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Abstract— The performance of genetic control circuits for
metabolism is subject to a number of tradeoffs that must be
addressed at the design stage. We explore how the metabolic
steady state and transient response depend on the regulatory
topology and design parameters such as promoter and ribosome
binding site strengths. We consider a one-to-all transcriptional
control circuit for an unbranched metabolic pathway with
saturable enzyme kinetics. The analysis highlights a compro-
mise between operon and non-operon topologies in terms of
robustness and design flexibility. We show that enzyme half-
lives are an upper bound on the speed at which the pathway
can adapt to a changing metabolic demand. We also analyze
the destabilizing effect of basal enzyme expression and high
regulatory sensitivity, albeit the latter reduces the steady state
product bias.

I. INTRODUCTION

Synthetic Biology aims at engineering cellular systems to
perform customized and programmable biological functions.
Since the seminal works in [1], [2], the design of synthetic
gene modules with prescribed functionalities has undergone
great progress [3]. Synthetic control of metabolism, however,
is still in its infancy [4], as it requires a complex integration
between the genetic and metabolic domains. This is an
important bottleneck in Synthetic Biology, as one of its
most prominent applications is the manipulation of bacterial
metabolism to produce chemicals for sectors such as energy,
biomedicine and food technology [5]. There is a substantial
need for genetic control circuits that ensure robust pathway
operation under changing environmental conditions, cell-to-
cell variability and biochemical noise.

Two landmark implementations of engineered genetic-
metabolic circuits are the control of lycopene production
[6] and the metabolic oscillator described in [7]. Although
it is clear that feedback control is crucial to achieve ro-
bust metabolic regulation, only few works have tackled the
general design problem from a control-theoretic perspective.
Notably, the work in [8] demonstrated the use of a synthetic
toggle switch [2] as an ON-OFF controller for metabolism,
whereas in [9] the authors explored different genetic control
architectures for biofuel production.

In this paper we study an unbranched metabolic network
under one-to-all transcriptional repression from the product.
In a one-to-all architecture, product-responsive transcription
factors (TF) regulate the expression of all pathway enzymes
[10]. This feedback structure mimics natural circuits enabling
cellular adaptations to environmental perturbations, e.g. in
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amino acid metabolism [11], [12]. Our goal is to identify
the design tradeoffs that must be addressed, and how the
chosen feedback structure limits performance under changes
in product demand.

We consider a nonlinear ODE model for the feedback
system that comprises kinetic equations for the metabolic
species and product-dependent enzyme expression (§II). We
observe that operon control (i.e. with genes regulated by
a single TF) tends to be more robust than multiple TF
control, but it is less flexible in that it yields uniform enzyme
expression levels (§III). Linear analysis reveals that one-
to-all control has the enzyme half-lives as fixed modes.
Because these are much longer than metabolic time scales
[13], they correspond to an upper bound on the transient
response speed. We also find that leaky enzyme expression
has a destabilizing effect, thereby inducing a stable limit
cycle under high-sensitivity enzyme repression (§IV). Upon
changes in product demand, the circuit response is subject
to a tradeoff between its adaptation speed and the steady
state product bias, but the latter can be curbed with a more
sensitive feedback (§V).

II. MODEL DESCRIPTION

We consider networks as the ones shown in Fig. 1,
where s0 denotes the concentration of substrate, s1 is an
intermediate metabolite, and s2 is the metabolic product. The
metabolic reactions occur at a rate vi (each one catalyzed by
an enzyme with concentration ei), and d denotes the cellular
demand rate for product.
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Fig. 1. One-to-all transcriptional repression of an unbranched metabolic
pathway. Enzyme expression can be controlled by: (A) multiple TFs, or (B)
a single TF controlling an operon.

A. Metabolic network

The network in Fig. 1 exchanges mass with the environ-
ment and/or other networks in the cell. The model accounts
for this interaction via the input substrate s0 and the output
demand rate d. Because we are interested in biologically
meaningful phenotypes, we assume that s0 is constant to
ensure that the network can reach a nonzero steady state
[14]. The constant substrate assumption is also suitable for



scenarios where s0 is an extracellular substrate pool shared
by a low density cell population (so that the effects of cell-
to-cell competition are negligible).

