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Abstract

Simplified mechanistic models of gene regulation are fundamental to systems biology and essen-
tial for synthetic biology. However, conventional simplified models typically have outputs that are
not directly measurable and are based on assumptions that do not often hold under experimental
conditions. To resolve these issues, we propose a ‘model reduction’ methodology and simplified ki-
netic models of total mRNA and total protein concentration, which link measurements, models and
biochemical mechanisms. The proposed approach is based on assumptions that hold generally and
include typical cases in systems and synthetic biology where conventional models do not hold. We
use novel assumptions regarding the ‘speed of reactions’, which are required for the methodology to
be consistent with experimental data. We also apply the methodology to propose simplified models
of gene regulation in the presence of multiple protein binding sites, providing both biological insight
and an illustration of the generality of the methodology. Lastly, we show that modelling total pro-
tein concentration allows us to address key questions on gene regulation, such as efficiency, burden,
competition and modularity.

Keywords: Gene Regulatory Networks, Systems Biology, Synthetic Biology, Mechanistic Models, Re-
duced Models

Introduction

Gene regulation is fundamental to how both natural and ‘synthetic’ biological systems function, deter-
mining everything from how cells respond to environmental changes to differentiation of cell type [1].
Due to the complexity of gene regulation, model-based approaches are essential for studying all but
the simplest genetic networks and simplest observable properties [2–6]. Furthermore, advances in
modelling and model-based design are required to overcome a current significant bottleneck in the de-
sign and implementation of synthetic gene regulatory networks comprised of more than a few genes.
Models of particular importance for both analysis and design are mechanistic models derived from
biochemical reactions. These mechanistic models enable DNA sequences and biochemical mechanisms
to be related to the observable ‘system’ properties. This direct link from ‘parts’ to ‘systems’ is impor-
tant for applications, such as for converting a synthetic gene regulation ‘system’ design into the DNA
sequences of the ‘parts’ for genetic transfer into a cell.

In practice, these often highly complicated mechanistic models need to be simplified using a ‘model
reduction’ approach. Model reduction decreases the number of modelled variables and parameters, of-
ten significantly, while retaining the properties and thus advantages of the full mechanistic model. His-
torically, this approach has been better known for mechanistic modelling of enzymatic reactions rather
than for gene regulation, e.g. the extensively studied Michaelis-Menten enzyme kinetics [7]. Model re-
duction of mechanistic models enables parameter identification from experimental data, which is oth-
erwise a significant challenge [5]. Additionally, reduction also improves computational scalability [3]
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and enables systems level analysis and design, including the use of extensive methods for analysing
simple empirical models [3, 4].

However, conventional ‘reduced’ kinetic models of gene regulation use variables that are not exper-
imentally measured and are based on assumptions that often do not hold under experimental condi-
tions [8, 9]. Most systems and synthetic biology studies rely on the quantification of mRNA or protein
concentrations through various experimental techniques, e.g. fluorescent reporters [10], microarrays [5]
or RNAseq [11]. Typically, these measurement techniques can only reveal total mRNA or protein
amounts, such as a Transcription Factor (TF) in tandem fusion with a fluorescent reporter revealing
total TF concentration. These outputs do not match with the single form of TF used in conventional
kinetic models, e.g. free monomeric or free multimeric TF concentrations. In this context, modelling
either the TF’s free monomeric or free multimeric concentration also introduces a large modelling error
when the protein is not predominantly in the form of the modelled TF variable [8, 9]. Similarly, two
forms of TF have been modelled (e.g. total dimer - bound and free) [12, 13], with similar restrictive
assumptions and measurability issues to previous approaches involving one form of TF. Some progress
has been made to find reduced monomeric TF models with ‘corrections’ to account for the error [8, 9].
However, these ‘corrected’ models do not have an experimentally measurable output and they use
restrictive assumptions based on the ‘speed’ of reactions, which often do not agree with experimen-
tal data. Furthermore, these models become highly complex when all required degradation/dilution
terms are included. This added complexity limits understanding of system effects, including the use of
analysis and design methods in existing literature.

Here, we resolve these issues by proposing a reduction methodology and reduced kinetic models
of total mRNA and total protein concentration, which link measurements, models and biochemical
mechanisms. The proposed methodology and reduced models are based on assumptions that hold
generally and include typical cases in systems and synthetic biology where conventional models do
not hold. We propose novel assumptions regarding the ‘speed of reactions’, which are required for the
assumptions to be consistent with known experimental data. However, we do not assume that the TF is
in a particular form and so remove assumptions that restrict the applicability of conventional models.
The direct use of total TF proposed here contrasts with monomeric TF models with ‘corrections’ that
use total TF indirectly [8, 9, 12]. The approach presented here also enables practical applications under
experimental conditions by removing the above mentioned hurdles of measurability, complexity and
the use of often unjustified assumptions. In particular, the simplicity and mechanistic accuracy of the
models is important for modelling in systems biology while essential for design in synthetic biology.

