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@ Introduction

Imperial College
London

Prof Guy-Bart Stan (Dept. of Bioeng.) 29th May 2021 3/77

Essential features of a modelling approach
Isolate your system of interest.

@ What is important? This defines your “system of interest”

@ What can be measured? What are the “observables”? This defines
the “outputs” of the system.

@ What can be controlled or acted upon? This defines the “inputs” of
the system.

Outputs
System of interest ——->
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Modelling of the system of interest

Typically, the model is composed of

@ variables
» independent, e.g., time t
* 1 indep. var.: ODEs, e.g., time t
* more than 1 indep. var.: PDEs,
e.g., time t and space (x,y, z)
» dependent
e.g., concentrations functions of time

{[E1(2), [S1(2), [P1(2)}

@ parameters

= Different types of models

» not dependent on independent
variables

> can be varied/changed under
experimental conditions

@ constants

» fixed, e.g., Avogadro constant,
gravitational constant
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Types of models

Continuous

Discrete

the independent variables are
continuous

ODEs, PDEs

the independent variables are
discrete

Difference equations

Deterministic

Stochastic

var., param. and const. do not
contain randomness

they are defined by a unique

dynamics contain an element of
randomness

‘ e.g., SDEs
function
Linear Nonlinear
. dx __ -~ dx 3
OX—E——kX OX—E——kX—i—X
@ |inear ODE @ Nonlinear ODE
Autonomous Non-autonomous

Without control input: x = —kx

With control input: x = —kx + u

Constructive

Data-driven

@ mechanistic or deductive

@ also called “equation-based” or
“(first) principle-based”

phenomenological or inductive
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Summary

Hybrid models

(time)

Continuous (indep. var. continuous)KM

time + space

ODE [«<—>| PDE

A Discretisation
>

7/
7/

v
» Fokker-Planck

Discrete (indep. var. discrete)

Difference eqn.

Finite Element Methods

4 (Kolmogoroy forward)
SDE equation
randomness)
: ODEs PDEs Deterministic (L or NL)
Continuous _
SDEs Stochastic (L or NL)
Deterministic (L or NL)
Discrete Difference equations g
: Stochastic (L or NL)
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A deterministic, continuous, linear model of order 1

Consider

xmzfyzwm

@ Linear ODE.

@ For k > 0, this is known as the Malthusian population growth with k
denoting the growth rate per cell.
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Analytical solution of 15 order linear ODEs
Consider the model:

d
xzﬁzm, x(0) = xo (1)
Its solution is given by
X(t) = Xoekt
where xo = x(0) (the initial condition).
xr
1 k>0
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Numerical solution of ODEs: the Euler algorithm

dx
- —k
a0
. x(t+ At) — x(t)
| = kx(t
= Aﬂo At X( )

Suppose At is fixed to a particular value h (doing this is called discretising
the continuous ODE model and h is called the discretisation step). We

then have:
x(t+ h) — x(t)

~ kx(t)

x(t + h) ~ x(t) + hkx(t) (2)

Eq. (2) is know as the “Euler algorithm”.
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Linear difference equation

x(t+ h) = x(t) + hkx(t)

is a discrete-time model which can also be looked at as a linear difference
equation by taking h = 1, and defining for ease of notation x; = x(t):

xer1 = (L4 k) x¢ = axy (3)
——

-

(or equivalently x;11 — x¢ = (@ — 1)xz.)
Its non-zero solution is given by

Xy = XoOét

where Xxp is the initial condition.
Eﬁzl:l)anl College
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Phase plane

@ The phase plane (a.k.a. phase space) is a representation that
eliminates time as an explicit variable.

@ It is very useful for obtaining a qualitative understanding of the
long-term or asymptotic behaviour of nonlinear ODE models (for
which, typically, analytical solutions cannot be found).

Consider | x = kx

T = kx,

X T =kx,
k<0
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Bifurcation diagram

We can summarise the information obtained through the phase plane
stability analysis on a bifurcation diagram, i.e., a diagram giving the
long-term (i.e., asymptotic) behaviour of the system when a parameter is
varied. Here the parameter for the ODE model x = kx is k.

Ly
= ko /~€>O_|_OO
EF<Ovyvywvyvwy ___T_I__T_I_T_I_I»
AAAAAAA[D lllllll k
—00
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SDEs of order 1

Consider a stochastic version of the Malthusian growth model:

% = kx + 1 (4)
where 7 is a random variable that represents some uncertainties or
stochastic effects perturbing the system.