In a pathway with n reactions and n metabolites, the rate
of change of metabolite concentrations can be described by

ṡi = vi(si−1, ei)− vi+1(si, ei+1), (1)

for i = 1, 2, . . . , n and vn+1 = d. This model arises from
the mass balance between the reactions that produce and
consume si, and the enzyme kinetics are comprised in the
reaction rates vi(si−1, ei). To keep the analysis as general
as possible, we will not presuppose a specific form for
the enzyme kinetics. Instead we will generically assume
that the metabolic reaction rates are linear in the enzyme
concentrations [13]:

vi(si−1, ei) = gi(si−1)ei, (2)

where gi is the enzyme turnover rate (i.e. the reaction rate per
unit of enzyme concentration). We will also assume that the
enzyme turnover rates are increasing and saturable functions
of the metabolite concentrations, so that

g′i(si−1) > 0, (3)

and

lim
si−1→∞

gi(si−1) = ĝi. (4)

Assumptions (2)–(4) account for a broad class of saturable
enzyme kinetics [13], e.g. a turnover rate of the form

gi(si−1) =
kcat is

q
i−1

KM i + sqi−1

, (5)

can describe both irreversible Michaelis-Menten (for q = 1)
and Hill-type (for q > 1) kinetics.

B. Transcriptional circuit
We model the rate of change of the enzyme concentrations

as

ėi = κ0
i + κ1

iσi(sn)− γei, (6)

for i = 1, 2, . . . , n. The equations in (6) come from the
balance between protein synthesis and degradation (modeled
as a linear process with kinetic constant γ > 0). The
basal expression rate κ0

i describes the leaky expression of
each enzyme, whereas the expression rate κ1

i represents
the aggregate effect of promoter and ribosome binding site
(RBS) strengths.

The function σi(sn) represents the feedback action of
product-responsive TFs that repress protein expression. This
kind of transcriptional feedback is common in natural regu-
latory mechanisms such as the tryptophan operon [11], and
genetic control of amino acid metabolism [12]. Transcrip-
tional repression allows for an increase in pathway flux by
upregulating the enzymes in response to a larger demand for
product. We model the regulatory effect of the product as a
Hill function

σi(sn) =
θhi
i

θhi
i + shi

n

, (7)

with Hill coefficients hi > 0 and repression thresholds θi >
0. The function σi is a lumped description of the regulatory
effect. It does not describe the specific interaction between
the product and the TFs, but instead represents the net effect
of the product on the transcription rates.

Altogether, the model for the metabolic network under
one-to-all negative regulation reads:

ṡi = gi(si−1)ei − gi+1(si)ei+1, i = 1, 2, . . . , n− 1,

ṡn = gn(sn−1)en − d,

ėi = κ0
i + κ1

i

θhi
i

θhi
i + shi

n

− γei, i = 1, 2, . . . , n,

(8)

with a constant substrate s0. In its current form, the model
accounts for independent regulation of each gene (as in Fig.
1A). By taking identical regulatory functions σi = σ for all
i, the model can also describe operon control, whereby a set
of genes are collectively transcribed in response to a single
TF (as in Fig. 1B).

III. EXISTENCE OF A STEADY STATE

A. Basal and maximal metabolic demand

We will denote the steady state metabolite concentrations,
enzyme concentrations, and reaction rates as s̄i, ēi and v̄i,
respectively. The steady state rates are

v̄i = gi(s̄i−1)ēi, (9)

and since the regulatory function is bounded as σi(sn) ∈
[0, 1), from (8) we observe that the steady state enzyme
concentrations are bounded as ēi ∈

(
Eoff

i , Eon
i

]
with

Eoff
i =

κ0
i

γ
, Eon

i =
κ0
i + κ1

i

γ
. (10)

The input substrate s0 is constant, and therefore the first
reaction rate is bounded as v̄1 ∈

(
g1(s0)Eoff

1 , g1(s0)Eon
1

]
.

In steady state we have v̄1 = g1(s0)ē1 = d, which can only
be met if the metabolic demand satisfies d ∈ (dmin, dmax ]
with

dmin = g1(s0)Eoff
1 , dmax = g1(s0)Eon

1 . (11)

B. Metabolite and enzyme equilibria

The relative steady state expression level

Ri =
ēi − Eoff

i

Eon
i − Eoff

i

, (12)

quantifies the steady state enzyme concentration ēi needed
to sustain a steady state relative to the basal and maximal
expression levels. Since the enzyme steady state must lie
within the bounds ēi ∈

(
Eoff

i , Eon
i

]
, the relative expression

must satisfy Ri ∈ (0, 1 ]. Setting d = g1(s0)ē1 we obtain the
expression level for the first enzyme

R1(d) =
d/g1(s0)− Eoff

1

Eon
1 − Eoff

1

, (13)

where we have explicitly denoted the dependence of the
expression level R1 on the demand d. Note that under the
assumption that the demand satisfies d ∈ (dmin, dmax ], it



follows that R1(d) ∈ (0, 1 ] and therefore a steady state for
e1 always exists.

