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Abstract Koopman operator theory offers numerous techniques for analysis and
control of complex systems. In particular, in this chapter we will argue that for the
problem of convergence to an equilibrium, the Koopman operator can be used to
take advantage of the geometric properties of controlled systems, thus making the
optimal solutions more transparent, and easier to analyse and implement. The moti-
vation for the study of the convergence problem comes from biological applications,
where easy-to-implement and easy-to-analyse solutions are of particular value. At
the moment, theoretical results have been developed for a class of nonlinear systems
called monotone systems. However, the core ideas presented here can be applied
heuristically to non-monotone systems. Furthermore, the convergence problem can
serve as a building block for solving other control problems such as switching be-
tween stable equilibria, or inducing oscillations. These applications are illustrated
on biologically inspired numerical examples.
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1 Introduction

Research in this chapter was motivated by applications in a rather new field of sci-
ence called Synthetic Biology, which aims at the design of biological devices for
useful purposes, such as cell-based production of valuable chemical compounds
(cellular biofactories), detection of toxins or viruses in a sample (whole-cell biosen-
sors), etc. [4, 25, 8]. Engineering novel biological devices is of high interest since the
cell machinery opens the door to the synthesis of many useful organic compounds,
which cannot be easily realized by other means. This opens avenues to novel ap-
plications in biotechnology, bioprocess engineering and cell-based medicine. This
introduction contains only the basic information on challenges and advances of con-
trol theory applications in the field of Synthetic Biology, and we refer the interested
reader to [10] for additional background.

The DNA of living organisms encodes information about their biological func-
tions such as growth, development, replication etc. The DNA is a collection of
genes, which are read in the processes called gene expression into molecules such
as RNAs, proteins etc., which serve a particular purpose within a cell. Linking the
information contained in the DNA to the genetic functions it encodes is not straight-
forward, since proteins, RNAs, and genes interact with each other, creating complex
and often poorly characterized networks. For example, some proteins are known to
block or activate the expression of particular genes, while other proteins can bind
to each other forming inert complexes. The abundance of complex and poorly char-
acterized systems was one of the reasons why synthetic biology attracted an inter-
est from the feedback control community. A simple example of a feedback control
problem in the context of cell biology is forcing the amount of a particular protein
in the cell to reach a particular level using exogenous stimuli (i.e., control signals).
In control theory, we typically design these signals based on observations of the
system (called measurements) to serve a particular purpose (mathematically formu-
lated as minimizing a pre-defined objective function). External control of protein
levels in microorganisms was shown to be possible in [22, 21, 39], where sensing
and actuating are implemented using native or engineered cellular mechanisms. A
typical way of performing real-time measurements is fusing a fluorescent protein
(for example, mCherry, sfGFP, or Venus) [11] to a protein of interest, and using
microscopy to measure the fluorescence levels. Actuating can be performed using
chemical, light or temperature induction, where a specific chemical, light wave-
length or temperature profile (heat shock), respectively, are used to activate or shut
down gene expression and thereby the production of certain proteins [11]. While the
research mentioned above was successful in controlling simple biochemical pro-
cesses at both single cell and population levels, many problems were identified.
Quantitative measurement of biological signals, which is of paramount importance
for effective control, is still a problem due to current technological limitations. This
is because fluorescence measurements depend on the measurement device. Further-
more, optimal control methods, such as dynamic programming, prohibit temporal
constraints on control signals. For instance, it is not straightforward to constrain
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control signals to be step functions in time, however, such restrictions are often met
in biological applications.

Considering the modelling and control challenges delineated above, we looked
for other techniques that can be used for control of biological processes. In what
follows, we focus on the Koopman operator framework, which is a linear infinite-
dimensional representation of nonlinear dynamical systems. Due to its linearity, the
Koopman operator allows extending the notions of eigenvalues and eigenvectors
(called eigenfunctions in the Koopman framework) to nonlinear systems. Follow-
ing [19], we consider the Koopman operator on a basin of attraction of an ex-
ponentially stable equilibrium. If the slowest Koopman eigenvalue is simple, the
corresponding eigenfunction (called the dominant eigenfunction) offers convenient
geometric analysis tools [20]. In particular, (under some technical conditions) the
trajectories originating on one level set of the dominant eigenfunction reach other
level sets simultaneously. Furthermore, the equilibrium lies on the zero level set of
the dominant eigenfunction. Therefore, the values of the dominant eigenfunction at a
point in the state-space can be used to estimate the convergence time from this point
to a neighborhood around the equilibrium [20]. We will elaborate on this property in
Section 2.2, but we note that the convergence time (and the values of the dominant
eigenfunction) can serve as a qualitative measure of distance to the equilibrium.

As a starting point, we consider the study [34], in which the authors restricted the
class of considered systems to be monotone (see [2, 9]) and solved the problem of
switching between the equilibria of a bistable system using very simple open-loop
control signals. Although monotone systems represent a (theoretically) restrictive
class of nonlinear systems, many biological systems can be modeled as monotone
systems [27]. While the authors of [34] did not present a mathematical formulation
for an optimal control problem, which yields the open-loop control signals com-
puted in [34], the study itself was an indication that such a problem formulation
may exist. The Koopman operator approach to the problem was proposed in [33],
but an optimal control interpretation was still lacking. In this chapter, we focus on
the results from [32, 29], where the problem of convergence to an exponentially
stable equilibrium was solved for monotone systems. The main idea in [32, 29] was
replacing the Euclidean distance to the equilibrium with the convergence time to a
specific level set of the dominant eigenfunction, which can be seen as a qualitative
measure of distance to the equilibrium. The new problem formulation also allows
casting a dynamic optimization program as a static one, thus significantly simplify-
ing the computations while providing easy-to-implement control signals.

It is worth mentioning that the Koopman operator has been employed in optimal
control applications, albeit, in a different context. In [23, 24, 12, 14] a data-based
approach was taken, which allowed inferring control laws based on the observed
or simulated trajectories. In [17] the convergence problem was formulated using
the Koopman operator. While the class of systems was not restricted, full control-
lability was assumed, i.e. control signals affect all the states in an affine manner.
In [40] it was proposed to synchronize cardiac cells by formulating an optimal con-
trol problem with the state at the terminal time restricted to a specified level set of
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the dominant eigenfunction. However, the authors did not parametrize the control
signal, which led to complicated optimal control signals.

