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Abstract—This paper is concerned with the global analysis of composed of output strictly passive (OSP) systems. Ingarti
asymptotic synchronization of outputs in networks of identical ylar, [11] shows that the secant gain condition is a necgssar
oscillators. The oscillator models are assumed to possess &5 well as sufficient condition for the (global) diagonal

cyclic feedback structure. Such networks of oscillators abound - -
in biochemistry, and are exemplified by circadian rhythm and stability of the cyclic feedback structure. Furthermorkl][

cardiac cell networks. The main result exploits an incremental Provides a constructive way to obtain a Lyapunov function
output feedback passivity property of cyclic feedback systems for the autonomous cyclic feedback structure by considerin

to prove global asymptotic output synchronization in a network = the storage functions of the individual OSP systems.
composed of identical cyclic feedback systems. This result is | this paper, we analyze output synchronization in net-
llustrated on a network of Goodwin oscillators. works where each node has the cyclic feedback structure

Index Terms—Global synchrony analysis, incremental dissi- described above. To achieve this goal, we use the results in
pativity, networks of cyclic biochemical oscillators, Goodwin [11] and [5] to establistincremental dissipativity of cyclic
oscillators. feedback systems and to derive conditions that ensure butpu
synchronization. Our approach aims at the characterizatio
of the fundamental input-output properties required bylicyc
feedback systems to ensure synchronization when intercon-

Synchronization of oscillating dynamical systems is a conmected to form a network.
monly occurring phenomenon. It features in many biological The structure of this paper is as follows. In Section Il,
networks comprised of oscillating nodes, such as thoseeof the introduce some preliminaries concerning synchroniza-
cardiac cells of the mammalian heart, responsible for segution and incremental dissipativity. Section Il charaizes
heart beats or those of the neurons in the suprachiasmatjclic feedback systems and gives sufficient conditions for
nucleus (SCN) of the hypothalamus, responsible for thieir incremental dissipativity. In Section IV, condit®ifior
generation of circadian rhythms in mammals. synchronization in networks of cyclic feedback systems are

Mathematically, synchronization is a convergence prgpenterived and discussed based on their incremental dissiyati
for the difference between the solutions of interconnectegroperties. These results are illustrated on a network of
systems. Convergence properties for the difference betwegoodwin oscillators in Section V. We conclude in Section
solutions of a closed system (a system that does not intersttwith a discussion of the results and of future research
with its environment through its inputs and outputs) ardirections.
characterized by notions dhcremental stability (see [1],
[2], [3]). For open systems, the corresponding notion is
incremental dissipativity (see [4], [5], [6], [7]).

Specifically, this paper focuses on output synchronization
in networks of nodes characterized by a cyclic feedbackin this section, we introduce the concepts that will be
structure. Cyclic feedback structures are typically used used for proving (output) synchronization in networks of
model the dynamics of a chain of biochemical reactionaterconnected oscillators. Since oscillators in a nekwor
where the final product inhibits the production of the firstire generally connected through their inputs and outputs,
product in the chain whilst each intermediate product stimit is natural to characterize them through their input-oititp
lates the production in the next reaction (see Figure 1). Theoperties in order to identify some sufficient synchrotiaa
importance of cyclic feedback structures in biology andrtheconditions. In our approach, we consider an incremental
local stability analysis is described in [8] and [9]. In tResdissipativity characterization of these oscillators tivat call
studies, it is shown that thegecant gain condition provides a incremental output-feedback passivity (inc. OFP).
far less conservative local stability certificate than theak
gain theorem. In the more recent papers [10] and [11], this -
stability analysis is generalized to cyclic feedback stires A. Incremental dissipativity

In this section we give a definition fdancremental dis-
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I. INTRODUCTION

