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a b s t r a c t

In this paperwe study how to shape temporal pulses to switch a bistable system between its stable steady
states. Our motivation for pulse-based control comes from applications in synthetic biology, where it
is generally difficult to implement real-time feedback control systems due to technical limitations in
sensors and actuators. We show that for monotone bistable systems, the estimation of the set of all
pulses that switch the system reduces to the computation of one non-increasing curve. We provide
an efficient algorithm to compute this curve and illustrate the results with a genetic bistable system
commonly used in synthetic biology. We also extend these results to models with parametric uncertainty
and provide a number of examples and counterexamples that demonstrate the power and limitations
of the current theory. In order to show the full potential of the framework, we consider the problem
of inducing oscillations in a monotone biochemical system using a combination of temporal pulses and
event-based control. Our results provide an insight into the dynamics of bistable systems under external
inputs and open up numerous directions for future investigation.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we investigate how to switch a bistable system
between its two stable steady states using external input signals.
Our main motivation for this problem comes from synthetic
biology, which aims to engineer and control biological functions
in living cells (Brophy & Voigt, 2014). Most of current research in
synthetic biology focuses on building biomolecular circuits inside
cells through genetic engineering. Such circuits can control cellular
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functions and implement new ones, including cellular logic gates,
cell-to-cell communication and light-responsive behaviours. These
systems have enormous potential in diverse applications such as
metabolic engineering, bioremediation, and even the energy sector
(Purnick & Weiss, 2009).

Several recent works (Menolascina, Di Bernardo, & Di Bernardo,
2011; Milias-Argeitis et al., 2011; Uhlendorf et al., 2012) have
showcased how cells can be controlled externally via computer-
based feedback and actuators such as chemical inducers or light
stimuli (Levskaya, Weiner, Lim, & Voigt, 2009; Mettetal, Muzzey,
Gomez-Uribe, & van Oudenaarden, 2008). An important challenge
in these approaches is the need for real-time measurements,
which tend to be costly and difficult to implement with current
technologies. In addition, because of technical limitations and the
inherent nonlinearity of biochemical interactions, actuators are
severely constrained in the type of input signals they can produce.
As a consequence, the input signals generated by traditional
feedback controllers (e.g. PID or model predictive control) may
be hard to implement without a significant decrease in control
performance.

In this paper we show how to switch a bistable system without
the need for output measurements. We propose an open-loop
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control strategy based on a temporal pulse of suitable magnitude
µ and duration τ :

u(t) = µh(t, τ ), h(t, τ ) =


1 0 ≤ t ≤ τ ,
0 t > τ.

(1)

Our goal is to characterise the set of all pairs (µ, τ) that can switch
the system between the stable steady states and the set of all
pairs (µ, τ) that cannot. We call these sets the switching sets and
a boundary between these sets the switching separatrix. The pairs
(µ, τ) close to the switching separatrix are especially important in
synthetic biology applications, as a large µ or a large τ can trigger
toxic effects that slow down cell growth or cause cell death.

In a previous paper (Sootla, Oyarzún, Angeli, & Stan, 2015),
we showed that for monotone systems the switching separatrix
is a monotone curve. This result was therein extended to a class
of non-monotone systems whose vector fields can be bounded
by vector fields of monotone systems. This idea ultimately leads
to robustness guarantees under parametric uncertainty. These
results are in the spirit of Gennat and Tibken (2008); Ramdani,
Meslem, and Candau (2009, 2010), where the authors considered
the problem of computing reachability sets of a monotone system.
Some parallels can be also drawn with Chisci and Falugi (2006);
Meyer, Girard, and Witrant (2013), where feedback controllers for
monotone systems were proposed.
Contributions. In the present paper we provide the first complete
proof of our preliminary results in Sootla, Oyarzún, Angeli,
and Stan (2015) and extend them in several directions. We
formulate necessary and sufficient conditions for the existence of
the monotone switching separatrix for non-monotone systems.
Although it is generally hard to use this result to establish
monotonicity of the switching separatrix, we use it to prove the
converse. For example, we show that for a bistable Lorenz system
the switching separatrix is not monotone. We then generalise the
main result of Sootla et al. (2015) by providing conditions for the
switching separatrix to be a graph of a function.We also discuss the
relation between bifurcations and the mechanism of pulse-based
switching, which provides additional insights into the switching
problem. We use this intuition to show and then explain the
failure of pulse-based control on an HIV viral load control problem
(Adams, Banks, Kwon, & Tran, 2004). We proceed by providing
a numerical algorithm to compute the switching separatrices for
monotone systems. The algorithm can be efficiently distributed
among several computational units and does not explicitly use the
vector field of themodel. We evaluate the computational tools and
the theory on the bistable LacI–TetR system, which is commonly
referred to as a genetic toggle switch (Gardner, Cantor, & Collins,
2000).

We complement our theoretical findings with several observa-
tions that illustrate limitations of the current theory and highlight
the need for deeper investigations of bistable systems. For exam-
ple, we show that for a toxin–antitoxin system (Cataudella, Snep-
pen, Gerdes, & Mitarai, 2013), the switching separatrix appears to
bemonotone, even though the systemdoes not appear to bemono-
tone. Finally, in order to demonstrate the full potential of pulse-
based control, we consider the problem of inducing an oscillatory
behaviour in a generalised repressilator system (Strelkowa & Bara-
hona, 2010).
Organisation. In Section 2 we cover the basics of monotone sys-
tems theory, formulate the problem in Section 2.1, and provide an
intuition into the mechanism of pulse-based switching for mono-
tone systems in Section 2.2. We also provide some motivational
examples for the development of our theoretical results, which we
present in Section 3. In Section 4 we derive the computational al-
gorithm and evaluate it on the LacI–TetR system. In Section 5, we
provide examples, counterexamples and an application of induc-
ing oscillations in a generalised repressilator system. The proofs
are found in the Appendix.
Notation. Let ∥ · ∥2 stand for the Euclidean norm in Rn, Y ∗ stand
for a topological dual to Y , X \ Y stand for the relative complement
of X in Y , int(Y ) stand for the interior of the set Y , and cl(Y ) for its
closure.

2. Preliminaries

Consider a single input control system

ẋ = f (x, u), x(0) = x0, (2)

where f : D ×U→ Rn, u : R≥0 → U, D ⊂ Rn, U ⊂ R and u(·)
belongs to the space U∞ of Lebesgue measurable functions with
values from U. We say that the system is unforced, if u = 0. We
define the flow map φf : R × D × U∞ → Rn, where φf (t, x0, u)
is a solution to the system (2) with an initial condition x0 and a
control signal u. We consider the control signals in the shape of a
pulse, that is signals defined in (1) with nonnegative µ and τ .

In order to avoid confusion, we reserve the notation f (x, u) for
the vector field of non-monotone systems, while systems

ẋ = g(x, u), x(0) = x0, (3)
ẋ = r(x, u), x(0) = x0, (4)

denote so-calledmonotone systems throughout the paper. In short,
monotone systems preserve a partial order relation in initial
conditions and input signals. A relation≽x is called a partial order if
it is reflexive (x≽x x), transitive (x≽x y, y≽x z implies x≽x z), and
antisymmetric (x≽x y, y≽x x implies x = y). We define a partial
order through a cone K ⊂ Rn as follows: x≽x y if and only if
x − y ∈ K . We write x ⋡x y, if the relation x≽x y does not hold;
x≻x y, if x≽x y and x ≠ y; and x≫x y, if x − y ∈ int(K). Similarly
we define a partial order on the space of signals u ∈ U∞: u≽u v,
if u(t) − v(t) ∈ K for all t ≥ 0. We write u≻u v, if u≽u v and
u(t) ≠ v(t) for all t ≥ 0. Finally, a set M is called p-convex if
for all x, y in M such that x≽x y, and all λ ∈ (0, 1) we have that
λx+ (1− λ)y ∈ M .

