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Output synchronization in networks of cyclic
biochemical oscillators

Guy-Bart Stan∗†, Abdullah Hamadeh∗†, Rodolphe Sepulchre‡, and Jorge Gonçalves∗

Abstract—This paper is concerned with the global analysis of
asymptotic synchronization of outputs in networks of identical
oscillators. The oscillator models are assumed to possess a
cyclic feedback structure. Such networks of oscillators abound
in biochemistry, and are exemplified by circadian rhythm and
cardiac cell networks. The main result exploits an incremental
output feedback passivity property of cyclic feedback systems
to prove global asymptotic output synchronization in a network
composed of identical cyclic feedback systems. This result is
illustrated on a network of Goodwin oscillators.

Index Terms—Global synchrony analysis, incremental dissi-
pativity, networks of cyclic biochemical oscillators, Goodwin
oscillators.

I. I NTRODUCTION

Synchronization of oscillating dynamical systems is a com-
monly occurring phenomenon. It features in many biological
networks comprised of oscillating nodes, such as those of the
cardiac cells of the mammalian heart, responsible for regular
heart beats or those of the neurons in the suprachiasmatic
nucleus (SCN) of the hypothalamus, responsible for the
generation of circadian rhythms in mammals.

Mathematically, synchronization is a convergence property
for the difference between the solutions of interconnected
systems. Convergence properties for the difference between
solutions of a closed system (a system that does not interact
with its environment through its inputs and outputs) are
characterized by notions ofincremental stability (see [1],
[2], [3]). For open systems, the corresponding notion is
incremental dissipativity (see [4], [5], [6], [7]).

Specifically, this paper focuses on output synchronization
in networks of nodes characterized by a cyclic feedback
structure. Cyclic feedback structures are typically used to
model the dynamics of a chain of biochemical reactions
where the final product inhibits the production of the first
product in the chain whilst each intermediate product stimu-
lates the production in the next reaction (see Figure 1). The
importance of cyclic feedback structures in biology and their
local stability analysis is described in [8] and [9]. In these
studies, it is shown that thesecant gain condition provides a
far less conservative local stability certificate than the small
gain theorem. In the more recent papers [10] and [11], this
stability analysis is generalized to cyclic feedback structures

∗University of Cambridge, Department of Engineering, ControlGroup,
Trumpington Street, Cambridge, CB2 1PZ, United Kingdom; Emails:
gvs22@eng.cam.ac.uk (Guy-Bart Stan), aoh21@eng.cam.ac.uk(Abdullah
Hamadeh), jmg77@eng.cam.ac.uk (Jorge Gonçalves).

‡University of Liège, Department of Electrical Engineering and Computer
Science, Bât. B28, B-4000, Liège, Belgium; Email: r.sepulchre@ulg.ac.be
(Rodolphe Sepulchre).

†Corresponding authors.

composed of output strictly passive (OSP) systems. In partic-
ular, [11] shows that the secant gain condition is a necessary
as well as sufficient condition for the (global) diagonal
stability of the cyclic feedback structure. Furthermore, [11]
provides a constructive way to obtain a Lyapunov function
for the autonomous cyclic feedback structure by considering
the storage functions of the individual OSP systems.

In this paper, we analyze output synchronization in net-
works where each node has the cyclic feedback structure
described above. To achieve this goal, we use the results in
[11] and [5] to establishincremental dissipativity of cyclic
feedback systems and to derive conditions that ensure output
synchronization. Our approach aims at the characterization
of the fundamental input-output properties required by cyclic
feedback systems to ensure synchronization when intercon-
nected to form a network.

The structure of this paper is as follows. In Section II,
we introduce some preliminaries concerning synchroniza-
tion and incremental dissipativity. Section III characterizes
cyclic feedback systems and gives sufficient conditions for
their incremental dissipativity. In Section IV, conditions for
synchronization in networks of cyclic feedback systems are
derived and discussed based on their incremental dissipativity
properties. These results are illustrated on a network of
Goodwin oscillators in Section V. We conclude in Section
VI with a discussion of the results and of future research
directions.

II. SYNCHRONIZATION AND INCREMENTAL
DISSIPATIVITY

In this section, we introduce the concepts that will be
used for proving (output) synchronization in networks of
interconnected oscillators. Since oscillators in a network
are generally connected through their inputs and outputs,
it is natural to characterize them through their input-output
properties in order to identify some sufficient synchronization
conditions. In our approach, we consider an incremental
dissipativity characterization of these oscillators thatwe call
incremental output-feedback passivity (inc. OFP).

