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1. Types of models considered in the �rst part of Modelling in Biology
2. Ordinary Di�erential Equation (ODE) models

1. Order of an ODE model
2. State variable
3. Parameter
4. Analytical solution of an ODE
5. Numerical integration of an ODE

3. Linear ODE models
4. Time evolution of the state variables of an ODE model, also called time trajectory or time trace

1. Asymptotic behaviour
2. Attractor
3. Basin of attraction of a given attractor
4. Initial condition, also called initial value
5. Fixed point, also called steady state value of the state variables

5. Phase portrait, also called phase space
1. Phase portrait analysis
2. Phase line and phase plane

6. State space trajectory
1. Property of state space trajectories for ODEs for which the right-hand side does not depend explicitly on time

7. Flow or vector �eld
8. Bifurcation

1. Critical bifurcation value
2. Bifurcation diagram
3. Bifurcation analysis

9. Nonlinear ODE models
10. Linearisation around a �xed point

1. The Hartman-Grobman Theorem, also called the linearisation theorem
2. Jacobian matrix
3. Eigenvalues of the Jacobian matrix

11. Diagonalisation
12. Stability

1. Global asymptotic stability
2. Local/Linear asymptotic stability
3. Asymptotic stability as a sign property

13. Nullcline
1. Properties of nullclines

14. Limit cycle and periodic solutions of ODEs
1. Stable limit cycle
2. Hopf bifurcation
3. Poincaré-Bendixson theorem

15. Law of mass action
16. Leaning outcomes and things you need to be able to do

1. Identify the type of model you are dealing with
1. Continuous-time vs discrete-time
2. Continuous-values vs discrete-values
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3. Deterministic vs stochastic
4. Linear vs nonlinear
5. Autonomous vs non-autonomous

2. Identify the order of the model you are dealing with
3. Identify the approach you need to use to analyse an ODE model of a given type and order
4. Draw functions, i.e. f(x) vs x
5. Linearise ODEs

1. Know how to obtain the Jacobian matrix of a nonlinear ODE by linearising it around its �xed points
6. Non-dimensionalise ODEs
7. Compute the �xed points of ODEs

1. Solve sets of algebraic equations of the form f(x)=0 where f() is a function
2. Extract the roots of second and third order polynomials analytically and graphically
3. ODEs of order 1: Find graphically the �xed points on the phase line
4. ODEs of order 2: Find graphically the intersection of nullclines in the phase plane

8. Perform graphical stability analysis for models of order 1 and 2
1. ODEs of order 1: draw the �ow on the phase line
2. ODEs of order 2: Draw the vector �eld on the nullclines and in the regions of the state space delimited by

the nullclines in the phase plane
9. Perform analytical stability analysis for linear ODE models of any order

1. Compute the eigenvalues and corresponding eigenvectors of matrices
2. Write the analytical solution of linear ODEs of any order

10. Perform bifurcation analysis
1. Identify the type of bifurcation that can happen when a bifurcation parameter is varied in a given ODE model
2. Find the critical bifurcation value analytically and graphically
3. Draw bifurcation diagrams

1 Types of models considered in the �rst part of Modelling in Biology
• In this �rst part of the Modelling in Biology course, we will focus on continuous-time, deterministic, linear and

nonlinear, autonomous Ordinary Di�erential Equation models

2 Ordinary Di�erential Equation (ODE) models
• Ordinary Di�erential Equations (ODEs) are used to describe models which depend on 1 independent variable, typically

time

2.1 Order of an ODE model
• Number of (dependent) variables used in the ODE model
• In practice: the dimension of (the vector) x in ODE models, e.g. if the model is given by ẋ = dx

dt = f(x) with x ∈ R2,
then the model is of order 2

2.2 State variable
• The (time-)dependent variables of an ODE are typically called its state variables, e.g. in ẋ = f(x), x is called the state

variable

2.3 Parameter
• Component of a model that can be varied, but which does not depend on the state variable, e.g. in ẋ = f(x, k), where

the values of k can be varied, k is called a parameter

2.4 Analytical solution of an ODE
• Solution that can be written down in “closed form”
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• This course is speci�cally about methods allowing to determine the dynamical “behaviour” of the state variables
without having to write their analytical solution down