Definition 1. The system (3) is calledmonotone onDM×U∞ with
respect to the partial orders≽x, ≽u, if for all x, y ∈ DM and u, v ∈
U∞ such that x≽x y and u≽u v, we have φg(t, x, u)≽x φg(t, y, v)
for all t ≥ 0. If additionally, x≻x y, or u≻x v implies that
φg(t, x, u)≫x φg(t, y, v) for all t > 0, then the system is called
strongly monotone.

In general, it is hard to verify monotonicity of a system with
respect to an order other than an order induced by an orthant
(e.g., positive orthant Rn

≥0). Hence throughout the paper, by a
monotone system we actually mean a monotone system with re-
spect to a partial order induced by an orthant. A certificate formono-
tonicity with respect to an orthant is referred to as Kamke–Müller
conditions (Angeli & Sontag, 2003).

Proposition 2 (Angeli & Sontag, 2003). Consider the system (3),
where g is differentiable in x and u and let the sets DM , U
be p-convex. Let the partial orders ≽x, ≽u be induced by PxRn

≥0,
PuRm
≥0, respectively, where Px = diag((−1)ε1 , . . . , (−1)εn), Pu =

diag((−1)δ1 , . . . , (−1)δm) for some εi, δi in {0, 1}. Then

(−1)εi+εj
∂gi
∂xj
≥ 0, ∀ i ≠ j, (x, u) ∈ cl(DM)×U

(−1)εi+δj
∂gi
∂uj
≥ 0, ∀ i, j, (x, u) ∈ DM ×U

if and only if the system (3) is monotone on DM ×U∞ with respect
to≽x,≽u.

If we consider the orthantsRn
≥0,R

m
≥0, then the conditions above are

equivalent to checking if for all x≼x y such that xi = yi for some i,
and all u≼u v we have gi(x, u) ≤ gi(y, v).
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2.1. Problem formulation

We confine the class of considered control systems by making
the following assumptions:
A1. Let f (x, u) in (2) be continuous in (x, u) on Df ×U. Moreover,

for each compact sets C1 ⊂ Df and C2 ⊂ U, let there exist a
constant k such that ∥f (ξ , u) − f (ζ , u)∥2 ≤ k∥ξ − ζ∥2 for all
ξ, ζ ∈ C1 and u ∈ C2;

A2. Let the unforced system (2) have two stable steady states in
Df , denoted as s0f and s1f ;

A3. LetDf = cl(A(s0f )∪A(s1f )), whereA(sif ) stands for the domain
of attraction of the steady state sif for i = 0, 1 of the unforced
system (2);

A4. For any u = µh(·, τ ) with finite µ and τ let φf (t, s0f , u) belong
to int(Df ). Moreover, let the sets

S+f =

µ, τ > 0

 lim
t→∞

φf (t, s0f , µh(·, τ )) = s1f


S−f =

µ, τ > 0

 lim
t→∞

φf (t, s0f , µh(·, τ )) = s0f


be non-empty.
Assumption A1 guarantees existence, uniqueness and continu-

ity of solutions to (2), while Assumptions A2–A3 define a bistable
system on a set Df controlled by pulses. In Assumption A4 we de-
fine the switching sets: the set S+f , which contains all (µ, τ) pairs
that switch the system, and the setS−f , which contains all pairs that
do not. The boundary between these sets is called the switching sep-
aratrix. In the rest of the paper, we focus on the control problem
of estimating the switching sets.

2.2. Mechanism of pulse-based switching

The general problem of switching a bistable systemwith exter-
nal inputs is amenable to an optimal control formulation. However,
in applications such as synthetic biology, optimal control solutions
can be very hard to implement due to technical limitations in sen-
sors and actuators. Additionally, the solution of this optimal control
problem may be technically challenging. Hence applying open-
loop pulses can be a reasonable solution, if we can guarantee some
form of robustness. As we shall see later, our results show that
for monotone systems, pulse-based switching is computationally
tractable and robust towards parameter variations.

Before presenting ourmain results, we first provide an intuitive
link betweenmonotonicity and the ability to switch a systemwith
temporal pulses. If we consider constant inputs u = µ and regard
µ as a bifurcation parameter, we have the following result with the
proof in the Appendix.

Proposition 3. Let the system (3) satisfy Assumptions A1–A4 and be
monotone onDg×U∞with respect toRn

≥0,R≥0. Let µmin be such that
all pairs (µ, τ) ∈ S−g for 0 < µ < µmin, and any finite positive τ . Let
also ξ(µ) = limt→∞ φg(t, s0g , µ) and η(µ) = limt→∞ φg(t, s1g , µ).
Then
(1) If µ ≤ λ < µmin then ξ(µ)≼x ξ(λ), η(µ)≼x η(λ);
(2) If 0 < µ < µmin then ξ(µ) ∈ A(s0g) and ξ(µ)≺x η(µ);
(3) The function ξ(µ) is discontinuous at µmin.

In many applications, the functions ξ(µ), η(µ) are simply evo-
lutions of the steady states s0g , s

1
g with respect to the parameter µ,

respectively. Hence, statement (1) of Proposition 3 shows how the
steady states move with respect to changes inµ. Statement (2) en-
sures that there are at least two distinct asymptotically stable equi-
libria forµ < µmin. Finally, statement (3) indicates that the system
undergoes a bifurcation forµ = µmin. The particular type of the bi-
furcation will depend on a specific model. Next we investigate fur-
ther aspects of this result with some examples of monotone and
non-monotone bistable systems.
Fig. 1. A schematic depiction of the evolution of the stable nodes s0g (µ), s1g (µ)

and the saddle sug (µ) with respect to µ in the genetic toggle switch system. By
slow manifold we mean a manifold connecting stable equilibria and a saddle. The
arrows show the direction of the equilibriamovementswith increasingµ. Note that
s0g (µ), s1g (µ) are increasing in the order induced by diag{1, −1}R2

≥0 . At µmin the
equilibria s0g (µ) and sug (µ) collide resulting in a saddle–node bifurcation preserving
only s1g (µ).

Example 1 (LacI–TetR Switch.). The genetic system composed of
two mutually repressive genes LacI and TetR is typically called the
genetic toggle switch and was a pioneering system for synthetic
biology (Gardner et al., 2000). Presently, toggle switches arewidely
used in synthetic biology to trigger cellular functions in response to
extracellular signals (Brophy & Voigt, 2014; Khalil & Collins, 2010).
We consider its control-affine model, which is consistent with a
toggle switch actuated by light induction (Levskaya et al., 2009):

ẋ1 =
p1

1+ (x2/p2)p3
+ p4 − p5x1 + u,

ẋ2 =
p6

1+ (x1/p7)p8
+ p9 − p10x2,

(5)

where xi represents the concentration of each protein, whose
mutual repression is modelled via a rational function. The
parameters p2 and p7 represent the repression thresholds, whereas
p4 and p9 model the basal synthesis rate of each protein. The
parameters p5 and p10 are the degradation rate constants, p1, p6
describe the strength of mutual repression, and p3, p8 are called
Hill (or cooperativity) parameters. By means of Proposition 2 we
can readily check that the model is monotone on R2

≥0×R≥0 for all
nonnegative parameter values with respect to the orders induced
by diag{1, −1}R2

≥0×R≥0. It can be verified by direct computation
that the system satisfies Assumptions A1–A4 with Df = R2

≥0. We
chose the following values of parameters

p1 = 40, p2 = 1, p3 = 4, p4 = 0.05,
p5 = 1,
p6 = 30, p7 = 1, p8 = 4, p9 = 0.1,
p10 = 1,

(6)

and numerically found a bifurcation to occur at µmin ≈ 1.4077.
For µ < µmin the system has two stable nodes and a saddle. We
observe that ξ(µ) = η(µ) for all µ > µmin, and therefore we
conclude that the system undergoes a saddle–node bifurcation, as
illustrated in Fig. 1.

