Signals and Systems — Part Il: Systems

Prof Guy-Bart Stan (Dept. of Bioeng.)

@ Systems

© Types of systems

© LTI Systems

Prof Guy-Bart Stan

Department of Bioengineering

27th November 2019

@ LTI Filter Design in the Frequency Domain

Prof Guy-Bart Stan (Dept. of Bioeng.)

Imperial College
London

Imperial College
London



@ Systems

Imperial College
London

Prof Guy-Bart Stan (Dept. of Bioeng.) 27th November 2019 3/37

General definition of a system

@ A system may be thought of as a Black Box (B.B.) with one or more
input terminals and one or more output terminals.

@ This Black Box could be:

» a mechanical system
» an electrical system
» a chemical system
» a biological system
>

or could be an imaging, or an audio device/process.

How do we describe systems or B.B.? J
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Types of systems

System or Black Box
SYSTEM
F(t)— (1
_ BLACK BOX
(input) (output)
Most Common Systems Types
A Linear Nonlinear
B | Time Invariant | Time Variant
C Causal Acausal
D Open Loop Closed Loop
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A. Linear vs Nonlinear Systems

For a linear system, the following must hold:

IF fi(¢) (input) 2" g1(t) (output)

AND f(t) (input) =" g(t) (output)

THEN |afi(t) + 86(t) V=" agi(t) + Bea(t), VA(t) #0 and f(t) #£ 0

Linear

fi() n)  ah——
— > ani(t) + Bo2(1)
fa(t) 92(t) Bfa(t) 4?

In other words, for a linear system, if the input is a linear combination of
inputs, the output will be the same linear combination of the outputs
corresponding to these inputs.
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B. Time Invariant vs Time Variant Systems

For time invariant systems, the mapping between the input and the output
does not depend on the time at which the input signal starts.
Mathematically time invariance amounts to the following property:

System

IF £(t) (input) =" g(t) (output)

System
=

THEN | f(t —7) g(t—7), VreR

Time Invariant

In other words, for a time invariant system, if the input signal is
time-shifted by 7 then the output signal will be shifted by the same
time-shift 7.
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C. Causal vs Acausal Systems

A system is said to be causal if the output of the system, g(t), is only

dependent on the values of the input to the system, f(t), for times up
until the current point in time, t.

SYSTEM
f (t) BLAColz BOX

(input)

g(t)
(output)

For all t, g(t) can only depend on f(t — 7) for values of 7 > 0. In other
words, for causal systems, 7 can never take negative values.
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D. Open Loop vs Closed Loop Systems

In a closed loop system (some proportion of) the output signal is fed back
to the input signal.

comparator
e O commouan —p st 1> O

Signal _
(Input)

L1 )

A
A\ %),
amplifier sensor

Examples of closed-loop systems include:

@ Thermostats for automatic temperature regulation around a desired
reference temperature, irrespective of temperature perturbations (e.g.
caused by open window(s) or door(s)).
@ (Adaptive) Cruise Control for automatic speed regulation in cars (or
automatic distance regulation with respect to other vehicles on the
road), irrespective of the slope of the road or number of passengers.
@ Escalator speed regulation for maintaining constant speed,
irrespective of the number of people on the escalator.
@ Microphone & amplifier in feedback and the “Larsen” effect:
The amplification level is critical to trigger/avoid the “Larsen” effect. Lohdon 1%
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LTI Systems

Definition of an LTI System

An LTI system is a system that is both linear and time invariant.

Why are LTI systems important?

LTI systems are important because any LTI system can be completely
characterised by a “signal” known as its impulse response.

Definition of the impulse response of a system

The impulse response of a system is the output of the system obtained in
response to a d-"function” (“impulse”) at its input.
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LTI Systems and the Impulse Response

As a consequence of the combination of linearity and time invariance, if
the input of an LTI system is:

f(t) = Aod(t) + A1o(t — 7)
then the output of this LTI system will be:

g(t) = Aoh(t) + A1h(t — 1)

Ags(t) + A1t — 7) e Aoh(t) + ALh(t — 1)
+ Al Avh(t —7)
AO
o T Aoh(t) + A1h(t — 1)
0] T t

What happens if there are more 4- “functions” at the input?

)

27th November 2019 13 /37

Prof Guy-Bart Stan (Dept. of Bioeng.)