The rest of the chapter is organized as follows. In Section 2, we cover basic
definitions, pertaining to the Koopman operator and monotone systems theory. We
set up the convergence problem in Section 3 on a specific case study and discuss
previous research addressing the problem, its limitations and main outcomes. In
Section 4, we discuss how to formulate the convergence problem in an easier way
so as to provide efficient solutions to the convergence problem. Section 5 is devoted
to possible generalizations, while in Section 6 we illustrate the results on numerical
examples. We conclude in Section 7.

2 Theoretical Background

2.1 Dynamical Systems

Consider a system of the form

ẋ = F(x,u), x(0) = x0, (1)

with F : D×U →Rn, u : R→U , and where the sets D ⊂Rn, U ⊂R are convex,
compact, and u belongs to the space U∞ of Lebesgue measurable functions with
values from U . We assume that F(x,u) is twice continuously differentiable (C2)
in (x,u) on an open set containing D ×U . Compactness of D , U is required for
monotonicity certificates, but convexity can be relaxed [2]. Smoothness of F is re-
quired for Koopman operator analysis [20, 19]. The flow map S : R×D×U∞→Rn

induced by the system is such that S(t,x0,u) is a solution of (1) with an initial con-
dition x0 and a control signal u. We denote the closure of the set X as cl(X), and its
interior as int(X). We denote the differential of a function G(x,y) : Rn×Rm→ Rk

with respect to x as ∂xG(x,y). Let J(x) denote the Jacobian matrix of F(x,0) (i.e.,
J(x) = ∂xF(x,0)). For an equilibrium x∗, the eigenvalues of J(x∗) are {λ1, . . . ,λn}
(counted with their algebraic multiplicities) and are ordered by their real part, that is
ℜ(λi) ≥ℜ(λ j) for all i < j. We also assume the eigenvectors of J(x∗) are linearly
independent (i.e., J(x∗) is diagonalizable).

2.2 Koopman operator

We denote a semigroup of Koopman operators as U t , where U t f (x) = f ◦S(t,x) for
all t ≥ 0, and we restrict the observables to be f :Rn→C. We consider only systems
with F ∈C2 around an exponentially stable equilibrium x∗ (that is, the eigenvalues
λ j of J(x∗) are such that ℜ(λ j) < 0 for all j) with a diagonalizable J(x∗). In this
case, the eigenvalues λ j of the Jacobian matrix J(x∗) are also the eigenvalues of the



Solving Control Problems for Monotone Systems Using the Koopman Operator 5

Koopman operator and are called Koopman eigenvalues, which are associated with
the Koopman eigenfunctions φλ j : C → C satisfying

U t
φλ j(x) = φλ j(S(t,x)) = φλ j(x)eλ jt , x ∈ C , (2)

where C is a subset of B(x∗) = {x ∈ Rn| lim
t→∞

S(t,x) = x∗} – the basin of attraction

of x∗. Furthermore, Koopman eigenfunctions φλ j belong to C1 [19]. If C is compact,
then the infinitesimal generator for the semigroup can be written as L = FT ∇, and
we have the following relation for Koopman eigenfunctions and eigenvalues:

FT (x)∇φλ j(x) = λ jφλ j(x). (3)

We refer to an eigenvalue λ1 satisfying ℜ(λ1)>ℜ(λ j) for all λ1 6= λ j as the dom-
inant eigenvalue. We assume that such an eigenvalue exists (it is the case for mono-
tone systems) and we call the associated eigenfunction φλ1 the dominant eigenfunc-
tion. Under the assumptions presented above, the dominant eigenfunction φλ1 can
be computed through the Laplace average

f ∗
λ
(x) = lim

t→∞

1
T

T∫
0

( f ◦S(t,x))e−λ tdt, (4)

for some f ∈ C1 satisfying f (x∗) = 0 and (∇ f (x∗))T v1 6= 0, where v1 is a right
eigenvector of J(x∗) corresponding to λ1. The Laplace average f ∗

λ1
is equal to φλ1(x)

up to multiplication by a scalar factor. In order to compute f ∗
λ1

, we can, for example,
choose f (x) = wT

1 (x− x∗), where w1 is a left eigenvector of J(x∗) corresponding
to λ1. Other eigenfunctions are typically hard to compute using Laplace averages,
but they can be estimated using linear algebraic [19] or data-based methods such as
dynamic mode decomposition (DMD) (cf. [26, 38]).

The Koopman eigenfunctions capture important geometric properties of the sys-
tem. In particular, the dominant Koopman eigenfunction φλ1 is related to the notion
of isostables [20]. If the eigenfunction φλ1 is C1, an isostable ∂Bα associated with
the value α > 0 is the boundary of the set Bα = {x ∈ Rn | |φλ1(x)| ≤ α}. It can be
shown that the equilibrium x∗ lies on ∂B0 and trajectories with initial conditions on
the same isostable ∂Bα1 reach other isostables ∂Bα2 , with α2 < α1, after the same
time [20]

T =
1

|ℜ(λ1)|
ln
(

α1

α2

)
. (5)

Hence isostables capture the dominant (or asymptotic) behavior of the unforced
system. For instance, in the case of a simple and real λ1, for example, it can be
shown that the trajectories starting from ∂Bα share the same asymptotic evolution

S(t,x)→ x∗+v1 αeλ1t , t→ ∞ ,
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where x ∈ ∂Bα , v1 is a right eigenvector of J(x∗) corresponding to λ1.

2.3 Partial Orders and Monotone Systems

In the monotone systems theory partial orders, denoted as �, are defined using
cones K in Rn under some conditions on K . We, however, consider only the partial
order induced by a nonnegative orthant Rn

≥0 = {x ∈ Rn|xi ≥ 0, i = 1, . . . ,n}, which
is defined as follows: x� y if and only if x−y ∈Rn

≥0 (we write x 6� y if the relation
x � y does not hold). We will also write x � y if x � y and x 6= y, and x� y if
x−y ∈ Rn

>0 = {x ∈ Rn|xi > 0, i = 1, . . . ,n}. A partial order on the space of signals
u ∈U∞ is defined in a similar manner: u � v if u(t)− v(t) ∈ R≥0 for all t ≥ 0. We
now introduce concepts that are important for our subsequent discussion. The set
[x, y] = {z∈Rn|x� z� y} is called an order-interval in the order�. For a function
W : Rn→R∪{−∞,+∞}, we refer to the set dom(W ) = {x∈Rn||W (x)|< ∞} as its
effective domain. A function W :Rn→R∪{−∞,+∞} is called monotone increasing
if W (x) ≥W (y) for all x � y on dom(W ). We can now define control monotone
systems.

Definition 1 The system ẋ = F(x,u) is called monotone if S(t,x,u) � S(t,y,v) for
all t ≥ 0, and for all x� y, u� v.