Eq. (4) is known as a Langevin equation.

Eq. (4) can also be rewritten as
dx = [kx]dt + ndt (5)

~—

~odw
where w represents a standard (one-dimensional) Wiener process (also
called Brownian motion)
SDEs such as (5) are typically solved numerically through discretisation
using the Euler algorithm:

x(t + At) = [1+ kAt]x(t) + (U@) randn

deterministic part

~

stochastic part o Srin College
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SDE of order 1 (cont’)
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© Nonlinear ODE models of order 1
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Nonlinear ODE models of order 1

First order nonlinear ODE models are written under the generic form:

x="f(x), xeR, f(:):R—=R, “smooth” function (6)

Finding the analytical solution of (6), i.e., finding x(t, xp), is, in general,
no longer possible unless a closed form solution can be obtained for

[ fig dx = [ dt.
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Non-Malthusian population growth: the logistic equation
We consider the non-Malthusian population growth model in which the
reproduction rate takes into account the “competition for resources” .
Consider that x(t) represents the number of cells at time instant t.

=f(x)
X

——
>'<:rx<
N——

0

Resources

X

1-— 2

r( k)

non-constant growth rate
per cell

I’X2
X = rx —_
~—~—~ k
“growth rate” S~~~
“death rate”

In this particular case and rather exceptionally, a closed form solution to

(7) can be found:

(7)

x(t)

B k
14 %e—””

X0

k—Xo

This solution indicates that x — k as t — oo.
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Time solution:

_k—XO

X0

Carrying capacity
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Stability analysis of the logistic equation

X
X rX( P

@ Fixed points and flow:
» Fixed points: x|,_,. =0& f(x*)=0

* Here, f (x*) = rx* (1— %) =0= {i:z

» Flow:
{0<X<k:>>'<>0:>x/‘

X>k=>x<0=x\

@ Phase plane: x vs x

i=—fa+ra

e Asymptotic stability of fixed points: x* = 0 is unstable
x* = k is asymptotically stable, i.e.,
> stable
> attractive
Bﬁzl:l)a:‘l College

@ Attractors: x* = k
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Stability analysis of nonlinear ODE models of order 1

Consider a nonlinear ODE model of order 1:

x=1f(x), xeR, f():R—R, “smooth” function

@ Global stability analysis (only for models of order 1)

Find all the fixed points: {x* : f (x*) = 0} and put them on the phase
line x of the plot x vs x.

Find the flow between the fixed points and indicate them on the phase
line x of the plot x vs x.

Conclude what the stability of the fixed point(s) is.

Find the long-term behaviour of the system, i.e., its attractors.

@ Local/linear stability analysis (possible for all orders)

Find the fixed points.

Linearise the dynamics around each fixed point.

Study the stability of the corresponding linear systems (eig(A)).

Link together the local stability information around each fixed point to

establish a complete picture of the attractors. .
4
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Linear stability analysis of ODE models of order 1

@ Find the fixed points of the system: f (x*) = 0.

@ Examine the close neighbourhood of the fixed points, i.e., analyse the

local stability of the fixed points by considering small perturbations
around them.

p%}
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Linear stability analysis of ODE models of order 1

Consider the dynamics of the system when x is “close to” the fixed point
. -

x*, i.e., consider x = f(x) when |x = x™ + £ | with £ = (x — x*) “small”,

e, [ <1
de _ de
dt  dt

=f(x" +¢)

o df : :
=f(x*)+ — & + O\(/Ef) (Taylor series expansion)
\,—/ dX x=x* v
=0 ‘small”  H.0.T. (“very small”)
So, we have:
Zf dx X*§ (linear system)

df

= |6(0) ~ goeFhort

Local stability analysis (only two possibilities):

df : .