Example 2 (Lorenz System). Consider a system

ẋ1 = σ(x2 − x1)+ u
ẋ2 = x1(ρ − x3)− x2 + u
ẋ3 = x1x2 − βx3

with parameters σ = 10, ρ = 21, β = 8/3, which is non-
monotone and bistable with two stable foci. Numerical computa-
tion of the sets S− and S+ in Fig. 2 suggests that the switching
separatrix is not monotone. We will revisit this conclusion in the
next section using our theoretical results.
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Fig. 2. Switching sets for the Lorenz system. We simulated the Lorenz system for
(µ, τ) pairs taken from a mesh grid. The green and red crosses correspond to the
pairs that switched or not switched the system, respectively. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Example 3 (HIV Viral Load Control Problem). In Adams et al. (2004)
the authors considered the problem of switching from a ‘‘non-
healthy’’ (s0) to a ‘‘healthy’’ (s1) steady state by means of control
inputs u1 and u2 that model different drug therapies. Due to
space limitations we refer the reader to (Adams et al., 2004) for a
description of the model. It can be verified that both steady states
are stable foci and that the model is not monotone. Although the
system can be switched with non-pulse control signals (Adams
et al., 2004), using extensive simulations we were unable to find
a combination of pulses in u1 and u2 switching the system.

As in the case of a monotone bistable system, we found a bi-
furcation with respect to constant control signals u1 = µ1 and
u2 = µ2. More specifically, we fixed µ2 = 0.4, and numeri-
cally found a bifurcation at µ1 ≈ 0.7059. The major difference
between this case and the monotone system case (Example 1) is
that the steady state s1(0.7059, 0.4) lies the domain of attraction
of s0(0, 0). Hence ifwe stop applying the constant control signalwe
regress back to the initial point s0(0, 0). Furthermore,with increas-
ing µ1 the steady state s1(µ1, 0.4) is moving towards the origin,
which also lies in the domain of attraction of s0(0, 0). This makes
pulse-based switching very difficult, if not impossible.

3. Theoretical results

In Sootla et al. (2015) we showed that the switching separatrix
of a monotone bistable system ẋ = g(x, u) is non-increasing.
Here we present a generalisation of this result by formulating
necessary and sufficient conditions for the switching separatrix to
be monotone, the proof of which is found in the Appendix.

Theorem 4. Let the system (2) satisfy Assumptions A1–A4. Then the
following properties are equivalent:

(1) If φf (t, s0f , µh(·, τ )) belongs to A(s0f ) for all t ≥ 0, then
φf (t, s0f , µh(·, τ )) belongs to A(s0f ) for all t ≥ 0, and for all µ, τ
such that 0 < µ ≤ µ, 0 < τ ≤ τ .

(2) The set S−f is simply connected. There exists a curve µf (τ ), which
is a set of maximal elements of S−f in the standard partial order.
Moreover, the curve µf (τ ) is such that for any µ1 ∈ µf (τ1) and
µ2 ∈ µf (τ2), µ1 ≥ µ2 for τ1 < τ2.

Theorem 4 shows that the computation of the set S−f is reduced
to the computation of a curve µf (τ ). This result also provides
a connection between the geometry of domains of attraction of
the unforced system and the switching separatrix. As shown next,
Theorem 4 can also be used to establish non-monotonicity of the
switching separatrix.
Remark 5 (Lorenz System Revisited). Consider the Lorenz system
from the previous section and three different pulses ui(t) =
µih(t, τ ) with µ1 = 24, µ2 = 25, µ3 = 26, and τ = 1. Numerical
solutions show that the flows φ(t, s0, u1) and φ(t, s0, u3) converge
to s0, whereasφ(t, s0, u2) converges to s1. Application of Theorem4
proves that the switching separatrix is not monotone.

The major bottleneck in the direct application of Theorem 4 is the
verification of condition (1), which is generally computationally
intractable. For example, condition (1) is satisfied if the partial
order is preserved for control signals. That is for any u≼u v,
it should follow that φg(t, s0g , u)≼x φg(t, s0g , v) for all t > 0.
Although this property is weaker than monotonicity, it is not clear
how to verify it. Monotonicity, on the other hand, is easy to check
and implies condition (1) in Theorem4. This is used in the following
result.

Theorem 6. Let the system (3) satisfy Assumptions A1–A4 and be
monotone on Dg ×U∞. Then:

(1) The set S−g is simply connected. There exists a curve µg(τ ), which
is a set of maximal elements of S−g in the standard partial order.
Moreover, the curve µg(τ ) is such that for any µ1 ∈ µg(τ1) and
µ2 ∈ µg(τ2), µ1 ≥ µ2 for τ1 < τ2.

(2) The set S+g is simply connected. There exists a curve νg(τ ), which
is a set of minimal elements of S+g in the standard partial order.
Moreover, the curve νg(τ ) is such that for any ν1 ∈ νg(τ1) and
ν2 ∈ νg(τ2), ν1 ≥ ν2 for τ1 < τ2.

(3) Let the system (3) be strongly monotone and ∂A be the separatrix
between the domains of attractions A(s0f ) and A(s1f ) of the
unforced system (3). Let additionally ∂A be an unordered
manifold, that is, there are no x, y in ∂A such that x≻x y. Then
νg(τ ) = µg(τ ) for all τ > 0 and the curve µg(·) = νg(·) is a
graph of a monotonically decreasing function.

We note that our computational procedure (see Section 4) does
not require that µg(τ ) = νg(τ ) or that µg(·), νg(·) are graphs
of functions. Hence we treat point (3) in Theorem 6 as a strictly
theoretical result, but remark that sufficient conditions for the
separatrix ∂A to be unordered are provided in Jiang, Liang, and
Zhao (2004, Theorem 2.1). The most relevant condition to our case
is that the unforced system is strongly monotone, which we also
assume in Theorem 6.

Besides µg(τ ) ≠ νg(τ ), there are other pathological cases. For
example, applying constant input control signals u = µ typically
results in a system (2) with a different set of steady states than s0f
or s1f . Moreover, the number of equilibria may be different. Hence,
with τ → ∞ the set S+f typically does not contain the limiting
control signal u = µ. If the set of pairs (µ, τ) resulting in these
pathological cases is not measure zero, then the sets cl(S+f ) and
cl(R2

≥0 \ S
−

f ) are not equal, which can complicate the computation
of the switching sets. However, in many applications, the sets
cl(S+f ) and cl(R2

≥0 \ S−f ) appear to be equal. Therefore in order to
simplify the presentation we study only the properties of S−f .

If the system ẋ = f (x, u) is not monotone, then the curve µf (τ )
may not be monotone, which is essential for our computational
procedure. Instead, we estimate inner and outer bounds on the
switching set provided that the vector field of the system can
be bounded from above and below by vector fields of monotone
systems. This is formally stated in the next result with the proof in
the Appendix.