Il. SYNCHRONIZATION AND INCREMENTAL
DISSIPATIVITY



whereuw(t), y(t), andz(t) denote its input, output and statethe nodes will asymptotically output synchronize (see [13]
respectively. Letz,(t) and x,(¢t) be two solutions ofY, [14], [5]).
with the corresponding input-output paité, (¢), y.(t)), and In Section Il we show that a large class of biochemical
(up(t), yp(t)). We denote byAz = z, — zp, Au=u, —up, Systems (called cyclic feedback systems) can be proven to be
and Ay = y, — y» the corresponding incremental variablesnc. OFP under some mild assumptions (see Theorem 1). We
The system (1) is said to be incrementally dissipative ifehethen use the above mentioned result to prove asymptotic out-
exists a positive semi-definite incremental storage foncti put synchronization in networks of identical cyclic feedba
Sa (Az), with SA(0) = 0 and an incremental supply ratesystems (see Theorem 2).
w (Au, Ay) such that Remark 2: Incremental dissipativity is an external (input-
" output space) property analogous to the internal (statee$pa
Sa (A;i(T )) = Sa (Az(0)) property called “contraction” or “convergence” in the lit-
erature (see [14] and [3]). As originally recognized in the
§/ w (Au(t), Ay(t)) dt @) papers [13], [15] (with the convergence concept) and [2],
) _ O* ) . [14] (with the contraction concept), output feedback canve
is satisfied for all7* > 0 and along any pair of trajec- gence (i.e. convergence obtained through output feedback)
tories (x,(t), x5(t)). Incremental dissipativity (2) with the regp output feedback contraction) is a sufficient coaditi

incremental supply ratev (Au, Ay) = AyAu is called 4 prove synchronization of coupled systems. In the input-
!ncremental passivity. Incremental d|s5|pat|V|t)2/ (2) with the output context, the sufficient conditions given in [13], J15
incremental supply ratey (Au, Ay) = — (Ay)” + yAyAu  gmount to assuming that the system is relative degree one and

with ~ € Ris calledincremental output feedback passivity (jocally) exponentially minimum phase. These conditiores a
(inc. OFP()). When~ is positive the system possesses agtrongly related to incremental output feedback passaity
excess of incremental passivity and is said tortoeementally  are sufficient to prove local inc. OFP (see [16, Proposition
output strictly passive (inc. OSP). Following [11]y > 0is  2.51]).
called the incremental secant gain of the system. On the otheRemark 3: Incremental dissipativity is also strongly linked
hand, wheny is negative the system possesses a shortagethe concept of incremental input-to-state stabilifyl$S)
of incremental passivity and—% quantlfles the minimum SincesA can be seen as &ISS Lyapunov function [1]
amount of proportional negative incremental output feedba
required to make the system incrementally passive. m

If the storage functionSa is additionally assumed to be
differentiable, i.e.Sn € C!, an infinitesimal version of the . ) . .
dissipation inequalities associated to these conceptsheay AS in [11], we consider systems which have the cyclic
the dissipation inequality (2) can be equivalently writteflass of systems arises typically when considering a seguen
Sa(Az) < w(Au(t), Ay(t)). For the sake of simplicity, Of Piochemical reactions where the end product inhibits the
we will assume in the rest of the paper that the stora§@t® of the first reaction while the intermediate products
function is differentiable and use the infinitesimal versioaCtivate the rate of the next reaction (see [17], [8], [18] an
of the dissipation inequality. [9]), as described by the model

Remark 1. Passivity implies incremental passivity for lin- i1 = —fi(x1) — gn (zn)
ear systgms, that Is, !f thg qufadranc §tpré@e) =T Px > By = —fo(z2)+ g1 (1)
0 satisfies the dissipation inequality < yu then the
incremental storag&a (Az) = (Ax)T PAz > 0 satisfies )
the incremental dissipation inequalifiy, < AyAu. Passivity Zn = —fu (@) + gn-1(Tn-1)
alsq implies incr_emeptal pa_s;sivity for a mqnotone.incn@si where f;() : R - Randg;(-) : R = R, i=1,--- ,n are
static nonlinearity: if ¢(-) is monotone increasing, thenincreasing functions. Such a model can be seen as a cyclic
(51— 52) (@ (51) — P (s2)) = AsAp(s) > 0, VAs = s1—s2.  feedback interconnection structure (as represented ameFig

. | NCREMENTAL OUTPUT FEEDBACK PASSIVITY OF
CYCLIC FEEDBACK MODELS

Similarly, it is easy to show that for linear systems, output) with the dynamics ofd;, i = 1,--- ,n defined by

strict passivity implies incremental output strict paggiwith ) .

the incremental secant gain being equal to the secant gain. . _ ) % = —fi (i) +ui,  u; € R(input) ©)
! yi = gi (z3), yi € R (output)

B. Incremental output-feedback passivity and synchroniza- and the following interconnection rules — we.; — y» and

tion ) ) _ u; = y;—1,4=2,--- ,n. The corresponding input and output
Th.e. main result that links incremental output fegdbz_aqﬁ this cyclic feedback system are,; andy; respectively.

passivity of nodes of a network to (output) synchronizatiofe will see that this particular choice of input-output pair

states that if each node is inc. OFP, i.e. can be rendereei-ln(mays a fundamental role in the Synchronization process$ as i

mentally passive by output feedback, and the synchrooizatiallows to establish inc. OFP of the cyclic feedback system
coupling' between the oscillators is “strong enough” then afkee Theorem 1).