The different conventional models can be treated as special cases of the proposed approach and
so new criteria are provided for cases when the different conventional models may be used or should
be avoided. These criteria are based on the reduced parameters of the biochemical models and so are
practical to use. The reduced models also use approximated terms, such as the fraction of protein in
monomer or dimer form. These approximations can be selected to be as mechanistically accurate as
required, and there can be a tradeoff between simplicity and accuracy for cases where conventional
models do not hold.

We introduce the methodology and simplified models using prototypical cases, noting that the ap-
proach can be easily extended to large gene regulatory networks and can be used to incorporate addi-
tional mechanistic detail in the simplified models. As such, the approach has wide applicability and
can be very informative to a range of networks in systems and synthetic biology. We look at the deter-
ministic case modelled using ordinary differential equations as this is important for simplified analysis
and design, and is a widely used first step before analysing the stochastic case. To illustrate the re-
sults, we use standard synthetic biology examples for which the proposed models are mechanistically
accurate, while conventional simplified models produce significant qualitative errors in prediction. We
also apply our proposed methodology to derive simplified models of gene regulation in the presence of
multiple TF binding sites, providing both biological insight and an illustration of the generality of the
methodology. We use the simplified models to analyse an example of a toggle switch, which is bistable
only in the presence of additional TF binding sites that do not directly regulate promoter activity. Fi-
nally, we show that modelling total protein concentration addresses key questions on gene regulation,
such as efficiency, burden, competition, retroactivity and modularity. These concepts are more natu-
rally discussed in terms of total protein, while the proposed reduced models allow us to analyse and
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discuss them in a simplified manner. In particular, we find that adding a downstream module only
affects total protein concentration due to feedback or degradation/dilution rates differing between the
bound and unbound forms of TF.

Results: Biochemical Model Reduction

To illustrate our framework, we use the simple prototypical gene regulatory network shown in Fig. 1A
in which a dimeric TF represses the expression of a second dimeric TF. This case is used to introduce
the gene expression models and model reduction methodology, noting that the same methodology and
simplified model structure can be used more generally. This generality is demonstrated in the SI and
subsequent models. The regulating protein is treated as an input, and the expressed protein as an
output. This input-output ‘module’ acts as a building block for larger gene regulatory network models.
The prototypical case with added gene regulatory elements (Fig. 1B) is also considered both due to its
importance and to illustrate that the methodology can be used more generally.

Full Biochemical Model and Existing Simplified Models

The set of of biochemical equations for the prototypical gene regulatory network is presented in (1).
Only the expression and degradation of the expressed protein (output) are included, as the regulating
TF (input) is assumed to have equivalent expression and degradation reactions modelled in a separate
input-output ‘module’.

Biochemical Reactions for Prototypical Gene Repression
Dimerisation and Operator Binding (input - regulating TF)

2XL
α6−⇀↽−

α−6
XL2, gL + XL2

α8−⇀↽−
α−8

gLXL2

Transcription and Translation

gL + P
α1−⇀↽−

α−1
gLP

α2→ gL + P + mT

mT + R
w4−⇀↽−

w−4
mT R

w5→ XT + mT + R

Dimerisation and Operator Binding (output - expressed TF)

2XT
w6−⇀↽−

w−6
XT2, gT + XT2

w8−⇀↽−
w−8

gTXT2

Degradation and Dilution of mRNA and TF

XT
βt→ ∅, XT2

βt2→ ∅, gTXT2
βtg→ gT , mT

γt→ ∅, mT R
γtr→ R

(1)

In this model, gL represents both the promoter driving transcription of mRNA, mT , and operator bind-
ing sites for the dimeric input TF XL2. Also, P is RNA polymerase (RNAP), R is ribosome, XT is the
expressed (output) protein monomer, XL is the regulating (input) free monomer, XT2 is a dimeric TF,
gT is an operator binding site for XT2 on the output gene, while combinations of terms are biochemical
complexes. Two XL monomers can reversibly associate to form XL2 dimers. XL2 dimers can reversibly
bind to the operator of the input promoter, which represses transcription of mT by sequestering the pro-
moter from RNAP. Transcription of mT is initiated only when RNAP binds to the upstream promoter,
gL, in the absence of bound XL2. Translation occurs when a ribosome, R, binds to a ribosome binding
site on mT , which then initiates translation of XT monomers. Similarly to the input, XT monomers
can reversibly associate to form XT2 dimers, which can subsequently bind to an operator sequence, gT .
The biochemical reactions in (1) are used to represent the kinetic models using ordinary differential
equations derived from the law of mass action [5].
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In conventional simplified models, a Hill function is used to represent the relationship between a
regulating TF (input) and gene expression from the promoter that it regulates. For empirically-derived
Hill functions, where the input generically represents the regulating TF, the model’s constants and
variables cannot be related to the mechanistic model in (1), and hence the system behaviour cannot be
related to biological parts. For Hill functions obtained from the simplification of mechanistic models [4],
where the regulating TF is either the free monomeric TF XT or the free multimeric TF XT2, the model
operates under assumptions that often do not hold, introducing an error [8, 9]. Examples of this error
can be seen in Fig. 2.