We obtain the product steady state by setting ė1 = 0:

s̄n = θ1
h1

√
1−R1(d)

R1(d)
, (14)

which satisfies s̄n ≥ 0 provided that d ∈ (dmin, dmax ]. From
the model equations in (8) we can also show that

Ri(d) =
θhi
i

θhi
i + θhi

1

(
1−R1(d)
R1(d)

)hi/h1
, i ≥ 2. (15)

In the special case of operon control (see Fig. 1B), we
note that the relative expression levels take a simple form:
for equal regulatory functions for every gene (i.e. θi = θ1

and hi = h1 for all i), equation (15) simplifies to

Ri(d) = R1(d), i ≥ 2. (16)

The general expression levels Ri in (15) satisfy Ri(dmin) =
0, Ri(dmax) = 1, and R′i(d) > 0, which implies that Ri(d) ∈
(0, 1 ]. Therefore, provided that the demand is in the range
d ∈ (dmin, dmax ], a valid steady state for the enzymes ēi
exists for any combination of positive parameters. In the case
of the intermediate metabolites, however, the existence of a
steady state is more subtle.

By setting v̄i = d for 2 ≤ i ≤ n we obtain an algebraic
equation for the intermediates

gi(s̄i−1) = d/ēi. (17)

Although the monotonicity of gi implies uniqueness of the
metabolite steady state s̄i−1, equation (17) has a positive
solution only if d/ēi < ĝi, which is equivalent to

Ri(d) >
d/ĝi − Eoff

i

Eon
i − Eoff

i

, (18)

where ĝi is the saturation value defined in (4). From the
inequality in (18) we see that enzyme saturation limits the
parameter region that yields a positive steady state for the in-
termediate metabolites. Note that, in general, the expression
levels in (15) may not satisfy condition (18). The next result
gives a sufficient condition for the existence of a steady state.

Proposition 1 (Steady state under operon control):
Assume that the demand satisfies d ∈ (dmin, dmax ]. If the
expression rates satisfy

κ0
i ĝi ≥ κ0

1g1(s0), κ1
i ĝi > κ1

1g1(s0), (19)

then the network (8) under operon control has a unique
positive steady state.

Proof: We know that the existence of the enzymes ēi
and product s̄n is guaranteed by d ∈ (dmin, dmax ], whereas
the intermediates depend on condition (18). Under operon
control we have Ri = R1 and therefore both sides of
(18) are line segments in the (Ri, d) plane. By comparing
the intercepts and slope of these line segments, we get the
sufficient conditions in (19).

From these results we observe two fundamental differ-
ences between operon and non-operon control. Firstly, in

operon control the existence of a steady state depends on
tuneable parameters such as promoter and RBS strengths
(comprised in the parameters κ1

i ). In the case of non-
operon control, however, the existence of a steady state also
depends on the repression thresholds and Hill coefficients
(because the shape of Ri(d) depends critically on θi and hi,
recall (15)), both of which are generally difficult to modify
experimentally. Therefore, considering the inherent cell-to-
cell variability of genetic parameters, operon control appears
to be more robust than non-operon control. Secondly, operon
control yields equal relative expression levels (Ri), while
non-operon control is more flexible in that it allows for fine-
tuning the expression levels with different combinations of
repression thresholds and/or Hill coefficients (see (15)).

These observations suggest a robustness/flexibility com-
promise between operon and non-operon control. We illus-
trate this compromise in Fig. 2 by plotting the expression
levels Ri(d) for different combinations of thresholds and Hill
coefficients (the shaded area is the region where condition
(18) is violated).
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Fig. 2. Compromise between operon and non-operon regulation. (Black)
Operon control yields uniform relative expression levels and the expression
rates can be chosen to guarantee the existence of a steady state (see
Proposition 1). Non-operon control allows for individual tuning of the
expression levels, but the existence of the steady state also depends on
the repression threshold and Hill coefficients. (Green) Non-operon with
θi = θ1/3. (Red) Non-operon regulation with θi = 3θ1. In the shaded area
the steady state of the intermediates does not exist (see (18)). The demand
and the relative expression levels are in % of the ranges (dmin, dmax ] and(
Eoff

i , Eon
i

]
. The parameters for the first enzyme are κ0

1 = 0, κ1
1 = 5,

h1 = 2, and θ1 = 3. The remaining parameters are s0 = 1, γ = 1.2, and
we use Michaelis-Menten kinetics (kcat i = 100 and KM i = 10 for all i).