Link between the input and the output of an LTI system

A A
A 2
A, 0 As

K B

27 -7 T 2r 371 t

If the input of an LTI system has the following definition:

Then the output of that LTI system will be

+00
g(t)= > Anh(t—nr)

n=—oo

ooooo
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LTI Systems and the Impulse Response

27 —7 0 T 2t 371 t

Therefore, f(t) and g(t) can be expressed as:

+o0
f(t) = Z f(nT)d(t — nT)

and
—+00
g(t) = g f(nT)h(t — nT).
— 0
imperl Coleg
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LTI Systems and the Impulse Response

27 —7 0 T 21 37

~+

As 7 — 0, the summations become integrations,
and we thus obtain:

+o0
f(t) = / f(7)o(t — 7)dT (nT gets replaced by 7)

= f(t)*0(t) (by the sifting property of the 4-“function”)

and, similarly:

g(t) = /+OO F(r)A(t — 7)dr = F(£) * h(t)

oooooo
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LTI Systems and the Impulse Response

Output of an LTI system in terms of its impulse response

For any LTI system, the output g(t) can always be expressed as the
convolution of the input f(t) with the impulse response of this LTI system

h(t):

g(t) = f(t) * h(t) = h(t) = £(t) (1)J
() —— e e (1) = f(t) % (1)
(input) (output)
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Transfer Function: the Fourier Transform of the Impulse
Response

We can also look at the expression (1) in the frequency domain by taking
the Fourier transform of both sides:

FTig(t)} =  FT{f(t)*h(t)}
= FT{f(t)}FT{h(t)}

which implies:

Output of an LTI system in terms of its transfer function

G(w) = Fjw)H(w) = H(w)F(jw) (2)
where H(jw) = FT{h(t)} is the transfer function of the LTI system.

v

ooooo

Prof Guy-Bart Stan (Dept. of Bioeng.)

27th November 2019 18 /37



Summary

The impulse response or the transfer function of a Linear Time
Invariant (LTI) system each completely characterise the input-output

properties of that system.

Given the input to an LTI system, the output can be determined:

@ In the time domain: as the convolution of the impulse response

and the input.

@ In the frequency domain: as the multiplication of the transfer
function and the Fourier transform of the input.

They are related as follows: The transfer function is the Fourier transform

of the impulse response.
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Summary

Fourier transform
pair

Time Domain \f(t)
I

Frequency Domain  F'(jw)
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Impulse response

"D o(t) = (2) = A1)
I |} = ht)+ )
H(j) Gljw)= F(je) H(jo)

= H(jw)F(jv)

Transfer function
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Examples of the use of Impulse Responses in industry

@ Search for task-specific functional regions within the brain using fMRI
scans

@ 3D Audio Virtual Reality Systems (Matlab Demo)
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Response of LTI systems to sinusoidal inputs

If a pure sinusoid is input into an (asymptotically stable) LTI system, then
the output will also settle down, eventually, to a pure sinusoid. This
steady-state output will have the same frequency as the input but will
have a different magnitude and phase. The dependence of the magnitude
and phase on the frequency of the input is called the frequency response of

the system.

t — (Asymptotically stable) t
f( ) w LTI System g( )

1-\ /W\ h(t) H(jw)w[;\___/_\__—lsz—
\/\/‘(>fj(rjw)_>‘\/\/t

f(t) = sin(wt) 9(t) = |H(jw)|sin (wt + ZH (jw))
+ starting transient
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Bode magnitude and phase diagrams

The frequency response can be captured through Bode diagrams, which
consist in two separate graphs:
@ one of 201logyg |H(jw)| (in decibels, dB, i.e. 20log;q axis) vs w (in
rad/s, logyq axis), i.e. the Bode magnitude diagram.!
@ one of ZH(jw) (in degrees or radians, linear axis) vs w (in rad/s,
logq, axis), i.e. the Bode phase diagram.
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6 LTI Filter Design in the Frequency Domain
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LTI Filter Design in the Frequency Domain

Linear filtering represents a large application class for LTI systems. In what
follows, we will emphasise the duality between time-domain and
frequency-domain representations of signals (Bode diagrams) and their use
for the design and realisation of basic LTI filters. We will, in particular,
focus on:
@ Broad-spectrum signals: Pseudo-random noise (e.g. Maximum
Length Sequences) vs Sweep signals (e.g. Sine Sweeps) vs impulse.
@ Low-Pass, High-Pass, Band-Pass, and Band-Stop Filters and
(examples of) their corresponding transfer functions.
@ Butterworth Filter: the general form of the Butterworth filter can be
used as one way of specifying a transfer function and therefore an
impulse response.
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Impulse Bode Diagrams