® Filieyr >0=8>0=[{] " = x=x"is unstable
df : : _

® Filyoxr 0= EE<0= ¢\ = x=x"is locally asymptotically -
stable, i.e., locally stable and attractive e e
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Linear stability analysis of the logistic equation

df 2
ForX:rx(l—%),wehave &:r—%r
° g—ixzozr>0:>f§>02>|£|/‘ = x = 0 is unstable
o |  =-r<0=£<0=[¢ N\, = x=kislocally

asymptotically stable, i.e., locally stable and attractive
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Bifurcations for nonlinear ODE models of order 1

Consider:

x = f(x,r)

where r is a parameter and f(-) : R x R — R is a "smooth” function.
Bifurcation

A bifurcation occurs when a change in the parameter(s) of the model

produces a qualitative (or “large”) change in the long-term behaviour (of
the attractors) of the system, e.g., :

@ the number of attractors (e.g., fixed points) changes,

@ the type of attractors changes (e.g., from fixed point to limit cycle),

@ the stability of attractors (e.g., fixed points or limit cycles) changes.

y
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Saddle-node Bifurcation

x=r+x% xeR

Consider different values for the parameter r:

jjlk
r <0

Saddle-node bifurcation diagram:

TNt

unstable e

\
\
T
stable 4 * T T
r = — -r Imperial College
London
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Transcritical Bifurcation

2

x=rx—x“=x(r—x), xeR

Consider different values for the parameter r:

T
r<0 T
r T

Transcritical bifurcation diagram:

r>0
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Pitchfork Bifurcation

X:rx—x3:x(r—x2), xeR

Consider different values for the parameter r:

@ @, 1
r<0 r=20 r >0
t T ; xT x
Pitchfork bifurcation diagram (supercritical):

P
W

TR

Imperial College
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Summary of behaviours for NL ODE models of order 1

@ Motions (solutions) are on the real line, i.e., x € R

@ Attractors are either the fixed points or 00 (no oscillatory or other
types of behaviour)

@ Three types of bifurcation can occur:

Saddle node
Transcritical
Pitchfork (subcritical or supercritical)

v
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Enzymatic reactions and the law of mass action

E ES
en
E—
“s

Enzymatic reaction:

E
%-
P

k1 k2
E+S ES——>E + P
k_1
Law of mass action: For a simple enzymatic reaction we have 4 species =
4 ODEs
d[ES
_[dt I_ ki[E][S] — k_1[ES] — ko[ES] (8)
dlE
S klens] + kalES] + halES] )
d[S
% = —ki[E][S] + k-1[ES] (10)
d[P]
—— = ky|ES 11
d t 2 [ ] ( ) imperial Cllege
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Elimination of variables — model reduction through time

scale separation

© Conservation laws
> (8) + (9) = 4Bl L 4Bl

= [ES] + [E] = [E]o (12)
> (9) - (10) - (11) = 47 — B — 91 —
= [E] =[S]+[P]+ & (13)
@ Quasi-stationary approximation (time scale separation)
. dES] g
dt
d[S d|P S
= % ~ —% ~ — maXKM[T][S] (the Michaelis-Menten equation)
with ik
Vmax — k2[E]07 KI\/I - # '
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The Michaelis-Menten equation

dis] __dPl ., Is]

~ max T&l the Michaelis-Ment ti
dt pm > K1 + 5] (the Michaelis-Menten equation)

10 I
P
I~ 75 [~ -
R
3 S
~
T 5F .
3
I
S
Cost E
W
0 L . l L L f L
0 0.3 0.6 0.9 1.2 1.5
Time
ImegriaI College
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Enzymatic cooperative reactions — The Hill equation

E ES E

A ¢ M
e ® <

A model for the enzymatic reaction with cooperativity is:

ko
ES—>E+ P

E +nS

k_1

where ES represents the enzyme-n-substrates complex and n is called the
cooperativity coefficient.
Law of mass action: 4 species = 4 ODEs

@ — k[E][S]" — k_1[ES] - kolES] (14)
% = —ki[E][S]" + k_1[ES] + ko[ES] (15)
% = n(=k[E][S]" + k-1[ES]) (16)
% — ko[ES] (17)
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The Hill equation

Using a similar model reduction approach as for the non-cooperative
enzymatic reactions we saw before (Michaelis-Menten), it is easy to see
that the following 1% order nonlinear ODE model is obtained:

dis] _ _dlP] _ [S]”

dt ~ dt ™Ky +[S]”

(the Hill equation)

with X L
-1t K2
Vmax — nk2[E]Oa KM —
ki
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The Hill equation: effect of the cooperativity coefficient n

The Hill function is defined as h(x) = Vinaxw2=s. The effect of the Hill

- max KM+X”
coefficient n is illustrated hereafter for Vimax = 1 and Ky = 1:

Increasing n

This is very useful for a cell which can then use this type of
“step-regulated” reaction as a switch since for low concentrations (i.e.,
x < v/Ku) nothing happens, while for high concentrations (i.e.,

x > v/Kp) the enzymatic reaction happens at its maximal rate Viax.
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@ Linear ODE models of order 2 and higher
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A chemical example of a linear ODE model of order 2

Consider the chemical reaction:

X‘:‘Y

k

Using the law of mass action, the corresponding ODEs write:

[X] = —k[X] + K[Y] (18)
[Y] = k[X] — k[Y], k>0 (19)

To solve (18)-(19) analytically, we define the vector x = (Xl) = (F\i})

X2
and rewrite the equation under the form x = Ax. We then use a change of
variables in order to diagonalise the matrix A.
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Diagonalisation, eigenvalues and eigenvectors

The system of equations (18)-(19)
can be rewritten as:

(2) =k <_11 _11> (2) & x = kAx (20)

-~

=A

To solve (20), we diagonalise A, i.e., we find its eigenvalues and
eigenvectors.

© Eigenvalues: Solutions of |[det(A — Al) = 0| Here, we have: A\; =0
and )\2 = 2.

@ Eigenvectors (normalised): Solutions of | Av = Av |, for each

eigenvalue \. Here, we have: v; = % G) corresponding to A; =0

and vy = % (_11> corresponding to \p = —2.

Imperial College
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Diagonalisation, eigenvalues and eigenvectors (cont')

From the eigenvectors of A, we construct a new matrix V' having the
eigenvectors of A as columns:

[
1 /1 1
L -5 )

We then have (theorem on diagonalisation of matrices):

VIAV = A = (Aol AOQ) = (g _02> (21)

Now, recall the initial model was x = kAx. Multiplying this latter equation
by V=1 on the left gives:

d d

Vi—x=—(V1x) =k V1AV (V71x) = kAX
dt dt ~e— — " ——
=X =A =X
= % = kAX,| X =V"1x (22)

ooooo
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Diagonalisation, eigenvalues and eigenvectors (cont')

X1\, (0 0\ /X\ /M 0\ /X
Ca)=+( %) (a)=+(z 2) () @
X1 = kA1 Xy
Xo = kAo Xo

Xo(t) = Xo(0)ek2t
The last step is to transform back into the original coordinates using
X = V~1x which implies x = VX. Using x = VX, i.e,
|

X = Vi Vo

|
x(t) = viXa(t) + vaXa(t) & | x(t) = viX1(0)eME + voXp(0)eket|

London
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{Xl(t) — X1(0)ekMt

(Xl) = v1.X1 + v X5, we obtain
X2

The mass-spring-damper system
Let us consider the mass-spring-damper system:

5 7 g
— A\ @ on
n 77 n m

for which the equation of motion is
mx +nx+kx =0 (24)
To solve (24), we put the model in the form x = Ax and diagonalise A:

(o »0)-(5% 20

X=y=—2x—_

2

_1 L/ —
The eigenvalues of A are Ay = —T 2’"2 ~. The general solution is thus
x(t) = c e™t + c_e*t| where c. are proportional to the eigenvectors
Eﬁzl:l)anl College

associated with A4.
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© Nonlinear ODE models of order 2
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Stability analysis of nonlinear ODE models of order 2
Consider a nonlinear ODE model of order 2:

x=f(x), xcR’& (Xl) = (fl (Xl’Xz)) , () :R?* = R?, “smooth” funct
X2 f (x1, Xx2)

© Global stability analysis (difficult for models of order > 2)

@ Local stability analysis (possible for all orders)

Find the fixed points: {x* : f (x*) = 0}.

Linearise the dynamics around each fixed point.

Study the stability of the corresponding linear systems.

Draw the local flows around each fixed point:

Try to link together the local stability information around each fixed

point to establish a global picture of the attractors in the state space.
Nullclines: the curves in the phase plane corresponding to individual
first derivatives being zero (x; = 0 or x2 = 0), i.e., the curves
fl (X1,X2) =0 and f2 (X1,X2) =0.
Trajectories in the phase plane (phase space for models of order 3 or

higher) cannot cross, except at the fixed points. ”
v
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Linearisation of ODE models of order 2
@ Find the fixed points, i.e., the points x* s.t.

