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General definition of a system

A system may be thought of as a Black Box (B.B.) with one or more
input terminals and one or more output terminals.

This Black Box could be:
I a mechanical system
I an electrical system
I a chemical system
I a biological system
I . . .

or could be an imaging, or an audio device/process.

How do we describe systems or B.B.?
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Types of systems

System or Black Box

SYSTEM
or

BLACK BOX
g(t)f(t)

(input) (output)

Most Common Systems Types

A Linear Nonlinear
B Time Invariant Time Variant
C Causal Acausal
D Open Loop Closed Loop
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A. Linear vs Nonlinear Systems

For a linear system, the following must hold:

IF f1(t) (input)
System⇒ g1(t) (output)

AND f2(t) (input)
System⇒ g2(t) (output)

THEN αf1(t) + βf2(t)
System⇒
Linear

αg1(t) + βg2(t), ∀f1(t) 6= 0 and f2(t) 6= 0

↵f1(t)

�f2(t)

↵g1(t) + �g2(t)Linear
System+

Linear
System

Linear
System

f1(t)

f2(t) g2(t)

g1(t)

In other words, for a linear system, if the input is a linear combination of
inputs, the output will be the same linear combination of the outputs
corresponding to these inputs.
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B. Time Invariant vs Time Variant Systems

For time invariant systems, the mapping between the input and the output
does not depend on the time at which the input signal starts.
Mathematically time invariance amounts to the following property:

IF f (t) (input)
System⇒ g(t) (output)

THEN f (t − τ)
System⇒

Time Invariant
g(t − τ), ∀τ ∈ R

In other words, for a time invariant system, if the input signal is
time-shifted by τ then the output signal will be shifted by the same
time-shift τ .
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C. Causal vs Acausal Systems

A system is said to be causal if the output of the system, g(t), is only
dependent on the values of the input to the system, f (t), for times up
until the current point in time, t.

SYSTEM
or

BLACK BOX
g(t)f(t)

(input) (output)

For all t, g(t) can only depend on f (t − τ) for values of τ ≥ 0. In other
words, for causal systems, τ can never take negative values.
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D. Open Loop vs Closed Loop Systems
In a closed loop system (some proportion of) the output signal is fed back
to the input signal.

CONTROLLER PLANT
_
+

A

sensoramplifier

Reference
Signal
(Input)

Output

comparator

Examples of closed-loop systems include:

Thermostats for automatic temperature regulation around a desired
reference temperature, irrespective of temperature perturbations (e.g.
caused by open window(s) or door(s)).
(Adaptive) Cruise Control for automatic speed regulation in cars (or
automatic distance regulation with respect to other vehicles on the
road), irrespective of the slope of the road or number of passengers.
Escalator speed regulation for maintaining constant speed,
irrespective of the number of people on the escalator.
Microphone & amplifier in feedback and the “Larsen” effect:
The amplification level is critical to trigger/avoid the “Larsen” effect.
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LTI Systems

Definition of an LTI System

An LTI system is a system that is both linear and time invariant.

Why are LTI systems important?

LTI systems are important because any LTI system can be completely
characterised by a “signal” known as its impulse response.

Definition of the impulse response of a system

The impulse response of a system is the output of the system obtained in
response to a δ-“function” (“impulse”) at its input.
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LTI Systems and the Impulse Response
As a consequence of the combination of linearity and time invariance, if
the input of an LTI system is:

f (t) = A0δ(t) + A1δ(t − τ)

then the output of this LTI system will be:

g(t) = A0h(t) + A1h(t − τ)

t                   0

   

0

   

   

   

 

 A0

A1

LTI System
or

LTI Black Box
A0h(t) + A1h(t � ⌧)A0�(t) + A1�(t � ⌧)

t                   

 

 

   
   
   

 

 
⌧ ⌧

A0h(t)

A1h(t � ⌧)

A0h(t) + A1h(t � ⌧)

What happens if there are more δ-“functions” at the input?
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Link between the input and the output of an LTI system

A0

A1
A2

A3

t

A�1

A�2

f(t)

⌧0 2⌧ 3⌧�⌧�2⌧

If the input of an LTI system has the following definition:

f (t) =
∞∑

n=−∞
Anδ(t − nτ)

Then the output of that LTI system will be

g(t) =
+∞∑

n=−∞
Anh(t − nτ)
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LTI Systems and the Impulse Response

f(0)

f(⌧)
f(2⌧)

t

f(�2⌧)

f(t)

⌧0 2⌧ 3⌧�⌧�2⌧

f(�⌧)

Therefore, f (t) and g(t) can be expressed as:

f (t) =
+∞∑
−∞

f (nτ)δ(t − nτ)

and

g(t) =
+∞∑
−∞

f (nτ)h(t − nτ).
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LTI Systems and the Impulse Response

f(0)

f(⌧)
f(2⌧)

t

f(�2⌧)

f(t)

⌧0 2⌧ 3⌧�⌧�2⌧

f(�⌧)