A. Incremental dissipativity

In this section we give a definition forincremental dis-
sipativity. For a mathematical definition of dissipativity, the
reader is referred to [12].

Consider an input-affine SISO systemΥ represented by a
state-space model of the form

Υ

{

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

y = h(x), y ∈ R
(1)



whereu(t), y(t), andx(t) denote its input, output and state
respectively. Letxa(t) and xb(t) be two solutions ofΥ,
with the corresponding input-output pairs(ua(t), ya(t)), and
(ub(t), yb(t)). We denote by∆x = xa − xb, ∆u = ua − ub,
and∆y = ya − yb the corresponding incremental variables.
The system (1) is said to be incrementally dissipative if there
exists a positive semi-definite incremental storage function
S∆ (∆x), with S∆(0) = 0 and an incremental supply rate
w (∆u,∆y) such that

S∆ (∆x (T ∗)) − S∆ (∆x (0))

≤

∫ T∗

0

w (∆u(t),∆y(t)) dt (2)

is satisfied for allT ∗ > 0 and along any pair of trajec-
tories (xa(t), xb(t)). Incremental dissipativity (2) with the
incremental supply ratew (∆u,∆y) = ∆y∆u is called
incremental passivity. Incremental dissipativity (2) with the
incremental supply ratew (∆u,∆y) = − (∆y)

2
+ γ∆y∆u

with γ ∈ R is called incremental output feedback passivity
(inc. OFP(1

γ
)). Whenγ is positive the system possesses an

excess of incremental passivity and is said to beincrementally
output strictly passive (inc. OSP). Following [11],γ > 0 is
called the incremental secant gain of the system. On the other
hand, whenγ is negative the system possesses a shortage
of incremental passivity and− 1

γ
quantifies the minimum

amount of proportional negative incremental output feedback
required to make the system incrementally passive.

If the storage functionS∆ is additionally assumed to be
differentiable, i.e.S∆ ∈ C1, an infinitesimal version of the
dissipation inequalities associated to these concepts maybe
considered. For example, under differentiability assumption,
the dissipation inequality (2) can be equivalently written
Ṡ∆(∆x) ≤ w (∆u(t),∆y(t)). For the sake of simplicity,
we will assume in the rest of the paper that the storage
function is differentiable and use the infinitesimal version
of the dissipation inequality.

Remark 1: Passivity implies incremental passivity for lin-
ear systems, that is, if the quadratic storageS(x) = xT Px ≥
0 satisfies the dissipation inequalitẏS ≤ yu then the
incremental storageS∆ (∆x) = (∆x)

T
P∆x ≥ 0 satisfies

the incremental dissipation inequalityṠ∆ ≤ ∆y∆u. Passivity
also implies incremental passivity for a monotone increasing,
static nonlinearity: if φ(·) is monotone increasing, then
(s1 − s2) (φ (s1) − φ (s2)) = ∆s∆φ(s) ≥ 0, ∀∆s = s1−s2.
Similarly, it is easy to show that for linear systems, output
strict passivity implies incremental output strict passivity with
the incremental secant gain being equal to the secant gain.

B. Incremental output-feedback passivity and synchroniza-
tion

The main result that links incremental output feedback
passivity of nodes of a network to (output) synchronization
states that if each node is inc. OFP, i.e. can be rendered incre-
mentally passive by output feedback, and the synchronization
coupling1 between the oscillators is “strong enough” then all

1Input-output coupling structures that allow synchronizedsolutions for
the network are called synchronization couplings. In the linear case, syn-
chronization coupling conditions are defined by the properties (A1), (A2)
and (A3) given in Section IV. As we will see these properties allow the inc.
OFP of each node to be conserved by the network.

the nodes will asymptotically output synchronize (see [13],
[14], [5]).

In Section III we show that a large class of biochemical
systems (called cyclic feedback systems) can be proven to be
inc. OFP under some mild assumptions (see Theorem 1). We
then use the above mentioned result to prove asymptotic out-
put synchronization in networks of identical cyclic feedback
systems (see Theorem 2).

