y

dy

dt
= −x

whose trajectories are circles, or, more generally, linear systems with eigenvalues that are purely
imaginary, leading to ellipsoidal trajectories:

A serious limitation of such linear oscillators is that they are not robust:

Suppose that there is a small perturbation in the equations:

dx

dt
= y

dy

dt
= −x + εy

where ε �= 0 is small. The trajectories are not periodic anymore!

Now dy/dt doesn’t balance dx/dt just right, so the trajectory doesn’t “close” on itself:

Depending on the sign of ε, we get a stable or an unstable spiral.

When dealing with electrical or mechanical systems, it is often possible to construct things with
precise components and low error tolerance. In biology, in contrast, things are too “messy” and
oscillators, if they are to be reliable, must be more “robust” than simple harmonic oscillators.

Another disadvantage of simple linear oscillations is that if, for some reason, the state “jumps” to
another position40 then the system will simply start oscillating along a different orbit and never come
back to the original trajectory:

To put it in different terms, the particular oscillation depends on the initial conditions. Biological
objects, in contrast, tend to reset themselves (e.g., your internal clock adjusting after jetlag).

40the “jump” is not described by the differential equation; think of the effect of some external disturbance that gives a
“kick” to the system
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Limit cycles

A stable limit cycle is a periodic trajectory which attracts other solutions
to it (at least those starting “close to” the limit cycle).

x2

x1
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Limit cycles: an example

ẋ = −ωy + x
(
µ− x2 − y2

)
(28)

ẏ = ωx + y
(
µ− x2 − y2

)
(29)

where µ is a parameter while ω 6= 0 is a constant.

Fixed points:
{
−ωy∗ + x∗

(
µ− x∗2 − y∗2

)
= 0

ωx∗ + y∗
(
µ− x∗2 − y∗2

)
= 0

⇒ −�ω
y∗

x∗
=�ω

x∗

y∗
⇔ y∗2 + x∗2 = 0⇒ (x∗, y∗) = (0, 0)

Linearisation around (0, 0):

J(x , y) =

((
µ− x2 − y2

)
+ x(−2x) −ω − 2xy

ω − 2xy
(
µ− x2 − y2

)
+ y(−2y)

)
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Limit cycles: an example (cont’)
Local stability analysis of (0, 0):

J(0, 0) =

(
µ −ω
ω µ

)

⇒ λ± = µ± iω





τ = 2µ

∆ = µ2 + ω2 > 0

τ2 − 4∆ = �
�4µ2 −�

�4µ2 − 4ω2 < 0

τ

∆
Centers

τ2 − 4∆ = 0

Stable
spirals

Unstable
spirals τ2 − 4∆ < 0(B)

(D)

(E)





µ > 0, Unstable spiral

µ = 0, Center

µ < 0, Stable spiral
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Global stability analysis for the limit cycle example (rare)
To perform the global analysis explicitly (which typically is very hard to do;
the example we have chosen here is an exception in that respect), we
rewrite (28)-(29) in polar coordinates:

y

x

θ
r

0

�
r2 = x2 + y2

tan(θ) = y
x

�
x
y

�
↔

�
r
θ

�

i.e., transform ẋ = f (x) with x =

(
x
y

)
into ṗ = F (p) with p =

(
r
θ

)
.

This gives:

ṙ = r
(
µ− r2

)
(30)

θ̇ = ω (31)
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Global stability analysis for the limit cycle example (cont’)

r

ṙ

r

ṙ

r

ṙ

µ > 0

√
µ−√

µ

µ = 0µ < 0

y

x

θ
r

0

y

x0

√
µ

Hopf bifurcation
at µ = 0
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Example of a limit cycle in a model of order 3
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The Poincaré-Bendixson Theorem

y

x

D

A loose statement of the Poincaré-Bendixson Theorem

Suppose ẋ = f (x), x ∈ R2, is a continuously differentiable vector field
and there exists a bounded subset D of the phase plane such that

no trajectory can exit D,
and there are no fixed points inside D.

Then, there exists at least one limit cycle in D and any trajectory that
enters D converges to a limit cycle.
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The Poincaré-Bendixson Theorem: How can we find D?

