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Online Demos

The interested reader is referred to the following Matlab toolboxes and online demos that can help
in illustrating the concepts introduced in the “Signals and Systems” course.

Matlab Toolboxes. The “Signal Processing and Communications” and the “Control System
Design and Analysis” Toolboxes of Matlab offer many functions and Graphical User Interfaces
(GUI) that can be highly valuable to illustrate the introduced concepts.

For example:

• The analysis of Linear Time-Invariant Systems is facilitated through the use of the “Linear
System Analyzer” GUI.

• For the design of linear filters the following GUIs are worth having a look at:

– “Filter Design & Analysis Tool” GUI

– “Filter Builder” GUI

• Finally, the design of LTI controllers is facilitated through the use of the “Control System
Designer” GUI.

Online Demos. Beyond these Matlab functions and GUIs, there are various interactive demos
available online that can also be used to acquire a better intuition and understanding of the
introduced concepts.

• Dot Product:

– http://www.falstad.com/dotproduct/

• Fourier series:

– http://www.falstad.com/fourier/

– http://demonstrations.wolfram.com/FourierSeriesOfSimpleFunctions/

– http://demonstrations.wolfram.com/RecoveringTheFourierCoefficients/

– http://demonstrations.wolfram.com/FourierTransformPairs/

– http://demonstrations.wolfram.com/ComparingFourierSeriesAndFourierTransform/

– http://demonstrations.wolfram.com/FromContinuousToDiscreteTimeFourierTransformBySamplingMethod/

– http://demonstrations.wolfram.com/SamplingTheorem/

• Convolution:

– http://demonstrations.wolfram.com/DiscreteTimeConvolution/

– http://demonstrations.wolfram.com/ConvolutionWithARectangularPulse/

• Digital Filters:

– http://www.falstad.com/dfilter/

• General Interest Demos:

– http://www.falstad.com/mathphysics.html
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Bridge with the first part of the course

In the first part of the course, we saw that one of the key steps to be able to reconstruct a
continuous-time signal from its discrete-time samples (i.e. to perform a digital to analogue con-
version) consisted in passing the discretised signal through an “ideal low-pass filter”. In what
follows we will deepen our understanding of filters and, more generally, of systems, which we will
look at from an input-output point of view, i.e. we will consider systems and filters as “black
boxes” that transform input signals into output signals, without caring, initially, about the con-
tent of this black box. This input-output point of view is at the core of analogue and digital filter
design and signal processing.

1 Systems

In this introduction, we will give a broad overview of the essential features of most common
“systems”.

1.1 General definition

• A system may be thought of as a Black Box (B.B.) with one or more input terminals and
one or more output terminals.

• This Black Box could be:

– a mechanical system

– an electrical system

– a chemical system

– a biological system

– . . .

or could be an imaging, or an audio device/process.

How do we describe systems or B.B.?

Usually we want to be able to define a mapping between the inputs and the outputs of the
B.B., i.e. we don’t want to know what is inside the B.B. or how it is built, and, instead, we care
about the relationship between its inputs and its outputs. There are different types of system
classes and subclasses, but we here focus on four main classes that are used widely in systems
engineering and signal processing.

2 Types of systems

System or Black Box

SYSTEM
or

BLACK BOX
g(t)f(t)

(input) (output)
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Most Common Systems Types

A Linear Nonlinear
B Time Invariant Time Variant
C Causal Acausal
D Open Loop Closed Loop

Remark 1. For time-invariant B.B., time doesn’t affect the content of the B.B.

Remark 2. For closed loop B.B., the output signal(s) “feed(s) back” to the input signal(s).

Remark 3. Linear time-invariant systems have very important properties that make their analysis
and design much easier than for nonlinear or time-variant systems.

Remark 4. Nonlinear and stochastic systems will be introduced as part of the “ Modelling in
Biology” course.

2.1 A. Linear vs Nonlinear Systems

For a linear system, the following must hold:

IF f1(t) (input)
System⇒ g1(t) (output)

AND f2(t) (input)
System⇒ g2(t) (output)

THEN αf1(t) + βf2(t)
System⇒
Linear

αg1(t) + βg2(t), ∀f1(t) 6= 0 and f2(t) 6= 0

↵f1(t)

�f2(t)

↵g1(t) + �g2(t)Linear
System+

Linear
System

Linear
System

f1(t)

f2(t) g2(t)

g1(t)

In other words, for a linear system, if the input is a linear combination of inputs, the output will
be the same linear combination of the outputs corresponding to these inputs.

Remark 5. This property must hold for all non-zero f1(t) and f2(t).

Remark 6. A system for which the linear system property does not hold is by definition nonlinear.

Remark 7. For any practical device, linearity is typically going to hold only for a subset of all
possible signals. So, even supposedly linear amplifiers (for example) are typically only so for a
certain range of input signals.