Remark 2: Incremental dissipativity is an external (input-
output space) property analogous to the internal (state space)
property called “contraction” or “convergence” in the lit-
erature (see [14] and [3]). As originally recognized in the
papers [13], [15] (with the convergence concept) and [2],
[14] (with the contraction concept), output feedback conver-
gence (i.e. convergence obtained through output feedback)
(resp. output feedback contraction) is a sufficient condition
to prove synchronization of coupled systems. In the input-
output context, the sufficient conditions given in [13], [15]
amount to assuming that the system is relative degree one and
(locally) exponentially minimum phase. These conditions are
strongly related to incremental output feedback passivityand
are sufficient to prove local inc. OFP (see [16, Proposition
2.51]).

Remark 3: Incremental dissipativity is also strongly linked
to the concept of incremental input-to-state stability (δ-ISS)
sinceS∆ can be seen as aδ-ISS Lyapunov function [1].

III. I NCREMENTAL OUTPUT FEEDBACK PASSIVITY OF
CYCLIC FEEDBACK MODELS

As in [11], we consider systems which have the cyclic
feedback interconnection structure depicted in Figure 1. This
class of systems arises typically when considering a sequence
of biochemical reactions where the end product inhibits the
rate of the first reaction while the intermediate products
activate the rate of the next reaction (see [17], [8], [18] and
[9]), as described by the model

ẋ1 = −f1 (x1) − gn (xn)
ẋ2 = −f2 (x2) + g1 (x1)

...
ẋn = −fn (xn) + gn−1 (xn−1)

wherefi(·) : R → R and gi(·) : R → R, i = 1, · · · , n are
increasing functions. Such a model can be seen as a cyclic
feedback interconnection structure (as represented on Figure
1) with the dynamics ofHi, i = 1, · · · , n defined by

Hi =

{

ẋi = −fi (xi) + ui, ui ∈ R (input)
yi = gi (xi) , yi ∈ R (output)

(3)

and the following interconnection rulesu1 = uext − yn and
ui = yi−1, i = 2, · · · , n. The corresponding input and output
of this cyclic feedback system areuext and y1 respectively.
We will see that this particular choice of input-output pair
plays a fundamental role in the synchronization process as it
allows to establish inc. OFP of the cyclic feedback system
(see Theorem 1).

A. Overview of the results

Based on the results of [11], we observe that if all the
blocks Hi are output strictly passive (OSP) with a secant
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Figure 1. Cyclic feedback system.

gain γ̄i and a particular secant gain condition (γ̄1 · · · γ̄n <
(

sec
(

π
n

))n
) is satisfied then the cyclic feedback system is

OSP with respect to inputuext and to outputy1 (see [11,
Corollary 1]). As a direct corollary of this result, we can
similarly prove that if all the blocksHi are inc. OSP with an
incremental secant gainγi and a similar incremental secant
gain condition (γ1 · · · γn <

(

sec
(

π
n

))n
) is satisfied then the

cyclic feedback system is inc. OSP with respect to inputuext

and to outputy1.
Furthermore, even if the incremental secant gain condition

is not satisfied, the cyclic feedback system (CFS) can be
shown to beincrementally output feedback passive. This is
intuitively clear by adding a proportional feedback gaink
around H1 and increasing the value ofk (see Figure 2).
The effect of the proportional feedback loop is to change
the incremental secant gain of the first block. The incre-
mental secant gain of this new first block (including the
proportional feedback loop) is̃γ1 = γ1

1+kγ1

. It is clear that
by increasing the value ofk, the incremental secant gain
condition γ̃1 · · · γn <

(

sec
(

π
n

))n
will always be satisfied for

large enoughk (the details of this statement are included in
Theorem 1).

H1 H2 Hnuext+ky1

y1k

yn




u1

Figure 2. Equivalent system with negative feedback aroundH1.

This observation is useful for proving output synchro-
nization in CFS networks. Indeed, coupling several CFS
to form a network can always be seen as introducing a
particular feedback between the inputs and the outputs of
the network components. We will use this observation in
Section IV to find conditions ensuring global asymptotic
output synchronization in CFS networks.

B. Notation

In the next sections, we consider networks composed ofN
CFS. As a general convention,i = 1, · · · , n will denote the
index associated to a particular blockHi while j = 1, · · · , N
will denote the index associated to a particular CFS in the
network.