IV. STABILITY OF AN OPERON CONTROL CIRCUIT

In this section we study the local stability of an operon
control circuit for a given metabolic demand. Under an
operon structure we take equal regulatory functions for every
gene, i.e. we use σi = σ with hi = h and θi = θ for all i.
Our analysis relies on the examination of the structure of the
Jacobian matrix of (8), an approach that proved successful in
earlier works (e.g. [15] for the case of metabolic pathways
under product inhibition and linear kinetics). For a network
with n metabolites and n enzymes, the Jacobian matrix



J ∈ R2n×2n is

J =

[
J11 J12

J21 J22

]
, (20)

where the four blocks are n× n matrices given by

J11 =


−a2 0 0 · · · 0
a2 −a3 0 · · · 0

0 a3
. . . . . .

...
...

. . . . . . −an
...

0 · · · · · · an 0

 , (21)

J12 = g1(s0)


1 −β2 0 · · · 0
0 β2 −β3 · · · 0

0 0 β3
. . .

...
...

. . . . . . . . . −βn
0 · · · · · · · · · βn

 , (22)

J21 = σ′(s̄n)


0 · · · 0 κ1

1
...

. . . . . . κ1
2

...
. . . . . .

...
0 · · · 0 κ1

n

 , (23)

J22 = −γI, (24)

and we have defined

ai = g′i(s̄i−1)ēi, (25)
βi = ē1/ēi. (26)

Note that because gi is nondecreasing it follows that ai ≥ 0
for all i. With the above definitions, we have the next result.

Proposition 2 (Fixed modes under operon control):
Under the conditions of Proposition 1, the linearized
dynamics of (8) under operon control have n − 1 stable
fixed modes at λ = −γ.

Proof: With the partition in (20) the characteristic
polynomial of J (i.e. p(λ) = det(J −λI)) can be written as

p(λ) = det(J22 − λI)×

det
(

(J11 − λI)− J12 (J22 − λI)
−1
J21

)
,

= (−1)n(λ+ γ)n det

(
(J11 − λI) +

J12J21

λ+ γ

)
,

(27)

where the product J12J21 is

J12J21 =


0 0 · · · r1

0 0 · · · r2

...
. . . . . .

...
0 0 · · · rn

 , (28)

and

ri = g1(s0)σ′(s̄n)
(
βiκ

1
i − βi+1κ

1
i+1

)
, i ≤ (n− 1),

rn = g1(s0)σ′(s̄n)βnκ
1
n.

(29)

From the structure of J11 and the product J12J21, we can
carry one (λ+γ) term into the determinant in (27) and then
into the last column of its argument. This leads to

p(λ) = (λ+ γ)n−1p̄(λ), (30)

where the factor p̄(λ) is a polynomial given by

p̄(λ) = det




(λ+ a2) 0 · · · −r1

−a2

. . . · · ·
...

...
. . . (λ+ an) −rn−1

0 · · · −an λ(λ+ γ) − rn


 ,

(31)

From (30) we conclude that p(λ) has (n − 1) roots at
λ = −γ < 0. These eigenvalues are independent of the
parameters of the genetic control circuit, and therefore they
are fixed modes of the feedback system. Note that if p̄(−γ) =
0, then the Jacobian has additional eigenvalues at λ = −γ,
but these are not fixed modes because p̄(−γ) = 0 holds only
under specific combinations of the constants ri, which in turn
depend on the feedback parameters (namely the expression
rates and Hill function, see (29)).

Enzyme degradation rates are inversely proportional to
their half-lives, which are much longer than metabolic time
scales (half-lives are in the order of minutes to hours,
whereas metabolic time scales are typically milliseconds to
seconds [13]) . The fixed modes in Proposition 2 therefore
correspond to an upper bound on the response speed that a
one-to-all control circuit can provide.

The remaining n + 1 modes of the feedback system are
the roots of the polynomial p̄(λ) given in (31). The location
of these depends in an intricate way on the expression rates,
the regulatory function σ, and the metabolic demand. We
numerically find that there are parameter combinations that
lead to local instability (see Fig. 3A–C). In the full nonlinear
system, the locally unstable region is defined by two Hopf
bifurcations (Fig. 3D) between which the system displays a
stable limit cycle. From Fig. 3A–C we observe a higher Hill
coefficient tends to enlarge the region for the existence of
a limit cycle. This is not surprising in view that switch-like
control is typically more prone to oscillations.