In the case of unforced dynamical systems we will also consider a stricter definition
of monotonicity.

Definition 2 The unforced system ẋ=F(x,0) is strongly monotone if it is monotone
and x≺ y implies that S(t,x,0)� S(t,y,0) for all t > 0.

A certificate for monotonicity is a condition on the system’s vector field and can be
found in [2]. Monotone systems possess a number of strong stability properties. For
example, stable periodic orbits are not possible with u = 0 [9], the small gain theo-
rem can be cast as a condition on the static input-output response of the systems [2].
A rather minor property of monotone systems that we will use is the geometric
interpretation of basins of attraction, the proof of which can be found in, e.g. [34].

Proposition 1 Let the system ẋ = F(x) be monotone on the basin of attraction
B(x∗) of an asymptotically stable fixed point x∗, then for any x, y in B(x∗) the
order interval [x, y] lies in B(x∗).

One of the fundamental results for this chapter is the description of spectral proper-
ties of monotone systems using the Koopman operator [31].

Proposition 2 Assuming that the system ẋ = F(x) with F∈C2 has an exponentially
stable equilibrium x∗ and that J(x∗) is diagonalizable, let λ j be the eigenvalues of
J(x∗) such that ℜ(λi)≥ℜ(λ j) for all i≤ j.
(i) If the system is monotone with respect to K on a set C ⊆ B(x∗), then λ1 is
real and negative, the right eigenvector v1 of J(x∗) can be chosen such that v1 � 0,
while the eigenfunction φλ1 can be chosen such that φλ1(x)≥ φλ1(y) for all x, y∈C
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satisfying x� y;
(ii) Furthermore, if the system is strongly monotone with respect to K on a set
C ⊆B(x∗) then λ1 is simple, real and negative, λ1 > ℜ(λ j) for all j ≥ 2, v1 and
φλ1 can be chosen such that v1� 0 and φλ1(x)> φλ1(y) for all x, y ∈ C satisfying
x� y.

Without loss of generality, we will assume that a dominant eigenfunction φλ1 is
monotone increasing even if λ1 is not simple. In the linear case, this result reduces
to the celebrated Perron-Frobenius theorem (cf. [3]). Intuitively, this should not be
surprising in light of Koopman operator theory. In [15] it was shown that the Koop-
man operator provides a global extension of the Hartman-Grobman linearization
theorem (cf. [28]) for globally exponentially stable nonnlinear systems under suffi-
cient smoothness assumptions.

3 Problem Motivation and Issues with Naive Formulations

Due to many challenges in the control of biological systems, it is reasonable to start
by solving simple control problems. With this in mind, we formulated the following
problem.

Problem 1. Converging to an equilibrium. Consider the system ẋ = F(x,u)
and the initial state x0. Compute a control signal u(t) ∈ U∞ such that the flow
S(t,x0,u(·)) reaches an ε-ball around x∗ for some small ε > 0 in minimum time
units Tconv subject to the energy budget ‖u‖L1 ≤ Emax.

One straightforward application of the convergence problem is the problem of
switching between stable equilibria in multistable systems. As an initial case study,
consider a simplified model of a bistable genetic toggle switch system:

ẋ1 = p11 +
p12

1+(x2)p13
− p14x1 +bu,

ẋ2 = p21 +
p22

1+(x1)p23
− p24x2,

(6)

where u is assumed to be nonnegative, pi j, b are nonnegative, and the parameters
p13, p23 are typically integers larger than one and smaller than six. For a range of
parameter values this model is forward-invariant on R2

≥0 with two exponentially
stable equilibria in R2

≥0, which we denote as x• and x∗. In x∗ the value x∗1 is much
larger than x∗2, while in x• the value x•2 is much larger than x•1.

In [36], x∗ was chosen as the target equilibrium and x• as the initial point x0, and
the authors opted for an approximate dynamic programming solution. Specifically,
they used a batch-mode reinforcement learning approach [5]. In order to apply this
method they discretized the model using dx/dt = (x(k + 1)− x(k))/∆ for some
small positive ∆ and formulated the optimal control problem as:
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Fig. 1 Switching the toggle. We set p11 = p21 = 1, p12 = 60, p22 = 30, p13 = 3, p23 = 2,
p14 = p24 = 1, b = 5, ∆ = 0.1. Top panel: Application of approximate dynamic program-
ming. We formulated the cost with γ = 0.7, β = 0.8, ‖u‖ = |u|, u ∈ [0,1], and d(x,y) =
log(max(x1/y1, . . . ,xn/yn)/min(x1/y1, . . . ,xn/yn)) as a measure of distance. We ran the algorithm
from [5] with 3 · 105 data points and 70 iterations. In the left panel, the red area indicates the set
where u = 1; the blue area denotes the set where u = 0; and the yellow curve denotes the con-
trolled trajectory. In the right panel, we plot the controlled trajectories versus time. Bottom Panel:
Application of temporal pulses. The red and blue areas delineate the basins of attraction of the
two equilibria and the yellow curve denotes the trajectory controlled with a temporal pulse with
the following characteristics: κ = 5, τ = 4.7. In the right panel, we plot the controlled trajectories
versus time.

V (x) = inf
u(·)

∞

∑
k=0

γ
k(d(x(k),x∗)+β‖u(k)‖),

where γ ∈ (0,1) is called the “discount factor” and is used to guarantee that the
problem is well-posed, d(·, ·) is a distance function in Rn and ‖ · ‖ is a norm, while
β is a positive scalar. Optimal solutions for different functions d(·, ·), norms ‖ · ‖
and scalars β were computed. In what follows we will illustrate the results with ‖ ·‖
being the absolute value, while d(·, ·) is chosen to be the Hilbert metric, which pro-
vided more robust results to changes in x∗ than the Euclidean metric. Note that the
objective function is only a mathematical representation of the problem we want to
solve. In particular, we do not impose a hard constraint on the norm of the control
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signals and we require the trajectory to converge to x∗. While it is possible to impose
the specified constraints theoretically, in practical terms we can pick (by tuning) a
large enough β , and ensure that the constraint is satisfied. Furthermore, the penalty
on the control signal will ensure that we stop applying control in a vicinity of x∗.
The main idea of the algorithm in [5] is to use the simulated or observed trajecto-
ries of the model in order to solve the optimal control problem. Using the dynamic
programming principle the problem is cast as an approximation of the objective
function V . With a growing number of samples in the trajectories, the solution of
the approximate dynamic programming converges to a unique solution under some
mild conditions [5].