Exercise

What do you think the Bode magnitude and phase diagrams for an
impulse signal (0- “function”) would look like? Hint: Consider the Fourier
transform of the - “function”. What does that tell you about the Bode
magnitude and phase of a d- “function”?
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Pseudo-random noise signals

A Maximum Length Sequence (MLS) signal of any desired length can
be easily generated to approximate a white noise signal:

amplitude
=}

Wi

200 400 600 800
time (ms)

(=]
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MLS Bode Diagrams

1000
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The Bode magnitude and phase diagrams of an MLS signal look like this:

Magnitude
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Sine Sweep or Chirp Signals

A Sine Sweep (or Chirp) signal is another example of a broad-spectrum
signal:

Amplitude

Time, sec.

Exercise

What do you think the Bode magnitude and phase diagrams for a linear
sine sweep would look like?
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Sine Sweep or Chirp Bode Diagrams

The Bode magnitude and phase diagrams of a linear sine sweep signal look
like this:

Magnitude
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Bode Magnitude Diagrams for Basic Filters

There are five major types of LTI filters. Hereafter, we provide a
characterisation of the first 4 in terms of their Bode magnitude diagrams.
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All pass filter

Examples of Transfer Functions for Basic Filters

1

@ First Order Low-Pass Filter Transfer Function: Kﬁ where we = =

is the cutoff angular frequency of the Low-Pass filter.
Tjw

@ First Order High-Pass Filter Transfer Function: K1+Tjw where
We = % is the cutoff angular frequency of the High-Pass filter.

@ Band-Pass = cascade of High-Pass and Low-Pass filters where the
cutoff angular frequency of the High-Pass is smaller than the cutoff
angular frequency of the Low-Pass.

@ Band-Stop = parallel combination of Low-Pass and High-Pass filters

where the cutoff angular frequency of the Low-Pass is smaller than
the cutoff angular frequency of the High-Pass.

Exercise

Plot the Bode diagrams of the above three filters (low-pass, high-pass, and
band-pass) for values of the parameters (K and cutoff angular frequencies)
that you chose yourself.

JJe
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Sketching Bode diagrams

Basic idea: Consider a transfer function written as a ratio of factorised

polynomials, e.g.
a1(jw)az(jw)
by (jw)b2(jw)

H{jw) =

Clearly:

logyg |[H(jw)| = logyg |a1(jw)|+logyg |a2(jw)|—log1g | b1(jw)| —logyq |b2(jw)],

so we can compute the Bode magnitude curve by simply adding and
subtracting magnitudes corresponding to terms in the numerator and
denominator. Similarly:

LH(jw) = La1(jw) + Laz(jw) — £Lb1(jw) — £Lbo(jw)

and so the Bode phase curve can be determined in an analogous fashion.
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The Butterworth filter: Bode magnitude specification

Consider the following Butterworth filter Bode magnitude specification:
1

T 1t (wfwe)™

where N determines the order of the filter and w. determines the cutoff

angular frequency.

[H(jw)[? (3)

—20F

—100
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The Butterworth filter: Bode magnitude specification

Let us consider the case of a Butterworth filter of order N = 1 with a
cutoff angular frequency w. =1 rad/s, so that

1
1+ w?

|H(jw)[* =

Because this is only a specification on the Bode magnitude of the filter,
one still has to decide on what the Bode phase specification will be.

Remark

There are some standard options for specifying the phase, which depend
on how the filter will be implemented (e.g. analogue implementation or
digital implementation). For the time being, we will just look at a
“standard” analogue filter implementation. This imposes the analytical
expression of the (continuous-time) transfer function and thereby the Bode
phase plot. For an analogue implementation of this Butterworth filter, we

will here consider the transfer function: H(jw) = ﬁ
v 2
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Butterworth filter: Bode magnitude and phase plots

An example of the magnitude and Bode phase plots for an analogue
Butterworth filter of order N = 1 with cutoff freqency w. = 1 rad/s is
provided hereafter. As you can see the Bode diagrams are exactly those
that we considered for first order low-pass filters.
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The Butterworth Filter: Passive Filter Electronic
Implementation

One example of a passive circuit implementation for a third-order
Butterworth filter, with N =3 and w. =1 rad/s:

1
H(jw)|* = ——
might look like this:
2/3 H V2 H
O NV NV O
Vin —— 4/3F Vout 1Q

O
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