The numerical results in Fig. 3 suggest that basal enzyme
expression plays a key role on the emergence of local
instability. Under local instability the control circuit is unable
to supply the cellular demand for product and enters an
oscillatory regime. However, as shown in the next result,
local instability can be ruled out when the basal expression
is negligible.

Proposition 3 (Stability under nil basal expression):
Under the conditions of Proposition 1 and in the absence of
basal expression, i.e. κ0

i = 0 for all i, the operon-controlled
network is locally stable.

Proof: We know that the Jacobian of (8) has n−1 stable
eigenvalues at λ = −γ, and that the remaining eigenvalues
are the roots of p̄(λ) given in (31).

Under operon control the relative expression levels are the
same for each enzyme (recall (16)), i.e. Ri = R1, i ≥ 2.
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Fig. 3. Effect of the genetic parameters and the metabolic demand on the
emergence of stable oscillations under operon regulation. (A–C) Stability
region for a pathway of length n = 2 as a function of the basal expression
rate κ0 = κ0

1 = κ0
2, the expression balance ratio κ1

2/κ
1
1 with κ1

1 = 10,
and Hill coefficient (h = {2, 4, 8} in panels A, B, and C, respectively); the
demand is shown in % of the range (dmin, dmax ]. In the region under the
curves some of the eigenvalues of the Jacobian have positive real parts; the
stability regions were computed with the Routh-Hurwitz criterion applied
to p̄(λ). (D) Bifurcation diagram of the nonlinear model (8): steady state
product concentration s̄2 as a function of the basal expression rate κ0

(Hopf bifurcations marked as H). The bifurcation diagram was computed
with Matcont for Matlab [16]. The substrate, regulatory thresholds, enzyme
kinetics and degradation rates are those used in Fig. 2.

Using the definition of Ri in (12) we can therefore write the
ratio βi = ē1/ēi as

βi =
(Eon

1 − Eoff
1 )R1(d) + Eoff

1

(Eon
i − Eoff

i )R1(d) + Eoff
i

. (32)

In the absence of basal expression (κ0
i = 0), the OFF

expression levels are also nil (Eoff
i = 0), so that βi becomes

βi = Eon
1 /Eon

i = κ1
1/κ

1
i , (33)

and therefore the constants ri in (29) simplify to ri = 0
for all i 6= n. Substituting ri = 0, i 6= n, in (31) the
polynomial p̄(λ) is given by the determinant of a lower
bidiagonal matrix, namely

p̄(λ) =

n∏
i=2

(λ+ ai) (λ(λ+ γ)− rn) . (34)

From (34) we conclude that the Jacobian has (n − 1) real
and stable eigenvalues at λ = −ai < 0, for i = 2, 3, . . . , n,
and two complex eigenvalues at

λ1,2 =

(
−γ ±

√
γ2 + 4κ1

1σ
′(s̄n)g1(s0)

)
/2. (35)

The eigenvalues λ1,2 are also stable because σ′(s̄n) < 0
implies that the polynomial (λ(λ+ γ)− rn) has positive
coefficients, and therefore its roots satisfy <{λ1,2} < 0.
Note that this holds for any regulatory function that is
monotonically decreasing, not necessarily Hill-type.

V. DYNAMIC RESPONSE OF AN OPERON CIRCUIT

In the previous sections we focused on the behavior of
the genetic circuit for a fixed metabolic demand. Synthetic
circuits, however, operate in dynamic environments whereby
cell demands may change due to resource reallocation,
environmental stimuli, or the activity of other synthetic
circuits. Another key function of the genetic control circuit
is therefore to dynamically modulate enzyme concentrations
in a way that the pathway flux adapts to changes in the
demand for product. We will consider an abrupt change in
the metabolic demand

d(t) =

{
di t ≤ t∗

df t > t∗
, (36)

where both demand values are in the allowed range{
di, df

}
⊂ (dmin, dmax ]. We consider the case of operon

regulation, and since our interest is on the transient adapta-
tion of the pathway, we assume that the regulatory circuit
has been designed to be stable for both demand levels, and
that the complete system is in steady state at t = t∗.