Remark 8. Linearity is often desirable. For example, a lot of audio systems are designed to be
linear. More specifically, the level of quality of Hi-Fi audio systems is measured in terms of their
linearity, i.e. their ability to truthfully reproduce sounds as they were recorded. For Hi-Fi systems,
nonlinearites are called “distortions”.

However, some systems are intrinsically nonlinear (e.g. biological systems) or are designed to
behave nonlinearly (e.g. switch or relay systems).
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2.2 B. Time Invariant vs Time Variant Systems

For time invariant systems, the mapping between the input and the output does not depend on the
time at which the input signal starts. Mathematically time invariance amounts to the following
property:

IF f(t) (input)
System⇒ g(t) (output)

THEN f(t− τ)
System⇒

Time Invariant
g(t− τ), ∀τ ∈ R

In other words, for a time invariant system, if the input signal is time-shifted by τ then the output
signal will be shifted by the same time-shift τ .

Remark 9. A pure amplification, g(t) = Af(t), where A is a constant is an example of a time
invariant system (it is also linear).

Mathematically, time-invariance is easy to see:

• Time-shifting the input in the expression of the output gives: Af(t− τ)

• Time-shifting the output gives: g(t− τ) = Af(t− τ)

It is clear that these two signals are the same. Therefore, this system is time invariant.
On the contrary, a system defined by g(t) = A(t)f(t) is time variant (and still linear) since

the amplification A(t) is here a function of time, i.e. the point in time at which you consider the
system makes a difference for the output! Mathematically, this is again easy to see:

• Time-shifting the input in the expression of the output gives: A(t)f(t− τ)

• Time-shifting the output gives: g(t− τ) = A(t− τ)f(t− τ)

It is clear that these two signals are not the same. Therefore, this system is time variant.

2.3 C. Causal vs Acausal Systems

A system is said to be causal if the output of the system, g(t), is only dependent on the values of
the input to the system, f(t), for times up until the current point in time, t.

SYSTEM
or

BLACK BOX
g(t)f(t)

(input) (output)

For all t, g(t) can only depend on f(t− τ) for values of τ ≥ 0. In other words, for causal systems,
τ can never take negative values.

Remark 10. A causal system cannot depend on an input that is ahead in time of the current
input. For example, if the relationship between the input and the output is given by g(t) = f(t− τ)
and we consider τ = −1 and t = 10 then f(t− τ) = f(11) and g(t) = g(10). This system is thus
not causal as its output at the current time, t = 10, depends on the input at a future point in time,
t = 11.

Remark 11. All systems that exist in real-life are causal.

Remark 12. If the system is only dependent on f(t + τ) for τ ≥ 0, the system is acausal. A
system that is acausal requires the ability to look ahead in time and provide the output g(t) as a
function of future inputs, f(t+ τ), τ ≥ 0. Acausal systems do not exist in real-life but can be used
for offline processing (based on input-output data that have already been collected and stored).
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2.4 D. Open Loop vs Closed Loop Systems

In a closed loop system (some proportion of) the output signal is fed back to the input signal.

CONTROLLER PLANT
_
+

A

sensoramplifier

Reference
Signal
(Input)

Output

comparator

Examples of closed-loop systems include:

• Thermostats for automatic temperature regulation around a desired reference temperature,
irrespective of temperature perturbations (e.g. caused by open window(s) or door(s)).

• (Adaptive) Cruise Control for automatic speed regulation in cars (or automatic distance
regulation with respect to other vehicles on the road), irrespective of the slope of the road
or number of passengers.

• Escalator speed regulation for maintaining constant speed, irrespective of the number of
people on the escalator.

• Microphone & amplifier in feedback and the “Larsen” effect: the feedback path is physically
implemented through the propagation of sound waves through air from the loudspeaker to
the microphone.

The amplification level is critical to trigger/avoid the “Larsen” effect.

3 LTI Systems

LTI SYSTEM
or

LTI BLACK BOX
g(t) = ?f(t)

(input) (output)

Is there a way to describe the output g(t) of an LTI system/B.B. in terms of its input f(t) and
some “core characteristic”?

Definition of an LTI System
An LTI system is a system that is both linear and time invariant.

Why are LTI systems important?
LTI systems are important because any LTI system can be completely characterised by a “signal”
known as its impulse response.

Definition of the impulse response of a system
The impulse response of a system is the output of the system obtained in response to a δ-“function”
(“impulse”) at its input.

Remark 13. Sometimes people talk also about LSI systems. An LSI system is a system that
is both linear and space invariant. LSI systems are an extension of LTI systems to 2D imaging
systems.

Remark 14. As we will see next, a system that is both linear and time invariant (an LTI system)
inevitably performs convolution to produce its output from a given input.
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3.1 LTI Systems and the Impulse Response

LTI System
or

LTI Black Box
h(t)�(t)

input = impulse output = impulse response
t               0

   

0
   
   
   
   

 

 

h(t)

t            0

   

0
   
   
   
   

 

 

1
�(t)

The ouptut of an LTI system to an impulse signal, i.e. a δ-“function”, is the impulse response of
that LTI system.