2.5 Numerical integration of an ODE
• Algorithm used to iteratively compute a numerical approximation (also called numerical solution) to the solution of an

ODE

3 Linear ODE models
• Example: ẋ = kx, where x ∈ R≥0 is the state variable and k ∈ R is a parameter
• This ODE model is:

– Linear as the right-hand side of the ODE is a linear function of the state variable
– Order 1 as the ODE is de�ned using only 1 state variable

• We can always write down the analytical solution of linear ODEmodels of any order as a linear combination
of exponential terms whose arguments are the eigenvalues of the Jacobian matrix of the linear ODE.

4 Time evolution of the state variables of an ODE model, also called time
trajectory or time trace

• Graph of the time evolution of the variables, i.e. the trace x(t) in a graph of x(t) vs t

4.1 Asymptotic behaviour
• Asymptotic = “when time goes to in�nity”, also called long-term behaviour
• Asymptotic value: The value the state variables end up with when time goes to in�nity

4.2 Attractor
• Set of points in the phase space (also called state space) to which the state variables of the ODE asymptotically converge

4.3 Basin of attraction of a given attractor
• Set of all points in the state space such that if the state variables start on these points the corresponding trajectories end

up on the considered attractor

4.4 Initial condition, also called initial value
• The initial value of the state variables at the initial time

4.5 Fixed point, also called steady state value of the state variables
• Value such that if the state variables start at this value they stay at that value for all times
• The �xed points can be found by considering the left-hand sides of all the equations describing the ODE to be zero,

i.e. by �nding the solution to the set of algebraic equations ẋ = 0 = f(x), for x ∈ Rn

5 Phase portrait, also called phase space
• Graph for which the axes are the state variables
• The space subtended by the axes of the phase portrait is called the state space (since each axis is a state variable) or

phase space
• Time is thus not one of the axes in a phase portrait

5.1 Phase portrait analysis
• Graphical method used to understand the behaviour of a given ODE using a phase portrait
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5.2 Phase line and phase plane
• For ODE models of order 1, the phase portrait is also called the phase line
• For ODE models of order 2, the phase portrait is also called the phase plane

6 State space trajectory
• The trace in the state space, e.g. the trace in a graph of x1(t) vs x2(t) for a second order ODE

6.1 Property of state space trajectories for ODEs for which the right-hand side does not de-
pend explicitly on time

• For ODEs described by ẋ = f(x) where f(x) is a function that does not depend explicitly on time, state space
trajectories cannot cross

• This property is particularly useful for the graphical analysis of ODEs of order 2

7 Flow or vector �eld
• The �ow (also called vector �eld) describes the direction of motion of trajectories in the state space
• At every point in the state space, the �ow (also called vector �eld) is tangential to state space trajectories
• Appendix A in the lecture notes provides an explanation for the direction of the �ow based on the sign of the components

of the vector ẋ

8 Bifurcation
• A bifurcation occurs when a change in the parameter(s) of the model produces a qualitative (i.e. large) change in the

asymptotic behaviour of the attractors, e.g.
– change in the number of attractors
– change in the type of attractors
– change in the stability of the attractors

• There are di�erent types of bifurcations
– Saddle-node, a.k.a blue sky bifurcation
– Transcritical bifurcation
– Pitchfork bifurcation
– Hopf bifurcation
– . . .

