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a b s t r a c t

This paper considers the problem of automatic fault diagnosis for transmission lines in large scale
power networks. Since faults in transmission lines threatens stability of the entire power network, fast
and reliable fault diagnosis is an important problem in transmission line protection. This work is the
first paper exploiting sparse signal recovery for the fault-diagnosis problem in power networks with
nonlinear swing-type dynamics. It presents a novel and scalable technique to detect, isolate and identify
transmission faults using a relatively small number of observations by exploiting the sparse nature of the
faults. Buses in power networks are typically described by second-order nonlinear swing equations. Based
on this description, the problem of fault diagnosis for transmission lines is formulated as a compressive
sensing or sparse signal recovery problem, which is then solved using a sparse Bayesian formulation. An
iterative reweighted `1-minimisation algorithm based on the sparse Bayesian learning update is then
derived to solve the fault diagnosis problem efficiently. With the proposed framework, a real-time fault
monitoring scheme can be built using only measurements of phase angles at the buses.

© 2015 Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Power networks are large-scale spatially distributed systems.
Being critical infrastructures, they possess strict safety and relia-
bility constraints. The design of monitoring schemes to diagnose
anomalies caused by unpredicted or sudden faults on power net-
works is thus of great importance (Shahidehpour, Tinney, & Fu,
2005). To be consistent with the international definition of the
fault diagnosis problem, the recommendations of the IFAC Techni-
cal Committee SAFEPROCESS is accordingly employed in what fol-
lows. Namely, this work proposes a method to: (1) decide whether
there is an occurrence of a fault and the time of this occurrence (i.e.
detection), (2) establish the location of the detected fault (i.e. isola-
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tion), and (3) determine the size and time-varying behaviour of the
detected fault (i.e. identification).

Since power networks are typically large-scale and have non-
linear dynamics, fault diagnosis over transmission lines can be a
very challenging problem. This paper draws inspiration from the
fields of signal processing and machine learning to combine com-
pressive sensing and variational Bayesian inference techniques so
as to offer an efficient method for fault diagnosis.

Most of the literature available on fault diagnosis focuses on
systems approximated by linear dynamics (Ding, 2008), with ap-
plications in networked system (Dong, Wang, & Gao, 2012), mod-
ern complex processes (Yin, Ding, Haghani, Hao, & Zhang, 2012),
etc. Beyond linear systems descriptions, the dynamics of buses in
power networks can be described by the so-called swing equations
where the active power flows are nonlinear functions of the phase
angles. Works that have considered fault detection and isolation
in power networks include (Mohajerin Esfahani, Vrakopoulou, An-
dersson, & Lygeros, 2012; Shames, Teixeira, Sandberg, & Johans-
son, 2011; Zhang, Zhang, Polycarpou, & Parisini, 2014). Shames
et al. (2011) focuses on distributed fault detection and isolation
using linearised swing dynamics and the faults are considered
to be additive. The method developed in Zhang et al. (2014) is
used to detect sensor faults assuming that such faults appear as
biased faults added to the measurement equation. In Mohajerin
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Esfahani et al. (2012), a fault detection and isolation residual gen-
erator is presented for nonlinear systems with additive faults. The
nonlinearities in Mohajerin Esfahani et al. (2012) are not imposed
a priori on the model structure but treated as disturbances with
some known patterns.

To summarise, theworks (Ding, 2008; Dong et al., 2012; Shames
et al., 2011; Yin et al., 2012) use linear systems to characterise
the dynamics of power networks and the faults are assumed to be
additive. Though the system dynamics are nonlinear in Mohajerin
Esfahani et al. (2012) and Zhang et al. (2014), the faults are still as-
sumed to be additive. Themethods developed on the basis of these
conservative assumptions yield several problems. Firstly, the lin-
ear approximation to nonlinear swing equations can only be used
when the phase angles are close to each other. However, when
the system is strained and faults appear, phase angles can often
be far apart. Therefore, a linear approximation is inappropriate in
strained power network situations. Secondly, it is well-known that
a large portion of power system faults occurring in transmission
lines do not involve additive faults, e.g. a short-circuit fault occur-
ring on the transmission lines between generators would corre-
spond to some changes in the parameters of the nonlinear terms
appearing in the swing equation (Kundur, Balu, & Lauby, 1994).
Furthermore, the inevitable and frequent introduction of newcom-
ponents in a power network contributes to the vulnerability of
transmission lines, which, if not appropriately controlled, can lead
to cascading failures (Hines, Balasubramaniam, & Sanchez, 2009;
Jiang, Yang, Lin, Liu, &Ma, 2000). Such cascading failures cannot be
captured by additive faults. Finally, the methods mentioned above
only address fault detection and isolation rather than identifica-
tion, which is crucial to take appropriate actions when faults occur
on transmission lines.
Contributions. The power networks considered in this paper are
described by the nonlinear swing equations with additive process
noise. The faults are assumed to occur on the transmission lines of
the power network. The problem of fault diagnosis, i.e. detection,
isolation and identification, of such nonlinear power networks is
formulated as a compressive sensing or sparse signal recovery
problem. To solve this problem we consider a sparse Bayesian for-
mulation of the fault identification problem, which is then casted
as a nonconvex optimisation problem. Finally, the problem is
relaxed into a convex problem and solved efficiently using an it-
erative reweighted `1-minimisation algorithm. The resulting ef-
ficiency of the proposed method enables real-time detection of
faults in large-scale networks.
Outline. The outline of the paper is as follows. Section 2 introduces
the nonlinear model of power networks considered in this paper.
Section 3 formulates the fault diagnosis problem as a compressive
sensing or sparse signal recovery problem. Section 4 shows how
the resulting nonconvex optimisation problem can be relaxed into
a convex optimisation problem and solved efficiently using an
iterative reweighted `1-minimisation algorithm. Section 5 applies
themethod to a power networkwith 20 buses and 80 transmission
lines and, finally, Section 6 concludes and discusses several future
problems.
Notation. The notation in this paper is standard. Bold symbols are
used to denote vectors andmatrices. For amatrix A 2 RM⇥N ,Ai,j 2
R denotes the element in the ith row and jth column, Ai,: 2 R1⇥N
denotes its ith row, A:,j 2 RM⇥1 denotes its jth column. For a col-
umn vector ↵ 2 RN⇥1, ↵i denotes its ith element. In particular, Il
denotes the identity matrix of size l⇥ l. We simply use Iwhen the
dimension is obvious from context. kwk1 and kwk2 denote the `1
and `2 norms of the vector w, respectively. kwk0 denotes the `0
‘‘norm’’ of the vector w, which counts the number of nonzero ele-
ments in the vectorw. diag [�1, . . . , �N ] denotes a diagonal matrix
with principal diagonal elements being �1, . . . , �N . E(↵) stands for
the expectation of stochastic variable ↵.