Linput-output coupling structures that allow synchronizedutions for
the network are called synchronization couplings. In timedr case, syn- A. QOverview of the results
chronization coupling conditions are defined by the praeer{Al), (A2) .
and (A3) given in Section IV. As we will see these propertibsvathe inc. Based on the results of [11], we observe that if all the

OFP of each node to be conserved by the network. blocks H; are output strictly passive (OSP) with a secant



A The stacked vector of the first output from each CFS is

. T denoted byYy, i.e. Y = (y1,,- - ,le)T(Yl e RY since
Uox Dy H, Hy oo —bf H, 2 there areN CFS).
- The stacked vector of external inputs to each CFS is de-
noted byUe., i.€. Uept = (Ueat, s > Ueaty ) (Ueat € RY).
Figure 1. Cyclic feedback system. C. Incremental output feedback passivity of cyclic feedback
systems

o , ) L B In this section, based on the results presented in [11], we
gain; and a particular secant gain condition (-- 7. < establish sufficient conditions under which cyclic feedbac
(sec (7))") is satisfied then the cyclic feedback system 'Systems are incrementally output feedback passive. The mai
OSP with respect to input.,; and to outputy; (see [11, regylt of this section is summarized in Theorem 1.
Corollary 1]). As a direct corollary of this result, we can Theorem 1: Consider the cyclic feedback system depicted
similarly prove that if all the blocksZ; are inc. OSP with an i Figure 1. If each blockd;, i = 1,--- ,n is inc. OSP with

incremental secant gaify and a similar incremental secantgn incremental secant gajn then the cyclic feedback system
gain condition € - - -y, < (sec (Z))") is satisfied then the . 1ty (con( )"

cyclic feedback system is inc. OSP with respect to inpyt 'S INC: OFPEE) with £ > ~

and to outputy; . Proof: Assuming that all the blockgZ; are inc. OSP

Furthermore, even if the incremental secant gain conditidf{th @n incremental secant gaip, there exist incremental
is not satisfied, the cyclic feedback system (CFS) can BErage functions/; (Az;) > 0, Vi(0) = 0, i = 1,---,n
shown to beincrementally output feedback passive. This is Such that
intuitively clear by addi_ng a proportional feedbgck gain V< — (Ay1)2 + 1Ay (Atiezr — Ayy,)
around H; and increasing the value df (see Figure 2).

The effect of the proportional feedback loop is to chang’l‘ﬁcj . 9

the incremental secant gain of the first block. The incre- Vi <= (Ay:)" + 7iAyiAy-1y 4)
mental secant gain of this new first block (including the,, 511 ; — 2 n.

proporuone_ll feedback loop) i, = 13—;% It is clear that. ScalingV; by v, we obtain

by increasing the value of, the incremental secant gain

condition¥; - -+ v,, < (sec (Z))" will always be satisfied for Vi, < 1 (Ay1)? + Ayt (Atear — Ayy)
large enoughk (the details of this statement are included in M
Theorem 1).

Adding and subtracting (Ay1)2, k > 0, and definingy; =
1L this can be equivalently written

Tk
e Vi < —% (Ay1)? — Ay Ay, + k (Ay1)? + Ayy Auey
_— X w H, Hy ool p, 2 By rescalingV; by 4; we obtain
} —‘ Vi <= (Ap)? = 1Ay Ay,
+ k31 (Ay1)? + 31 Ays Aty )

Fi 2. Equivalent system with tive feedback arabhd L . .
'gure quivarent system with negative feedback arati Combining (5) with (4) and using the argument of [11], the

CFS storage functiod” = > | d;V; with d; > 0, i =

This observation is useful for proving output synchro; can be shown to satisfv the dissipation inequalit
nization in CFS networks. Indeed, coupling several C 1 b P quatly
to form a network can always be seen as introducing a v <AyT (A{D+D/1k.) Ay
particular feedback between the inputs and the outputs of )
the network components. We will use this observation in + kY1 (Ay1)” + F1Ay1 Atiexs

Section IV to find conditions ensuring global asymptoti%vhere
output synchronization in CFS networks.