f (Xfa X;) =0

fp (va Xf) =0

@ Linearise the dynamics around each fixed point (using Taylor):
Consider x = f(x) with x = x* + £ where £ € R? s.t. [|£]| < 1

x=Ff(x")=0«&

3f1gX1,X2) 3f1((9X1,X2)
. * . * X1 x—=x* X2 X—=x*
E=x=Ffx+{= f(’; )+ GG - 96(1.%) L 5+O£f )
- (. -~ - H.O.T.
éJ(x*)
We thus obtain:
§=J(x")¢ (25)
where J (x*) is the Jacobian matrix evaluated at the fixed point x*,
i.e., a constant matrix whose (7, /) element is Jjj (x*) = %)(f) .
J x:x*
@ Study the stability of (25) at each fixed point x*
= Diagonalise J (x*) (i.e., & = V71¢)
20th May 2021 45/77

Diagonalisation of the Jacobian for models of order 2

- (22

The eigenvalues of J(x*) are given by solving

Consider

det(J(x*) —Al)=0
which gives the algebraic equation

A —(a+d) A+ (ad — bc) =0
N—— ——
=T =A

where
@ 7 is the trace of J(x*), i.e., the sum of the diagonal elements of
J(x*) (=2 +22)
@ A is the determinant of J(x*) (= A )\_)

Imperial College
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Diagonalisation of the Jacobian for models of order 2
(cont’)

Eigenvalues:
N —TA+A=0

T+ V12 —4A

= | AL = 5

Therefore, diagonalising J (x*), we can see that the general solution is of
the form:

E(t)=cie™t+c et &) eR% cp,c € T2 A, A_€C (26)

where A1 are the eigenvalues of J(x*) and cL are proportional to the
corresponding eigenvectors.

Imperial College
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Local stability analysis for models of order 2
The general solution for a linear ODE of order 2 is:

+ 72 —4A
E(t)=creMt e et A= 4 72 , €4 X eigenvec. assoc. with
(27)
The local behaviours are dictated by the signs of 7(= Ay + A_),
A(=A:A_), and 72 — 4A (: Ay — >\_)2).
QO A>0 Vvr2—4A < |7|
» 7> 0:
@ T —4A>0: A > A >0 (A)
@ 7° —4A < 0: A+ complex conjugate with pos. real part (B)
» 7 <0
@ 7 —4A>0A_ <A <0 (Q)
@ 7> —4A < 0: A+ complex conjugate with neg. real part (D)
» 7 =0: Ay purely imaginary (E)
Q@ A< A_<0< Ay (F)

Imperial College
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Local stability analysis for models of order 2 (cont')
In the diagonalised coordinates, i.e., for % = Vv1¢:

T+ V12 — 4A

&1(t) = &(0)eMt, & =6(0)er !, A= 5

(A) Ay > A_ > 0: Exponential growth in both directions: Repelling or
unstable node

(B) A+ complex conjugate with pos. real part: & o(t) = &12(0)e2tet @t
with 7 > 0, w = —”722_%': Unstable spiral

(C) A— < Ay < 0: Exponential decay in both directions: Attracting or
stable node

(D) A+ complex conjugate with neg. real part: &1 5(t) = &12(0)eztetiet
with 7 < 0, w = —”722_%': Stable spiral

(E) A+ purely imaginary: £15(t) = £1.2(0)e™™* with w = v/A: periodic
oscillations: Center

(F) A— <0 < Ay: exp. decay in one dir. and exp. growth in the other:
Saddle point L
20th May 2021 49/77

Summary of the possible local behaviours for models of
order 2

b2 4A >0

Unstable
A
= 7° —4A =0

nodes

Unstable
spirals
(E) Centers

points

(F)
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Linear (or harmonic) oscillations (centers)

X=y
y=-x

Linear (or “harmonic”) oscillations have 2 serious limitations:
© They are “fragile” or non-robust to small perturbations in the model

@ The oscillation characteristics (amplitude and phase) depend on the
initial condition

Jjump
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Limit cycles

A stable limit cycle is a periodic trajectory which attracts other solutions
to it (at least those starting “close to” the limit cycle). J
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Limit cycles: an example

X = —wy—|—x(,u—x2—y2)
y=wx+y(p—x*—y?
where u is a parameter while w # 0 is a constant.
@ Fixed points:

_wy* +X* (,U—X*z _y*2) —0

{(,UX* +y* (M _X*2 _y*2) —0

* *

*_

Lyt 0 [T

@ Linearisation around (0, 0):

o= (B e

w — 2xy (= x> =y?) + y(-2y)

Prof Guy-Bart Stan (Dept. of Bioeng.)