2. Model formulation

Power systems are examples of complex systems in which
generators and loads are dynamically interconnected. Hence, they
can be seen as networked systems, where each bus is a node in
the network. We assume that all the buses in the network are
connected to synchronous machines (motors or generators). The
nonlinear model for the active power flow in a transmission line
connected between bus i and bus j is given as follows. For i =
1, . . . , n, the behaviour of bus/node i can be represented by the
swing equation (Kundur et al., 1994; Shames et al., 2011; Zhang
et al., 2014)

mi�̈i(t) + di�̇i(t)� Pmi(t) = �
X

j2Ni

Pij(t), (1)

where �i is the phase angle of bus i,mi and di are the inertia and
damping coefficients of the motors and generators, respectively,
Pmi is themechanical input power, Pij is the active power flow from
bus i to j, and Ni is the neighbourhood set of bus i where bus j and
i share a transmission line or communication link.

Considering that there are no power losses nor ground admit-
tances, and letting Vi = |Vi|ej̃�i be the complex voltage of bus i
where j̃ represents the imaginary unit, the active power flow be-
tween bus i and bus j, Pij, is given by:

Pij(t) = w
(1)
ij cos(�i(t)� �j(t)) + w

(2)
ij sin(�i(t)� �j(t)), (2)

wherew
(1)
ij = |Vi| |Vj|Gij andGij is the branch conductance between

bus i and bus j; and w
(2)
ij = |Vi| |Vj|Bij and Bij is the branch suscep-

tance between bus i and bus j.
If we let ⇠i(t) = �i(t) and ⇣i(t) = �̇i(t), each bus can be assumed

to have double integrator dynamics. The dynamics of bus i can thus
be written:

⇠̇i(t) = ⇣i(t), (3)

⇣̇i(t) = ui(t) + vi(t), (4)

where ⇠i, ⇣i are scalar states, vi(t) is a known scalar external input,
and ui is the power flow

vi(t) = Pmi(t)
mi

(5)

ui(t) = � di
mi

⇣i(t)� 1
mi

X

j2Ni

[w(1)
ij cos(⇠i(t)� ⇠j(t))

+ w
(2)
ij sin(⇠i(t)� ⇠j(t))]. (6)

The variables ⇠i and ⇣i can be interpreted as phase and frequency
in the context of power networks.

In Shames et al. (2011), the cos(·) terms are neglected (no
branch conductance between buses) and it is assumed that phase
angles are close to each other. The dynamics in (1) are then
linearised to yield

mi�̈i(t) + di�̇i(t)� Pmi(t) = �
X

j2Ni

w
(2)
ij (�i(t)� �j(t)). (7)

Each bus i is assumed to have double integrator dynamics as
described in (3) and (4). ui(t) in (6) becomes a linear equation

ui(t) = � di
mi

⇠i(t)� 1
mi

X

j2Ni

w
(2)
ij (⇠i(t)� ⇠j(t)). (8)

For the linearised system (8), a bus k is faulty if for some functions
f⇠k(t) and f⇣k(t) not identical to zero either ⇠̇i(t) = ⇣i(t) + f⇠k(t),
or ⇣̇i(t) = ui(t) + vi(t) + f⇣k(t). The functions f⇠k(t) and f⇣k(t) are
referred to as fault signals. Model-based or observer-based fault
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diagnosis methods are available for power networks (see Shames
et al., 2011 and reference therein). However, specific aspects need
careful consideration when dealing with fault diagnosis in power
networks. Firstly, the simplified linear model can only be used
when the phase angles are close to each other. However, when the
system is strained and faults appear, phase angles can often be far
apart.

In transmission systems the sin(·) term in (2) is the dominating
one. To perform a linearisation, one often assumes ‘‘small angle
differences’’ between nodes and hence ‘‘small’’ power flows. This
typically works well under normal operation. However, if the
power system is under a lot of strain, i.e. if power flows are closer
to the theoretical maximum, the angle difference becomes close to
90 degrees and the nonlinearity of the sin(·) term becomes quite
noticeable. In particular, if, in a transient state, the angle difference
exceeds 90°, generators typically loose synchrony and trip. This is
not captured by linear models. In such circumstances, the linear
model cannot be used to approximate the nonlinear model in (1)
anymore. Secondly, power networks are highly distributed and
interconnected, and more than one transmission line can be faulty
at a given time. Thirdly, to be more realistic, some process noise "i
should be incorporated into the second-order system (1) for each
bus i:

mi�̈i(t) + di�̇i(t)� Pmi(t) = �
nX

j=1

Pij(t) + "i(t). (9)

Based on the swing equation above, the state space model (3) and
(4) can then be rewritten under the form:

⇠̇i(t) = ⇣i(t), (10)

⇣̇i(t) = ui(t) + vi(t) + "i(t), (11)
where the noise "i(t) is assumed to be i.i.d. Gaussian with
E("i(p)) = 0, E("i(p)"i(q)) = ✏2

i �(p� q).