Reduced Biochemical Models and Multimerisation Efficiency

We introduce a reduced biochemical model, where the input and output are both total TF concentra-
tions and the model can be used as a building block for larger gene regulatory network models. Using
the two concentrations of total mRNA and total protein for each gene, we propose the following re-
duced biochemical equations

gT
L

ktx−→ gT
L + mT

T , mT
T

γT→ ∅

mT
T

ktl−→ mT
T + xT

T , xT
T

βT→ ∅

ktx = VtxF, F = F(xT
L )

(2)

where gT
L represents the total number of genes, mT

T is the total mRNA concentration, xT
T (output) and

xT
L (input) are the total protein concentrations in monomer units, ktx is the total transcription rate nor-

malised per gene, ktl is the translation rate per mRNA, Vtx is the transcription rate per non-repressed
promoter, F is the fraction of promoters that are not repressed and is a function of xT

L , γT is the effective
mRNA degradation rate, and βT is the effective protein degradation rate (SI 1-3). The biochemical reac-
tions in (2) are used to represent the kinetic models using ordinary differential equations derived from
the law of mass action [5]. The parameters in the reduced model (2) can be explicitly stated in terms of
the kinetic parameters of the mechanistic model (Materials and Methods and SI 1).

We describe gene expression by splitting the model into two separate cases, the choice of which is
determined by the biochemical parameters:

F =


√

W2 + 1
BggT

L
−W, if ε ≤ 1

1
1+BgB2hxT

L
2 , if ε > 1

W =
ηm

4gT
L

xT
L +

1
2BggT

L
− 1

2
, ε =

√
Bg

2(1 + BggT
L )
√

B2

(3)

where Bg is the effective dimer-operator association constant for the regulating TF, B2 is the dimerisa-
tion association constant for the regulating TF (SI 1), ηm is the multimerisation efficiency, which is the
fraction of the regulating TF that is a fully formed multimer, h = (1− ηm)2 is used to simplify the de-
scription, and W is used to represent repeated terms in F (SI 2). The two cases are the multimer (ε ≤ 1)
and monomer (ε > 1) dominant regulation (Table 1). If the TF is mostly multimeric when a fraction of
the promoters are expressing, then the multimer dominant case occurs. Conversely, if the TF is mostly
monomeric when a fraction of the promoters are expressing, then the monomer dominant case occurs.

The multimerisation efficiency used to describe expression in the model is estimated, as closely as
required, with initial estimates of h and ηm in (3) of ηm0 = 1 for ε ≤ 1 or h0 = 1 for ε > 1 (SI 2).
Without using estimates, the model is described using more variables in a difficult-to-apply ‘implicit’
form or only described for special cases (SI 1). The initial approximation is accurate when the system
is in a strongly multimer (ε � 1) or monomer dominant (ε � 1) case (Table 1). For cases where there
is roughly an equal mixture of monomeric and multimeric TF (ε ∼ 1), there is a modelling trade-off
between simplicity and accuracy, where multimerisation efficiency is a constant for initial approxima-
tions, while more complicated functions can be used for increased mechanistic accuracy. Using a simple
initial approximation followed by a more complicated but more accurate model allows a step-by step
process of building understanding or completing designs for what can otherwise be difficult-to-analyse
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models. We can estimate the multimerisation efficiency using perturbation theory, where an initial es-
timate is used to make successively better approximations. Using the initial approximations above, the
first iterations of the approximations are

ηm1 =
xT

L

xT
L + 1√

B2Bg

√
F−1

0 − 1
, h1 =

xT
L

xT
L + 4

(
gT

L (1− F0) +
1

Bg
(F−1

0 − 1)
) (4)

for the multimer and monomer dominant cases respectively, which can be used with (3) to obtain the
first iteration of the regulation function approximation F1. The error in (3) is small for all values of ε
when using the first iteration F1 (SI 2). We can alternatively use interpolation to find the approxima-
tions of ηm and h, where the approximation is ‘calibrated’ for a few particular values of F in (3). The
interpolation approach results in simpler ‘higher order’ terms, but with an increased error for these
approximations (SI 2). To ensure that (4) is well defined, we also need to set ηm1 = 0 and h1 = 1 for
xT

L = 0, which is only required when xT
L = 0 is an initial condition.

If uniform degradation occurs, where different forms of the TF, such as monomer or free multi-
mer have the same degradation rate, we model TF degradation (βT) as a constant. If non-uniform
degradation occurs [14], we (closely) approximate the degradation rate as it varies with the output TF
concentration xT

T by splitting the model into multiple cases in a similar manner to the regulation term
in (3) (SI 3). Uniform degradation is both biologically reasonable in a large number of cases (e.g. the
dilution only case) and is a useful first approximation. It should be noted that this definition of uniform
degradation does not require two distinct proteins to degrade at the same rate.

We can also model activators (SI 4), and as is typical in other gene regulation models, only protein
concentration is required in the model if the RNA degradation rate is much higher than the protein
degradation rate (SI 5). Furthermore, the models are easily generalisable, where we can include in-
ducers (SI 7), basal expression (SI 6), and we can also easily incorporate effects due to competition for
polymerase or ribosomes (SI 1).