Although stability is sufficient for the system to reach the
new demand, the transient performance depends on the fine-
tuning of the transcriptional parameters and the size of the
demand change (i.e.

∣∣df − di∣∣). In Fig. 4 we plot different
transient responses for a range of expression rates κ1

1. We
observe that after the transient, the first reaction rate matches
the new demand. The response speed can be fine-tuned with
κ1

1 and we achieve the fastest response with κ1
1 ≈ 0.5, with

no further improvements for values κ1
1 < 0.5 (not shown).

This behavior is in agreement with Proposition 2, as the
fastest response in Fig. 4 (blue line) has a time constant
that matches the inverse of the enzyme degradation rate.

From Fig. 4 we also see that the post-stimuli steady state
product concentration is sensitive to the chosen expression
rate. This sensitivity translates into a performance tradeoff
between the transient speed and the steady state product
bias: faster responses can be achieved at the expense of
a larger bias, and vice versa. The bias is an unwanted
feature, as one would ideally seek for a “perfect” adaptation
whereby metabolites return to their pre-stimulus level. Next
we examine the effect of the transcriptional parameters on
the bias of the intermediate metabolites and product.

a) Steady state bias of the intermediates: Upon a
demand change, the relative enzyme levels change from
R1(di) to R1(df ), and from equation (17) we know that
the steady state for each intermediate is given by

s̄fi−1 = g−1
i

(
g1(s0)βf

i

)
, (37)

where βf
i = ēf1/ē

f
i and we have used the fact that in steady

state df = g1(s0)ēf1 . Recalling (32) we have that

βf
i =

(Eon
1 − Eoff

1 )R1(df ) + Eoff
1

(Eon
i − Eoff

i )R1(df ) + Eoff
i

. (38)

From the above we conclude that s̄fi−1 depends on the new
demand, but this dependency disappears in the absence of
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Fig. 4. Transient responses after a 50% step increase in product demand
(dashed line). Pathway of length n = 2 under operon regulation; the circuit
is stable for the whole range of κ1

1 with nonzero basal expression κ0
1 =
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2 = 0.1. The remaining transcriptional parameters are κ1

2 = 4, θ = 3,
h = 2, with enzyme degradation rate γ = 1.2. The substrate and enzyme
kinetics are identical to those in Fig. 2. Product concentration shown in %
of its pre-stimulus level.

basal enzyme expression (in which case βf
i simplifies to

βf
i = κ1

1/κ
1
i ). For nonzero basal expression, the sensitivity

∂s̄fi−1/∂d
f can be fine-tuned with the expression rates κ1

i ,
whereas nil basal expression translates into perfect adaptation
of the intermediates.

b) Steady state bias of the product: From the expres-
sion in (14), we know that under operon regulation the post-
stimulus product steady state is

s̄fn = θ h

√
(1−R1(df )) /R1(df ), (39)

which indicates that the product bias depends not only on the
new demand df , but also on the Hill coefficient and repres-
sion threshold. For low Hill coefficients, the product steady
state can be highly dependent on the demand. However,
the sensitivity ∂s̄fn/∂d

f in (39) decreases with increasing
h (see Fig. 5), and therefore the regulatory steepness can
be used to curb the compromise between product bias and
response time (observed previously in Fig. 4). Since a steeper
regulation also shrinks the stability region (see Fig. 3), the
circuit performance is subject to a tradeoff between its ability
to match the cellular demand and the steady state product
bias.

VI. OUTLOOK

We have explored the ability of a one-to-all genetic control
circuit to adapt enzyme concentrations in a way that the
pathway flux matches the cellular demand for product. The
analysis has revealed a number of design tradeoffs between
stability, response speed, and steady state metabolite bias.
We are working on a number of extensions to this work.
These aim primarily at: (a) identifying how the tradeoffs can
be mitigated by increasing the complexity of the feedback
(e.g. by considering more complex gene-metabolite pairings
and combinations of repression/activation loops), and (b)
extending the analysis to more complex metabolic pathways.

The wetlab implementation of genetic-metabolic circuits,
let alone parameter fine-tuning, can be costly and time con-
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Fig. 5. Effect of demand and Hill coefficient on the product bias after a
change in demand. Model parameters are those of Fig. 4 with κ1

1 = 2 and
initial demand di = (dmax− dmin)/2; the change in demand and product
concentration are plotted in % of their pre-stimulus levels.

suming. Our work provides useful insights into which factors
need to be addressed at a design stage, potentially facilitating
the implementation with a model-guided rationale.
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