Remark 1. Here we only consider a dynamical systemmodel with
process noise "i since, in power networks, the measurement noise
is small and would typically not have a catastrophic effect on
the performance of detection algorithms (Tate & Overbye, 2008).
However, we are also currently investigating the case where
measurement noise is not neglected. This generalisation is beyond
the scope of this paper and will potentially be the subject of a later
paper.

3. Problem formulation

Given the model and explanation above, we primarily focus on
the following setting in this paper.

Definition 1. If a power network can be described by (10) and (11),
the transmission line between bus i and bus j is f

¯
aulty when w

(1)
ij

changes to a new scalar w
[f](1)
ij and/or w

(2)
ij changes to a new scalar

w
[f](2)
ij , where w

(1)
ij and w

(2)
ij are the weights for the cos and sin

terms defined in (6).
Based on the considerations above and Definition 1, the problem
that we are interested in solving is the following:

Problem 1. Having access to the measurements and the distribu-
tion of the noise, how canwe detect the occurrence andmagnitude
of a fault, namely, how can we estimate the magnitude of the er-
rorsw

(1)
ij �w

[f](1)
ij andw

(2)
ij �w

[f](2)
ij ,8i, j, using the smallest possible

number of samples.
In what follows we make the following assumption.

Assumption 1. The power networks described by (10) and (11)
are fully measurable, i.e. the phase angles of all the buses can be
measured.

3.1. Model transformation

Applying the forward Euler discretisation scheme to (10) and
(11) and assuming the discretisation step tk+1 � tk = 1t is
constant for all k, we obtain the following discrete-time system
approximation to the continuous-time system (10) and (11):

⇠i(tk+1)� ⇠i(tk)
1t

= ⇣i(tk), (12)

⇣i(tk+1)� ⇣i(tk)
1t

= ui(t) + vi(t) + ⌘i(tk), (13)

where the noise ⌘i(tk) is assumed to be i.i.d. Gaussian distributed:
⌘i(tk) s N (0, � 2

i ), with E(⌘i(tp)) = 0, E(⌘i(tp)⌘i(tq)) = � 2
i �(tp �

tq).
Defining the new variable

ei(tk+1) , � (⇣i(tk+1)� ⇣i(tk))
1t

� di⇣i(tk)
mi

+ Pmi(tk)
mi

, (14)

we have

ei(tk+1) = 1
mi

X

j2Ni

[w(1)
ij cos(⇠i(tk)� ⇠j(tk))

+ w
(2)
ij sin(⇠i(tk)� ⇠j(tk))] + ⌘i(tk), (15)

where ei, the power flow measurement, is treated as the output
of the system. Since the state variables ⇣ (tk+1) and ⇣ (tk), the
parameters1t, di andmi, and the input Pmi are known, the quantity
ei(tk+1) can be computed in real time. It should be noted that ‘‘real
time’’ is to be understood as ‘‘within the sampling time 1t of the
sensors in power generators’’.

By defining x(tk) = [⇠1(tk), . . . , ⇠N(tk)] we can write (14) into
a vector form:

ei(tk+1) = fi(x(tk))wtrue
i + ⌘i(tk), (16)

with

fi(x(tk)) = [f (1)
i (x(tk)), f (2)

i (x(tk))] 2 R2n,

f (1)
i (x(tk)) = [cos(⇠i(tk)� ⇠1(tk)), . . . , cos(⇠i(tk)� ⇠N(tk))] 2 Rn,

f (2)
i (x(tk)) = [sin(⇠i(tk)� ⇠1(tk)), . . . , sin(⇠i(tk)� ⇠N(tk))] 2 Rn,

wtrue
i = [w(1)

i ,w(2)
i ]T 2 R2n,

w(1)
i = [w(1)

i1 , . . . , w
(1)
iN ] 2 Rn,

w(2)
i = [w(2)

i1 , . . . , w
(2)
iN ] 2 Rn,

where fi(x(tk)) represents the transmission functions and wi
represents the corresponding transmission weights associated to
the topology of the network.

Remark 2. In real power systems, a sampling frequency for phasor
measurement unit (PMU) as high as 2500 samples per second can
be achieved (Phadke & Thorp, 2008). In this case, the sampling time
1t is 4 ⇤ 10�5 second and the Euler discretisation ⇠i(tk+1)�⇠i(tk)

1t will
typically provide a good approximation of ⇠̇i(t).

3.2. Fault diagnosis problem formulation

As stated in Definition 1, if there are no faults occurring in the
transmission lines between bus i and other buses, the dynamics of
the power networks will evolve according to (16). The e

¯
xpected

output for the next sampling time is defined to be

e[e]
i (tk+1) = fi(x(tk))wtrue

i . (17)

From (16) and (17), it is easy to show that ei(tk+1) � e[e]
i (tk+1)

is a stochastic variable with zero mean and variance � 2. If there
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are faults occurring in the transmission lines between bus i and
other buses, the corresponding transmission weights will change
from wtrue

i to wfault
i . Similar to the definition of wtrue

i ,wfault
i =

[w[f](1)
i ,w[f](2)

i ]T where w[f](1)
i = [w[f](1)

i1 , . . . , w
[f](1)
iN ] and w[f](2)

i =
[w[f](2)

i1 , . . . , w
[f](2)
iN ]. We thus have:

e[f]
i (tk+1) = fi(x(tk))wfault

i + ⌘i(tk), (18)

where e[f]
i is the output when there are f

¯
aults.