We can compare the full and reduced mechanistic models in terms of their predicted expression
levels (as a fraction of the maximum) for varying regulating (input) TF (Fig. 2). It can be seen that
there is a close match in terms of the predicted expression levels between the full and our reduced
mechanistic models with different levels of regulating TF. Similarly, it can be seen that our reduced
models are qualitatively similar to traditional simplified models, although they can incur a significant
quantitative difference. As such, Fig. 2 also provides examples that show the errors introduced by
conventional Hill function models.

Relation to Existing Models

For the simplest representation of expression in (3), the regulation term F is a 1st order Hill function
for the multimer dominant case and a 2nd order Hill function for the monomer dominant case, similar
to the forms of traditional models. This can be seen by noting that if the gene concentration is much
smaller than the operator binding dissociation constant (gT

L �
1

Bg
), then we have

F =


1

1+
Bgηm

2 xT
L

, if Bg ≤ 4B2

1
1+BgB2hxT

L
2 , if Bg > 4B2

(5)

(see SI 8 for derivation). We note the factor 2 in the denominator for the case Bg ≤ 4B2 as there are two
monomer units in a dimer, and that h1 in (4) also simplifies as the term involving gT

L in the denomi-
nator can be removed. The repressor regulation in (5) reduces to existing simplified models if ηm = 1
or h = 1, the initial approximations. The proposed conditions under which these models hold allow
us to determine when we can use the different traditional models, and if not, when they may be used
as an initial coarse approximation. From this, we can also see that the mechanistic models differ most
significantly from traditional models when there is a mixture of TF forms. For this ‘mixed’ case where
more complicated expressions for multimerisation efficiency are used, the proposed models are related
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to empirical Hill function models with non-integer orders. Example of the modelling error of conven-
tional Hill function for these mixed cases can be seen in Fig. 2. Both (5) and a Hill function model
with a non-integer order contain the same number of variables and parameters. However, when oper-
ator occupancy is important as in (3), the reduced models require an extra parameter (gT

L ) to describe
regulation.

Interestingly, gene concentration is often high in synthetic biology experiments, as the artificial ge-
netic material for in vivo prokaryotic implementation is often encoded on plasmids, which can be at
much higher numbers per cell than chromosomally-integrated genes [15]. Thus the proposed model
for multimer dominant regulation in (3) is essential for synthetic biology, but also highly useful for
systems biology, where the assumption regarding gene copy number may not hold.

The proposed reduced kinetic models can also be contrasted with complementary thermodynamic
equilibrium models, which have also used total TF as a variable [16–20]. Thermodynamic equilibrium
models are complementary to kinetic models as they can relate parameters to genetic sequences [21].
We describe gene regulation in a simpler explicit form, which removes the need for difficult-to-apply
implicit forms containing more variables or the restrictive assumptions commonly used in equilibrium
models. As will be shown in the next section, the combined use of kinetic and equilibrium models
has also been enhanced by deriving conditions under which equilibrium models are valid for use in
combination with kinetic models.

Assumptions: Speed of Reactions

We find that the proposed reduced models are a close approximation of the full mechanistic model
when the degradation rates are the time-limiting steps in the biochemical network, the typical case (SI
1). By this we mean that the lifetimes of the proteins and mRNA, determined by the degradation rates,
provide the ‘natural’ time-scale of the dynamics, and that the degradation rates are much ‘slower’ than
multimerisation, operator-binding, transcription and translation rates [4, 22] (SI 1). This is important
to state, as a common unjustified assumption made for ‘quasi-steady state’ reduced models is that the
binding rates have to be faster than the transcription and translation rates. The assumption that the
degradation rates are the time limiting steps can be quantitavely written

βTn, γTn �(w4Rn + w−4 + w5 + γtr), (α1Pn + α−1 + α2),
(w8XT2n + w8gTn + w−8 + βtg), (4w6XTn + w−6 + βt2)

(6)

where the Rn, Pn, XTn, XT2n, gTn are the typical maximum concentrations of the biochemical species,
βTn is the effective protein degradation at the typical maximum total TF concentration XT

Tn, and γTn is
the typical maximum of the effective mRNA degradation rate (SI 1). If required, the typical maximum
concentrations can be calculated from the kinetic rates (SI 1). Equivalent assumptions to (6) can be
stated for the regulating protein and other transcription/translation reactions. We also require further
assumptions to ensure that the time-scales of the various fast reactions are not strongly coupled (SI 1),
which typically hold when (6) holds. The reduced model ‘loses’ information about the ‘fast’ dynamics
due to the ‘time-limiting’ assumption, but this time-scale is not typically relevant for experiments and
can be modelled separately if required. In cases where the time-scale separation assumption only holds
weakly then the reduced model still provides a ‘coarse’ approximation. The reduction step from an
implicit to explicit model can also result in a ‘coarse’ approximation, but only if simplicity is selected
over mechanistic accuracy in the multimerisation efficiency approximation.