Linearity:

If the system is linear and the input is scaled by some constant, then the output will be scaled by
the same constant.

LTI System
or

LTI Black Box
Ah(t)A�(t)

t               0

   

0

   

   

 

 

Ah(t)

t            0

   

0

   

   

   

 

 

A

Time invariance:

Similarly, if the system is time invariant and we delay the input by τ , then the output will also be
delayed by the same amount τ .

t         0

   

0
   
   
   
   

 

 1

LTI System
or

LTI Black Box
�(t � ⌧)

t                  

   

   
   
   
   
   
   
   

 

 h(t � ⌧)

⌧ ⌧

h(t � ⌧)

Linearity + Time Invariance (LTI):

As a consequence of the combination of linearity and time invariance, if the input of an LTI system
is:

f(t) = A0δ(t) +A1δ(t− τ)

then the output of this LTI system will be:

g(t) = A0h(t) +A1h(t− τ)
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t                   0

   

0

   

   

   

 

 A0

A1

LTI System
or

LTI Black Box
A0h(t) + A1h(t � ⌧)A0�(t) + A1�(t � ⌧)

t                   

 

 

   
   
   

 

 

⌧ ⌧

A0h(t)

A1h(t � ⌧)

A0h(t) + A1h(t � ⌧)

What happens if there are more δ-“functions” at the input?

A0

A1
A2

A3

t

A�1

A�2

f(t)

⌧0 2⌧ 3⌧�⌧�2⌧

With more delayed δ-“functions” at the input, the output is straightforward to deduce from
what we just saw.

If the input of an LTI system has the following definition:

f(t) =

∞∑

n=−∞
Anδ(t− nτ)

Then the output of that LTI system will be (by linearity and time invariance):

g(t) =

+∞∑

n=−∞
Anh(t− nτ)

Each scaled and time-delayed δ-“function” gives rise to a correspondingly scaled and time-delayed
impulse response. The output is then simply the summation of all these scaled and time-delayed
impulse responses.

Compare this last expression for the output with the expression for convolution:

f1(t) ∗ f2(t) =

∫ +∞

−∞
f1(τ)f2(t− τ)dτ

In particular, for f1(t) = f(t) and f2(t) = h(t), we get:

f(t) ∗ h(t) =

∫ +∞

−∞
f(τ)h(t− τ)dτ

As we can see, τ appears in both the expression of g(t) and in that of f(t) ∗ h(t). However,
the expression of the output of the LTI system, g(t), to a “train” of δ-“functions” involves a
summation whereas the expression of the convolution involves an integration.

Let’s have a look at the train of δ-“functions” again. If we assume that the magnitudes of the
δ-functions, An, correspond to the time-sampled values of the continuous-time function f(t), with
a sampling period τ , we then have: A0 = f(0), A1 = f(τ), A2 = f(2τ), . . . , An = f(nτ), . . . 1

1This is quite clear from what you saw when we introduced sampling: If f(t) is a continuous-time function, then
sampling f(t) using a sampling period of τ amounts to multiply f(t) by a “train” of δ-“functions” where the δ-
“functions” are delayed by multiples of τ : fsampled = f(t)

∑+∞
−∞ δ(t−nτ) =

∑+∞
−∞ f(t)δ(t−nτ) =

∑+∞
−∞ f(nτ)δ(t−

nτ).
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f(0)

f(⌧)
f(2⌧)

t

f(�2⌧)

f(t)

⌧0 2⌧ 3⌧�⌧�2⌧

f(�⌧)

Therefore, f(t) and g(t) can be expressed as:

f(t) =

+∞∑

−∞
f(nτ)δ(t− nτ)

and

g(t) =

+∞∑

−∞
f(nτ)h(t− nτ).

As τ → 0, the summations become integrations,2

and we thus obtain:

f(t) =

∫ +∞

−∞
f(τ)δ(t− τ)dτ (nτ gets replaced by τ)

= f(t) ∗ δ(t) (by the sifting property of the δ-“function”)

and, similarly:

g(t) =

∫ +∞

−∞
f(τ)h(t− τ)dτ = f(t) ∗ h(t)

Output of an LTI system in terms of its impulse response
For any LTI system, the output g(t) can always be expressed as the convolution of the input f(t)
with the impulse response of this LTI system h(t):

g(t) = f(t) ∗ h(t) = h(t) ∗ f(t) (1)

LTI System g(t) = f(t) ⇤ h(t)f(t)
(input) (output)

h(t)

Consequences and meaning of (1):

• Any system which is linear and time invariant is completely characterised by its impulse
response, h(t), i.e. for any input signal f(t), the output signal of an LTI system
is given by g(t) = f(t) ∗ h(t) = h(t) ∗ f(t) where h(t) is the impulse response of the
considered LTI system

• We can predict the response of an LTI system to any input given the knowledge of its impulse
response.