From (17) and (18), it is easy to find that e[f]
i (tk+1)�e[e]

i (tk+1) is a
stochastic variable with mean fi(x(tk))(wfault

i �wtrue
i ) and variance

� 2. Denoting

yi = e[f]
i � e[e]

i , wi = wfault
i �wtrue

i ,

we have:
yi(tk+1) = fi(x(tk))wi + ⌘i(tk). (19)

Remark 3. We formulate the faults identification problem as a
linear regression problem. The dependent variable e[f]

i (tk+1) �
e[e]
i (tk+1) is the difference between the expected output and the
faulty output; the unknown variable we want to estimate is the
difference between the faulty transmission weights and the true
transmission weights.

There are three problems of interest based on the formulation
in (19): (a) detection of a fault; (b) isolation of a fault, i.e.
determination of the type, location and time of occurrence of a
fault; and (c) identification of the size and time-varying behaviour
of a fault. In the noiseless case, when there are no faults, 8i, yi and
wi are both equal to zero. On the other hand, when there are faults,
certain yi are nonzero. So the faults can be detected by identifying
the entries yi that are nonzero. However, in the noisy case, even
when there are no faults, yi is nonzero most of the time since it
is a stochastic variable with zero mean. This can be interpreted
in a probabilistic way by Chebyshev’s Inequality: P (|ei(tk+1) �
e[e]
i (tk+1)| � l� )  1

l2 where l 2 R+. According to this inequality,
when there are no faults, the deviation between true and expected
outputs, i.e. |ei(tk+1)�e[e]

i (tk+1)| cannot bemuch greater than zero
with high probability. On the other hand, when there is a fault, the
deviation between faulty and expected outputs, i.e. |e[f]

i (tk+1) �
e[e]
i (tk+1)| should be much greater than zero with high probability.
From an isolation point of view and Chebyshev’s inequality,

when |e[f]
i (tk+1) � e[e]

i (tk+1)| is much greater than � , the fault
can be isolated with high probability (e.g. if the threshold is set to
l� = 10� , then the probability is 99%).

If at time t0 faults have been detected and isolated, the
remaining task is to perform fault identification, i.e. to identify the
location of the faults or equivalently to find the nonzero entries in
wi. Assuming thatM+1 successive data points, including the initial
data point at t0, are sampled and defining N = 2n and

yi , [yi(t1), . . . , yi(tM)]T 2 RM ,

Ai ,

2

64
f (1)
i (x(t0)) f (2)

i (x(t0))
...

...

f (1)
i (x(tM�1)) f (2)

i (x(tM�1))

3

75

=
2

64
fi(x(t0))

...
fi(x(tM�1))

3

75 2 RM⇥N ,

⌘i , [⌘i(t0), . . . , ⌘i(tM�1)]T 2 RM ,

(20)

we can write N independent equations of the form:
yi = Aiwi + ⌘i, (i = 1, . . . , n). (21)

Based on the formulation in (21), our goal is to find wi given the
output data stored in yi.

To solve for wi in (21) amounts to solving a linear regression
problem. This can be done using standard least square approaches.
It should be noted that the linear regression problem for bus i in
(21) is independent from the linear regression problems for the
other buses. In what follows, we will focus on finding the solution
to one of these linear regression problem and omit the subscripts i
in (21) for simplicity of notation. We thus write

y = Aw + ⌘, (22)

where y is the difference between the faulty measurements and
the expectedmeasurements, or namely, the errormeasurements;
and w is the difference between the faulty parameters and the
true parameters, or namely, the faults. We address this linear
regression problem under the following assumption.

Assumption 2. A maximum of S transmission lines are faulty, i.e.
w has at most S non-zero entries. In other words, w is S-sparse or
mathematically, kwk0  S. The constant S is assumed unknown to
the system administrator.

Remark 4. Assumption 2 is realistic for small values of S since
in the context of a power system, it is typically not the case that
all the transmission lines are faulty simultaneously. Furthermore,
since buses in power networks are typically sparsely connected
the number of faults is typically much smaller than the size of the
network n, i.e. S ⌧ n. Therefore S ⌧ N = 2n.

On the other-hand, the size of y equals to the number of samples
needed to identify the location of the faults after the they occur.
From a practical viewpoint, the number of samples should be as
small as possible. However, standard least square approaches to
(22) cannot meet this goal as they require at least 2N samples.
Moreover, the solution to the standard least square problem is
generically dense (hence, violating Assumption 2) and cannot be
used to identify which transmission lines are likely to be faulty by
identification of the nonzero entries of the estimatedwfault�wtrue.

3.3. Discussion on fault identification

Under the assumption that the system under consideration is
identifiable (N•mcová, 2010), we cannot get a sparser solution
than the true one, as this would contradict the identifiability
assumption, i.e. more than onemodel can equivalently explain the
data. In order to search for the sparsest solution w, we impose a
penalty on the `0 norm of w, kwk0, i.e. on the number of nonzero
elements inw. With the addition of this `0 norm penalty, the linear
regression problem (22) can be formulated into the following
regularised regression problem, which is also known as an
`0-minimisation problem (Candès & Tao, 2005; Donoho, 2006):

ŵ = argmin
w

{ky� Awk22 + ⇢ kwk0}. (23)

In (23), y is the vector observations, A is a known regressor
matrix, w is the vector of unknown coefficients and ⇢ is a tradeoff
parameter. Subsequently, one may wonder what the gap between
the solution to this `0-minimisation problem and the true solution
is.

To characterise this gap, we shall firstly introduce the following
definition.