-1 0 0 -7
B. Notation N 2 -1 0 0
. . Ay =

In the next sections, we consider networks composeld of k 0 7 -1
CFS. As a general convention= 1,--- ,n will denote the Lo )
index associated to a particular blogk while j =1,--- | N 0 e 0y, -1
will denote the index associated to a particular CFS in the "
network. and D = diag {d4,--- ,d,} (see [11]).

The stacked vector of blocks’ outputs for CFS = From [11], we know that if the incremental secant gain

1,---,N is denoted byy; = (ylju"' 7ynj)T (y; € R" condition ) o
since there are blocks in each CFS). Y1Y2 * - Yn < S€C (ﬁ) (6)



is satisfied, then the positive scalaks i = 1,--- ,n can be B. Output synchronization in networks of identical cyclic
chosen such thatl? D + DA, is negative definite, i.e. suchfeedback systems

that A{ D 4+ DAy < —eil, with ¢, = e(k) > 0. Using the  |n this section, we state and prove the main result con-
definition of 4, = 11— we clearly see that the incrementakterning asymptotic output synchronization of identicatlicy
secant gain condition t6) will always be satisfied by chogsirfeedback systems coupled through an interconnection xnatri
 sufficiently large. In particular, fat > “tan(eos(R))” T that satisfies assumptions (A1), (A2), and (A3). In Theo-
we obtain n rem 2,)\, (I'y) denotes the second smallest eigenvalue of the
symmetric part of the interconnection matiix
) Theorem 2: (Asymptotic Output Synchronization) Con-
V < — ¢ (Ay)T (Ay) + 7 (k (Ay1)2 +Ay1Auext) (7) sider a network of N identical cyclic feedback systems
. , , linearly coupled through the interconnection matfixi.e.
with €, > 0 which clearly shows that the cyclic feedback; =~ — _Ty, where ' satisfies the assumptions (A1),
system with inputue,; and outputy; is inc. OFP(-k). (A2), and (A3). Assume that CF$ = 1,---, N is inc.
B OFP(-k), with a radially unbounded incremental storage
function V; satisfying (8), and that the network satisfies

IV. OUTPUT SYNCHRONIZATION IN NETWORKS OF the strong coupling assumptiok, (T';) > &, then each
IDENTICAL CYCLIC FEEDBACK SYSTEMS network solution that exists for alt > 0 is such that
We now consider a network composed of identical Vi = 1,--- nVjl = 1,--- N, y;,(t) = y;(t), for

cyclic feedback systems. We assume that each CFS is inc—~ +oo. In addition, for all bounded network solutions,
OFP(-k), i.e. that each CFS is characterized by an incremetive synchronized solution of a particular CFS converges to
tal storage function which satisfies a dissipation inedyalithe limit set of this CFS, isolated.
of the form (7). In particular, the incremental dissipation  Proof: To compare each CFS output with its average
inequality associated with CFg j =1,--- ,N is over all the N CFS outputs we consider the projector
) T ~ 5 Il = Iy — +117. As a consequencé]Y; = AY; measures
Vi < —e (Ay;) (Ays) +% (k’ (Ay,)” + AyUAuemg the difference between each outpyt, j = 1,--- ,N and

@) the average outpu;lV Z;.V:lylj. Summing the incremental
where e, > 0, ngAXj) >0, V;(0) = 0 and AX; = storage functiond/; given in (8) for all the CFS gives the
Az{,---,Az} ) . As we have seen in Theorem 1, dncremental storage functiofi = SV, V; for the network

nj

sufficient condition that leads to (8) for CFSj = 1,---, N, (See [5]). Using the dissipation inequality (8), the sterag
is given byk > 71+"/1'-~’y:(cos(%))” function S obeys the dissipation inequality

Concerning the network interconnections, we restrict our- S<—a((Ieol)Y) (Iel,)Y)
selves to the case where the input-output coupling between ~ T T
the identical CFS is linear and static. The associated aayipl Tm (k (I1Yy)" IIY; + (I1Y3) HUext) ©)

matrix is denoted by’ € RV*". To ensure synchronization,gincer7 . — Ty, and (A3), we havdll,,, — —TITY; =

we make the following assumptions @n _TIIY; so that (9) rewrites as
(Al) rank(l)= N —1, ) .
(A2) T+TI7T >0, S<—a((Iel,)Y) (Iel,Y)

(A3) I'1=I"1=0. 4 (k )’ my; — (1y;)” rmq) (10)