Remark 15. An example of the use of impulse responses of LTI systems in industry is given
by image analysis of fMRI scans to identify task-specific functional regions within the brain or by
3D-audio virtual reality systems:

2As τ → 0, the spacing between the samples decreases until the samples are very tightly packed. Summing over
these very tightly packed samples thus begins to look like computing the area under the (continuous-time) curve,
which corresponds to an integration.
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• Search for task-specific functional regions within the brain using fMRI scans:

– Using modelling or experimental approaches, the brain haemodynamic impulse response
(or haemodynamic transfer function) of a patient performing a specific task (e.g. tap-
ping his index finger on a table) can be predicted/measured.

– Knowing this haemodynamic impulse response, the problem amounts to searching time-
lapse movies of fMRI scans for the set of pixels whose intensities change in time ac-
cording to the a priori predicted brain heamodynamic (impulse) response.

• 3D-audio virtual reality systems require the availability of two impulse responses:

– The impulse response of the acoustical space that one wants to immerse the listener
into, e.g. a cathedral, a lecture hall, or an opera house. This impulse response, once
convolved with a sound input signal (e.g. a piece of music or a speech), will produce a
sound output that corresponds to the signal you would have obtained by directly recording
the input signal played in the chosen acoustical space (e.g. cathedral, lecture hall, opera
house, etc.).

– The binaural impulse responses of the listener (or of an “average listener”) to a sound
emitted from a particular direction around the head of that listener. These binaural
impulse responses, once convolved with a sound input signal, will “spatialise” the sound
output, i.e. the resulting sound output, when listened to using headphones, will be
perceived as if coming from a sound source emitting the sound input signal from the
direction used in the measurement of the binaural impulse responses.

Convolution of any sound signal (input) with these impulse responses (e.g. the input sound
signal is convolved first with the acoustical space impulse response, and the resulting signal is
then convolved with the binaural impulse responses) allows to both “colour” and spatialise the
sound signal so as to give the impression to the listner that he/she is acoustically immersed
in a chosen 3D environment. This is currently being used for creating 3D audio virtual
reality systems by the gaming industry and in high-end civilian and military simulators.

3.2 Transfer Function: the Fourier Transform of the Impulse Response

We can also look at the expression (1) in the frequency domain by taking the Fourier transform
of both sides:

FT{g(t)} = FT{f(t) ∗ h(t)}
= FT{f(t)}FT{h(t)}

which implies:

Output of an LTI system in terms of its transfer function

G(jω) = F (jω)H(jω) = H(jω)F (jω) (2)

where H(jω) = FT{h(t)} is the transfer function of the LTI system.

Consequences and meaning of (2):

• The Fourier transform of the impulse response of an LTI system is the transfer function
of that LTI system.

• Any system which is linear and time invariant is completely characterised by its transfer
function.
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• We can predict the response of an LTI system to any input given the knowledge of its transfer
function.

• If we wish to determine the amplification factor given to different frequencies of the input
signal of an LTI system, we only need to measure its impulse response, h(t), compute its as-
sociated transfer function using H(jω) = FT{h(t)} and then |H(jω)| gives the amplification
(or attenuation) factor at the chosen angular frequency ω = 2πν where ν is the frequency
in Hz and ω is the angular frequency in rad/s. (Note that, as we will emphasise later, a full
characterisation of the transfer function requires more than just the frequency-dependent
amplification factor, also known as magnitude response, |H(jω)|. For a full characterisation,
you would also need to consider the frequency-dependent phase response, i.e. ∠H(jω)).

3.3 Intermediate Summary

The impulse response or the transfer function of a Linear Time Invariant (LTI) system each
completely characterise the input-output properties of that system.

Given the input to an LTI system, the output can be determined:

• In the time domain: as the convolution of the impulse response and the input.

• In the frequency domain: as the multiplication of the transfer function and the Fourier
transform of the input.

They are related as follows: The transfer function is the Fourier transform of the impulse
response.

Remark 16. From (2), we can see that the transfer function of an LTI system is, by definition,

H(jω) = G(jω)
F (jω) , i.e. the Fourier transform of the output signal divided by the Fourier transform

of the input signal.

g(t) = f(t) ⇤ h(t)

= h(t) ⇤ f(t)

f(t)

F (j!) G(j!)= F (j!)H(j!)

= H(j!)F (j!)

H(j!)

h(t)

ë ë ë
Time Domain

Frequency Domain

Fourier transform
pair

Impulse response

Transfer function

3.4 Response of LTI systems to sinusoidal inputs

If a pure sinusoid is input into an (asymptotically stable) LTI system, then the output will also
settle down, eventually, to a pure sinusoid. This steady-state output will have the same frequency
as the input but will have a different magnitude and phase. The dependence of the magnitude
and phase on the frequency of the input is called the frequency response of the system.
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Asymptotically
stable LTI

system G(s)

t

x(t)
1

2π

ω

t

y(t)

|G(jω)|

− argG(jω)

ω

x(t) = cos(ωt) y(t) = |G(jω)| cos
(

ωt + argG(jω)
)

+starting transient

f(t)

1

2⇡

!

f(t) = sin(!t) Asymptotically
stable LTI

system G(s)

t

x(t)
1

2π

ω

t

y(t)

|G(jω)|

− argG(jω)

ω

x(t) = cos(ωt) y(t) = |G(jω)| cos
(

ωt + argG(jω)
)

+starting transient

�\H(j!)