Definition 2 (Definition 1 of Donoho & Elad, 2003). The spark of a
given matrix A, i.e., Spark(A), is the smallest number of columns of
A that are linearly dependent.
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Proposition 1 (Corollary 1 of Donoho & Elad, 2003). In the noiseless
case where ⌘ = 0 for any vector y 2 RM, there exists one unique
signalw, such that y = Awwith kwk0 = S if and only if Spark(A) >
2S.

Remark 5. It is easy to see that Spark(A) 2 [2,M + 1]. Therefore,
in order to get the unique S-sparse solution w to y = Aw,
Proposition 1 imposes thatM � 2S.

Corollary 1. If the number of samples M is greater or equal to 2 times
the number of nonzero elements S in the ‘‘true’’ value of w, then the
`0-minimisation solutionw to the equation y = Awwill be consistent
with the ‘‘true’’ value.

Proof. Since the sparsest solution can be obtained through
`0-minimisation in (23), this corollary is straightforward from
Proposition 1 and Remark 5.

Remark 6. This corollary bridges the gap between the ‘‘true’’
solution and that obtained by `0-minimisation provided the
assumptions of Corollary 1 hold. If these assumptions do not hold,
then prior knowledge, additional experiments and/or data points
might be required.

3.4. Drawbacks of `1 relaxation and further motivation for our
approach

Unfortunately, obtaining a solution through `0-minimisation is
both numerically unstable and NP-hard. Instead, `1 relaxation is
commonly used since the `1-norm is the tightest convex relaxation
to the `0-norm (Candes, Wakin, & Boyd, 2008). The `1 relaxation of
the optimisation problem in (23) is

ŵ = argmin
w

{ky� Awk22 + ⇢ kwk1}. (24)

A sufficient condition for exact reconstruction based on `1-
minimisation is the so called restricted isometry property (RIP) (Can-
dès & Tao, 2005). It was shown in Candès and Tao (2005), Candès,
Romberg, and Tao (2006) and Dai and Milenkovic (2009) that both
convex `1-minimisations and greedy algorithms lead to exact re-
construction of S-sparse signals if the matrix A satisfies the RIP
condition. One major drawback of the RIP condition is that it can
be very difficult to check (combinatorial search). Another related
and easier-to-check property is the coherence property. The coher-
ence of a matrix A is defined as µ(A) = maxj<k

|hA:,j,A:,ki|
kA:,jk2kA:,kk2 . It was

shown that RIP guarantees incoherence of A, i.e. µ(A) ⇡ 0, Candès
and Tao (2005). Thismeans one is guaranteed that `1-minimisation
solutions are equivalent to the true solution only when A is near
orthogonal, i.e. when the columns of A are strongly uncorrelated.
However, in power networks, correlation between the columns of
A is typically high (close to 1). A different approach thus needs to
be considered. We propose hereafter a method intended to solve
compressive sensing problems in situations where `1 relaxations
usually do not work (see Pan, Yuan, Gonçalves, & Stan, 2015 for de-
tails). Our approach uses a Bayesian formulation to solve (22) (see
Tipping, 2001 for details).

4. Bayesian viewpoint on fault diagnosis problem

Bayesian modelling treats all unknowns as stochastic variables
with certain probability distributions (Bishop, 2006). For y = Aw+
⌘. The likelihood of the error measurements y given the faultsw is

P (y|w) = N (y|Aw, � 2I) / exp

� 1

2� 2 ky� Awk2
�

. (25)

Given the likelihood function in (25) and specifying a prior on the
faults which is P (w) = QN

j=1 P (wj), where wj is the jth element
of the faults vector w, i.e. wj 2 w. We compute the posterior
distribution overw via Bayes’ rule:

P (w|y) = P (y|w)P (w)R
P (y|w)P (w)dw

.

We further define a prior distribution P (w) as

P (w) / exp

�1

2
g(w)

�
= exp

"

�1
2

NX

j=1

g(wj)

#

, (26)

where g(wj) is an arbitrary function of wj. We then formulate a
maximum a posteriori (MAP) estimate on the faults:

wMAP = argmax
w

P (w|y)

= argmin
w

{ky� Awk22 + � 2g(w)}, (27)

where g(w) is defined as a penalty function. From a Bayesian
viewpoint,MAP estimation is equivalent to a penalised least square
(PLS) problem.

In the following sections, we derive a sparse Bayesian formula-
tion of the fault diagnosis problem which is casted into a noncon-
vex optimisation problem. We relax the nonconvex optimisation
problem and develop an iterative reweighted `1-minimisation al-
gorithm to solve the resulting problem.

4.1. Super Gaussian prior distribution

In practice, the penalty function over the faults g(w) is usually
chosen as a concave, non-decreasing function of the faults |w| that
can enforce sparsity constraints over the faults. Since the posterior
of the faults given the error measurements P (w|y) is highly cou-
pled and non-Gaussian, computing the posterior mean E(w|y) for
the faults is generally intractable. To alleviate this problem, ideally
one would like to approximate P (w|y) as a Gaussian distribution
from which analytical results can be obtained and efficient algo-
rithms exist (Bishop, 2006). To this end, we may consider super-
Gaussian priors, which yield a lower bound for the priors P (wj).
More specifically, if we define � , [�1, . . . , �N ]T 2 RN+, we can
represent the prior in the following relaxed (variational) form:

P (w) =
NY

j=1

P (wj), P (wj) = max
�j>0

N (wj|0, �j)'(�j), (28)

where '(�j) is a nonnegative function which is treated as a hyper-
priorwith�j being its associatedhyperparameters. Throughout,we
call '(�j) the ‘‘potential function’’. This Gaussian relaxation is pos-
sible if and only if logP (

p
wj) is concave on (0,1). The following

theorem provides a justification for the above:

Theorem 1 (Palmer, Wipf, Kreutz-Delgado, & Rao, 2006). A
probability density P (wj) ⌘ exp(�g(w2

j )) can be represented in
the convex variational form: P (wj) = max�j>0 N (wj|0, �j)'(�j) if
and only if � logP (

p
wj) = g(wj) is concave on (0,1). In this

case the potential function takes the following expression: '(�j) =p
2⇡/�j exp

�
g⇤
�
�j/2

��
where g⇤(·) is the concave conjugate of g(·).