The stacked vector of blocks’ outputs for CFSj =

1, · · · , N is denoted byyj =
(

y1j
, · · · , ynj

)T
(yj ∈ R

n

since there aren blocks in each CFS).

The stacked vector of the first output from each CFS is
denoted byY1, i.e. Y1 = (y11

, · · · , y1N
)
T (Y1 ∈ R

N since
there areN CFS).

The stacked vector of external inputs to each CFS is de-
noted byUext, i.e.Uext = (uext1 , · · · , uextN

)
T (Uext ∈ R

N ).

C. Incremental output feedback passivity of cyclic feedback
systems

In this section, based on the results presented in [11], we
establish sufficient conditions under which cyclic feedback
systems are incrementally output feedback passive. The main
result of this section is summarized in Theorem 1.

Theorem 1: Consider the cyclic feedback system depicted
in Figure 1. If each blockHi, i = 1, · · · , n is inc. OSP with
an incremental secant gainγi then the cyclic feedback system

is inc. OFP(−k) with k ≥
−1+γ1···γn(cos(π

n ))
n

γ1

.
Proof: Assuming that all the blocksHi are inc. OSP

with an incremental secant gainγi, there exist incremental
storage functionsVi (∆xi) ≥ 0, Vi(0) = 0, i = 1, · · · , n
such that

V̇1 ≤ − (∆y1)
2

+ γ1∆y1 (∆uext − ∆yn)

and
V̇i ≤ − (∆yi)

2
+ γi∆yi∆y(i−1) (4)

for all i = 2, · · · , n.
ScalingV1 by γ1 we obtain

V̇1 ≤ −
1

γ1
(∆y1)

2
+ ∆y1 (∆uext − ∆yn)

Adding and subtractingk (∆y1)
2, k ≥ 0, and defining̃γ1 =

γ1

1+kγ1

, this can be equivalently written

V̇1 ≤ −
1

γ̃1
(∆y1)

2
− ∆y1∆yn + k (∆y1)

2
+ ∆y1∆uext

By rescalingV1 by γ̃1 we obtain

V̇1 ≤− (∆y1)
2
− γ̃1∆y1∆yn

+ kγ̃1 (∆y1)
2

+ γ̃1∆y1∆uext (5)

Combining (5) with (4) and using the argument of [11], the
CFS storage functionV =

∑n

i=1 diVi with di > 0, i =
1, · · · , n, can be shown to satisfy the dissipation inequality

V̇ ≤∆yT
(

ÃT
k D + DÃk

)

∆y

+ kγ̃1 (∆y1)
2

+ γ̃1∆y1∆uext

where

Ãk =

















−1 0 . . . 0 −γ̃1

γ2 −1 0
.. . 0

0 γ3 −1
.. .

...
...

.. .
. ..

.. . 0
0 · · · 0 γn −1

















andD = diag {d1, · · · , dn} (see [11]).
From [11], we know that if the incremental secant gain

condition
γ̃1γ2 · · · γn < secn

(π

n

)

(6)



is satisfied, then the positive scalarsdi, i = 1, · · · , n can be
chosen such that̃AT

k D + DÃk is negative definite, i.e. such
that ÃT

k D + DÃk ≤ −ǫkIn with ǫk = ǫ(k) > 0. Using the
definition of γ̃1 = γ1

1+kγ1

we clearly see that the incremental
secant gain condition (6) will always be satisfied by choosing

k sufficiently large. In particular, fork ≥
−1+γ1···γn(cos(π

n ))
n

γ1

we obtain

V̇ ≤− ǫk (∆y)
T

(∆y) + γ̃1

(

k (∆y1)
2

+ ∆y1∆uext

)

(7)

with ǫk > 0 which clearly shows that the cyclic feedback
system with inputuext and outputy1 is inc. OFP(−k).