!

|H(j!)|

g(t) = |H(j!)| sin (!t + \H(j!))

+ starting transient

H(j!)

h(t)

ë

(Asymptotically stable)
LTI System

g(t)

The frequency response H(jω) is a complex-valued function of the angular frequency ω = 2πν
(in rad/s) where ν is the frequency (in Hz). At each angular frequency ω, the complex number
H(jω) can be represented either in terms of its real and imaginary parts, or in terms of its
magnitude (or “gain”), |H(jω)|, and phase, ∠H(jω).3

Remark 17. The frequency response of an LTI system provides, for each value of the angular
frequency ω, a direct understanding of the change in magnitude and phase imposed on any signal
passing through that LTI system. This is a consequence of the definition of the transfer function
of the system, i.e. G(jω) = F (jω)H(jω), which implies that |G(jω)| = |F (jω)||H(jω)| and
∠G(jω) = ∠F (jω) + ∠H(jω). Please also note that any signal can be decomposed into a sum of
sinusoidal signals through a Fourier series decomposition. Therefore, understanding the response
of an LTI system to a sinusoidal input is essential to understanding its response to any input
signal.

3.5 Bode magnitude and phase diagrams

The frequency response can be captured through Bode diagrams, which consist in two separate
graphs:

• one of 20 log10 |H(jω)| (in decibels, dB, i.e. 20 log10 axis) vs ω (in rad/s, log10 axis), i.e.
the Bode magnitude diagram.4

• one of ∠H(jω) (in degrees or radians, linear axis) vs ω (in rad/s, log10 axis), i.e. the Bode
phase diagram.

3|H(jω)|ej∠Hjω is the polar representation of the complex number H(jω).
4In some books, the Bode magnitude diagram is called the Bode gain diagram.
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Remark 18. As we will see in what follows, Bode diagrams are relatively straightforward to sketch
to a high degree of accuracy, are compact and give an indication of the frequency ranges within
which different levels of performance in terms of the frequency response can be achieved.

Remark 19. By changing the frequency of the sinusoidal signal at the input of an LTI system
and recording the corresponding sinusoidal output, one can build Bode diagrams point by point
(frequency by frequency) by simply comparing the output and input magnitudes, and the output
and input phases.

However, as we will see, simple rules allow to approximately sketch Bode diagrams quite easily
and reveal important aspects key to the analysis and design of LTI filters.

In what follows we will try to get a better understanding of Bode diagrams and of their use
for the design of LTI filters in the frequency domain.

4 LTI Filter Design in the Frequency Domain

Linear filtering represents a large application class for LTI systems. In what follows, we will
emphasise the duality between time-domain and frequency-domain representations of signals (Bode
diagrams) and their use for the design and realisation of basic LTI filters. We will, in particular,
focus on:

• Broad-spectrum signals: Pseudo-random noise (e.g. Maximum Length Sequences) vs Sweep
signals (e.g. Sine Sweeps) vs impulse.

• Low-Pass, High-Pass, Band-Pass, and Band-Stop Filters and (examples of) their correspond-
ing transfer functions.

• Butterworth Filter: the general form of the Butterworth filter can be used as one way of
specifying a transfer function and therefore an impulse response.

4.1 Broad-Spectrum Signals: Maximum Length Sequence and Sine Sweep
signals

Exercise 1. What do you think the Bode magnitude and phase diagrams for an impulse signal
(δ-“function”) would look like? Hint: Consider the Fourier transform of the δ-“function”. What
does that tell you about the Bode magnitude and phase diagrams of a δ-“function”?

Prof Guy-Bart Stan c©Imperial College London 15



Signals & Systems – Part II: Systems V 2.2 LTI Filter Design in the Frequency Domain

A Maximum Length Sequence (MLS) signal of any desired length can be easily generated
to approximate a white noise signal:

time (ms)
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de

The Bode magnitude and phase diagrams of an MLS signal look like this:
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Figure 1: Magnitude and Phase Spectra of an MLS sequence. The phase spectrum has been enlarged in order
to clearly show its uniform random distribution.
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A Sine Sweep (or Chirp) signal is another example of a broad-spectrum signal:

w(t)x(t)

System
K[x(t)]

Distorted
Signal Linear System

Noise n(t)

Output Signal

y(t)

Non Linear

w(t) ⊗ h(t)
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Figure 8: Modelization of the global system including the loudspeaker (considered as a non linear element) and
the acoustical space (considered as a perfectly linear system).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Impulse Response

Time, sec.