As τ → 0, the summations become integrations,
and we thus obtain:

f (t) =

∫ +∞

−∞
f (τ)δ(t − τ)dτ (nτ gets replaced by τ)

= f (t) ∗ δ(t) (by the sifting property of the δ-“function”)

and, similarly:

g(t) =

∫ +∞

−∞
f (τ)h(t − τ)dτ = f (t) ∗ h(t)
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LTI Systems and the Impulse Response

Output of an LTI system in terms of its impulse response

For any LTI system, the output g(t) can always be expressed as the
convolution of the input f (t) with the impulse response of this LTI system
h(t):

g(t) = f (t) ∗ h(t) = h(t) ∗ f (t) (1)

LTI System g(t) = f(t) ⇤ h(t)f(t)
(input) (output)

h(t)
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Transfer Function: the Fourier Transform of the Impulse
Response

We can also look at the expression (1) in the frequency domain by taking
the Fourier transform of both sides:

FT{g(t)} = FT{f (t) ∗ h(t)}
= FT{f (t)}FT{h(t)}

which implies:

Output of an LTI system in terms of its transfer function

G (jω) = F (jω)H(jω) = H(jω)F (jω) (2)

where H(jω) = FT{h(t)} is the transfer function of the LTI system.
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Summary

The impulse response or the transfer function of a Linear Time
Invariant (LTI) system each completely characterise the input-output
properties of that system.

Given the input to an LTI system, the output can be determined:

In the time domain: as the convolution of the impulse response
and the input.

In the frequency domain: as the multiplication of the transfer
function and the Fourier transform of the input.

They are related as follows: The transfer function is the Fourier transform
of the impulse response.
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Summary

g(t) = f(t) ⇤ h(t)

= h(t) ⇤ f(t)

f(t)

F (j!) G(j!)= F (j!)H(j!)

= H(j!)F (j!)

H(j!)

h(t)

ë ë ë
Time Domain

Frequency Domain

Fourier transform
pair

Impulse response

Transfer function
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Examples of the use of Impulse Responses in industry

Search for task-specific functional regions within the brain using fMRI
scans

3D Audio Virtual Reality Systems (Matlab Demo)

Prof Guy-Bart Stan (Dept. of Bioeng.) Signals and Systems – Part II 27th November 2019 21 / 37

Response of LTI systems to sinusoidal inputs

If a pure sinusoid is input into an (asymptotically stable) LTI system, then
the output will also settle down, eventually, to a pure sinusoid. This
steady-state output will have the same frequency as the input but will
have a different magnitude and phase. The dependence of the magnitude
and phase on the frequency of the input is called the frequency response of
the system.

Asymptotically
stable LTI

system G(s)

t

x(t)
1

2π

ω

t

y(t)

|G(jω)|

− argG(jω)

ω

x(t) = cos(ωt) y(t) = |G(jω)| cos
(

ωt + argG(jω)
)

+starting transient

f(t)

1

2⇡

!

f(t) = sin(!t) Asymptotically
stable LTI

system G(s)

t

x(t)
1

2π

ω

t

y(t)

|G(jω)|

− argG(jω)

ω

x(t) = cos(ωt) y(t) = |G(jω)| cos
(

ωt + argG(jω)
)

+starting transient

�\H(j!)

!

|H(j!)|

g(t) = |H(j!)| sin (!t + \H(j!))

+ starting transient

H(j!)

h(t)

ë

(Asymptotically stable)
LTI System

g(t)
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Bode magnitude and phase diagrams
The frequency response can be captured through Bode diagrams, which
consist in two separate graphs:

one of 20 log10 |H(jω)| (in decibels, dB, i.e. 20 log10 axis) vs ω (in
rad/s, log10 axis), i.e. the Bode magnitude diagram.1

one of ∠H(jω) (in degrees or radians, linear axis) vs ω (in rad/s,
log10 axis), i.e. the Bode phase diagram.

1In some books, the Bode magnitude diagram is called the Bode gain diagram.
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LTI Filter Design in the Frequency Domain

Linear filtering represents a large application class for LTI systems. In what
follows, we will emphasise the duality between time-domain and
frequency-domain representations of signals (Bode diagrams) and their use
for the design and realisation of basic LTI filters. We will, in particular,
focus on:

Broad-spectrum signals: Pseudo-random noise (e.g. Maximum
Length Sequences) vs Sweep signals (e.g. Sine Sweeps) vs impulse.

Low-Pass, High-Pass, Band-Pass, and Band-Stop Filters and
(examples of) their corresponding transfer functions.