The novel ‘time-limiting’ assumptions generalise those in existing literature, and are required for
the methodology to be consistent with known experimental data. The process of transcription and
translation initiation are typically much faster than degradation [22, 23]. However, validating the as-
sumptions regarding multimerisation and operator binding experimentally is not easy. The reverse rate
of TF binding has previously been used to determine the speed of the ‘fast’ reaction in monomeric TF
models with ‘correction factors’ [8, 9]. However, for the example of LacI, the reverse rate of operator
binding (time-scale of 5-10 min [22]) is often slower than mRNA degradation (∼ 5 min [4]), and is not
significantly faster than the full range of protein degradation/dilution rates. In this case, only the speed
of the forward rate of operator binding (∼ 30s [22]) is much faster than mRNA and protein degrada-
tion. Unlike previous methods, the assumptions proposed here hold if the forward or the reverse rate
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are much faster, consistent with experimental data. The methodology also generalises the number of
biochemical reactions to be taken into account in when analysing time-scale separation.

Examples: The Toggle Switch and the Repressilator

We demonstrate the application and mechanistic accuracy of our reduced model by comparing simula-
tions of the full and reduced mechanistic models, along with cases that show the errors introduced by
Hill function models. A close match of a reduced model with a detailed mechanistic model is required
in order to relate DNA sequences and biological parts to systems behaviour for analysis and design. We
compare simulations (Fig. 3) of the toggle switch [24] and the repressilator [25], two standard genetic
circuits in Synthetic Biology.

The proposed model for a genetic toggle switch (Fig. 3A&B and Materials and Methods) is created
by connecting two repressor modules together, where each TF represses expression of the other TF [24]
(see Fig. 1A for one module). For the simulations of the reduced models, the reduced parameters in
(2) and (3) are determined by the individual kinetic rates of a full mechanistic model (see Materials and
Methods for parameter values and equations). Calculating reduced parameters in this way is carried
out to compare the full mechanistic model with the proposed reduced models. However, when using
the reduced model with experimental data the parameters in the reduced models can be determined
directly, while still allowing predictions of the effects of changes in individual kinetic rates. The value
of parameter ε is next calculated using (3) for each TF to select between the multimer (ε ≤ 1) and
monomer dominant (ε ≥ 1) cases of F in (3). For the toggle switch simulated in Fig. 3, one TF is dimer
dominant (ε = 0.14 ≤ 1) while the second TF is weakly monomer dominant (ε = 1.35 ≥ 1). First order
approximations of ηm and h were used as described in (4), although using ηm = 1 to model the effect
of the TF with ε = 0.14 � 1 is also a reasonable approximation. In the simulations degradation is
assumed to be uniform and the free polymerase and ribosome concentrations are assumed constant for
simplicity, although these assumptions are not necessary for the methodology to be applied.

The proposed model for a repressilator (Fig. 3C and Materials and Methods) is produced by con-
necting three repressor modules together in a loop [25]. The process of creating the reduced model for
the repressilator is similar to the toggle switch. For the repressilator modelled here, there is weakly
dimer dominant regulation for all three TFs (ε = 0.78 ≤ 1).

We can see a close match between our reduced model and the full mechanistic model for the genetic
toggle switch (Fig. 3A&B) and the repressilator (Fig. 3C), while the Hill function models introduce a
significant qualitative error. This close match between the mechanistic and reduced model shows that
we have retained mechanistic accuracy in our reduced model. We can also see that the predictions
of the Hill function models do not match with the mechanistic model for both the repressilator and
toggle switch. Furthermore, the Hill function models predict the wrong qualitative systems behaviour
given the parameters for the biological parts, incorrectly predicting oscillations in the repressilator and
predicting no memory in the toggle switch. For the toggle switch, the two Hill function models even
predict different qualitative behaviour to each other, with the second order model predicting an ‘always
off’ switch, while the first order model predicts an ‘always on’ switch.

The reduced simplified models have the advantage of requiring fewer biological parameters than
the full mechanistic model to complete in silico analysis. For example, only the effective dimer-operator
association constant is required instead of the individual operator binding and unbinding kinetic rates.
This is crucial for in silico analysis as it is typically difficult or even impossible to obtain values of indi-
vidual kinetic rates. The proposed methodology and simplified models also allow simplified analysis
compared to the full mechanistic model.

Therefore our proposed methodology and models have the advantages of mechanistic accuracy
compared to conventional reduced models, while allowing practical in silico analysis when compared
to the full mechanistic models.