Am
pl

itu
de

101 102 103

48

50

52

54

56

58

60

62

64

66

68

Amplitude

dB

Freq, Hz

(a) (b)

Figure 9: (a) Time representation of a Sine Sweep excitation signal (ω1 = 2π10 rad/s and ω2 = 2π1000 rad/s).
(b) Corresponding Magnitude spectrum.
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Figure 10: (a) Time representation of the inverse filter corresponding to the SineSweep signal presented in figure
9. (b) Corresponding Magnitude spectrum.
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Exercise 2. What do you think the Bode magnitude and phase diagrams for a linear sine sweep
would look like? Hint: The slope of the phase diagram gives you information about the “group
delay”, i.e. the lag (or time delay) it takes for a frequency to “appear” in the time signal (e.g. in
the sine sweep here). The more negative the slope on the Bode phase diagram at a given frequency
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ω̂, the later frequencies “close to” that frequency ω̂, i.e. ω̂ + ε with 0 < ε� 1, will appear in the
time signal (e.g. in the sine sweep).5

The Bode magnitude and phase diagrams of a linear sine sweep signal look like this:
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Figure 1: Magnitude and Phase Spectra of an MLS sequence. The phase spectrum has been enlarged in order
to clearly show its uniform random distribution.
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As we can see from the broad spectrum signals above, the Bode magnitude diagram is not
sufficient to uniquely specify a signal. White noise (or Maximum Length Sequence), sine sweep,
and impulse (δ-“function”) signals have identical Bode magnitude diagrams. However, their Bode
phase diagrams are very different. This emphasises that both Bode magnitude and phase diagrams
need to be specified if one wants, on their basis, to be able to uniquely specify an associated signal
(either in the time or in the frequency domain).

4.2 Bode Magnitude Diagrams for Basic Filters

There are five major types of LTI filters. Hereafter, we provide a characterisation of the first 4 in
terms of their Bode magnitude diagrams.

time

5The reason for considering frequencies “close to” the considered frequency ω̂ comes directly from the definition

of the group delay: τg = − d(∠H(jω))
dω

, since the derivative of a curve (here, the Bode phase curve) at given a point
gives only local information about that curve (i.e. the information given by the derivative of a curve at a point ω̂
is only valid for points “close to” the point ω̂).
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Remark 20. Bode magnitude AND phase diagrams are useful to build an understanding of the
action of filters in the frequency domain.

The actual implementation of a filter typically requires to have access to the analytical form
of the transfer function associated with the desired Bode diagrams. More specifically, the type of
implementation (analogue or digital) of a filter dictates the type of transfer function (continuous-
time or discrete-time) that needs to be considered. Once the type of transfer function is chosen, the
frequency domain design of an analogue or digital filter is typically done by trying to find a transfer
function that approximates at best the desired Bode magnitude diagram. The Bode phase diagram
is then imposed by this chosen transfer function. This is why many text books on analogue or
digital filter design typically only show the Bode magnitude diagrams and then immediately show
a transfer function that can approximate this Bode magnitude response. Please do remember,
however, that the expression of a transfer function imposes both Bode magnitude and Bode phase
diagrams, and that you always need both Bode magnitude and phase information to fully specify a
signal or a filter in the frequency domain.

4.3 Examples of Transfer Functions for Basic Filters

Hereafter, we provide some examples of first order transfer functions for low-pass and high-pass
filters. Furthermore, cascade or parallel combination of high-pass and low-pass filters can be used
to obtain basic band-pass and band-stop filters:

• First Order Low-Pass Filter Transfer Function: K 1
1+τjω where ωc = 1

τ is the cutoff angular
frequency of the Low-Pass filter.

• First Order High-Pass Filter Transfer Function: K τjω
1+τjω where ωc = 1

τ is the cutoff angular
frequency of the High-Pass filter.

• Band-Pass = cascade of High-Pass and Low-Pass filters where the cutoff angular frequency
of the High-Pass is smaller than the cutoff angular frequency of the Low-Pass.6

• Band-Stop = parallel combination of Low-Pass and High-Pass filters where the cutoff angular
frequency of the Low-Pass is smaller than the cutoff angular frequency of the High-Pass.

Exercise 3. Plot the Bode diagrams of the above three filters (low-pass, high-pass, and band-pass)
for values of the parameters (K and cutoff angular frequencies) that you chose yourself.

4.4 Sketching Bode diagrams

Basic idea: Consider a transfer function written as a ratio of factorised polynomials, e.g.