IV. OUTPUT SYNCHRONIZATION IN NETWORKS OF
IDENTICAL CYCLIC FEEDBACK SYSTEMS

We now consider a network composed ofN identical
cyclic feedback systems. We assume that each CFS is inc.
OFP(−k), i.e. that each CFS is characterized by an incremen-
tal storage function which satisfies a dissipation inequality
of the form (7). In particular, the incremental dissipation
inequality associated with CFSj, j = 1, · · · , N is

V̇j ≤ −ǫk (∆yj)
T

(∆yj) + γ̃1

(

k
(

∆y1j

)2
+ ∆y1j

∆uextj

)

(8)
where ǫk > 0, Vj (∆Xj) ≥ 0, Vj(0) = 0 and ∆Xj =
(

∆xT
1j

, · · · ,∆xT
nj

)T

. As we have seen in Theorem 1, a
sufficient condition that leads to (8) for CFSj, j = 1, · · · , N ,

is given byk ≥
−1+γ1···γn(cos(π

n ))
n

γ1

.
Concerning the network interconnections, we restrict our-

selves to the case where the input-output coupling between
the identical CFS is linear and static. The associated coupling
matrix is denoted byΓ ∈ R

N×N . To ensure synchronization,
we make the following assumptions onΓ:

(A1) rank(Γ) = N − 1,
(A2) Γ + ΓT ≥ 0,
(A3) Γ1 = ΓT 1 = 0.

A. Graph interpretation of the input-output coupling assump-
tions

In this section, we give an interpretation of the coupling
assumptions (A1), (A2), and (A3) in terms of directed graphs.

Consider a directed graphG with associated weighted
adjacency matrixA = (wj,l) , j, l = 1, · · · , N . Assume
that the graph is simple, i.e.wj,l ≥ 0 and wj,j = 0,
∀j, l. The corresponding weighted Laplacian matrixΓ writes
Γ = (Γj,l), j, l = 1, · · · , N with Γj,j =

∑N

l 6=j wj,l,
∀j = 1, · · · , N andΓj,l = −wj,l, ∀j 6= l.

The interconnection ruleUext = −ΓY1 then cor-
responds to the linear consensus protocoluextj

=

−
∑N

l=1 wj,l

(

y1j
− y1l

)

(see [19]).
Assumption (A1) holds provided that the graph is strongly

connected (see [19]).
Assumption (A3) holds if the graph is balanced, i.e. if

A1 = AT 1 (see [20]). Furthermore, this latter property
implies (A2) (see [20]).

These assumptions do not imply thatΓ is symmetric which
would be equivalent to assuming that the graph is undirected.

B. Output synchronization in networks of identical cyclic
feedback systems

In this section, we state and prove the main result con-
cerning asymptotic output synchronization of identical cyclic
feedback systems coupled through an interconnection matrix
Γ that satisfies assumptions (A1), (A2), and (A3). In Theo-
rem 2,λ2 (Γs) denotes the second smallest eigenvalue of the
symmetric part of the interconnection matrixΓ.

Theorem 2: (Asymptotic Output Synchronization) Con-
sider a network ofN identical cyclic feedback systems
linearly coupled through the interconnection matrixΓ, i.e.
Uext = −ΓY1 where Γ satisfies the assumptions (A1),
(A2), and (A3). Assume that CFSj = 1, · · · , N is inc.
OFP(−k), with a radially unbounded incremental storage
function Vj satisfying (8), and that the network satisfies
the strong coupling assumptionλ2 (Γs) > k, then each
network solution that exists for allt ≥ 0 is such that
∀i = 1, · · · , n:∀j, l = 1, · · · , N , yij

(t) = yil
(t), for

t → +∞. In addition, for all bounded network solutions,
the synchronized solution of a particular CFS converges to
the limit set of this CFS, isolated.

Proof: To compare each CFS output with its average
over all the N CFS outputs we consider the projector
Π = IN − 1

N
11T . As a consequence,ΠY1 = ∆Y1 measures

the difference between each outputy1j
, j = 1, · · · , N and

the average output1
N

∑N

j=1 y1j
. Summing the incremental

storage functionsVj given in (8) for all the CFS gives the
incremental storage functionS =

∑N

j=1 Vj for the network
(see [5]). Using the dissipation inequality (8), the storage
function S obeys the dissipation inequality

Ṡ ≤ −ǫk ((Π ⊗ In) Y )
T

((Π ⊗ In)Y )

+ γ̃1

(

k (ΠY1)
T

ΠY1 + (ΠY1)
T

ΠUext

)

(9)

SinceUext = −ΓY1 and (A3), we haveΠUext = −ΠΓY1 =
−ΓΠY1 so that (9) rewrites as

Ṡ ≤ −ǫk ((Π ⊗ In) Y )
T

((Π ⊗ In) Y )

+ γ̃1

(

k (ΠY1)
T

ΠY1 − (ΠY1)
T

ΓΠY1

)