A symmetric probability density P (wj) is said to be super-Gaussian if
P (
p

wj) is log-convex on (0,1).

Remark 7. For the Laplace prior P (wj) / exp(��
P

j |wj|), one
can have a Laplace potential function '(�j) = exp

��1/2|�j|
�

p
2⇡ |�j|. For the Student’s t prior P (wj) / (b + w2

j /2)
�(a+ 1

2 ), one
can have a Student’s t potential function '(� ) = 1, when a, b! 0.
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For a fixed � = [�1, . . . , �N ], we define a relaxed prior which is
a joint probability distribution overw and �

P (w; �) =
NY

j=1

N (wj|0, �j)'(�j)

= P (w|�)P (�)  P (w), (29)

where P (w|�) ,
QN

j=1 N (wj|0, �j), P (�) ,
QN

j=1 '(�j).
Now the key question is how to choose the most appropriate

� = �̂ = ⇥
�̂1, . . . , �̂N

⇤
to maximise

QN
j=1 N (wj|0, �j)'(�j) such

that P (w|y, �̂) can be a ‘‘good’’ relaxation to P (w|y). Using the
product rule for probabilities, we can write the full posterior

P (w, �|y) / P (w|y, �)P (�|y)
= N (mw, 6w)⇥ P (y|�)P (�)

P (y)
. (30)

Since P (y) is independent of � , the quantity

P (y|�)P (�) =
Z

P (y|w)P (w|�)P (�)dw

is the prime target for variational methods (Wainwright & Jordan,
2008). This quantity is known as evidence or marginal likelihood.
A good way of selecting �̂ is to choose it as the minimiser of the
sum of the misaligned probability mass, e.g.

�̂ = argmin
��0

Z
P (y|w) |P (w)� P (w; �)| dw

= argmax
��0

Z
P (y|w)

NY

j=1

N (wj|0, �j)'(�j)dw. (31)

The second equality is a consequence of P (w; �)  P (w) (see
(29)). The procedure in (31) is referred to as evidencemaximisation
or type-II maximum likelihood (Tipping, 2001). It means that
the marginal likelihood can be maximised by selecting the most
probable hyperparameters able to explain the observed data.

Remark 8. By using a Laplace prior (see Remark 7) and the MAP
formulation in (27), one can easily obtain the `1 minimiser in (24),
which is a PLS estimate. Therefore, it might be tempting to as-
sume that the Bayesian framework is simply a probabilistic re-
interpretation of classicalmethods sincewe have just seen that the
MAP and PLS estimates are equivalent in the formulation of (27).
However, this is not the case. It is sometimes overlooked that the
distinguishing element of Bayesian methods is really marginalisa-
tion, where instead of seeking to ‘‘estimate’’ all ‘‘nuisance’’ vari-
ables in our models, we attempt to integrate them out (Tipping,
2004). In the Bayesian framework,marginal likelihoods have a nat-
ural built-in penalty for more complex models. At a certain point,
themarginal likelihoodwill begin to decreasewith increasing com-
plexity, and hence, does not intrinsically suffer from the overfit-
ting problems that occur when considering only likelihoods. An
intuitive explanation about why the marginal likelihood will be-
gin to decrease with increasing complexity is that, as the complex-
ity of the model increases, the prior will be spread out more thinly
across both the ‘‘good’’ models and the ‘‘bad’’ models. Because the
marginal likelihood is the likelihood integrated with respect to the
prior, spreading the prior across too many models will place too
little prior mass on the ‘‘good’’ models, and as a result, cause the
marginal likelihood to decrease.

4.2. Convex relaxation and optimisation for (33)

We shall now propose an algorithm to compute �̂ in (31). From
this computed �̂ we can obtain an estimation of the posterior
mean ŵ.

Theorem 2 (Pan et al., 2015). The optimal hyperparameters �̂ in
(31) can be achieved by

�̂ = argmin
�

L (�) , (32)

where

L (�) = log
��� 2I + A�A>

��

+ y>(� 2I + A�A>)�1y +
NX

j=1

p(�j), (33)

where p(�j) = �2 log'(�j) and � = diag{�}. The cost function
L (�) is a nonconvex function with respect to � .

Before presenting the main results of this section, we introduce
an important duality lemma (see Section 4.2 in Jordan, Ghahra-
mani, Jaakkola, & Saul, 1999) which is deeply rooted in convex
analysis (Rockafellar, 1996). This duality lemma will be useful for
the development of the convex optimisation algorithm in this and
the next sections.

Lemma 1. It is a general fact of convex analysis that a concave func-
tion f (x) : RN ! R can be represented via a conjugate or
dual function as follows f (x) = minx⇤ [hx⇤, xi � f ⇤(x⇤)], where the
conjugate function f ⇤ can be obtained from the following dual expres-
sion: f ⇤(x⇤) = minx [hx⇤, xi � f (x)].

We can express a nonconvex function h(�) as h(�) =
min�⇤�0 h�⇤, �i � h⇤(�⇤), where h⇤(�⇤) is defined as the concave
conjugate of h(�) and is given by h⇤(�⇤) = min��0 h�⇤, �i� h(�).

Let h(�) = log
��� 2I + A�A>

�� + PN
j=1 p(�j), and assume that

p(�j) is concave with respect to �j.2 Using Lemma 1, we can create
a strict upper bounding auxiliary function L(�, �⇤,w) of L(�) in
(31),

L(�, �⇤,w) ,
⌦
�⇤, �

↵� h⇤(�⇤) + y>
�
� 2I + A�A>

��1 y

= 1
� 2 ky� Awk22 +

NX

j=1

 
w2

j

�j
+ � ⇤j �j

!