Butterworth Filter: the general form of the Butterworth filter can be
used as one way of specifying a transfer function and therefore an
impulse response.
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Impulse Bode Diagrams

Exercise

What do you think the Bode magnitude and phase diagrams for an
impulse signal (δ-“function”) would look like? Hint: Consider the Fourier
transform of the δ-“function”. What does that tell you about the Bode
magnitude and phase of a δ-“function”?
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Pseudo-random noise signals

A Maximum Length Sequence (MLS) signal of any desired length can
be easily generated to approximate a white noise signal:

time (ms)

am
pl

itu
de
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MLS Bode Diagrams

The Bode magnitude and phase diagrams of an MLS signal look like this:
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Figure 1: Magnitude and Phase Spectra of an MLS sequence. The phase spectrum has been enlarged in order
to clearly show its uniform random distribution.
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Sine Sweep or Chirp Signals
A Sine Sweep (or Chirp) signal is another example of a broad-spectrum
signal:

w(t)x(t)

System
K[x(t)]

Distorted
Signal Linear System

Noise n(t)

Output Signal

y(t)

Non Linear

w(t) ⊗ h(t)
Input Signal

Figure 8: Modelization of the global system including the loudspeaker (considered as a non linear element) and
the acoustical space (considered as a perfectly linear system).
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Figure 9: (a) Time representation of a Sine Sweep excitation signal (ω1 = 2π10 rad/s and ω2 = 2π1000 rad/s).
(b) Corresponding Magnitude spectrum.
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Figure 10: (a) Time representation of the inverse filter corresponding to the SineSweep signal presented in figure
9. (b) Corresponding Magnitude spectrum.

12

Exercise

What do you think the Bode magnitude and phase diagrams for a linear
sine sweep would look like?
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Sine Sweep or Chirp Bode Diagrams

The Bode magnitude and phase diagrams of a linear sine sweep signal look
like this:
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Figure 1: Magnitude and Phase Spectra of an MLS sequence. The phase spectrum has been enlarged in order
to clearly show its uniform random distribution.
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Bode Magnitude Diagrams for Basic Filters
There are five major types of LTI filters. Hereafter, we provide a
characterisation of the first 4 in terms of their Bode magnitude diagrams.

time
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Examples of Transfer Functions for Basic Filters

First Order Low-Pass Filter Transfer Function: K 1
1+τ jω where ωc = 1

τ
is the cutoff angular frequency of the Low-Pass filter.

First Order High-Pass Filter Transfer Function: K τ jω
1+τ jω where

ωc = 1
τ is the cutoff angular frequency of the High-Pass filter.

Band-Pass = cascade of High-Pass and Low-Pass filters where the
cutoff angular frequency of the High-Pass is smaller than the cutoff
angular frequency of the Low-Pass.

Band-Stop = parallel combination of Low-Pass and High-Pass filters
where the cutoff angular frequency of the Low-Pass is smaller than
the cutoff angular frequency of the High-Pass.

Exercise

Plot the Bode diagrams of the above three filters (low-pass, high-pass, and
band-pass) for values of the parameters (K and cutoff angular frequencies)
that you chose yourself.
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Sketching Bode diagrams

Basic idea: Consider a transfer function written as a ratio of factorised
polynomials, e.g.

H(jω) =
a1(jω)a2(jω)

b1(jω)b2(jω)

Clearly:

log10 |H(jω)| = log10 |a1(jω)|+log10 |a2(jω)|−log10 |b1(jω)|−log10 |b2(jω)|,

so we can compute the Bode magnitude curve by simply adding and
subtracting magnitudes corresponding to terms in the numerator and
denominator. Similarly:

∠H(jω) = ∠a1(jω) + ∠a2(jω)− ∠b1(jω)− ∠b2(jω)

and so the Bode phase curve can be determined in an analogous fashion.
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The Butterworth filter: Bode magnitude specification
Consider the following Butterworth filter Bode magnitude specification:

|H(jω)|2 =
1

1 + (ω/ωc)2N
(3)

where N determines the order of the filter and ωc determines the cutoff
angular frequency.

Prof Guy-Bart Stan (Dept. of Bioeng.) Signals and Systems – Part II 27th November 2019 34 / 37



The Butterworth filter: Bode magnitude specification

Let us consider the case of a Butterworth filter of order N = 1 with a
cutoff angular frequency ωc = 1 rad/s, so that

|H(jω)|2 =
1

1 + ω2

Because this is only a specification on the Bode magnitude of the filter,
one still has to decide on what the Bode phase specification will be.

Remark

There are some standard options for specifying the phase, which depend
on how the filter will be implemented (e.g. analogue implementation or
digital implementation). For the time being, we will just look at a
“standard” analogue filter implementation. This imposes the analytical
expression of the (continuous-time) transfer function and thereby the Bode
phase plot. For an analogue implementation of this Butterworth filter, we
will here consider the transfer function: H(jω) = 1

1+jω .
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Butterworth filter: Bode magnitude and phase plots
An example of the magnitude and Bode phase plots for an analogue
Butterworth filter of order N = 1 with cutoff freqency ωc = 1 rad/s is
provided hereafter. As you can see the Bode diagrams are exactly those
that we considered for first order low-pass filters.
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The Butterworth Filter: Passive Filter Electronic
Implementation

One example of a passive circuit implementation for a third-order
Butterworth filter, with N = 3 and ωc = 1 rad/s:

|H(jω)|2 =
1

1 + ω6
,

might look like this:

2/3 H ½ H

4/3F
1WVin Vout
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