Limit cycles: an example (cont’)
Local stability analysis of (0, 0):

J(0,0) = (Z _/j")

= | AL =ptiw

T=2U
A=p?+w?>0

72— 4N = 447 — 47 — 4% < 0

®) v 2 —4A <0 u >0, Unstable spiral
E) Centers

Center
u < 0, Stable spiral
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20th May 2021
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(28)
(29)

)
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Global stability analysis for the limit cycle example (rare)

To perform the global analysis explicitly (which typically is very hard to do;
the example we have chosen here is an exception in that respect), we

rewrite (28)-(29) in polar coordinates:
yﬂ
Y
Y 0
-
g - r2 = 22 4 g2
\/ tan () = £

i.e., transform x = f(x) with x = (;) into p = F(p) with p = (g)
This gives:

F=r(u—r?) (30)

. ILmﬁglga:‘l College

0 =w (31)
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Global stability analysis for the limit cycle example (cont')

;-
p <0 pw=20 © >0
m

/ T / T / T

y A y A

Hopf bifurcation
A at p=0 f \
v

ooooo
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Example of a limit cycle in a model of order 3

State-space of a SINGLE oscillator for kD:Q.OOOOOOe—m

Time evolution of the state variables
T

12 T T T T T T
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A loose statement of the Poincaré-Bendixson Theorem

Suppose x = f(x), x € R?, is a continuously differentiable vector field
and there exists a bounded subset D of the phase plane such that

@ no trajectory can exit D,
@ and there are no fixed points inside D.

Then, there exists at least one limit cycle in D and any trajectory that
enters D converges to a limit cycle. ) scaen
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The Poincaré-Bendixson Theorem: How can we find D7

We need to show that:

V'g(x,y)f(x,y) <0,¥x € A|and |V b(x,y)f(x,y) > 0,Vx € B

)
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The Poincaré-Bendixson Theorem: an example
Consider the second order model in example in (28)-(29) for u > 0:

X = —ouy—I—x(,u—x2—y2)
y=wx+y(p—x*—y?
_ 22
We thus have: f(x,y) = wy + x (i )é ); ) :
wx+y (n—x*—y?)
Consider the function G(x,y) = x? + y2 — R?. Therefore, VG = (;;)
Now, define D = {(x,y_) :g(x,y) =x*+y?*— R* =0},
For any point (x,y) € D, we thus have:

<0 fR>H

VTG(X,y)f(x,y) — 2R? (,u — Rz) {> 0 ifR< i

Y

g
S
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Summary of behaviours for ODE models of order 1 and 2

@ Models of order 1

Attractors: fixed points, or co
Local (linear) and global stability analysis are equivalent
Bifurcations: Saddle node, Transcritical, or Pitchfork

@ Models of order 2

Attractors: fixed points, limit cycles, or oo

Local stability analysis (linearisation) around fixed points # global
stability analysis

Bifurcation: all those of order 1 + Hopf + others

Imperial College
London
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@ Nonlinear ODE models of order 3 and higher
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Behaviours for ODE models of order 3 and higher

x = f(x),

x € RY,

d >3,

() : RY 5 RY, “smooth” function

Behaviours for ODE models of order 3 and higher

In one sentence: everything that happens in lower order models + 2 other

phenomena:

@ quasi-periodicity

@ deterministic chaos

(32)
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Summary for systems of order 1, 2, and 3 and higher

1D 2D 3D and higher
Same as 2D
+ quasi-periodic
Attractors Only F.P. Sarne.as 1D attractor
or oo + limit cycles +  chaotic at-
tractor
Same as 2D
Decay Same as 1D T quasi-
Behaviours . + robust periodic e
or explosion o periodicity
oscillations
+ chaos
Saddle-Node Same as 1D Same as 2D
Bifurcations || Transcritical + Hopf + many more
Pitchfork + others
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@ Modelling gene regulation networks

Imperial College
London
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The central dogma

DNA replication
DNA repair
genetic recombination

DNA

5I 3[

RNA synthesis
(transcription)

S FEE TR Y
protein synthesis
(translation)

PROTEIN

H:N WCOOH

amino acids

Figure 7-1 Essential Cell Biology 3/e (© Garland Science 2010)

Transcription and mRNA polymerase
Translation and Ribosome

Translation and Proteins
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Constitutive gene expression
As we have seen, the central dogma can be summarized as:

Gene —— > mMRNA ——— Protein
Transcr. Transl.