H(jω) =
a1(jω)a2(jω)

b1(jω)b2(jω)

Clearly:

log10 |H(jω)| = log10 |a1(jω)|+ log10 |a2(jω)| − log10 |b1(jω)| − log10 |b2(jω)|,
so we can compute the Bode magnitude curve by simply adding and subtracting magnitudes
corresponding to terms in the numerator and denominator. Similarly:7

6Cascade here refers to the output of one filter being connected to the input of another. If a filter, h(t), is com-
posed of two filters, h1(t) and h2(t), in cascade, then h(t) = h1(t) ∗ h2(t) or equivalently, H(jω) = H1(jω)H2(jω).
For a Band-Pass filter composed of the cascade of a High-Pass filter and a Low-Pass filter, we would thus have:
K1

τ1jω
1+τ1jω

·K2
1

1+τ2jω
with 1

τ1
< 1

τ2
.

7The phase of the product of two complex numbers is equal to the sum of the phases of these complex numbers.
This is easily seen from the polar representation of complex numbers: ∠

(
aejbbejd

)
= ∠

(
abej(b+d)

)
= b+ d.

Furthermore, the phase of the inverse of a complex number is equal to minus the phase of that complex number.

Again, this is easily seen from the polar representation of complex numbers: ∠
(

1
aejb

)
= ∠

(
1
a
e−jb

)
= −b.
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∠H(jω) = ∠a1(jω) + ∠a2(jω)− ∠b1(jω)− ∠b2(jω)

and so the Bode phase curve can be determined in an analogous fashion.

4.4.1 First order low-pass filter

The Bode magnitude and phase diagrams for a low-pass filter with K = 5 and τ = 10 are given
hereafter:

10−3 10−2 10−1 100 101
−20

0

20

G
a
in

(d
B
) 20log10|G(jω)|

10−3 10−2 10−1 100 101
−90

0
∠G(jω)

P
h
a
se

(D
e
g
re

e
s)

Frequency (rad/s)

H
Slope = -20 dB/dec

1

⌧

-3 dB

20 log10

✓����
K

1 + ⌧j!

����
◆

, K = 5, ⌧ = 10

10−3 10−2 10−1 100 101
−20

0

20

G
a
in

(d
B
) 20log10|G(jω)|

10−3 10−2 10−1 100 101
−90

0
∠G(jω)

P
h
a
se

(D
e
g
re

e
s)

Frequency (rad/s)
Angular frequency ! (rad/s)

H

\
✓

K

1 + ⌧j!

◆
, K = 5, ⌧ = 10

10

⌧

1

⌧

1

10⌧

10

⌧

In what follows, we explain how such a diagram can be sketched.
Consider the transfer function of a first order low-pass filter:

H(jω) = K
1

1 + τjω
, K > 0, τ > 0

Bode Magnitude

20 log10 |H(jω)| = 20 log10

∣∣∣∣K
1

1 + τjω

∣∣∣∣

= 20 log10 |K|
1

|1 + τjω|
= 20 log10 |K|+�����

20 log10(1)− 20 log10 |1 + τjω|
= 20 log10 |K| − 20 log10

√
1 + (τω)2

The Bode magnitude diagram for the transfer function K 1
1+τjω is thus the sum of the Bode

magnitude diagrams 20 log10 |K| and −20 log10

√
1 + (τω)2.
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Asymptotic behaviours of −20 log10

√
1 + (τω)2

• ω � 1
τ ⇔ (τω)2 � 1⇔ −20 log10

√
1 + (τω)2 ≈ −20 log10(1) = 0 (horizontal asymptote)

• ω � 1
τ ⇔ (τω)2 � 1⇔ −20 log10

√
1 + (τω)2 ≈ −20 log10(τω) (“diagonal” asymptote)

Remark 21. The slope of the “diagonal” asymptote −20 log10(τω) is −20dB/decade. This is
easily seen by considering 2 angular frequencies that are a decade away from each other, i.e. one
angular frequency is 10 times larger than the other one. For example, consider the two angular
frequencies, ω0 and 10ω0, where ω0 is arbitrarily chosen. The value at 10ω0 on the asymptote is
−20 log10(τ10ω0) = −20 log10(10) − 20 log10(τω0) = −20 − 20 log10(τω0), i.e. 20dB less than the
value at ω0.

In particular, on the asymptote, at ω = ω0 = 1
τ , we have that −20 log10(τω0) = 0dB, whereas

at ω = 10ω0 = 10
τ , we have −20 log10(τ 10

τ ) = −20dB, i.e. 20dB less than the value at ω0 = 1
τ .

Remark 22. The two asymptotes intersect at ω = 1
τ . This can be easily seen by considering the

value of ω at which the two asymptotes are equal, i.e. the value of ω at which −20 log10(τω) = 0,
which is w = 1

τ .