We need to show that:

∇Tg(x , y)f (x , y) < 0, ∀x ∈ Ā and ∇Tb(x , y)f (x , y) > 0, ∀x ∈ B̄

y

x

D = A ∩ B
∇g

Ā = {(x, y) ∈ R2 : g(x, y) ≡ 0}

f(x)

ẋ = f(x), x =

�
x
y

�

∇g

f(x)

D = A ∩ B = {(x, y) ∈ R2 : g(x, y) ≤ 0, b(x, y) ≥ 0}

B̄ = {(x, y) ∈ R2 : b(x, y) ≡ 0}
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The Poincaré-Bendixson Theorem: an example
Consider the second order model in example in (28)-(29) for µ > 0:

ẋ = −ωy + x
(
µ− x2 − y2

)

ẏ = ωx + y
(
µ− x2 − y2

)

We thus have: f (x , y) =

(
−ωy + x

(
µ− x2 − y2

)

ωx + y
(
µ− x2 − y2

)
)

.

Consider the function G (x , y) = x2 + y2 − R2. Therefore, ∇G =

(
2x
2y

)
.

Now, define D̄ =
{

(x , y) : g(x , y) = x2 + y2 − R2 = 0
}

.
For any point (x , y) ∈ D̄, we thus have:

∇TG (x , y)f (x , y) = 2R2
(
µ− R2

)
{
< 0 if R >

√
µ

> 0 if R <
√
µ,

y

x
D
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Summary of behaviours for ODE models of order 1 and 2

Models of order 1
I Attractors: fixed points, or ∞
I Local (linear) and global stability analysis are equivalent
I Bifurcations: Saddle node, Transcritical, or Pitchfork

Models of order 2
I Attractors: fixed points, limit cycles, or ∞
I Local stability analysis (linearisation) around fixed points 6= global

stability analysis
I Bifurcation: all those of order 1 + Hopf + others
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1 Introduction

2 Linear models of order 1

3 Nonlinear ODE models of order 1

4 Linear ODE models of order 2 and higher

5 Nonlinear ODE models of order 2

6 Nonlinear ODE models of order 3 and higher

7 Modelling gene regulation networks
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Behaviours for ODE models of order 3 and higher

ẋ = f (x), x ∈ Rd , d ≥ 3, f (·) : Rd → Rd , “smooth” function

(32)

Behaviours for ODE models of order 3 and higher

In one sentence: everything that happens in lower order models + 2 other
phenomena:

quasi-periodicity

deterministic chaos
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Summary for systems of order 1, 2, and 3 and higher
1D 2D 3D and higher

Attractors
Only F.P.
or ±∞

Same as 1D
+ limit cycles

Same as 2D
+ quasi-periodic
attractor
+ chaotic at-
tractor

Behaviours
Decay
or explosion

Same as 1D
+ robust periodic
oscillations

Same as 2D
+ quasi-
periodicity
+ chaos

Bifurcations
Saddle-Node
Transcritical
Pitchfork

Same as 1D
+ Hopf
+ others

Same as 2D
+ many more
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1 Introduction

2 Linear models of order 1

3 Nonlinear ODE models of order 1

4 Linear ODE models of order 2 and higher

5 Nonlinear ODE models of order 2

6 Nonlinear ODE models of order 3 and higher

7 Modelling gene regulation networks
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The central dogma

Transcription and mRNA polymerase
Translation and Ribosome
Translation and Proteins

Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 66 / 77



Constitutive gene expression
As we have seen, the central dogma can be summarized as:

Gene GGGGGGGA

Transcr.
mRNA GGGGGA

Transl.
Protein

When gene expression is unregulated, it is said to be constitutive, and the
gene is always on.
Using the law of mass action1, a model for constitutive expression is given
as:

ṁ = k1 − d1m (33)

ṗ = k2m − d2p (34)

where m = [mRNA] and p = [Protein]

k1 is the constitutive transcription rate.
d1 is the mRNA degradation rate.
k2 is the translation rate.
d2 is the protein degradation rate.

1This is based on empirical studies since strictly speaking it does not really make
sense to use the law of mass action for gene expression.