Theorem 7. Let systems (2), (3), (4) satisfy Assumptions A1–A4. Let
DM = Dg ∪ Df ∪ Dr , the systems (3) and (4) be monotone on
DM ×U∞ and

g(x, u)≼x f (x, u)≼x r(x, u) on DM ×U. (7)
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Fig. 3. A schematic depiction of conditions (8) and (9). Condition (8) ensures that all
the steady states lie in the intersection of the corresponding domains of attractions
(violet area). The steady state s1f cannot lie in the dashed blue box due to (9). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Assume that the stable steady states s0g , s
0
f , s

0
r , s

1
f satisfy

s0g , s
0
f , s

0
r ∈ int


A(s0g) ∩A(s0f ) ∩A(s0r )


, (8)

s1f ∉

z|s0g ≼x z≼x s0r


. (9)

Then the following relations hold:

S−g ⊇ S−f ⊇ S−r . (10)

The technical conditions in (8), (9) (which are illustrated in
Fig. 3) are crucial to the proof and are generally easy to satisfy.
Verifying the condition (9) reduces to the computation of the stable
steady states, as does checking the condition (8). Indeed, to ensure
that s0f belongs to the intersection of A(s0g), A(s0f ), A(s0r ), we check
if the trajectories of the systems (3), (4) initialised at s0f with u = 0
converge to s0g and s0r , respectively, which is done by numerical
integration of differential equations. The computation of stable
steady states can be done using the methods from Zwolak, Tyson,
and Watson (2004).

In some applications, we need to find a subset of the pairs
(µ, τ) that switch the system (2) from s0f to s1f . Due to the inclusion
S−g ⊇ S−f , existence of the system (3) allows to do that. In this
case, we are only interested in finding the system (3), hence the
condition (9) is not required and the condition (8) is transformed
to s0g , s

0
f ∈ int


A(s0g) ∩A(s0f )


.

Remark 8. The proofs of Theorems 6 and 7 are adapted in a
straightforward manner to the case when systems are monotone
with respect to orders≽x,≽u induced by an arbitrary cone Kx and
R≥0, respectively. In examples, however, we always assume that
Kx is an orthant.

Theorem 7 also provides a way of estimating the switching set
under parametric uncertainty, which is stated in the next corollary.

Corollary 9. Consider a family of systems ẋ = f (x, u, p) with a
vector of parameters p taking values from a compact set P . Let the
systems ẋ = f (x, u, p) satisfy Assumptions A1–A4 for every p in P .
Assume there exist parameter values a, b in P such that the systems
ẋ = f (x, u, a) and ẋ = f (x, u, b) are monotone on DM ×U∞, where
DM =


q∈P Df (·,·,q) and

f (x, u, a)≼x f (x, u, p)≼x f (x, u, b), (11)

for all (x, u, p) ∈ DM ×U× P . Let also

s0f (·,·,p) ∈ int


q∈P

A(s0f (·,·,q))


, (12)

s1f (·,·,p) ∉

z|s0f (·,·,a)≼x z≼x s0f (·,·,b)


, (13)

for all p in P . Then the following relations hold:

S−f (·,·,a) ⊇ S−f (·,·,p) ⊇ S−f (·,·,b) ∀p ∈ P . (14)
The proof follows by setting g(x, u) = f (x, u, a) and r(x, u) =
f (x, u, b) and noting that the conditions in (12), (13) imply the
conditions in (8), (9) in the premise of Theorem 7.

Theorem 7 states that if the bounding systems (3), (4) can be
found, the switching sets S−g , S−r can be estimated, thereby pro-
viding approximations on the switching set S−f . Here we provide a
procedure to find monotone bounding systems if the system (2) is
near-monotone, meaning that by removing some interactions be-
tween the states the system becomes monotone (see Sontag, 2007
for thediscussiononnear-monotone systems). Let there exist a sin-
gle interactionwhich is not compatiblewithmonotonicitywith re-
spect to an order induced by Rn

≥0. Namely, let the (i, j)-th entry in
the Jacobian ∂ fi

∂xj
be smaller than zero. A monotone system can be

obtained by replacing the variable xj with a constant in the function
fi(x, u), which removes the interaction between the states xi and xj.
If the set D is bounded then clearly we can find xj and xj such that
xj ≥ xj ≥ xj for all x ∈ D . If the setD is not bounded, thenwe need
to estimate the bounds on the intersection of A(s0f ) and the reach-
ability set starting at s0f for all admissible pulses. Let gk = rk = fk
for all k ≠ i, gi(x, u) = fi(x, u)


xj=xj

, and ri(x, u) = fi(x, u)

xj=xj

. It
is straightforward to show that ẋ = g(x, u), and ẋ = r(x, u) are
monotone systems and their vector fields are bounding the vector
field f from below and above, respectively. Note that in order to
apply Theorem 7 we still need to check if these bounding systems
satisfy Assumptions A1–A4.

In the case of Corollary 9, the procedure is quite similar. If the
system ẋ = f (x, u, p) is monotone for all parameter values p, then
we can find a, b if there exists a partial order in the parameter
space. That is a relation ≼p such that for parameter values p1 and
p2 satisfying p1≼p p2 we have that

f (x, u, p1)≼x f (x, u, p2) ∀x ∈ D, u ∈ U.

If a partial order is found, the values a and b are computed as
minimal and maximal elements of P in the partial order ≼p. This
idea is equivalent to treating parameters p as inputs and showing
that the system ẋ = f (x, u, p) is monotone with respect to inputs
u and p.

4. Computation of the switching separatrix

The theoretical results in Section 3 guarantee the existence of
the switching separatrix for monotone systems, but in order to
compute µ(τ) we resort to numerical algorithms.

Given a pair (µ, τ) we can check if this pair is switching the
system using numerical integration. If the curve µ(τ) is a mono-
tone function, then for every τ there exists a unique pulse magni-
tude µ = µ(τ). Let T = {τi}

N
i=1 be such that τmin = τ1 ≤ τi ≤

τi+1 ≤ τN = τmax for all i. Clearly, for every τi we can compute the
corresponding µi using bisection. We start the algorithm by com-
puting the value µ1 corresponding to τ1. Due to monotonicity of
the switching separatrix, the minimal switching magnitude µ2 for
the pulse length τ2 is smaller or equal toµ1. Therefore, we can save
some computational effort by setting the upper bound on the com-
putation ofµ2 equal toµ1. The computation of the pairs (µ, τ) can
be parallelised by setting the same upper bound onµi, . . . , µi+Npar ,
where Npar is the number of independent computations. As an out-
put we obtain Mmin and Mmax, which are the sets of pairs (µ, τ)
approximating the switching separatrix from below and above, re-
spectively.

In order to evaluate the error of computing the switching
separatrix consider Fig. 4. According to the definitions in the
caption of Fig. 4 we define the relative error of the approximation
as

Erel = (µerr/(µmax − µmin)+ τerr/(τmax − τmin))/2.
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Fig. 4. Illustration of the error of computation of the switching separatrix between
the values τmin , τmax . The black curve is the switching separatrix to be computed,
the red and green circles are the upper and lower bounding points, respectively.
The switching separatrix should lie between the coloured regions due to its
monotonicity. The values µerr and τerr are the largest height and width of boxes
inscribed between the coloured regions, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Note that, even if the green and red circles lie very close to each
other the relative error canbe substantial. In numerical simulations
we use a logarithmic grid for τ , which yields a significantly lower
relative error in comparison with an equidistant grid. This can
be explained by an observation that in many numerical examples
µ(τ) appears to be an exponentially decreasing curve.