(10)

Using (A1)-(A3), we haveΠY1 = Y1 −
(

1
N

1T Y1

)

1 = 0
iff Y1 ∈ ker(Γ) and

(ΠY1)
T

ΓΠY1 ≥ λ2 (Γs) (ΠY1)
T

ΠY1 (11)

Using (11) in (10), we obtain

Ṡ ≤ −ǫk ((Π ⊗ In) Y )
T

((Π ⊗ In) Y )

+ γ̃1 (k − λ2 (Γs)) (ΠY1)
T

ΠY1

which yields

Ṡ ≤ −ǫk ((Π ⊗ In) Y )
T

((Π ⊗ In) Y ) (12)

if λ2 (Γs) > k (strong coupling). Application of the LaSalle
invariance principle to inequality (12) proves that each net-
work solution that exists for allt ≥ 0 is such that∀i =
1, · · · , n:∀j, l = 1, · · · , N , yij

(t) = yil
(t), for t → +∞.

Furthermore, sinceΓ1 = 0, the effect of the coupling
disappears when synchrony is reached. This yields in addition
to the global asymptotic output synchronization result, that
for any bounded network solution the synchronized solution



of a particular CFS converges to the limit set of this CFS,
isolated.
Combining the results of Theorem 1 and Theorem 2, we
see that a sufficient condition for the asymptotic output
synchronization of linearly interconnected, identical CFS is

λ2 (Γs) > k ≥
−1+γ1···γn(cos(π

n ))
n

γ1

.
Remark 4: If each isolated CFS is a global oscillator, the

limit set of each isolated CFS is a globally attractive limit
cycle.

Remark 5: Boundedness must generally be proven inde-
pendently. This can be done by requiring additional assump-
tions such assemipassivity, as proposed in [13].

Remark 6: Even if all the network solutions are proven to
exist for all time and to be bounded, output synchronization
does not directly imply state synchronization. This will bethe
case under an additional incremental zero-state detectability
assumption.

Remark 7: The recent paper [21] analyzes synchronization
in networks of (non-identical) oscillators using an internal
approach based on LMIs conditions derived from a Lyapunov
function similar to our incremental storage functionS. Nev-
ertheless, this LMI formulation of the problem does not ex-
plicitly characterize the fundamental input-output properties
needed to ensure synchronization.

V. I LLUSTRATION: NETWORK OFGOODWIN
OSCILLATORS

As an illustration of the above theorems, we consider a
network composed ofN identical oscillators linearly coupled
through an interconnection matrixΓ that satisfies (A1), (A2),
and (A3). Each oscillator of the network is a third order,
dimensionless Goodwin oscillator model [17]. The state-
space realization of the dimensionless Goodwin oscillator
model given in (13) is adapted from [22, Section 9.4.3] (to
which the reader is referred for details of the model) and
recast in the form of the cyclic feedback system studied
in the previous sections. The corresponding cyclic feedback
model is composed of four blocksHi, i = 1, · · · 4. In thejth

oscillator, the blockHij
has inputuij

and outputyij
. The

dynamical model of thejth oscillator in the network is

H1j
: Ẋj = −b1Xj + u1j

, y1j
= Xj

H2j
: Ẏj = −b2Yj + b2u2j

, y2j
= Yj

H3j
: Żj = −b3Zj + b3u3j

, y3j
= Zj

H4j
: y4j

= − 1
1+y

p
3j

,

(13)
with bi > 0 for i = 1, · · · , 3, u1j

= uextj
− y4j

, uij
=

y(i−1)j
for i = 2, · · · , 4, andj = 1, · · · , N . The oscillators

are linearly interconnected through the matrixΓ using their
external inputsuextj

and outputsy1j
.