Prof Guy-Bart Stan (Dept. of Bioeng.) Modelling in Biology 29th May 2021 67 / 77

Gene transcription regulation

At the transcription level, gene expression can be controlled by certain
proteins called transcription factors:

Promoter Protein coding region Terminator

Gene

Transcription
Factor (TF)
(activator

or repressor)

TF binding site

DNA

... ...RBS
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Gene transcription regulation by activators
Consider the case of a gene whose transcription is activated by the
cooperative binding of activators to the transcription factor binding site of
the gene.

Gene mRNA Protein

Activators

∅ ∅
The following model is commonly used to describe activator controlled
gene transcription:

ṁ = k1
An

Kn + An
− d1m (35)

ṗ = k2m − d2p (36)

where m = [mRNA], p = [Protein], A = [Activator ], k1 = maximal transcription rate, K = activation coefficient, n = Hill

coefficient (= number of activators that need to cooperatively bind the promoter to trigger the activation of gene expression).
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Gene transcription regulation by repressors
Consider the case of a gene whose transcription is repressed by the
cooperative binding of repressors to the transcription factor binding site of
the gene.

Gene mRNA Protein

Repressors

∅ ∅
The following ODE model describes repressor-controlled gene transcription:

ṁ = k1
Kn

Kn + Rn
− d1m (37)

ṗ = k2m − d2p (38)

where m = [mRNA], p = [Protein], R = [Repressor ], k1 = maximal transcription rate, K = repression coefficient, n = Hill

coefficient (= number of repressors that need to cooperatively bind the promoter to trigger the inhibition of gene expression).
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Auto-activation and auto-inhibition

Gene Transcription
Factor (protein)

+ or -
mRNA

; ;

ṁ = k1f (p)− d1m (39)

ṗ = k2m − d2p (40)

where f (p) = f +(p) = pn

Kn+pn (monnotonically increasing Hill function) for
an auto-activating action of the transcription factor p, and
f (p) = f −(p) = 1− f +(p) = Kn

Kn+pn (monotonically decreasing Hill
function) for an auto-inhibiting action of the transcription factor p.
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Auto-activation

ṁ = k1
pn

Kn + pn
− d1m (41)

ṗ = k2m − d2p (42)

pp

mm

ṁ = 0 ṁ = 0

ṗ = 0 ṗ = 0

n = 1 n ≥ 2
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Auto-repression

ṁ = k1
Kn

Kn + pn
− d1m (43)

ṗ = k2m − d2p (44)

pp

mm

ṁ = 0 ṁ = 0

ṗ = 0 ṗ = 0

n = 1 n ≥ 2
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The toggle switch

LacI TetR

ṁL = kL,1
KnT
T

KnT
T + pnTT

− dL,1mL

ṗL = kL,2mL − dL,2pL

ṁT = kT ,1
KnL
L

KnL
L + pnLL

− dT ,1mT

ṗT = kT ,2mT − dT ,2pT

where mL (resp. mT ) is the concentration of LacI (resp. TetR) mRNA,
and pL (resp. pT ) is the concentration of LacI (resp. TetR) protein.
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The toggle switch (cont’)
Using a quasi-stationary assumption for the mRNA dynamics, i.e., ṁL ≈ 0
and ṁT ≈ 0, we obtain a model of order 2 whose equations are:

ṗL = kL,2
kL,1
dL,1

KnT
T

KnT
T + pnTT

− dL,2pL (45)

ṗT = kT ,2
kT ,1
dT ,1

KnL
L

KnL
L + pnLL

− dT ,2pT (46)

For example, for nL = nT = 2, kL,1 = kT ,1 = 10, and all other parameters
equal to 1 the phase plane looks like this:

pL

pT

ṗT = 0

ṗL = 0
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The repressilator: a synthetic genetic oscillator

LacI TetR

λ cI

The corresponding model is of order 6 and can be written as (after
non-dimensionalisation):

ṁi = −mi +
α

1 + pnj
+ α0 (47)

ṗi = −β (pi −mi ) (48)

where (i , j) = {(LacI , cI ), (TetR, LacI ), (cI ,TetR)}.
For certain values of the parameters, this system exhibits limit cycle
oscillations
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Time evolution of protein concentrations for the
repressilator

Time evolution of protein concentrations
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