There are a few drawbacks in the bisection algorithm. Firstly,
it requires a large number of samples. Secondly, the choice of the
grid is not automatic, which implies that for switching separatrices
with different geometry the relative error on the same grid may be
drastically different. Finally, the algorithmrelies on the assumption
thatµ(τ) is a graph of amonotone function,whichmaynot be true.
In order to overcome these difficulties, we have derived Algorithm
1 based on random sampling, which converges faster than the
bisection algorithm, has higher sample efficiency, does not require
a predefined grid and the graph assumption. Some of the steps in
Algorithm 1 require additional explanation:
Step 7. Find two boxes: the box Bµ with the maximal height
(denoted asµerr) and the boxBτ with themaximalwidth (denoted
as τerr) that can be inscribed between the coloured regions as
depicted in Fig. 4.
Step 9. Generate Nε samples of τ using a probability distribution
δ between τmin and τmax. For every τ generate a value µ using a
distribution δ such that µ lies in the area between the coloured
regions. Repeat this step by first generating µ between µmin
and µmax using a distribution δ, and then generating τ for every
generated µ in the area between the coloured regions.
Step13. First,weupdate the setsMmin,Mmax by adding the samples
that do not switch and switch the system, respectively. Now if
there exist two pairs (µ1, τ1) and (µ2, τ2) in the set Mmin (resp.,
Mmax) such thatµ1 ≤ µ2 and τ1 ≤ τ2, then delete the pair (µ1, τ1)
from the set Mmin (resp., the pair (µ2, τ2) from the set Mmax).

Note that Step 11 is the most computationally expensive part
of the algorithm and its computation is distributed into Npar
independent tasks. In our implementation, we chose δ as a Beta
distribution with parameters 1 and 3, and adjusted the support
to a specific interval. Note that the set between the coloured
regions is getting smaller with every generated sample, hence the
relative error of Algorithm 1 is a non-increasing function of the
total number of samples. In fact, numerical experiments show that
this function is on average exponentially decreasing. After the sets
Mmin and Mmax are generated one can employ machine learning
algorithms to build a closed form approximation of the switching
separatrix (e.g., Sparse Bayesian Learning Tipping, 2001; see also
Pan, Sootla, & Stan, 2014,Wipf et al., 2008 for efficient algorithms).
Algorithm 1 Computation of Switching Separatrix Based on
Random Sampling
1: Inputs: The system ẋ = f (x, u) with initial state s0f , final state

s1f , total number of samples N , simulation time te, lower and
upper bounds on τ , τmin and τmax respectively, the numbersNgr,
Nε , probability distribution δ

2: Outputs: sets Mmin and Mmax

3: Computeµmin andµmax using bisection for values τmin and τmax
4: Set Mmax

=Mmin
= {(µmax, τmin), (µmin, τmax)}

5: Set Npar = 2(Ngr + Nε)
6: for i = 1, . . . , [N/Npar] do
7: Compute the values µerr, τerr, and the corresponding boxes

Bµ, Bτ .
8: GenerateNgr samples (µ, τ) in each of the boxesBµ andBτ

using a probability distribution δ
9: Generate randomly 2Nε samples

10: for j = 1, . . . ,Npar do
11: Check if the samples (µ, τ) switch the system
12: end for
13: Update and prune the sets Mmin, Mmax

14: end for

Evaluation of the Computational Algorithm.Herewe compare the bi-
section algorithm and Algorithm 1 with different parameter val-
ues, as well as their distributed implementations on the LacI–TetR
switch introduced in Section 2.2. Note that Algorithm 1 does
not depend explicitly on the dynamics of the underlying sys-
tem. Therefore, the convergence and sample efficiency results pre-
sented here will be valid for a broad class of systems. In Fig. 5, we
compare the error against the total number of generated samples.
Since checking if a sample switches the system or not is the most
expensive part of both algorithms, the total number of samples
reflects the computational complexity. In the case of Algorithm 1
with Nε = 0 the randomisation level is not high, hence an average
over ten runs is sufficient to demonstrate the average behaviour of
this algorithm. Note that Algorithm 1withNε = 0 outperforms the
bisection algorithm in the centralised and parallelised settings.

Some computational effort in Algorithm 1 goes into computing
the error. However, this effort appears to be negligible in
comparison with numerically solving a differential equation for a
given pair (µ, τ) even for such a small system as the toggle switch.
We run the simulations on a computer equippedwith Intel Core i7-
4500U processor and 8 GB of RAM. Using the centralised version
of Algorithm 1 we achieved on average a relative error equal to
0.0448 in 87.65 s, while it took 89.17 s to obtain a relative error
equal to 0.0842 with the bisection algorithm. For systems with a
larger number of states the difference may be larger.

In Fig. 5, we also compare the sample efficiency of the
algorithms, which we define as
Neff = |M

min
∪Mmax

|/N,

where N is the total number of generated samples, and |Mmin
∪

Mmax
| is the number of samples in the set Mmin

∪Mmax. Results in
Fig. 5 indicate that Algorithm 1 has higher sample efficiency than
the bisection algorithm.

Our results also indicate that Algorithm 1 with Ngr = 5,
Nε = 5 has on average a higher empirical convergence rate
and a higher sample efficiency than Algorithm 1 with Ngr =

10, Nε = 0. This indicates that a combination of non-zero
Ngr, Nε improves convergence and sample efficiency, which can
be explained as follows. When the total number of generated
samples is low, we do not have sufficient information on the
behaviour of the switching separatrix. Therefore we need to
explore this behaviour by randomly generating samples, beforewe
start minimising the relative error. This idea is similar to the so-
called exploration/exploitation trade-off in reinforcement learning
(Buşoniu, Babuška, De Schutter, & Ernst, 2010).
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Fig. 5. Average error against total number of generated samples. The curves
corresponding to the bisection algorithm are computed by a single run of the
algorithm. The curves corresponding to Nε = 0 are averages over ten runs of
Algorithm 1, while the curves for Nε > 0 are the averages over twenty runs of
Algorithm 1. Recall that Npar = 2(Ngr + Nε) for Algorithm 1. In the table we list
sample efficiency Neff in percent. In the notation x ± y, x, y stand for the empirical
mean, standard deviation, respectively.

5. Examples, counterexamples and applications

Robust Switching in the LacI–TetR System introduced in Sec-
tion 2.2. We specify a system Fupper with p1 = 40, p4 = 0.05,
p6 = 30, p9 = 0.1 and a system Flower with p1 = 20, p4 = 0.01,
p6 = 45, p9 = 0.3. The remaining parameters are the same as
in (6). After that we compute the switching separatrices and plot
them in Fig. 6. According to Corollary 9, the system with param-
eter values p1 ∈ [20, 40], p4 ∈ [0.01, 0.005], p6 ∈ [30, 65],
p9 ∈ [0.1, 0.3] and the remaining parameters as in (6) will have
the switching separatrix lying between the solid and dashed green
curves in Fig. 6. If other parameters are varied then the bounds on
the separatrices may be looser as discussed in Sootla et al. (2015).
Therein we also illustrate the application of Theorem 7 to a per-
turbed non-monotone LacI–TetR switch.

Toxin–Antitoxin System describes interaction between the toxin
proteins T and antitoxin proteins A (Cataudella et al., 2013):

Ṫ =
σT

1+ [Af ][Tf ]K0


(1+ βM [Tf ])

−
1

(1+ βC [Tf ])
T ,

Ȧ =
σA

1+ [Af ][Tf ]K0


(1+ βM [Tf ])

− ΓAA+ u,

ε ˙[Af ] = A−

[Af ] +

[Af ][Tf ]
KT

+
[Af ][Tf ]2

KTKTT


,

ε ˙[Tf ] = T −

[Tf ] +

[Af ][Tf ]
KT

+ 2
[Af ][Tf ]2

KTKTT


,

where [Af ], [Tf ] is the number of free toxin and antitoxin proteins.
In Cataudella et al. (2013), the authors considered the model with
ε = 0, but in order to simplify our analysis we set ε = 10−6.
If the parameters are chosen as follows: σT = 166.28, K0 =

1, βM = βc = 0.16, σA = 102, ΓA = 0.2, KT = KTT = 0.3,
then the system is bistable with two stable nodes. But the system
is not monotone and we were not able to find bounding systems
satisfying Assumptions A1–A4. Nevertheless, we estimated the
switching separatrix on amesh grid and noticed that the switching
separatrix appears to bemonotone.We can provide some intuition
behind this phenomenon. With ε tending to zero, we can apply
singular perturbation theory (cf. Khalil, 2002) to eliminate the
states [Af ], [Tf ]. Numerical computations indicate that the reduced
order system is not monotone in R2

≥0, however, it is monotone
around the stable equilibria, which may explain monotonicity of
the switching separatrix.
Fig. 6. Switching separatrices for the LacI–TetR system (5).