Multiple Gene Regulatory Elements

We also apply the methodology to mechanistic models that allow TF to bind to DNA at sites other than
the primary operator (Fig. 1B). Modelling multiple TF binding sites is important for understanding
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how the different operators that bind the same TF are indirectly coupled, both when the operators
affect the same or different promoters. It is also crucial for understanding generic effects, such as non-
specific binding. Additional ‘sequestering’ gene regulatory elements can be included in the model to
determine the effect on the primary operator (SI 9). The added regulatory element can be modelled
using the biochemical reactions

OL + XL2
α9−⇀↽−

α−9
OLXL2 (7)

where OL represents the number of free binding sites due to added regulatory elements.
For monomer dominant regulation there is typically only a small effect from added operators (SI

9). For multimer dominant regulation, we split the model into three separate cases, where the binding
affinity of the added operator is higher than, approximately equal to, or lower than the original bind-
ing affinity. Adding higher affinity operators effectively decreases the total protein (xT

L ) ‘seen’ by the
primary operator in (3) by sequestering a fraction of the TF; adding approximately equal affinity opera-
tors effectively increases the gene copy number (gT

L ) in the regulation term in (3) (fraction of promoters
expressing), but not in (2) (total promoters); while adding lower affinity operators effectively weakens
the binding affinity (Bg) of the primary operator (3) (SI 9). These sequestering effects have more impact
for higher gene copy numbers and higher operator binding association constants. The modification to
(3) due to added binding sites can be described quantitatively as

F =


√

W2 + 1
B̂g ĝT

L
−W, if ε ≤ 1

1
1+BgB2hxT

L
2 , if ε > 1

W =
ηm

4ĝT
L

x̂T
L +

1
2B̂g ĝT

L
− 1

2
, ε =

√
Bg

2(1 + BggT
L + BoOT

L )
√

B2

(8)

where Bo is the effective dimer-operator association constant of the TF to the additional binding site,
OT

L represent the total number of binding sites due to added regulatory elements and B̂g, ĝT
L , x̂T

L are the
modified effective values of Bg, gT

L , xT
L in (8), and are described by

B̂g =

{ Bg

1+BoOT
L

if Bo ≤ 1
3 Bg

Bg otherwise

ĝT
L =

{
gT

L + Bo
Bg

OT
L if 1

3 Bg ≤ Bo ≤ 3Bg

gT
L otherwise

x̂T
L =

{
xT

L − xo if Bo ≥ 3Bg

xT
L otherwise

xo =2OT
L (1− FO) ≈ 2OT

L

(9)

where xo estimates the concentration of TF (in monomer units) bound to OL, FO is evaluated using F in
(8), modified by swapping parameters OT

L with gT
L and Bo with Bg, and xo ≈ 2OT

L is a coarse approxima-
tion when xT

L ≥ 2OT
L . The values of B̂g, ĝT

L , x̂T
L are determined in a similar manner to the multimerisation

efficiency or non-uniform degradation described above (SI 9). The initial approximation is shown in
(9), while higher order approximation can also be used (SI 9). Also, the higher order approximation of
ηm is unchanged for the multimer dominant case, but changes for the monomer dominant case (SI 9).

An Example: The Toggle Switch with Competitive TF Binding Sites

In this case study, we demonstrate the simplified in silico analysis of models with additional biochemical
mechanisms through simulations and graphical analysis of a toggle switch (Fig. 4 and Materials and
Methods). We model a toggle switch with and without an additional ‘competitive’ TF binding site
for one of the TFs. The approach used to produce a simplified model for this case is similar to the
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approach used to produce the model without additional TF binding sites described above. However,
in this case, we determine both ε in (8), as well as the relative values of Bg and Bo. In the case simulated
in Fig. 4, the regulation is dimer dominant for both TFs (ε = 0.32, 0.34 without and ε = 0.32, 0.01 with
additional sites) and the dimer-operator association constant is much higher for the additional binding
site (Bo � Bg). The relationship Bo ≥ 3Bg implies that effective total protein x̂T

L = xT
L − xo in (9) is

reduced, while B̂g = Bg and ĝT
L = gT

L remain unchanged. The significantly higher dimer-operator
association constant (Bo � Bg) allows the initial approximation in (9) to be used. In contrast, if for
example Bo ≈ 3Bg, then higher order approximations of xo in (9) would typically be required (SI 9).

The simulations and phase plane (Fig. 4) show that without the additional binding site the toggle
switch is monostable, while the additional TF binding site can cause bistability in the toggle switch. For
this case, there is once again a close match between the full and reduced mechanistic models (SI 9). This
example shows the importance of the methodology and simplified models for cases with multiple TF
binding sites. Here, we complete our in silico analysis with additional mechanisms without the need to
know all biochemical kinetic rates of the full mechanistic model. The reduced model is also particularly
suited for exhibiting the effects of these additional mechanisms using phase plane graphical analysis
(Fig. 4C), as well as generally for simplified analysis.

Discussion

We have presented a new model reduction methodology and reduced models of total mRNA and total
protein concentrations, which can be directly related to both experimental outputs and the underlying
biochemical mechanisms. As different mechanistic models can easily be incorporated into our reduced
models using the developed methodology and the models can easily be extended to large networks,
we now discuss questions that are relevant for a range of mechanistic models and gene regulatory
networks. Using the proposed reduced models, we find that we can gain key insights into gene regula-
tory efficiency, burden, competition and modularity by modelling total protein and mRNA, while the
reduced models enable a simplified analysis.