We depict numerical solutions in Figure 1. The optimal control signal forces jit-
tering in the trajectory by constantly switching on and off the control action. This
is not an artefact of our approximations: decreasing ∆ and increasing the number
of computed trajectories still yields a jittering behavior in the computed solution.
The underlying issue is the singularity of the continuous-time optimal control prob-
lem. We will explain this behavior using geometrical arguments. We first note that
the control signal will mostly take minimal (0) and maximal (umax) values for this
kind of problems following the bang-bang control principle. If the trajectory of the
system is in the basin of attraction of x∗ (denoted as B(x∗)), then the trajectories
will converge to x∗ even if the control is set to zero. If the trajectories are in B(x•),
then trajectories will converge to x• in the absence of control signal. If the manifold
where the optimal control signal switches between zero and umax lies in B(x•), then
we will observe jittering in the trajectory until it leaves B(x•). In order to avoid jit-
tering, one needs to employ singular optimal control methods, however, using this
mathematical apparatus seemed rather excessive. Indeed, one can easily show that
applying constant control signals is enough to ensure convergence to x∗ when start-
ing from x•. More generally, we can parametrize control signals as follows:

u = κh(t,τ), where h(t,τ) =

{
1 t ≤ τ

0 t > τ
(7)

Furthermore, if a pair (κ1,τ1) forces the trajectory to move from x• to x∗ then for any
κ2 ≥ κ1 and τ2 ≥ τ1, the pair (κ2,τ2) will also force a switch from x• to x∗ (6) [34].
This property was used to provide efficient and tight estimates on the set of all (κ,τ)
allowing the switch. Finally, a closed-loop control law (control law depending on
the state) can be constructed in a straightforward manner provided we can build an
outer approximation of B(x•) — the basin of attraction of x•. Indeed, in our case
R2
≥0 ⊂ cl(B(x•)∪B(x∗)), therefore if C contains B(x•), then the set R2

≥0/C is
contained in B(x∗) and we can define the closed-loop control law as follows:

u(x) =

{
κ x ∈ C ,

0 x ∈ R2
≥0/C .

(8)

This idea is simple and intuitive and can be applied to the class of monotone sys-
tems [34], to which the system (6) belongs.
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The control signal (7) falls into the category of open-loop control signals. That
is, the control signal does not depend on the states x, but only on time, and the
control signal is computed in advance and cannot be changed later. Closed-loop
solutions, such as solutions arising from approximate dynamic programming, are
preferable due to their inherent ability to deal with measurement noise, modeling
errors and disturbances. While we also constructed a closed-loop control law (8)
and there are efficient methods for estimating basins of attraction for monotone
systems [31], this solution does not offer much insight into the “geometry” of the
problem. Therefore one of the main outcomes of these studies was not a solution,
but a series of questions: considering all the benefits of open-loop controls (7), is it
possible to formulate an optimal control problem, which gives (7) (or (8)) as optimal
solutions? Can we explicitly use geometric properties of the system to design and
tune the control law? Can the control laws be computed efficiently? We will provide
answers to these questions for the case of monotone systems with the help of the
Koopman operator.

4 Convergence to an Isostable Problem

4.1 Problem Formulation

The eigenfunctions of the Koopman operator can be used to define a metric, which
endows some geometric properties of the system. In our case, we need to use only
the dominant eigenfunction, therefore we resort to the use of a (contracting) pseudo-
metric dK(x,y) = |φλ1(x)−φλ1(y)| on a basin of attraction B(x∗). While this pseu-
dometric does not generally generate compact sublevel sets (especially for mono-
tone systems), we can still use it for approximation of the convergence problem,
provided we ensure that dK(x,y) is sufficiently small. Note that if dK(x,x∗) ≤ α ,
then x lies in the set Bα(x∗), whose boundary is an isostable, and hence we can
formulate the problem as follows:

Problem 1∗. Convergence to an isostable. Consider the system ẋ = F(x,u) at
the initial state x0. Compute a control signal u(t) = κh(t,τ) such that the flow
S(t,x0,u(·)) reaches the set Bε(x∗) for some small ε > 0 in minimum time units
Tconv subject to the energy budget ‖u‖L1 ≤ Emax.

The main challenge in solving this problem is the parametrization of the control
signal. Most of the control methods (such as dynamic programming or Pontryagin’s
maximum principle) are not tailored to deal with time parametrized control sig-
nals since they rely on the semigroup property of the objective function or the dual
variable. Hence it is not entirely clear how to systematically approach this problem
using optimal control. Equipped with the Koopman operator framework, we will
show how to solve Problem 1∗ using a static optimization program instead of the
dynamic optimization program arising from the optimal control formulation. In or-
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der to do so we need to restrict the class of considered systems using the following
assumptions.

A1. The vector field F(x,u) in (1) is twice continuously differentiable in (x,u) on an
open set containing D×U . The unforced system (1) has an exponentially stable
equilibrium x∗ in D and J(x∗) is diagonalizable;

A2. The system is monotone with respect to Rn
≥0×R and for all x ∈D , u ∈U∞, the

flow S(t,x,u(·)) belongs to D ;
A3. There exists an eigenfunction φλ1(x) such that ∇φλ1(x)� 0 for all x∈ dom(φλ1).

Furthermore, F(x,κ1)� F(x,κ2) for all x ∈D and κ1 > κ2 ≥ 0.

Assumption A1 guarantees existence and uniqueness of solutions, and the exis-
tence of continuously-differentiable (C1) Koopman eigenfunctions around the ex-
ponentially stable equilibrium x∗. Monotonicity in Assumption A2 is the crucial
assumption that requires careful checking. Forward-invariance is relatively straight-
forward to check: in our case U is a compact interval [0,umax], and we only need
to make sure that D = cl(B(x∗)∪B(x•)) and S(t,x,umax) does not leave D for
all t > 0, x ∈ D . If Assumptions A1–A2 hold, then we have ∇φλ1(x) � 0 and
F(x,κ1) � F(x,κ2) for κ1 > κ2 ≥ 0. Hence, Assumption A3 serves as a technical
assumption that guarantees uniqueness of solutions to the posed control problem
and a certain degree of regularity. We will comment throughout the chapter on the
case when Assumption A3 does not hold. Parametrization of control signals in Prob-
lem 1∗ can potentially be relaxed, since the only fundamental limitation is to set u(t)
to zero after some time τ . We discuss this relaxation in Section 5.2.

4.2 Existence of Solutions

Restriction of control signals to temporal pulses will be shown to be beneficial from
both a computational and an implementation viewpoint. A possible price to pay
for this simplification is the loss of feasibility due to the restriction of the space of
control signals. This can potentially occur in multistable systems, however, in the
case of bistable monotone systems, a few simple arguments show that the space of
temporal pulses is rich enough to solve the convergence problem.