Switching in aMass Action Kinetics System fromWilhelm (2009):

ẋ1 = f1(x1, x2) = 2k1x2 − k2x21 − k3x1x2 − k4x1 + βu,

ẋ2 = f2(x1, x2) = k2x21 − k1x2.

Without loss of generality we assume that k2 = 1, since we can
remove one of the parameters using a simple change of variables.
Let L = k1 − 4k3k4, if L > 0 then the unforced system is bistable
with stable nodes s0, s1 and a saddle su:

s0 =

0
0


su =


k1 −
√
k1L

2k3√
k1 −
√
L

2k3

2



s1 =


k1 +
√
k1L

2k3√
k1 +
√
L

2k3

2

 .

It can be verified that the system is monotone on D = {x1, x2|0 ≤
x1 ≤ 2k1/k3}, which also contains the equilibria and hence the
system satisfies our assumptions.

The derivatives of f1, f2 with respect to k1 do not have the same
sign hence the system is not monotone with respect to parameter
k1. This term appears due to so-called mass action kinetics, which
are common in biological applications and hence this problem is
met often. A straightforward solution is to treat every instance
of k1 as an independent parameter. Hence we have a vector of
parameters [k11, k3, k4, k12], where k11 is the instance of k1
entering the first equation, and k12 is the instance of k1 entering
the second equation. Let k1 ∈ [7.7, 8.3], k3 ∈ [1, 1.2], k4 ∈
[1, 1.2] and consider the lower bounding parameter vector pl =
[7.7, 1.2, 1.2, 8.3], and the upper bounding parameter vector
pu = [8.3, 1, 1, 7.7]. We apply Corollary 9 only to relatively
small perturbations in parameters, since with larger variations the
system becomesmono- or unstable. There is no indication that this
problem is unique to this system, and does not appear in other
mass-action systems.

We conclude this example by performing a sweep for the
parameter k1 ∈ [6, 10], while k2 = k3 = 1. Numerical simulations
suggest that for any k1 ∈ (6, 10) the switching separatrix appears
to lie between the switching separatrices for k1 = 6 and k1 = 10,
respectively. Again we can only provide some intuition behind this
observation. It is straightforward to verify that the gradient of su
with respect to k1 is a negative vector, and the gradient of s1 with
respect to k1 is a positive vector. Hence the equilibria depend on
k1 in the way which is consistent with a behaviour of a monotone
system. This example indicates that the behaviour of the equilibria
may be one of the necessary conditions allowing the switching
separatrix to be a monotone curve and changemonotonically with
respect to parameter variations.
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Fig. 7. Switching between steady states in a generalised repressilator system. All trajectories generated by the pairs (µ, τ) corresponding to the black crosses in the left
panel will converge to a steady state with the same rate as the black curve in the right panel. Similar correspondence is valid for the red and green crosses in the left panel
and the red and green curves in the right panel. This observation indicates that the closer the pair (µ, τ) is to the switching separatrix the longer oscillations will persist.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Shaping Pulses to Induce Oscillations in an Eight Species Generalised
Repressilator. An eight species generalised repressilator is an
academic example, where each of the species represses another
species in a ring topology. The corresponding dynamic equations
for a symmetric generalised repressilator are as follows:

ẋ1 =
p1

1+ (x8/p2)p3
+ p4 − p5x1 + u1,

ẋ2 =
p1

1+ (x1/p2)p3
+ p4 − p5x2 + u2,

ẋi =
p1

1+ (xi−1/p2)p3
+ p4 − p5xi, ∀i = 3, . . . , 8,

(15)

where p1 = 40, p2 = 1, p3 = 3, p4 = 0.5, and p5 = 1. This system
has two stable nodes s1 and s2 and is monotone with the respect
to PxR8

× PuR2, where Px = diag([1, −1, 1, −1, 1, −1, 1, −1]),
Pu = diag([1, −1]). The control signal u1 can switch the system
from the state s1 to the state s2, while the control signal u2 can
switch the system from the state s2 to the state s1. The switching
separatrix for the control signal u1 is depicted in the left panel of
Fig. 7. Note that the separatrix is identical for the control signal u2,
since the repressilator is symmetric.

Numerical simulations suggest that the trajectories exhibit
an oscillatory behaviour, while switching between the stable
steady states using a pulse. This is in agreement with previous
studies that showed the existence of unstable periodic orbits
(Strelkowa & Barahona, 2010) in a generalised repressilator.
Switching trajectories of species x1 for various pairs (µ, τ) are
depicted in the right panel of Fig. 7. The observations made in the
caption of Fig. 7 indicate that the closer the pair (µ, τ) is to the
switching separatrix the longer oscillations will persist.

We can set up another control problem: to induce oscillations
in the generalised repressilator. One can address the problem by
forcing the trajectories to be close to the unstable periodic orbit
of the system, which, however, is very hard to compute. In Sootla,
Strelkowa, Ernst, Barahona, and Stan (2013), it was proposed to
track other periodic trajectories instead. However, the solution
was very computationally expensive and offering little insight
into the problem. Here we will use pulses to induce oscillations
as was proposed in Strelkowa and Barahona (2010). In contrast
to (Strelkowa & Barahona, 2010), we provide a way to shape all
possible pulses inducing oscillations.

Let the initial point be s1. We can shape the control signal u1 to
switch to the state s2. Once we have reached an ε-ball around the
state s2, we can shape the control signal u2 to switch back to the
state s1 and so on. During switching we will observe oscillations
depending on the position of the pair (µ, τ) with respect to the
switching separatrix. Now we need to define an automatic way of
switching between the steady states. Let Mε be equal to {z

s1 +
εPx1≼x z≼x s2 − εPx1}, where 1 is the vector of ones and ε > 0.
Fig. 8. Inducing oscillatory behaviour in the generalised repressilator system with
eight species. The pulses for both u1 and u2 are equal, and are generated using a
pair (µ, τ) = (48, 4.8). The pair (48, 4.8) lies relatively far from the switching
separatrix, hence the time between switches is not large.

It can be verified that the trajectories observed in Fig. 7 lie in Mε

for a small enough ε due tomonotonicity. Since the repressilator is
symmetric we can assume that the shape of pulses for both u1 and
u2 is the same and formalise our control strategy as follows. If the
event x(te)≼x s1 + εPx1 occurs at time te, then

u1(·) = µh(·, te + τ) u2(·) = 0.

If the event x(te)≽x s2 − εPx1 occurs at time te, then

u1(·) = 0 u2(·) = µh(·, te + τ).

Note that we change the entire control signals when the event
occurs at some time te. Due to this fact, the pulse µh(·, te+ τ) is of
length τ . The resulting trajectories for the species x1 and x2, as well
as control signals are depicted in Fig. 8. Our control algorithm falls
into the class of event-based control, with the events occurring if
x(te) leaves Mε . For a small enough ε, our control strategy induces
oscillations.