Regulatory Efficiency

An efficient gene regulatory network can potentially reduce burden on the cell or allow a faster response
[17]. Therefore, we start with the characterisation of an efficient TF, given that regulatory efficiency is
an important concept in gene regulation. Using the model in (1), we define the efficiency of the TF to
be the fraction of the total TF concentration, in monomer units, which is bound to the operator (SI 10),
as this is the only form of the protein in the prototypical example which has a functional effect on gene
regulation. We can also estimate the efficiency of regulation using (3) (SI 10). A completely efficient
TF is one in which all molecules are bound to an operator until all operators are occupied. For gene
regulation, neither free monomers nor free dimers have a functional effect, and so the operator-bound
protein can be viewed as an alternative output variable to the total protein concentration. In terms of
efficiency, the total concentration of free monomeric and free multimeric TF can be viewed as a measure
of the inefficiency of the system. Interestingly, regulatory efficiency is important both by itself, and in
determining trade-offs with robustness [26, 27]. For example, a concentration drop in a highly efficient
repressor can unnecessarily turn on gene expression while an inefficient repressor may act as a buffer.

Loading and Retroactivity

Another important question for both synthetic and natural systems is to determine the effect of connect-
ing a single ‘downstream module’ on an ‘upstream module’. This question can be framed in terms of
loading and retroactivity [9, 12, 28–30], where retroactivity describes the connection of a ‘downstream’
network module affecting the ‘upstream’ module’s output, which in previous studies has been the free
monomeric TF [9].

However, when using the total protein concentration as the module output, adding a downstream
operator does not introduce retroactivity unless there is either non-uniform degradation or feedback.

9



This can be seen in the prototypical example with uniform degradation (SI 3), where the addition of
an operator binding to the output TF has no effect on its dynamics, assuming that the output TF does
not affect the regulating TF through feedback. Thus retroactivity is a system property that is dependent
upon the choice of output, which in our case is the experimentally measurable output. This dependence
on the choice of output has also been seen for stochastic effects [30]. Interestingly, using the total protein
concentration allows a simplified identification and analysis of module interconnections when dilution
is dominant over degradation and no feedback occurs.

When there are multiple genes regulated by the same TF (Fig. 1B), then the different operators
‘compete’ for the available TF. This ‘parallel loading’ can be predicted by our reduced models with
sequestering operators as described above (SI 9), noting that the effect is typically much stronger for
multimer dominant regulation. In fact, a TF with a higher regulatory efficiency (SI 10) will typically
have a larger parallel loading effect, a loading/efficiency tradeoff. The case of multiple genes regu-
lated by one TF has been examined experimentally and with a mechanistic model [12]. Here, we can
analyse a TF regulating multiple genes with more mechanisms using a simpler framework and an ex-
perimentally measurable output. Similarly to the single operator case, parallel loading does not cause a
retroactivity effect without either feedback or non-uniform degradation. For this case, the competition
between operators only affects the operator bound concentrations, and does not affect the total protein
concentration ‘output’. If one of the competing operators is part of a feedback mechanism, then parallel
loading does become a type of retroactivity, or more generally, a network loading effect.

Conclusion

We have presented a new model reduction methodology and the resulting simplified mechanistic mod-
els using total mRNA and total protein concentrations as variables, which link the simplified models
with experimental outputs and the underlying biochemical mechanisms. The proposed methodology
and models have allowed us to overcome important challenges in using conventional simplified mod-
els for applications in systems and synthetic biology. The proposed methodology and models use
assumptions that hold generally, and also provide new criteria for when the different conventional
models may be used or should be avoided. We provided biological examples where proposed mod-
els are mechanistically accurate, while the conventional models make significant qualitative errors in
prediction. We also applied the methodology to propose simplified models of gene regulation in the
presence of multiple TF binding sites. Finally, describing gene regulation using the total protein con-
centration led to a number of enlightening interpretations, such as regulatory efficiency, while using
the proposed reduced model allows for simplified analysis and design of gene regulatory networks.

Materials and Methods

Simulation and calculations were completed using MATLAB. The function ODE45 was used to simulate
reduced ODE models while the function ODE15s was used to simulate reduced DAE (differential-
algebraic equation) models (SI 1) and full mechanistic models.

The reduced parameters are related to kinetic parameters in the full mechanistic models using

ktl =
w5w4R

w4R + w5 + w−4 + γtR

Vtx =
α2α1P

α1P + α−1 + α2

γT = γt + (γtR − γt)
ktl
w5

B2 =
α6

α−6 + βl2

Bg =
α8

α−8 + βlg

α−1 + α2

α1P + α−1 + α2

(10)
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The parameter values used to generate the simulation results presented in Fig. 2 are gT
L = 100,

1
Bg

= 15, 1
B2

= 1 (molecules/cell).
The parameter values used to generate the simulation results presented in Fig. 3A&B are P = 100,

R = 100, a4 = 0.1, a−4 = 1, a5 = 1, a6 = 0.01, am6 = 2, a8 = 1, a−8 = 0.001, a1 = 0.01, a−1 = 1, a2 = 1,
βt1 = βt2 = βtg = βl1 = βl2 = βlg = 0.025, γtr = γt = γlr = γl = 0.2, w4 = 0.02, w−4 = 0.2, w5 = 0.2,
w6 = 1, w−6 = 2, w8 = 1.2, w−8 = 0.01, w1 = 0.01, w−1 = 1, w2 = 1, where the two transcription
factors are XT and XL. The initial conditions are chosen as mT