8.1 Critical bifurcation value
• The speci�c value at which the bifurcation occurs

8.2 Bifurcation diagram
• Graph where some of the axes are the state variables of the ODE and the other axes are the parameters of the ODE

8.3 Bifurcation analysis
• Graphical method used to understand how the dynamic behaviour of an ODE model changes (or “bifurcates”) when its

parameter(s) are varied

9 Nonlinear ODE models
• ODE for which the right-hand side is a nonlinear function of the state variable(s)
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10 Linearisation around a �xed point
• The process of obtaining a linear ODE approximation to a nonlinear ODE around a �xed point
• The linear approximation is typically only valid when staying in close vicinity to the �xed point around which the

linearisation was performed
• Mathematically, the linearisation is performed via a Taylor series expansion of the right-hand side of the ODE

10.1 The Hartman-Grobman Theorem, also called the linearisation theorem
• Theorem providing the conditions under which the dynamic behaviour of the linearised ODE is a valid approximation

to the dynamic behaviour of the original nonlinear ODE in the vicinity of the �xed point around which the linearisation
was performed

• The condition states that the linearistaion provides a valid approximation if and only if the Jacobian matrix of the
linearised system does not have any eigenvalue with zero real part, i.e. if the �xed point is not a centre for the linearised
model

10.2 Jacobian matrix
• The matrix appearing in the right-hand side of the linearised ODE is called the Jacobian matrix
• The Jacobian matrix is typically noted J , e.g. in ẋ = Jx where x ∈ Rn and J ∈ Rn×n, J is called the Jacobian matrix

10.3 Eigenvalues of the Jacobian matrix
• The real part of the eigenvalues of the Jacobian matrix gives information in terms of the “magnitude” of the state space

solutions/trajectories
• The imaginary part of the eigenvalues of the Jacobian matrix gives information in terms of the “rotation” of the state

space solutions/trajectories
• If the imaginary part of the eigenvalues of the Jacobian matrix is zero, the corresponding �xed point is called a node
• If the imaginary part of the eigenvalues of the Jacobian matrix is non-zero, the corresponding �xed point is called a
spiral

• If the real part of the eigenvalues of the Jacobian matrix is zero, the corresponding �xed point is called a centre

11 Diagonalisation
• The process of “decoupling” ODE equations via “diagonalisation” of the Jacobian matrix
• The Jacobian matrix is always diagonalisable if all its eigenvalues are distinct
• Diagonalisation relies on a change of coordinates allowing to rewrite a set of coupled ODEs of order n into an equivalent

set of n decoupled ODEs of order 1
• The change of coordinates requires to obtain the eigenvalues and the corresponding eigenvectors of the Jacobian matrix

12 Stability

12.1 Global asymptotic stability
• An attractor is said to be globally asymptotically stable if trajectories end up on the attractor wherever they start in the

state space
• In this case, the basin of attraction of the attractor is the whole state space
• Global asymptotic stability analysis is typically performed using graphical methods

12.2 Local/Linear asymptotic stability
• An attractor is said to be locally asymptotically stable if trajectories end up on the attractor whenever they start close

to it (whenever they start in the basin of attraction of the attractor)
• Local/linear asymptotic stability analysis is typically performed via computation of the eigenvalues of the Jacobian

matrix
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12.3 Asymptotic stability as a sign property
• Graphically, asymptotic stability is a sign property for the �ow vector

– If the �ow vector points towards an attractor from all directions then this attractor is asymptotically stable
• Algebraically, asymptotic stability is a sign property of the real part of the eigenvalues of the Jacobian matrix

– If all the eigenvalues of the Jacobian matrix have a strictly negative real part, then the �xed point around which
the Jacobian matrix was calculated is asymptotically stable

13 Nullcline
• Set of points (also called locus of points) in the state space for which the right-hand side of individual ODE equations

is zero
• Example: for an ODE or order 2, there are 2 nullclines, one for ẋ1 = 0 = f1(x1, x2) and another one for ẋ2 = 0 =
f2(x1, x2)

13.1 Properties of nullclines
• Fixed points are found at the intersection of nullclines
• The �ow (or vector �eld) on nullclines always has one component equal to zero by de�nition