Proposition 3 Consider a monotone system ẋ = F(x,u) on D×U under standard
conditions for uniqueness and existence of solutions. If:
(i) for u = 0 there are two asymptotically stable equilibria x∗ and x• in D such that
x∗� x•,
(ii) for any u ∈U∞ the flow S(t,x,u(·)) lies in the set D = cl(B(x∗)∪B(x•),
(iii) for every x in a small ε-ball (in the Euclidean metric) around x•, there exists
u0 ∈U∞ such that S(t,x,u0) converges to x∗.
Then there exist κ and τ such that S(t,x,κh(·,τ)) converges to x∗

Proof. If x0 ∈B(x∗), then we can choose u0 = 0, which is a temporal pulse with
τ = 0.
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Consider now the case when x0 lies in the ε-ball around x•, and ε is small enough
such that x0 ∈B(x•). According to the point (iii) there exists a control signal u0 ∈
U∞ driving the system from x0 to x∗. Due to monotonicity, we have S(t,x0,u0) �
S(t,x0,κ), where u0(t)≤ κ for (almost) all t. Since for all t > 0:

S(t,x0,0)� S(t,x0,u0)� S(t,x0,κ),

we have that S(t,x0,u0) ∈ [S(t,x0,0), S(t,x0,κ)]. According to the premise, at
some time τ , the flow S(τ,x0,u0) will be in the basin of attraction of B(x∗).
Now if S(τ,x0,κ) ∈B(x•) we have a contradiction, since S(τ,x0,u0) belongs to
[S(τ,x0,0), S(τ,x0,κ)], which is a subset of B(x•) according to Proposition 1.
Hence if we can switch from x0 to x∗ with a control signal u(t), then we can switch
with a temporal pulse κh(t,τ).

The case when x0 lies in B(x•), but not in an ε ball around x•, is treated in a
similar manner by first allowing the trajectory to converge to a neighborhood of x0

with u1 = 0 and then applying the argument above. ut

The condition x∗ � x• (or x∗ � x• which can be cast in the form above by
changing the order to one induced by −Rn

≥0) is typically fulfilled for a large class
of bistable monotone systems. Condition (iii) is a controllability condition, which
ensures the existence of solutions for non-parametrized control signals. Condition
(ii) is quite easy to verify as discussed above. Note that in Proposition 3 we relax
Assumptions A1 and A2 and this result is valid for a more general class of systems.

We can strengthen the argument for using constant control signals by showing
that constant controls are optimal in the absence of energy constraints. Consider the
following optimal control problem over bounded and measurable control signals:

V (z,κ,β ) = inf
τ,u∈U∞([0,κ])

τ, (9)

subject to (1), x(0) = z,
x(τ) ∈ Cβ = {y ∈ Rn|φλ1(y) = β},

where φλ1(x) is a C1 increasing dominant eigenfunction defined on the basin of
attraction of x∗. Under our assumptions, the solution to this problem is surprisingly
straightforward.

Proposition 4 Let the system (1) satisfy Assumptions A1 – A3. Then
(i) If φλ1(z) < β , then the optimal solution to (9), if it exists, is u(t) = κ for all
t ∈ [0,τ];
(ii) If φλ1(z)≥ β , then the optimal solution to (9) is u(t) = 0 for all t ≥ 0.

Proof. (i) Let u0(t) = κ for all t > 0, and uδ (t) be any admissible control signal.
Then u0(t)� uδ (t) for all t ∈ [0, τ]. By monotonicity we then have S(t,z,u0(·))�
S(t,z,uδ (·)), which leads to φλ1(S(t,z,u

0(·)))≥ φλ1(S(t,z,u
δ (·))) for all t ≥ 0 due

to Proposition 2. Hence
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β = φλ1(S(τ,z,u
0(·)))≥ φλ1(S(τ,z,u

δ (·))),

β > φλ1(S(t,z,u
0(·)))≥ φλ1(S(t,z,u

δ (·))) for t < τ,

which implies that the target set Cβ is reached with u0(·) at least as fast as with any
other admissible control signal uδ (·). Therefore, the control signal u0(t) = κ is an
optimal solution of the problem.

(ii) The proof is similar to the point (i). ut

4.3 Pulse Control Function

The computational solution to Problem 1∗ relies on a function of state x, of the pulse
magnitude κ and of the pulse length τ , which we call the pulse control function.

Definition 3 Let the function r : D×R≥0×R≥0→ C
⋃
{∞} such that

r(x,κ,τ) = φλ1(S(τ,x,κ)),

where φλ1 is a dominant eigenfunction on the basin of attraction of x∗, be called the
pulse control function. By convention r(x,κ,τ) = ∞, if S(τ,x,κ) 6∈B(x∗).

If φλ1 is real-valued and monotone increasing on dom(φλ1) = B(x∗), then we
assume it is extended to D so that φλ1 : D → R∪{−∞,+∞} is monotone increas-
ing on D . We note that the case when the point x is another equilibrium x• was
considered in [33]. Estimation of the pulse control function also relies on a Laplace
average (4), similarly to what was done for the estimation of φλ1 :

r(x,κ,τ) = lim
t̄→∞

1
t̄

t̄∫
0

f ◦S(t,S(τ,x,κ),0)e−λ1tdt

= lim
t̄→∞

1
t̄

t̄∫
τ

f ◦S(t,x,κh(·,τ))e−λ1(t−τ)dt, (10)

where λ1 is the dominant eigenvalue of J(x∗) with a corresponding right eigenvector
v1 , f ∈C1 satisfies f (x∗) = 0, vT

1 ∇ f (x∗) 6= 0, and h(t,τ) is the step function defined
in (7). In practice, we choose f (x) = wT

1 (x− x∗), where w1 is the dominant left
eigenvector of J(x∗). If Assumptions A1 and A2 hold then λ1 is real according to
Proposition 2), and we have

r(x,κ,τ)≈ wT
1 (S(t̄,x,κh(·,τ))−x∗)e−λ1(t̄−τ)

where the time t̄ should be chosen large enough. In particular, the value of t̄ should
be chosen such that wT

1 (S(t,x,κh(·,τ))−x∗)e−λ1(t−τ) converges to a constant value.
Naturally, with t̄ tending to infinity the numerical integration errors can lead to di-
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vergence of wT
1 (S(t,x,κh(·,τ))− x∗)e−λ1(t−τ). Therefore, the tolerance of the dif-

ferential equation solver should be set to O(eλ1(t̄−τ)).
For monotone systems the pulse control function r possesses strong properties,

which stem from Proposition 2 and are the key element for this approach.