All the dynamic blocksHij
, i = 1, · · · , 3 are linear,

OSP2 and inc. OSP (see Remark 1) with (incremental)
secant gains given by1

b1
, 1 and1 respectively. Furthermore,

from [11, Section 6], the positive orthant of oscillatorj,
i.e. {(Xj , Yj , Zj) : Xj ≥ 0, Yj ≥ 0, Zj ≥ 0} can be shown
to be invariant. ForZj ≥ 0, the static nonlinearityH4j

is monotonically increasing with an upper bound on its

2This is easily seen using a storage function of the typeVi =
1

2
y2

ij
,

i = 1, · · · , 3.

derivative. It is easy to show that these latter conditions are
sufficient for proving thatH4j

is inc. OSP in the invariant
set Zj ≥ 0. We can also see that CFSj in (13) with
input uextj

and outputy1j
is semipassive. To see this, first

consider the uncoupled case whereuextj
= 0. Since the

output of the nonlinear element is lower bounded by−1,
Ẋj < 0, ∀Xj > 1

b1
, and thusXj will enter the invariant

set 0 ≤ Xj ≤ 1
b1

after finite time. Consequently, it is
easy to show thatYj enters in finite time the invariant set
0 ≤ Yj ≤ 1

b1
and therefore thatZj enters in finite time

the invariant set0 ≤ Zj ≤ 1
b1

. Therefore, foruextj
6= 0,

the system is passive outside the state-space cube defined
by the hyperplanesXj = Yj = Zj = 1

b1
and the positive

orthant (as can be seen by considering the storage function
Vj = 1

2

(

X2
j + Y 2

j + Z2
j

)

). Using [13, Lemma 1] we may
thus conclude that all solutions exist for allt ≥ 0 and are
bounded.

To make the example easier, we considerb1 = b2 = b3 =
b > 0. Under this assumption, it is shown in [22] that the
isolated systemj possesses an equilibrium point given by
Xj = Yj = Zj = ξ, where ξ is the positive solution of

1
1+ξp = bξ. It is also shown that this equilibrium is locally
asymptotically stable iffp(1 − bξ) < 8. The variablep is
termed the cooperativity coefficient and governs the rate at
which the final product (in this caseZj) inhibits the formation
of Xj .

Taking ξ = 1 gives b = 0.5 and the local asymptotic
stability conditionp < 16. We can thus expect stable limit
cycle oscillations to occur forp = 17.

The incremental secant gain of the dynamic blocks are
γ1 = 2 andγ2 = γ3 = 1 for b = 0.5. The incremental secant
gain γ4 of the static blockH4j

is equal to the maximum
slope of the static nonlinearity in the invariant setZj ≥ 0.
This givesγ4 ≈ 4.26 for p = 17.

Having these values in mind, we consider the all-to-all
synchronization interconnection whereΓ is defined by

Γj,l =

{

(N − 1)κ j = l
−κ ∀j 6= l

It can easily be checked that this all-to-all interconnection
matrix Γ satisfies assumptions (A1), (A2) and (A3). Further-
more, in this case,λ2(Γs) = κN . As we proved in section
IV, a sufficient condition for synchronization is

λ2(Γs) = κN > k ≥
−1 + γ1γ2γ3γ4

`

cos
`

π

4

´´4

γ1

= 0.5662.

(14)

Using Theorems 1 and 2 and the boundedness property,
we conclude that under condition (14) all Goodwin oscil-
lators asymptotically synchronize and that the individual
synchronized solution converges to the limit set of an isolated
Goodwin oscillator (which is a limit cycle).

As an illustration, the time evolution of the outputsy1j

for a network of four oscillators (j = 1, · · · 4), with κ =
1 and random initial conditions, is shown in Figure 3. The
corresponding state space diagram of these four oscillators is
shown in Figure 4.

Simulations show that synchronization does not occur for
κ sufficiently small, κ = 0 representing the uncoupled
situtation.
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Figure 3. Time evolution of the outputsy1j
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Figure 4. Limit cycle for four Goodwin oscillators.

VI. D ISCUSSION

We have presented sufficient conditions for the global
asymptotic output synchronization in a network of cyclic
feedback systems (CFS).

The method relies on recent results in [11] which prove
that a CFS is incrementally OSP (inc. OSP) if each of its
constituent subsystems is inc. OSP and a particular incremen-
tal secant gain condition is satisfied. When the incremental
secant gain condition is not satisfied, we have shown that
CFS are nevertheless incrementally output feedback passive
(inc. OFP(−k) for k sufficiently large). Using this result, we
have proven global asymptotic output synchronization in CFS
networks under a strong coupling assumption.

In future work, based on extensions of dissipativity theory,
we plan to investigate the conditions that lead to global
boundedness of the solutions and to the existence, uniqueness
and global attractivity of limit cycle oscillations for CFS. We
also plan to generalize our global synchronization resultsto
networks of nonidentical CFS.
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