– For an ODE of order 2, the �ow on any given nullcline is either vertical or horizontal
– The direction of the �ow (upwards or downwards if it is vertical, or left or right if it is horizontal) depends on the

sign of the non-zero component(s) of the �ow

14 Limit cycle and periodic solutions of ODEs
• Limit cycles are closed trajectory in the state space
• Such closed trajectories correspond to periodic time solutions of the ODE
• Limit cycles are only possible for ODEs of order 2 and above (this is a consequence of the non-crossing property of

trajectories)

14.1 Stable limit cycle
• A stable limit cycle is a closed trajectory in the state space that attracts other (nearby) trajectories to it
• The basin of attraction of a stable limit cycle is the set of all points in the state space such that trajectories starting at

these points asymptotically converge to the limit cycle
• Stable limit cycles are only possible for nonlinear ODEs of order 2 and above (this is a consequence of the fact that

periodic solutions of linear ODEs can only be produced via centre points for which each initial condition de�nes a new
closed trajectory returning to that same initial condition)

14.2 Hopf bifurcation
• Limit cycles often emerge via a Hopf bifurcation when a bifurcation parameter is varied
• The signature of a Hopf bifurcation when a bifurcation parameter is varied is 2 complex conjugate eigenvalues of the

Jacobian matrix crossing the imaginary axis (at non zero speed), i.e. two complex conjugate eigenvalues such that their
real part goes from negative to zero to positive values when the value of a bifurcation parameter is varied

14.3 Poincaré-Bendixson theorem
• Theorem allowing to assert the existence of at least 1 stable limit cycle
• Requires the de�nition of a “doughnut (toroidal)” region that trajectories cannot escape once entered and that does not

contain any �xed point

15 Law of mass action
• A law (i.e. a rule or a method) to deduce ODEs for the concentrations of the species involved in chemical or biochemical

reactions
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• Law of mass action: when two or more reactants are involved in a reaction, their reaction rates (at constant temperature)
are proportional to the product of their concentrations.

16 Leaning outcomes and things you need to be able to do

16.1 Identify the type of model you are dealing with
16.1.1 Continuous-time vs discrete-time

16.1.2 Continuous-values vs discrete-values

16.1.3 Deterministic vs stochastic

16.1.4 Linear vs nonlinear

16.1.5 Autonomous vs non-autonomous

16.2 Identify the order of the model you are dealing with

16.3 Identify the approach you need to use to analyse an ODE model of a given type and
order

16.4 Draw functions, i.e. f(x) vs x

16.5 Linearise ODEs
16.5.1 Know how to obtain the Jacobian matrix of a nonlinear ODE by linearising it around its �xed points

16.6 Non-dimensionalise ODEs

16.7 Compute the �xed points of ODEs
16.7.1 Solve sets of algebraic equations of the form f(x)=0 where f() is a function

16.7.2 Extract the roots of second and third order polynomials analytically and graphically

16.7.3 ODEs of order 1: Find graphically the �xed points on the phase line

16.7.4 ODEs of order 2: Find graphically the intersection of nullclines in the phase plane

16.8 Perform graphical stability analysis for models of order 1 and 2
16.8.1 ODEs of order 1: draw the �ow on the phase line

16.8.2 ODEs of order 2: Draw the vector �eld on the nullclines and in the regions of the state space delimited
by the nullclines in the phase plane

16.9 Perform analytical stability analysis for linear ODE models of any order
16.9.1 Compute the eigenvalues and corresponding eigenvectors of matrices

16.9.2 Write the analytical solution of linear ODEs of any order

16.10 Perform bifurcation analysis
16.10.1 Identify the type of bifurcation that can happen when a bifurcation parameter is varied in a given ODE

model

16.10.2 Find the critical bifurcation value analytically and graphically

16.10.3 Draw bifurcation diagrams
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