When gene expression is unregulated, it is said to be constitutive, and the
gene is always on.

Using the law of mass action!, a model for constitutive expression is given
as:

m = kl — dlm (33)
p=kom— dop (34)

where m = [mRNA] and p = [Protein|
@ ki is the constitutive transcription rate.
@ d; is the mRNA degradation rate.
@ ko> is the translation rate.

__@ d> is the protein degradation rate.

' This is based on empirical studies since strictly speaking it does not really make

sense to use the law of mass action for gene expression.
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Gene transcription regulation

At the transcription level, gene expression can be controlled by certain
proteins called transcription factors:

Transcription

Factor (TF)
(activator
Or repressor) R

1Y
L)

9 TFbinding site

M ]

- Promoter RBS Protein coding region E nee
¥ J
—_
Gene
N— 7
—_—
DNA
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Gene transcription regulation by activators

Consider the case of a gene whose transcription is activated by the
cooperative binding of activators to the transcription factor binding site of
the gene.

Activators

Gene——»mRNA—»Protein

Lo

0 0

The following model is commonly used to describe activator controlled
gene transcription:

: A"
b= kom — dop (36)

where m = [mRNA], p = [Protein], A = [Activator], k; = maximal transcription rate, K = activation coefficient, n = Hill ;o coliege
London

icoer the activation of eene expression).
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Gene transcription regulation by repressors

Consider the case of a gene whose transcription is repressed by the
cooperative binding of repressors to the transcription factor binding site of
the gene.

Repressors

Gene——»mRNA—»Protein

Lo

0 0

The following ODE model describes repressor-controlled gene transcription:

: K"
[5: kgm—dgp (38)

where m = [mRNA], p = [Protein], R = [Repressor], k; = maximal transcription rate, K = repression coefficient, n = Hill
ILrnpzriaI College
coefficient (= number of repressors that need to cooperatively bind the promoter to trigger the inhibition of gene expression).
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Auto-activation and auto-inhibition

e e=» e oy,
- ~
7

+ Or - T ioti
Gene—— »mRNA——»__ anscription
Factor (protein)

l l

0 0

m = kl f(p) — dlm (39)
p=kom— dop (40)

where f(p) = fT(p) = K”—l—p (monnotonically increasing Hill function) for
an auto-activating action of the transcription factor p, and
flp)=Ff(p)=1—FfT(p) = K,,+ = (monotonically decreasing Hill

function) for an auto-inhibiting action of the transcription factor p. s
2Eith iy 0P8l

Auto-activation

. p"
=ki—————d 41
m 1K"+p" 1m (41)

p=kom— dop (42)
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Auto-repression
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The toggle switch

Lacl ' TetR
|

nr

my = kL,l% —dpimg
T TPT

pL = kpomp —diopL
. K™
mr = k dT,lmT

Tl oh ——h —
K[’L _I_pZL
pT = kromT — dT2pT

where m; (resp. mt) is the concentration of Lacl (resp. TetR) mRNA,
and p; (resp. pr) is the concentration of Lacl (resp. TetR) protein.
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The toggle switch (cont')

Using a quasi-stationary assumption for the mRNA dynamics, i.e., m; =0
and mt =~ 0, we obtain a model of order 2 whose equations are:

= kit KT d (45)
PL = KL 2 di 1 K?T n p'}T L2PL
kri K™

T = —d 46
PT = KT2 dr1 K"+ pp T,2PT (46)
For example, for n = nt =2, k; 1 = k11 = 10, and all other parameters

equal to 1 the phase plane looks like this:

pr =0

|

|

|
A
|
|

pr
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The repressilator: a synthetic genetic oscillator

Lacl —— TetR

N

Acl

The corresponding model is of order 6 and can be written as (after
non-dimensionalisation):

m; = —m; + + ap (47)

pi = —B(pi — mj) (48)

where (i,j) = {(Lacl, cl),(TetR, Lacl), (cl, TetR)}.
For certain values of the parameters, this system exhibits limit cycle
oscillations
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Time evolution of protein concentrations for the

repressilator

# of proteins

2560

2800

1560 [

1868 [

580

| Time evolution of protein concentrations |

LacI protein
TetR protein
cI protein

\
\/
N/
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