� h⇤(�⇤). (34)

For a fixed �⇤, we notice that L(�, �⇤,w) is jointly convex in
w and � and can be globally minimised by solving over � and then
w. Since w2

j /�j + � ⇤j �j � 2wj

q
�⇤j , for any w, �j = |wj|/

q
� ⇤j

minimises L(�, �⇤,w).
The next step is to find a ŵ that minimises L(�, �⇤,w). When

�j = |wj|/
q

� ⇤j is substituted into L(�, �⇤,w), ŵ can be obtained
by solving the following weighted convex `1-minimisation prob-
lem

ŵ = argmin
w

(
ky� Awk22 + 2� 2

NX

j=1

rj|wj|
)

= argmin
w

(
ky� Awk22 + 2� 2

NX

j=1

q
�⇤j |wj|

)

, (35)

where
q

�⇤j are the weights.

2 This is not a strong assumption since all distributions in Remark 7 satisfy it.
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We can then set

�j = |ŵj|q
� ⇤j

, 8j, (36)

and, as a consequence,L(�, �⇤,w)will beminimised for any fixed
�⇤.

Now, consider again L(�, �⇤,w) in (34). For any fixed � andw,
the tightest bound can be obtained by minimising over �⇤. From
the definition of �⇤, the tightest value of �⇤ = �̂⇤ equals the
slope at the current � of the function h(�) , log |� 2I + A�A>| +P

j p(�j). Using basic principles in convex analysis, we then obtain
the following analytic form for the optimiser �⇤:

�̂⇤ = r�

 

log |� 2I + A�A>| +
X

j

p(�j)

!

= diag
h
A>
�
� 2I + A�A>

��1 A
i

+ p0(�), (37)

where p0(�) = ⇥
p0(�1), . . . , p0(�N)

⇤T.
The algorithm is then based on successive iterations of (35)–

(37) until convergence to �̂ . We then compute the posterior mean
and covariance for the faults as follows:

ŵ = E(w|y; �̂) = �̂AT(� 2I + A�̂A>)�1y,

6ŵ = �̂ � �̂AT(� 2I + A�̂A>)�1A,
(38)

where �̂ = diag[�̂]. The above described procedure is summarised
in Algorithm 1.

Algorithm 1 Reweighted `1-minimisation on hyperparameter �

Data: Successive observations of y from t0 to tM .
Result: Posterior mean forw.
Step 1 Set iteration count k to zero and initialise each r (0)

j =
q

� ⇤j ,
with randomly chosen initial values for � ⇤j , 8j, e.g. with
� ⇤j = 1, 8j.
Step 2 At the kth iteration, solve the reweighted `1-minimisation
problem

ŵ(k) = argmin
w

{ky� Awk22 + 2� 2
X

j

r (k)
j |wj|}, 8j.

Step 3 Compute �
(k)
j = |ŵ(k)

j |
q

�
⇤(k)
j

,8j.

Step 4 Update �̂⇤(k+1)
using (37)

�̂⇤(k+1) = diag
h
A>
�
� 2I + A� (k)A>

��1 A
i

+ p0(� (k)).

Step 5 Update weights r (k+1)
j for the `1-minimisation at the next

iteration r (k+1)
j =

q
�̂⇤j

(k+1)
.

Step 6 k! k+1 and iterate Steps 2 to 5 until convergence to some
�̂ .
Step 7 Compute ŵ = �̂ AT(� 2I + A�̂ A>)�1y.

It is natural to question the convergence properties of this
iterative reweighted `1-minimisation procedure. Let A(·) denote
a mapping that assigns to every point in RN+ the subset of RN+
which satisfies Steps 3 and 4 in Algorithm 1. Then the convergence
property can be established as follows:

Lemma 2 (Pan et al., 2015). Given the initial point a(0) 2 RN+
consider the sequence {ak}1k=0 obtained by the iterations defined in

Steps 3 and 4 of Algorithm 1, i.e. the sequence {ak}1k=0 which satisfies
ak+1 2 A(ak). This sequence is guaranteed to converge to a local
minimum (or saddle point) of L� in (33).

Based on Algorithm 1, we can summarise the fault diagnosis
algorithm in Algorithm 2.

Algorithm 2 Diagnosis for faults
1: Set a threshold � ⇤ as indicated in Section 3.2, e.g. � ⇤ = 10⇥� ;
2: for k = 0, . . . , T do
3: % T is an integer indicating the number of diagnosis rounds;
4: Collect ⇠i(tk) and ⇣i(tk) in (12) and (13)
5: for i = 1, . . . ,N do
6: Calculate the output data ei(tk+1) in (14);
7: Calculate the expected output e[e]

i (tk+1) in (14);
8: if |ei(tk+1)� e[e]

i (tk+1)| > � ⇤ then
9: Fault is detected for bus i; % {fault detection proce-

dure}
10: Compute yi(tk+1) in (19);
11: if |yi(tk+1)| > � ⇤ then
12: Isolate bus i; % {fault isolation procedure}
13: end if
14: end if
15: Set M  k;
16: Apply Algorithm 1 to identify the faults ŵi; % {fault

identification procedure}
17: end for
18: if 8i, kŵik0 converge to some constant then
19: Break;
20: end if
21: end for
22: An estimate for the faults ŵ in (21), i = 1, . . . , n.