A. Graph interpretation of the input-output coupling assump- Using (A1)-(A3), we havellY; = Vi — (£17v;)1 =0

tions iff ¥, € ker(T') and
In this section, we give an interpretation of the coupling T T
assumptions (A1), (A2), and (A3) in terms of directed graphs (IIY1)” I'IY; > Ag (L) (IY7) " 11, (11)
Consider a directed grapf with associated weighted jsing (11) in (10). we obtain
adjacency matrixd = (w,;;), j,! = 1,---,N. Assume Ing ( ).I (10), w !
that the graph is simple, i.ew;; > 0 and w;; = 0, S<—a(IeL)Y) (Iel,)Y)
Vj, 1. The corresponding weighted Laplacian matrixvrites ~ T
. . + % (k= X2 (T5)) (IIY7) " 11V,
I = (), 4,0 = 1,---,N with T;; = le\;]‘wj,lv . - A1 ( 2 (I's)) (1TY7) 1
Vi=1,---,Nandl,; = —w;;, Vj # . which yields
The interconnection ruleU.,; = -TIY; then cor- . T
responds to the linear consensus protoeal,;, = S<—a(lel)Y) (Iel,)Y) (12)
— Y wj (y1, —y1,) (see [19]). if A2 (T's) > k (strong coupling). Application of the LaSalle
Assumption (A1) holds provided that the graph is stronglywariance principle to inequality (12) proves that eaclr ne
connected (see [19]). work solution that exists for alt > 0 is such thatvi =

Assumption (A3) holds if the graph is balanced, i.e. if,--- ,nVj,l = 1,--- | N, y;,(t) = y;, (t), for t — +o0.
Al = AT1 (see [20]). Furthermore, this latter propertyrurthermore, sincd’l = 0, the effect of the coupling
implies (A2) (see [20]). disappears when synchrony is reached. This yields in additi
These assumptions do not imply thais symmetric which to the global asymptotic output synchronization resulét th
would be equivalent to assuming that the graph is undirectédr any bounded network solution the synchronized solution



of a particular CFS converges to the limit set of this CFSlerivative. It is easy to show that these latter conditiores a
isolated. m  sufficient for proving thatt,, is inc. OSP in the invariant
Combining the results of Theorem 1 and Theorem 2, vget Z; > 0. We can also see that CFSin (13) with
see that a sufficient condition for the asymptotic outpumput u.,;; and outputy;, is semipassive. To see this, first
synchronization of linearly interconnected, identicalSCis consider the uncoupled case wherg,;; = 0. Since the
Mo (Ty) >k > — 1471y (cos(£))" output of the nonlinear element is lower bounded by,

: ! . ed &
Remark 4: If each isolated CFS is a global oscillator, the's < 0: VX5 > . and thusX; will enter the invariant
limit set of each isolated CFS is a globally attractive limiget 0 < X; < - after finite time. Consequently, it is

cycle. easy to show thaffj enters in finite time the invariant set

Remark 5: Boundedness must generally be proven indé- < Y; < ;- and therefore that; enters in finite time

pendently. This can be done by requiring additional assumgpe invariant se < 7Z; < i Therefore, foruc,:; # 0,
tions such asemipassivity, as proposed in [13]. the system is passive outside the state-space cube defined
Remark 6: Even if all the network solutions are proven toy the hyperplanes(; = Y, = Z; = i and the positive
exist for all time and to be bounded, output synchronizatiasrthant (as can be seen by considering the storage function
does not directly imply state synchronization. This willthe v, = J (X? +Y? + Z7)). Using [13, Lemma 1] we may
case under an additional incremental zero-state detéttabithus conclude tﬁat aII7 solutions exist for all> 0 and are
assumption. bounded.
Remark 7: The recent paper [21] analyzes synchronization 1o make the example easier, we consitiee= by = by =
in networks of (non-identical) oscillators using an in@rm ; < . Under this assumption, it is shown in [22] that the

approach based on LMIs conditions derived from a Lyapun@yp|ated systemj possesses an equilibrium point given by
function similar to our incremental storage functiSnNev- y . _ Y, = Z; = & where¢ is the positive solution of

. . J
ertheless, this LMI formulation of the problem does not ex-1  _ be. It is also shown that this equilibrium is locally

plicitly characterize the fundamental input-output pntigs ;srf/?‘nptotically stable iffp(1 — b¢) < 8. The variablep is
termed the cooperativity coefficient and governs the rate at

needed to ensure synchronization.
which the final product (in this casg;) inhibits the formation
V. ILLUSTRATION: NETWORK OF GOODWIN of X,
iz