6. Conclusion and discussion

In this paper we have presented a framework for shaping
pulses to control bistable systems. Our main motivation comes
from control problems arising in Synthetic Biology, but the results
hold in other classes of bistable systems. We considered the
problem of switching between stable steady states using temporal
pulses. We showed that the problem is feasible, if the flow of
the controlled system can be bounded from above and below by
flows of monotone systems. We presented a detailed analysis of
the conditions needed for switching, together with an algorithm
to compute the pulse’s length and duration. We illustrated the
theory with a number of case studies and counterexamples that
shed light on the limitations of the approach and highlight the
need for further theoretical tools to control bistable non-monotone
systems.



262 A. Sootla et al. / Automatica 63 (2016) 254–264
Throughout this work we did not take into account stochastic-
ity in the model dynamics, which can be particularly important
in biochemical systems (Elowitz, Levine, Siggia, & Swain, 2002).
Noisy bistable dynamics can be controlled, for example, using rein-
forcement learning algorithms as the ones described in Sootla et al.
(2013); Sootla, Strelkowa, Ernst, Barahona, and Stan (2014). These
approaches, however, require large amounts of measurement data
that are typically impractical to acquire. A promising extension to
our results is the switching problem in stochastic bimodal systems.
This requires the use of the so-called stochastically monotone
Markov decision processes, for which a whole new set of theoret-
ical tools needs to be developed. Work in this direction started in
Sootla (2015) and the references within, addressing the extension
of the concept of monotonicity to stochastic systems.
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Appendix. Proofs

Proof of Proposition 3. (1) Here we simply need to notice that by
monotonicity with t →∞we have

ξ(µ)← φg(t, s0g , µ)≼x φg(t, s0g , λ)→ ξ(λ).

Similarly we can show that η(µ)≼x η(λ).
(2) First, we need to show that ξ(µ) ∈ A(s0g) for all 0 < µ <

µmin. This is straightforward, since due the definition of µmin the
flowφg(t, s0g , µh(·, τ )) converges to s0g for all the pairs (µ, τ) ∈ S−

for 0 < µ < µmin. Hence the limit limt→∞ φg(t, s0g , µ) belongs to
A(s0g).

Now, we show that s0g ≺x s1g . Consider u = 0 and v = λh(·, τ )

such that (λ, τ ) ∈ S+. Therefore we have

s0g = φg(t, s0g , u)≼x φg(t, s0g , v)→ s1g ,

with t →∞. Since s0g is not equal to s1g , we have s0g ≺x s1g . Now the
claim ξ(µ)≺x η(µ) for all 0 < µ < µmin follows by monotonicity.

(3) Consider µ = µmin + ε and τ large enough that the pair
(µ, τ) ∈ S+. Hence the flow φg(t, s0g , µh(·, τ )) converges to s1g .
By monotonicity we have that φg(t, s0g , µ)≽x φg(t, s0g , µh(·, τ )),
which implies that ξ(µ)≽x s1g for arbitrarily small ε > 0. Since
ξ(µmin−ε) lies in A(s0g)we have that ∥ξ(µmin−ε)− ξ(µ)∥2 > 0,
which proves the claim.

Proof of Theorem 4. (1) ⇒ (2) A. It is straightforward to verify
that the premise of Theorem 4 implies that any point lying in the
set S−f is path-wise connected to a point in the neighbourhood of
the origin. In order to show that the set is simply connected, it is
left to prove that there are no holes in the set S−f . Let η(µ, τ) be a
closed curve which lies in S−f . Consider the set

Sη
=

(µ, τ)

0 < µ ≤ µη, 0 < τ ≤ τ η, (µη, τ η) ∈ η(µ, τ)

.

Since the set S−f is in R2
>0, the set Sη contains the set enclosed by

the curve η(µ, τ). It is straightforward to show that Sη is a subset
of S−f by the premise of the theorem. Hence there are no holes in
the area enclosed by the arbitrary curve η ∈ S−f . Since the curve
η is in R2 we can shrink this curve continuously to a point, which
belongs to the set S−f . Since the curve is an arbitrary closed curve
in S−f , the set S−f is simply connected.

B. Let us show here that there exists a set of maximal elements
in S−f . Let a pair (µu, τ u) not belong to S−f . If there exists a pair
(µ, τ) ∈ S−f such that µ ≥ µu, τ ≥ τ u, then by the arguments
above the pair (µu, τ u) must also belong to S−f . Hence, all pairs
(µ, τ) such that µ ≥ µu, τ ≥ τ u do not belong to S−f . This implies
that there exists a set of maximal elements of S−f in the standard
partial order, which is a segment of the boundary of S−f excluding
the points with µ and τ equal to zero.

C. It is left to establish that the set of maximal elements is
unordered. Let the mapping µf (τ ) denote the set of maximal
elements of S−f and let τ1 < τ2. Since the mapping µf (τ ) are the
maximal elements in S−f , we cannot have µf (τ1) < µf (τ2). Hence,
µf (τ1) ≥ µf (τ2), for all τ1 < τ2.

(2) ⇒ (1) The claim follows directly from the fact that there
exists a set of maximal elements µf (τ ) in the simply connected
set S−f .

Proof of Theorem 6. (1) Due to Assumption A4, there exists at
least one point (µl, τ l) in S−g . Let us show that if a pair (µl, τ l)

belongs to S−g , then all pairs (µ, τ) such that 0 < µ ≤ µl, 0 < τ ≤

τ l also belong to S−g . By the definition of the order in u, for every
0 < µ ≤ µl, 0 < τ ≤ τ l we have 0≼u µh(t, τ )≼u µlh(t, τ l). The
following then holds

s0g ≼x φg(t, s0g , µh(·, τ ))≼x φg(t, s0g , µ
lh(·, τ l)).

By assumption, there exists a T such that for all t > T the
flow φg(t, s0g , µ

lh(·, τ l)) belongs to A(s0g) and converges to s0g .
Therefore φg(t, s0g , µh(·, τ )) converges to s0g with t → +∞, and
consequently the pair (µ, τ) does not toggle the system and thus
belongs to S−g . Therefore, by Theorem 4 µg(τ1) ≥ µg(τ2), for all
τ1 < τ2.

(2) Due to Assumption A4, there exists at least one point (µl, τ l)
in S+g . Similarly to point (1) above, we can show that, if a pair
(µl, τ l) belongs to S+g , then by continuity of solutions to (3) there
exist ε > 0, δ > 0 such that the pairs (µ + ε, τ + δ) also belong
to S+g for all 0 < ε < ε, 0 < δ < δ. Hence the set S+g has a non-
empty interior. The rest of the proof is the same as the proof of the
implication (1)⇒ (2) in Theorem 4.

(3) We prove the result by contradiction. Let there exist a τ
and an interval I = (µ1, µ2) such that for all µ ∈ I the flow
φg(t, s0g , µh(·, τ )) does not converge to s0g or s1g , but belongs to
the interior of Dg . This means that the flow φg(t, s0g , µh(·, τ ))

evolves on the separatrix ∂A between domains of attraction A(s0g)
and A(s1g) for all t > τ . Let µ1, µ2 belong to I and µ1 < µ2,
which implies that φg(t, s0g , µ1h(·, τ ))≪x φ(t, s0g , µ2h(·, τ )) and
both flows belong to ∂A. This in turn implies that the set ∂A
contains comparable points, that is, the set ∂A is not unordered.
We arrive at a contradiction, and hence the interval I is empty
and for any τ there exists a unique µg(τ ). This is equivalent to
µg(·) being a graph of a function. Using similar arguments, we can
show that the inversemappingµ−1g (τ ) is also a graph of a function,
which indicates that µg(·) is a decreasing function.