Lemma 1 Let the system (1) satisfy Assumptions A1–A3. Then r is a C1 function on
its effective domain dom(r). Furthermore, for all (x,κ,τ) ∈ dom(r)
(i) ∂xr(x,κ,τ)� 0, ∂κ r(x,κ,τ)> 0 and ∂τ r(x,κ,τ)> λ1r(x,κ,τ);
(ii) If r(x,κ,τ)≤ 0, then ∂τ r(x,κ,τ)> 0.

Proof. (o) First, we need to show that under the assumptions above for all t > 0 and
κ1 > κ2, we have

S(t,x,κ1)� S(t,x,κ2), (11)
φλ1(S(t,x,κ1))> φλ1(S(t,x,κ2)). (12)

Since S(t,x,κ1) � S(t,x,κ2) for all t > 0 and κ1 > κ2 due to Assumption A2
(monotonicity), we only need to show that S(t,x,κ1) 6= S(t,x,κ2) for all finite t > 0.
At t = 0, the time derivatives of the flows S(t,x,κ1) and S(t,x,κ2) are equal to
F(x,κ1) and F(x,κ2), respectively. Due to Assumption A3 we have that F(x,κ1)�
F(x,κ2) and consequently there exists a T > 0 such that S(t,x,κ1)� S(t,x,κ2) for
all t < T . If for some ξ ≥ T we have that S(ξ ,x,κ1) = S(ξ ,x,κ2) and S(ξ ,x,κ1)�
S(ξ ,x,κ2) for all t < ξ , then for some index i we have

dSi(t,x,κ1)

dt

∣∣∣
t=ξ

<
dSi(t,x,κ2)

dt

∣∣∣
t=ξ

.

This leads to Fi(S(ξ ,x,κ1),κ1)<Fi(S(ξ ,x,κ2),κ2), which together with S(ξ ,x,κ1)=
S(ξ ,x,κ2) contradicts Assumption A3. Therefore, S(t,x,κ1)� S(t,x,κ2) for all fi-
nite t > 0. Due to Assumption A3 we also have that ∇φλ1(x)� 0, which in particular
means that φλ1(x)> φλ1(y) for all x� y, and (12) follows from (11).

(i) Assumption A1 guarantees that F(x,u) ∈ C2 and hence the flow S(t,x,u) is
continuously-differentiable for constant control signals. Combining this with the
fact that φλ1 ∈C1 it follows that r(x,κ,τ) = φλ1(S(τ,x,κ)) is a C1 function.

For (x,κ,τ) and (y,κ,τ)∈ dom(r) such that x� y, monotonicity and ∇φλ1(x)�
0 (Assumption A3) ensure that φλ1(S(τ,x,κ))> φλ1(S(τ,y,κ)), which implies that
∇xr(x,κ,τ)� 0.

For (x,κ,τ) and (x,ν ,τ) ∈ dom(r) such that κ > ν , monotonicity and point (o)
ensure that (12) holds, which implies that ∂κ r(x,κ,τ)> 0.

Finally, the following derivation leads to ∂τ r(x,κ,τ)> λ1r(x,κ,τ):



Solving Control Problems for Monotone Systems Using the Koopman Operator 15

∂τ r(x,κ,τ) =
dφλ1(S(t,x,κ))

dt

∣∣∣
t=τ

=

∇φλ1(S(τ,x,κ))
T F(S(τ,x,κ),κ)>∗

∇φλ1(S(τ,x,κ))
T F(S(τ,x,κ),0) =†

λ1φλ1(S(τ,x,κ)) = λ1r(x,κ,τ),

where the inequality ∗ is due to Assumption A3, and the equality † is due to (3).
(ii) follows directly from point (i). ut

If Assumption A3 does not hold, then all the inequalities in Lemma 1 are not
strict. For instance, we have that ∂xr(x,κ,τ)� 0, ∂κ r(x,κ,τ)≥ 0 and ∂τ r(x,κ,τ)≥
λ1r(x,κ,τ) in point (i).

In light of Lemma (1), the pulse control function r has a direct relation to
the optimization problem formulated in (9). In particular, φλ1(x) < β implies that
r(x,κ,V (x,κ,β )) = β provided that the optimization problem in (9) has a so-
lution. On the other hand, there might be some values τ 6= V (x,κ,β ) such that
r(x,κ,τ) = β . In general, if φλ1(x)< β , then

V (x,κ,β ) = min{τ ∈ R>0|r(x,κ,τ) = β}, (13)

provided that the solution exists. In particular, if r is strictly monotone increasing in
τ on some subset of (x,κ,τ), then V (x,κ,β ) = τ if and only if r(x,κ,τ) = β , which
again justifies our use of the pulse control function in these cases.

If the premise of the point (ii) in Lemma 1 holds, then the level sets of r are the
graphs of strictly decreasing functions, a result which simplifies their computations
as discussed in [33]. The algorithms developed in [31], [30] and [13] can be used to
estimate these level sets.

Corollary 1 Let the system (1) satisfy Assumptions A1–A3, and α > 0. If φλ1(x)<
−α , then {(κ,τ) ∈R2

>0|r(x,κ,τ) =−α} is the graph of a strictly decreasing func-
tion, i.e., this set does not contain pairs (κ1,τ1) 6= (κ2,τ2) such that κ1 ≤ κ2 and
τ1 ≤ τ2;

Proof. Due to Lemma 1 we have that ∂τ r(x,κ,τ) > 0 as long as r(x,κ,τ) ≤ 0,
and that ∂κ r(x,κ,τ) > 0. Now since ∂τ r(x,κ,τ) > 0 (for all (κ,τ) such that
r(x,κ,τ) =−α < 0), the implicit function theorem implies that there exists a func-
tion τ = g(κ,α) such that r(x,κ,g(κ,α)) = −α . Furthermore, the function g is
C1 in κ and ∂κ g = −∂κ r(x,κ,τ)/∂τ r(x,κ,τ) < 0 in the neighborhood of the level
set {(κ,τ)|r(x,κ,τ) = −α}. Therefore the level set {τ,κ|r(x,κ,τ) = −α} is the
graph of a strictly decreasing function in κ . It also directly follows that the level set
{(κ,τ)|r(x,κ,τ) =−α} is the graph of a strictly decreasing function in τ . ut
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4.4 Solution to the Problem of Convergence to Isostables