OSCILLATORS Taking ¢ = 1 givesb = 0.5 and the local asymptotic

As an illustration of the above theorems, we consider qapility conditionp < 16. We can thus expect stable limit
network composed aV identical oscillators linearly coupled cycle oscillations to occur fop = 17.

through an interconnection matrixthat satisfies (A1), (A2),
and (A3). Each oscillator of the network is a third orde
dimensionless Goodwin oscillator model [17]. The stat ain ~, of the static blockH, is equal to the maximum
space realization of the dimensionless Goodwin oscillat fope ‘gf the static nonlineari4t§/ in the invariant st > 0
model given in (13) is adapted from [22, Section 9.4.3] (tc,) is givesys ~ 4.26 for p = 17 =7
which the reader is referred for details of the model) andh s ’ p S .

recast in the form of the cyclic feedback system studied H2ving these values in mind, we consider the all-to-all
in the previous sections. The corresponding cyclic feekibatyChronization interconnection whereis defined by

model is composed of four blocks;, i = 1, - - - 4. In the j*" (N-1r j=1I

oscillator, the blockH;, has inputu;, and outputy;.. The Lji = { —k Vi £l

dynamical model of thg'* oscillator in the network is

The incremental secant gain of the dynamic blocks are
rv_l =2 andvy, = v3 = 1 for b = 0.5. The incremental secant

It can easily be checked that this all-to-all interconrmcti
Hi,: X; = —-hX;+uw,, v, =X matrix I" satisfies assumptions (A1), (A2) and (A3). Further-
Hy, 0 Y, = —bYj+bu -y, more, in this case),(I's) = ~N. As we proved in section
%5 J T 2ty T 02Uz, Y2 = IV, a sufficient condition for synchronization is
ng : Zj = —ngj + bgUgj, Y3, = Zj . ) 4
Hy, Y4, = TR Ma(l0) = N > b > 2002 (08 () 56,
_ (13) " (14)
with b; > 0 for ¢ = ].7' -, 3, U1, = Uext; — Ya;0 Uiy =

Using Theorems 1 and 2 and the boundedness property,
we conclude that under condition (14) all Goodwin oscil-
lators asymptotically synchronize and that the individual
synchronized solution converges to the limit set of an isola
oodwin oscillator (which is a limit cycle).

Y(i-1), fori=2,---.4,andj =1,--- , N. The oscillators
are linearly interconnected through the matffixusing their
external inputsu..;, and outputsy; ;.

All the dynamic blocksH;,, i« = 1,---,3 are linear,
OSF and inc. OSP (see Remark 1) with (incrementa& i . he i luti f th
secant gains given by-, 1 and1 respectively. Furthermore, As an illustration, the time evolution of the outpuys,

from 11 Section 6. the posive ornan of solaer LN of o oo (L L0yt
ie. Y, Z) X > ;> P> . L o
he. {(X;,Y5, ;) X; >0,¥; > 0,Z; > 0} can be shown corresponding state space diagram of these four oscglaor

to be invariant. ForZ; > 0, the static nonlinearityH,, hown in Fiqure 4
is monotonically increasing with an upper bound on its W : .|gu ' o
Simulations show that synchronization does not occur for

?This is easily seen using a storage function of the type= 5y7., # sufficiently small, x = 0 representing the uncoupled
i=1,---,3. situtation.
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Figure 4. Limit cycle for four Goodwin oscillators.

VI, [16]

We have presented sufficient conditions for the globglﬂ
asymptotic output synchronization in a network of cycligis]
feedback systems (CFS).

The method relies on recent results in [11] which provgg
that a CFS is incrementally OSP (inc. OSP) if each of its
constituent subsystems is inc. OSP and a particular inarem
tal secant gain condition is satisfied. When the incremen%?]
secant gain condition is not satisfied, we have shown that
CFS are nevertheless incrementally output feedback pms%izvl
(inc. OFP{k) for k sufficiently large). Using this result, we ]
have proven global asymptotic output synchronization iisCH22]
networks under a strong coupling assumption.

In future work, based on extensions of dissipativity theory
we plan to investigate the conditions that lead to global
boundedness of the solutions and to the existence, unigsene
and global attractivity of limit cycle oscillations for CE®/e
also plan to generalize our global synchronization regualts
networks of nonidentical CFS.

DiscussION
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