Remark 23. At ω = 1
τ , we have 20 log10 |H(jω)| = 20 log10(K)− 20 log10

(√
2
)

= 20 log10(K)−
3.01 dB, i.e. 3.01dB less than the value at which the asymptotes intersect.
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Bode Phase

∠H(jω) = ∠K − ∠(1 + τjω)

= 0− arctan
(τω

1

)

= − arctan(τω)

Asymptotic behaviours of − arctan(τω)

• ω � 1
τ ⇔ τω � 1⇔ − arctan(τω) ≈ − arctan(0) = 0

• ω � 1
τ ⇔ τω � 1⇔ − arctan(τω) ≈ − arctan(+∞) = −90◦

Remark 24. At ω = 1
τ , we have − arctan(τω) = − arctan(1) = −45◦.
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Remark 25 (Comments on Bode sketching). An alternative technique for sketching Bode dia-
grams would be to ignore the asymptotes, and just calculate and plot the true Bode magnitude and
phase over a grid of frequencies. This is not recommended for a number of reasons. Firstly, a lot
more points are required to get the same accuracy. Secondly, the structure of the diagram is then
lost. A practising filter design engineer or control engineer will often prefer a good sketch, with
the asymptotes shown, to an accurate computer generated diagram – since this gives a better idea
of how things can be changed to improve the behaviour of the filter or of the controlled system.

In practice, sketching Bode diagrams is about producing a drawing showing the straight line
asymptotes and approximations and a rough approximation to the true gain and phase by rounding
the corners appropriately.

4.4.2 First order high-pass filter

The Bode magnitude and phase diagrams for a high-pass filter can be obtained similarly.

Exercise 4. Sketch the Bode diagrams for a first order high-pass filter, i.e. for a filter with the
following transfer function: H(jω) = K τjω

1+τjω .

4.4.3 Band-Pass and Band-Stop filters

The Bode diagrams for a cascade of first order LTI filters (such as those considered in the creation
of a Band-Pass filter) can be obtained by considering the Bode diagrams composition rules outlined
above (see Section 4.4).

Exercise 5. Sketch the Bode diagrams for a band-pass filter.

4.5 The Butterworth filter

In what follow we will show how the rather theoretical work that we have been doing on LTI
systems is related to the construction of analogue electronic circuits realising these systems.

Butterworth filters can be used to specify transfer functions corresponding to low-pass, high-
pass, band-pass, or band-stop filters. As a result of this frequency-domain filter design process,
once the expression of the desired transfer function is known (e.g. analytic expression of the
Butterworth transfer function), it can be realised using analogue electronic components or imple-
mented as purely digital filters. Matlab can be used to easily perform the design of a Butterworth
filter (using the Matlab command butter8).

Consider the following Butterworth filter Bode magnitude specification:

|H(jω)|2 =
1

1 + (ω/ωc)2N
(3)

where N determines the order of the filter and ωc determines the cutoff angular frequency.

8The Matlab command help butter or, even more informatively, the Matlab documentation on the function
butter, provide interesting information on the general transfer function form of Butterworth filters and how Matlab
can be used to easily design low-pass, high-pass, band-pass or band-stop Butterworth filters.
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The above figure is a plot of the Bode magnitude for Butterworth low-pass filters of orders N =
{1, 2, 3, 4, 5} with cutoff angular frequency ωc = 1 rad/s. Note that the slope is −20N dB/decade
where N is the filter order.

Remark 26. As you can see, the higher the order N of the Butterworth filter, the closer the Bode
magnitude response gets to that of an ideal low-pass filter.

Let us consider the case of a Butterworth filter of order N = 1 with a cutoff angular frequency
ωc = 1 rad/s, so that

|H(jω)|2 =
1

1 + ω2

Because this is only a specification on the Bode magnitude of the filter, one still has to decide
on what the Bode phase specification will be.

Remark 27. There are some standard options for specifying the phase, which depend on how
the filter will be implemented (e.g. analogue implementation or digital implementation). For
the time being, we will just look at a “standard” analogue filter implementation. This imposes
the analytical expression of the (continuous-time) transfer function and thereby the Bode phase
plot. For an analogue implementation of this Butterworth filter, we will here consider the transfer
function: H(jω) = 1

1+jω .

An example of the magnitude and Bode phase plots for an analogue Butterworth filter of order
N = 1 with cutoff freqency ωc = 1 rad/s is provided hereafter. As you can see the Bode diagrams
are exactly those that we considered for first order low-pass filters.
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4.6 Passive Filter Implementation of the Butterworth Filter

The simplest implementation of a Butterworth filter is surprisingly familiar to anyone who has
done even the tiniest bit of electronics. A Butterworth filter can be constructed by an “LC ladder”
network, where capacitors and inductors are strung together.

One example of a passive circuit implementation for a third-order Butterworth filter, with
N = 3 and ωc = 1 rad/s:

|H(jω)|2 =
1

1 + ω6
,

might look like this:

2/3 H ½ H

4/3F
1WVin Vout

The above schematic representation represents an electronic circuit that can be used to imple-
ment a 3rd order passive Butterworth filter.

By changing the values of the electronic components in this LC ladder network we can obtain
different cut-off frequencies. As we saw previously, the Bode magnitude response of the corres-
ponding Butterworth filter is not quite the same as that of the ideal low-pass filter (rect1(·)) but
it approximates it increasingly well as the order of the Butterworth filter N increases.
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