We can now reformulate Problem 1∗ using the pulse control function. If φλ1(x
0)≥ ε ,

then according to Proposition 4 the optimal convergence to the level set φλ1(x) =−ε

is solved by a zero control signal. Therefore, we can assume that φλ1(x
0)≤−ε , that

is we approach the equilibrium x∗ from below in the partial order. Since r(x,κ,τ) =
−ε , x belongs to {x ∈ Rn|φλ1(S(τ,x,κ)) = −ε} and as a consequence x ∈ Bε .
Therefore, the terminal constraint becomes simply r(x,κ,τ)≤−ε . The convergence
time formula is computed using Koopman operator theory as:

Tconv =
1

|ℜ(λ1)|
ln
( |φλ1(S(τ,x,κ))|

ε

)
+ τ =

1
|ℜ(λ1)|

ln
(
|r(x,κ,τ)|

ε

)
+ τ,

where the total convergence time is computed as the sum of the time of free motion
of the flow (the first term in the sum) and the time τ during which the control is
applied (the second term in the sum). Finally, the energy budget constraint in L1
norm is κ · τ ≤ Emax and Problem 1∗ becomes a static optimization program:

γ
∗ = min

κ≥0,τ≥0

1
|ℜ(λ1)|

ln(|r(x,κ,τ)|)+ τ, (14)

subject to: r(x,κ,τ)≤−ε, (15)
κ · τ ≤ Emax, (16)

where in the objective function we removed the constant terms from Tconv, that is
γ∗ = Tconv +

1
|ℜ(λ1)|

ln(ε).

Theorem 1 Consider the system (1), Problem 1∗ under Assumptions A1–A3 and
the optimization program (14). If φλ1(x

0) ≤ −ε , an optimal solution to (14) is an
optimal solution to Problem 1∗, if the former is feasible. Furthermore, the objective
is nonincreasing in κ and τ and an optimal solution to (14), if it exists, is achieved at
the boundary of the admissible set to the constraint (15) and/or the constraint (16).

Proof. It is straightforward to verify that all the constraints and optimization objec-
tives are the same for Problem 1 and problem (14). Hence, by construction, the first
part of the statement is fulfilled.
Since the system is monotone, λ1 is real and therefore λ1 = ℜ(λ1). Now accord-
ing to the constraint (15), we have that r(x0,κ,τ)< 0, which implies the following
derivation:

∂τ(ln(|r(x0,κ,τ)|e|λ1|τ)) =
∂τ(|r(x0,κ,τ)|e|λ1|τ)

|r(x0,κ,τ)|e|λ1|τ
=

−∂τ(r(x0,κ,τ)) · e|λ1|τ + |λ1||r(x0,κ,τ)|e|λ1|τ

|r(x0,κ,τ)|e|λ1|τ
<∗

λ1|r(x0,κ,τ)|e|(λ1)|τ + |λ1||r(x0,κ,τ)|e|λ1|τ

|r(x0,κ,τ)|e|λ1|τ
= 0
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where the inequality ∗ follows from Lemma 1. Hence, the derivative of the objective
function in (14) with respect to τ is negative. Also, ∂κ ln(|r(x0,κ,τ)|e|λ1|τ) is also
negative according to Lemma 1. This shows that if there is a feasible point, the
constraints (15), (16) are reached in order to minimize the objective. ut

If Assumption A3 does not hold, then the function r is not strictly monotone in-
creasing and multiple minima in (14) are possible, including the points which do
not activate the constraints, but we can still compute a minimizing solution using
the same program. If the premise of Theorem 1 holds then the optimization pro-
gram can be solved by a line search over κ (or τ) over the constraints boundaries,
since the minimum is attained when one of the constraints is active. The two terms
in the sum of the objective function (14) establish the tradeoff on the choice of the
intermediate target isostable (which is to be reached after a time τ) and the con-
vergence time to the target isostable Bε(x∗). For instance, choosing an isostable
close to the equilibrium can lead to a large pulse duration τ (second term), but a
small convergence time of the free motion (first term). Visualisation of the level sets
of the function r and the boundaries of the constraints also allows to understand
the tradeoff between the constraints (energy spent) and the objective (convergence
time), which is not straightforward using standard optimal control theory. To sum-
marize, we derived a static optimization problem, which has the same solution as
the dynamic optimization problem (Problem 1∗ under Assumptions A1–A3).

In the case of the switching problem, that is, converging from another equilibrium
x• to the target equilibrium x∗, we can make a connection to the open loop solution
from [34] and [33]. In particular, in [34] the authors compute the effective domain
of the function r(x•,κ,τ) or the set {(κ,τ) ∈ R2||r(x•,κ,τ)| < ∞}. The open loop
solutions (κ,τ) are then picked from this set. In [33], the authors compute the level
sets of the function r(x•,κ,τ) and the convergence time from x•.

5 Generalizations

5.1 Dealing with Parametric Uncertainty

One of the advantages of monotone systems appears when dealing with parametric
uncertainty, provided the system is monotone with respect to parameter changes as
well. Consider the system

ẋ = F(x,p,u), x(0) = x0, (17)

where p belongs to a compact set P ∈ Rl , the flow of the system is S : R≥0 ×
D ×P×U∞→D , and for every p the system (17) satisfies Assumptions A1–A3.
Monotonicity with respect to the parameter p can be treated as monotonicity with
respect to constant input signals. Monotonicity with respect to parameters allows to
study a family of systems using upper and lower bounding systems. For instance, if



18 Aivar Sootla, Guy-Bart Stan and Damien Ernst

p ∈ [p1, p2]⊆P , then for all x, u, and t ≥ 0 we have

S(t,x,p1,u(·))� S(t,x,p,u(·))� S(t,x,p2,u(·)).

In biological applications, this property is particularly useful since precise values
of parameters are hard to estimate, but intervals of realistic parameter values are
readily accessible.

In this section, we discuss the results from [29]. First an auxiliary problem is
formulated:

V (z,κ,β ,p) = inf
τ,u∈U∞([0,κ])

τ, (18)

subject to: ẋ = F(x,p,u), x(0) = z, x(τ) ∈Atarget = {x̃ ∈ Rn|g(x̃) = β},

where g ∈C1 and ∇g� 0 on dom(g). In comparison to (9) there is one major dif-
ference: the target set is parametrized by an arbitrary monotone increasing function
g. Since the objective function depends on parameter p, parameter-dependence is
not taken into account in this formulation. The solution to the problem (18) can
be obtained similarly to Proposition 4, that is if g(z) < β (respectively, g(z) ≥ β ),
then u0(·) = κ (respectively, u0(·) = 0) is an optimal solution of (18). Using this
observation, it is possible to derive a bound on V given parametric uncertainties. In
particular, if the system (17) is monotone with respect to parameter variations then

V (z,κ,β ,p1)≥V (z,κ,β ,p)≥V (z,κ,β ,p2),

for all p ∈ [p1, p2] under some technical conditions. The objective functions V can
be computed using an extended pulse control function. To that effect, we simply
introduce r̃(x,κ,τ,p) = φλ1,p(S(τ,x,p,κ)), where φλ1,p is the dominant eigenfunc-
tion of (17) for a fixed value p. Note, however, that properties of r̃ with respect to
changes in parameters are harder to ascertain. This is because the Koopman eigen-
functions and eigenvalues change under parameter variations. Nevertheless the order
is preserved in terms of the convergence times to a specific set Atarget.