Similarly, we can show that for any µ the minimum value of
τ2 − τ1, such that the pairs (µ, τ1 − ε) ∈ S−g , (µ, τ2 + ε) ∈ S+g
for all ε > 0, is equal zero. This readily implies that µg(τ ) = νg(τ )
and completes the proof.

Before we proceed with the proof of Theorem 7 we will need two
additional results.

Lemma 10. Let the system ẋ = g(x, 0) satisfy Assumption A1 and be
monotone on A(s0g), where s0g is a stable steady state and A(s0g) is its
domain of attraction. Let xb and xl belong to A(s0g). Then all points z
such that xl≼x z≼x xb belong to A(s0g).
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Fig. A.1. An illustration to the proof of Lemma 10 for a two-state system. We
assume that xb , xl lie in A(s0g ) (violet area) and xb ≽x xc ≽x xl with xc lying on the
boundary of ∂A(s0g ). We show that, if the trajectory φg (t, xc , 0) is on the boundary
of A(s0g ), it has to converge to s0g , which cannot be true due to monotonicity of
the system. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Proof. We will show the result by contradiction. Let xl, xb belong
to A(s0g), let x

c be such that xl≼x xc ≼x xb and not belong to A(s0g).
Without loss of generality assume that xc belongs to the boundary
of A(s0g) (see Fig. A.1). Therefore the flow φg(t, xc, 0) is on the
boundary of A(s0g). Let the distance between s0g and this boundary
be equal to ρ. Clearly there exists a time T1 such that for all t > T1
the following inequalities hold

∥s0g − φg(t, xb, 0)∥2 < ρ/2,

∥s0g − φg(t, xl, 0)∥2 < ρ/2.

Moreover, there exists a time T2 > T1 such that for all t > T2 and
all z such that φg(t, xl, 0)≼x z≼x φg(t, xb, 0) we have ∥s0g − z∥2 <

ρ/2. Now build a sequence {xn}∞n=1 converging to xc such that all
xn lie inA(s0g) and xl≼x xn≼x xb. Due tomonotonicity onA(s0g), we
have

φg(t, xl, 0)≼x φg(t, xn, 0)≼x φg(t, xb, 0)

for all n and t . Hence, for all t > T2, we also have that ∥s0g −
φg(t, xn, 0)∥2 < ρ/2. Since the sequence {xn}∞n=1 converges to
xc , by continuity of solutions to (3), for all t > T2 we have
∥s0g − φg(t, xc, 0)∥2 ≤ ρ/2, which is a contradiction since ∥s0g −
φg(t, xc, 0)∥2 ≥ ρ for all t .

Lemma 11. Consider the dynamical systems ẋ = f (x, u) and ẋ =
g(x, u) satisfying Assumption A1. Let one of the systems be monotone
onDM×U∞. If g(x, u)≽x f (x, u) for all (x, u) ∈ DM×U then for all
t, and for all x2≽x x1, u2≽u u1 we have φg(t, x2, u2)≽x φf (t, x1, u1).
Proof. Without loss of generality let ẋ = g(x, u) be monotone
with respect to Rn

≥0. Let 1 be a vector of ones, xm2 = x2 +
1/m · 1, and ẋ = g(x, u) + 1/m. Denote the flow of this sys-
tem φm(t, xm2 , u2). Clearly for a sufficiently small t the condition
φm(t, xm2 , u2)≫x φf (t, x1, u1) holds. Assume there exists a time s,
for which this condition is violated. That means that for some iwe
have φi

m(t, xm2 , u2) > φi
f (t, x1, u1) for all 0 ≤ t < s, where the

superscript i denotes an ith element of the vector. While at time s
we have φi

m(s, xm2 , u2) = φi
f (s, x1, u1). Hence we conclude that

d
dt

(φi
m(t, xm2 , u2)− φi

f (t, x1, u1))


t=s
≤ 0. (A.1)

However,

dφi
f (t, x1, u1)

dt


t=s
= fi(φf (s, x1, u1), u1) (A.2)

< gi(φf (s, x1, u1), u1)+ 1/m (A.3)
≤ gi(φm(s, xm2 , u2), u2)+ 1/m

=
dφi

m(t, xm2 , u2)

dt


t=s

.

The inequality in (A.2) holds due to the bound g(x, u) +
1/m≻x f (x, u). Since the system ẋ = g(x, u) + 1/m is monotone,
the inequality in (A.3) holds as well according to the remark after
Proposition 2. This chain of inequalities contradicts (A.1), hence for
all t we have that φm(t, xm2 , u2)≫x φf (t, x1, u1). With m → +∞,
by continuity of solutions we obtain φg(t, x2, u2)≽x φf (t; x1, u1),
which completes the proof.

Proof of Theorem 7. A. First we note that the assumption in (8)
implies that s0g ≼x s0f ≼x s0r . Indeed, take x0 from the interior of the
intersection of the sets A(s0g), A(s0f ), A(s0r ). By Lemma 11 for all t ,
we have φg(t, x0, 0)≼x φf (t, x0, 0)≼x φr(t, x0, 0), and thus taking
the limit t →∞we get s0g ≼x s0f ≼x s0r .

B. Next we show that g(x, u)≼x f (x, u) for all (x, u) ∈ DM ×U
implies that S−g ⊇ S−f . Let the set V be such that u = µh(·, τ ) ∈ V

if (µ, τ) ∈ S−f .
Due to s0g ≼x s0f and g ≼x f on DM × U∞, by Lemma 11, we

have that s0g ≼x φg(t, s0g , u)≼x φf (t, s0f , u), for all u ∈ V . Note that
the first inequality is due to monotonicity of the system ẋ =
g(x, u). The flow φf (t, s0f , u) converges to s0f with t → +∞.
Therefore, there exists a time T such that for all t > T we have
s0g ≼x φg(t, s0g , u)≪x s0f + ε1 for some positive ε. Moreover, we
can pick an ε such that s0f + ε1 lies in A(s0g) (due to (8)). Since
the system ẋ = g(x, u) is monotone, according to Lemma 10, the
flow φg(t, s0g , u) lies in A(s0g). Hence, no u in V toggles the system
ẋ = g(x, u) either and we conclude that S−g ⊇ S−f . The proof that
S−g ⊇ S−r follows using the same arguments as above.

C. Finally, we show that S−f ⊇ S−r . Let the set W be such that
u = µh(·, τ ) ∈ W if (µ, τ) ∈ S−r .

Due to s0g ≼x s0f ≼x s0r and g ≼x f ≼x r onDM×U∞, by Lemma11,
we have that

φg(t, s0g , u)≼x φf (t, s0f , u)≼x φr(t, s0f , u)

for all u ∈ W . Now, monotonicity of ẋ = g(x, u) implies
that s0g ≼x φg(t, s0g , u). Furthermore, there exists a T such that
s0g ≼x φf (t, s0f , u)≼x s0r + ε1 for all t > T , for all u ∈ W and some
small positive ε. This is due to the fact that φr(t, s0f , u)→ s0r with
t → +∞. We can also choose an ε such that s0r + ε1 lies in DM
due to (8). Hence, the flow of ẋ = f (x, u) for all u ∈ W belongs to
the set {z|s0g ≼x z≼x s0r + ε1} for all t > T .

Now, assume there exists uc
∈ W that toggles the system

ẋ = f (x, u). This implies that the flow φf (t, s0f , u
c) converges to

s1f with t → ∞. Therefore we have that s1f belongs to the set
{z|s0g ≼x z≼x s0r + ε1} for an arbitrarily small ε, and consequently
s1f ≼x s0r . This contradicts the condition (9) in the premise of The-
orem 7. Hence, no u in W toggles the system ẋ = f (x, u) and
S−f ⊇ S−r .
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