Remark 9. If a convex optimisation algorithm is used, no exact
zeros will appear in ŵ during the iterations and, strictly speaking,
we will typically get a solution with 0-Sparsity. However, some
of the estimated weights will be very small compared to other
weights, e.g. ±10�3 compared to 1, i.e. the ‘‘energy’’ of the
estimated weights will be several orders of magnitude lower than
the average ‘‘energy’’, e.g. kwjk22 ⌧ kwk22. Thus a threshold needs
to be defined a priori to prune the ‘‘small’’ weights at each iteration.
An important feature of Algorithm 1 is that it has a low algorithmic
complexity since its repeated execution scales as O(MNkw(k)k0)
(see Candès et al., 2008 and Wipf & Nagarajan, 2010). Since at
each iteration certain weights are estimated to be zero, certain
dictionary functions spanning the corresponding columns of A can
be pruned out for the next iteration.

5. Numerical study

The effectiveness of our theoretic developments is here illus-
trated for a randomly generated power network with 20 buses. If
all the buses are fully connected, the possible number of transmis-
sion lines is 380. We assume that the number of transmission lines
is 79 (i.e. we assume that the sparsity of the network is around
20%). Its dynamics can be described by the nonlinear swing equa-
tions described in (10) and (11). w

(1)
ij and w

(2)
ij are positive real

numbers as shown in Fig. 3(a). Let the noise variance � 2 = 1. All
the parameter values are selected to be similar to those in Kundur
et al. (1994) and Pavella, Ernst, and Ruiz-Vega (2000).

Since the sampling frequency is around 50 Hz for the PMU
(Kundur et al., 1994; Pavella et al., 2000), we assume the sampling
interval to be 20 ms. We thus assume that the discretisation step
in Section 3 is performed using a sampling interval 1t = 20 ms.
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Fig. 1. Time-series of yi for all buses. The black dashed lines indicate the threshold
� ⇤ in Algorithm 2. The coloured solid lines are the phase angle measurements for
bus i, i = 5, 7, 11, 16, 19. At time instant t = 3.02 s, |y5|, |y7|, |y11|, |y16| and |y19|
are much greater than � ⇤ (� ⇤ = 10 here). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Time-series of the sparsity of the estimated fault, i.e. kwfault
i � wtrue

i k0 for
bus i = 5, 7, 11, 16, 19.

Consider the power networks model in (10) and (11). At time
instant t = 3 s, there are faults occurring in five transmission
lines simultaneously. Specifically, a randomly chosen set of faults
can be described as follows: 8(i, j) 2 {(5, 18), (7, 2), (11, 15),
(16, 18), (19, 9)}, w(1)

ij and w
(2)
ij in (6) respectively (which corre-

spond to cos and sin terms) are set to zeros. 5 buses are involved
in these transmission lines, i.e. buses 5, 7, 11, 16 and 19. Following
the procedure in Algorithm 2, we want to detect and isolate these
5 buses. After detection and isolation, the identification procedure
will be performed. We consider � ⇤ = 10� = 10 to initialise Algo-
rithm 2.

First, we detect and isolate the buses with |yi(tk+1)| > � ⇤.
In Fig. 1, it can be seen that at time instant t = 3.02 s (only
one sampling time after the faults occur), |y5|, |y7|, |y11|, |y16| and
|y19| are much greater than � ⇤ (we set � ⇤ = 10 here). Therefore,
we can draw the conclusion that buses 5, 7, 11, 16 and 19 are
faulty and should be isolated. Next, we identify the faults that
occur in the transmission lines connecting the previously isolated
buses, i.e. buses 5, 7, 11, 16 and 19. In Fig. 2, the time trajectory
of the sparsity of the estimated fault kŵik0, i.e. kwfault

i � wtrue
i k0

(see Remark 3), for i = 5, 7, 11, 16, 19 are depicted starting at
the time point t = 3.02 s when the faults are detected. We set
the pruning threshold (mentioned in Remark 9) to 10�3 during

(a) True weight matrix.

(b) Absolute error weight matrix: |wfault
i �wtrue

i | (see Remark 3).

Fig. 3. Identification of transmission lines faults: (a) describes the true weight
matrix with around 20% nonzero entries. The left half of the matrix corresponds to
the weights for cos(·) terms while the right half is for sin(·) terms. (b) Represents
the absolute error weight matrix, which is defined as |wfault

i � wtrue
i |. The non-

zero terms in the heat map correspond directly to the faulty transmission lines:
(5, 18), (7, 2), (11, 15), (16, 18), (19, 9).

the identification procedure of the faults. We define a positive
integer n⇤ to indicate the number of identification rounds which
are required to terminate the identification procedure, e.g. n⇤ =
10. As shown in Fig. 2, at time instant t = 3.52 s, the sparsity of
the estimated fault, i.e. kwfault

i �wtrue
i k0 for bus i = 5, 7, 11, 16, 19

all become equal to 2 and remain unchanged afterwards. At time
instant t = 3.72 s, only n⇤ = 10 sampling rounds after t = 3.52 s,
we terminate the identification procedure as the sparsity for all the
estimated faults is considered to be stable.

In Fig. 3(a) and (b), we illustrate the true weight matrix and the
estimated absolute error matrix |wfault

i � wtrue
i |. As we can see, all

the 5 faults that are occurring in the transmission lines have been
identified with high accuracy.

6. Conclusion and discussion

This paper considered the problem of automatic fault diagnosis
in large-scale power networks where the buses are described by
second-order nonlinear swing equations with process noise. In
particular, this work focused on a class of transmission lines faults.
We combined tools from compressive sensing and variational
Bayesian inference to develop a method to detect, isolate and
identify the faults. An illustrative example showed the application
of the proposed method to fault diagnosis in nonlinear power
networks.

Beyond the results in this paper, some issues still remain for
further investigation. This paper assumed that the system is fully
measurable. Currentwork aims to extend the proposed framework
to fault diagnosis with partially measured power systems.
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