T(0) = mT
L(0) = 0, gT

L = gT
T = 1. The

two initial condition (high and low) are chosen as XL1(0) = 30, XT1(0) = 1 (High) and XL1(0) = 1,
XT1(0) = 3 (Low) with other initial conditions set at quasi-steady state (SI 1). XT

L is plotted in Fig. 3.
The parameter values used to generate the simulation results presented in Fig. 3C are P = 1000, R =

1000, a4 = 0.01, a−4 = 1, a5 = 1, a6 = 0.1, a−6 = 1, a8 = 0.5, a−8 = 0.1, a1 = 0.01, a−1 = 1, a2 = 1, βL1 =
0.05, βL2 = 0.05, βLg = 0.05, γLR = 0.1, γLu = 0.1, with identical parameters for all three genes. The
initial conditions are chosen as mT

T(0) = mT
Y(0) = mT

L(0) = 0, XL1(0) = XT1(0) = 10, XY1(0) = 20,
gT

L = gT
Y = gT

T = 1, and other initial conditions set at quasi-steady state (SI 1).
The parameter values used to generate the simulation results presented in Fig. 4 are gT

L = 1, gT
T =

1, Vtx,T = 1, Vtx,L = 1, ktl,T = 0.8, ktl,L = 1, γL = γT = 0.2, BLg = 0.9, BTg = 0.4, BL2 = 0.5, BT2 =

0.5, βT = 0.025, βL = 0.025. The perturbed system uses the additional parameter values BLo = 5, OT
L =

10. The initial conditions are chosen as mT
L(0) = 0, xT

L (0) = 100, mT
T(0) = 1, xT

T(0) = 1.
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Transcription 1/BL2 1/BLg εL for εL for
Factor gT

L = 1(nM) gT
L = 30

LacI [31–33] 10 (nM) 10−2 (nM) 0.16 0.0053
TetR [34–37] 1 (nM) 10 (nM) 0.14 0.040
AraC [38–40] 10− 1000 (nM) 10 (nM) 0.45-4.5 0.13-1.3

Table 1: Biological Parameters for Transcription Factors. Experimental parameter values can be used
to determine whether regulation is multimer or monomer dominant in Equation (3), and when existing
models can be used or should be avoided. The monomer dominant regulation term is used for εL ≥ 1
while the multimer dominant expression term is used for εL ≤ 1. For gT

L = 1(nM), a mixture of
multimer and monomer cases occurs, while for gT

L = 30(nM), a typical case in synthetic biology [15],
only the multimer dominant case occurs. It should be noted that LacI is a dimer of dimers [4]. Using
higher gene copy numbers as an example, tetR may be modelled as only in multimer form (ηm = 1) as
εL � 1, which has previously been used for models fitted to experimental data [12].
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(A) The Prototypical Input-Output System
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as the perturbation model (91), for the case of a strong secondary operator-binding site. Pa-

10, OT
L

as the perturbation model (91), for the case of a strong secondary operator-binding site. Pa-
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L

XL2OL

(B) Multiple Operators

Figure 1

Figure 1: Prototypical genetic network modules. The prototypical input-output system (A) with total
DNA (gT

L , gT
T), mRNA (mT

T) and protein (xT
L , xT

T) is shown. Dimerisation of monomeric input transcrip-
tion factor (TF) (xT

L ) and output TF (xT
T) has been considered as well as operator-binding and lumped

transcription, translation and degradation. The input-output ‘module’ acts as a building block for
modelling larger networks. For the case of multiple operators (B), the system also includes the total
additional TF binding sites (OT

L ) and the total protein concentration also includes the TF bound to the
second operator. In (B) the additional regulatory element is part of a second promoter, but the models
and methodology are also applicable when additional elements regulate expression of the same gene.
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Figure 2

Figure 2: A comparison of protein expression in the full and reduced mechanistic models. There is a
close match in protein expression levels between the full mechanistic model and our proposed reduced
model, while there is an error in the existing reduced Hill function models.
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(A) Toggle Switch - High Initial TF concentration (one
TF concentration shown)

(B) Toggle Switch - Low Initial TF concentration (one
TF concentration shown)

(C) Repressilator (one TF concentration shown)

Figure 3

Figure 3: Simulation comparisons of the full and reduced mechanistic models for the toggle switch
(A) & (B) and repressilator (C). The simulations show that our reduced model matches closely to the
full mechanistic model for both simulated networks whilst the Hill function models present both quan-
titative and qualitative errors. A close match of the reduced models with the detailed mechanistic
models is required in order to relate biological parts to systems behaviour.
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(A) Modified Toggle Switch - High Initial TF concen-
tration (one TF concentration shown)
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(B) Modified Toggle Switch - Low Initial TF concentra-
tion (one TF concentration shown)
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Figure 4

Figure 4: Simulations (A), (B) and phase plane analysis (C) for a toggle switch with and without addi-
tional TF binding sites. The simulations show that the additional TF binding site can cause bistability
in the toggle switch.
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