Given the variations in the equilibria, eigenfunctions and eigenvalues, it seems
almost impossible to estimate the convergence time to an isostable of the system (17)
for a specific parameter value p lying in the order-interval p∈ [p1, p2]. Interestingly,
some estimates can still be provided. The result is quite technical and therefore, in
what follows, we only sketch the main idea. Let us first introduce a few notations:
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T (x,κ,τ,p,ε) =
1

|λ1(p)|
ln
(
|r̃(x,κ,τ,p)|

ε

)
,

T̃σ (x,p,ε) = {(κ,τ) ∈ R2
≥0|T (x,κ,τ,p,ε) = σ},

∂−Bε(x∗(p)) = {x ∈ Rn|φλ1,p =−ε} for ε > 0,

Sσ (x,p1,p2,ε) =
{
(κ,τ) ∈ R2

∣∣∣ν1 ≤ µ ≤ ν2,ξ1 ≤ τ ≤ ξ2

(ν1,ξ1) ∈ T̃σ (x,p1,ε),(ν2,ξ2) ∈ T̃σ (x,p2,ε)
}
.

It was shown in [29], that for any (κ,τ) ∈Sσ (x,p1,p2,ε) and p ∈ [p1, p2], the
flow S(t,x,p,µh(·,τ)) at time σ + τ belongs to the set Atarget = {x ∈ Rn|z1 � x �
z2,z1 ∈ ∂−Bε(x∗(p1)),z2 ∈ ∂−Bε(x∗(p2))}. This means that the set T̃σ (x,p,ε)
will intersect with Sσ (x,p1,p2,ε), and for a small enough ε the set Sσ (x,p1,p2,ε)

provides a good estimate on T̃σ (x,p,ε) as demonstrated on numerical examples
in [29].

5.2 Generalizing the Input Space

As we mentioned above the restrictions to single-input systems and temporal pulses
can be relaxed. We will provide a generalization of the function r to control signals
dependent on a vector of parameters as follows:

u(t,p,τ) =

{
v(t,p) if t ≤ τ

0 otherwise
(19)

where p ∈P ⊂Rk
≥0 is a parameter vector, P is a convex, compact set, and v(t,p) :

R×Rk
≥0→Rm

≥0 is an a priori given family of time dependent measurable functions.
The dependence of v on p should be such that for any p1 larger than p2 in the
standard partial order we have that u(·,p1) is larger than u(·,p2) in the standard
partial order. For example, we can define a family of basis functions {vi(t)}k

i=1 :
R→ Rm

≥0 and parametrize control signals as

v(t,p) =
k

∑
i=1

pivi(t).

Now we can define an extension of a pulse control function as

r(x,p,τ) = φλ1(S(τ,x,u(·,p,τ))).

This function can be computed in a similar manner to a pulsed control function r
and it can also be verified that r(x,p,τ) is a real function provided that the dominant
eigenvalue λ1 is real.
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Another parametrization can be useful in the multi-input case. We can define
vi, the i-th entry of v, as vi = κihi(t, pi) and τ = max{pi}. In this case, we can
reproduce in a straightforward manner the results of Proposition 2, 3 and derive an
optimization program similar to (14). Optimality can be obtained with additional
regularity assumptions such as, for example, strong monotonicity for every p ∈P .

5.3 Possible Relaxations of the Monotonicity Assumption

In order to use our results we need to make sure that the conclusion of Lemma 1
holds, that is ∂µ r(x,µ,τ), ∂xr(x,µ,τ) have nonnegative entries and ∂τ r(x,µ,τ) >
λ1r(x,µ,τ). It is fairly straightforward to show that we can relax monotonicity with
respect to Rn

≥0 ×R≥0 to monotonicity with respect to K ×R≥0, where K is a
proper cone. Furthermore, the derivation of the optimization program (14) does not
explicitly rely on the monotonicity assumption, except for the implicit use of Propo-
sitions 3 and 4. The key property of monotone systems allowing a “simple” optimal
solution to (14) is the fact that the temporal pulses κh(t,τ) act in the direction of the
gradient of φλ1(x). Therefore if φλ1(x) is negative then temporal pulses are aligned
with the flow of the unforced system, and if φλ1(x) is positive then temporal pulses
act in the opposite direction. There is no indication that monotonicity is necessary
and sufficient for this property. A particularly appealing relaxation for monotonicity
is differential positivity [7], which was studied from the Koopman operator point
of view in [18]. Differentially positive systems are defined for systems with a suffi-
ciently smooth vector field F using a prolonged dynamical system:

ẋ = F(x,u),
δ̇x = ∂xF(x,u)δx+∂uF(x,u)δu,

(20)

with (x,δx) ∈ Rn×Rn and where ∂x, ∂u denote the differentials with respect to
x and u, respectively. Following the definitions by [7], we let a smooth cone field
K (x) be defined as

K (x) =
{

δx ∈ Rn
∣∣∣ki(x,δx)≥ 0, i = 1, . . . ,m

}
,

where K (x) is a proper cone for every x∈Rn, and ki(·, ·) are smooth functions. We
will also use the dual cone field defined as

K ∗(x) =
{

y ∈ Rn
∣∣∣yT

δx≥ 0,δx ∈K (x)
}
.

Using the concepts above, the class of differentially positive systems is defined in
the following way:

Definition 4 The system ẋ = F(x,u) with a sufficiently smooth F is called differ-
entially positive with respect to the cone field Kx(x,u)×Ku(x,u) if the prolonged
system leaves the cone field Kx(x,u)×Ku(x,u) invariant. Namely,
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δx(t0) ∈Kx(x(t0),u(t0))
δu(t) ∈Ku(x(t),u(t))∀t ≥ t0

}
⇒ δx(t) ∈Kx(x(t),u(t)) ∀t ≥ t0 . (21)

In the case of dynamical systems ẋ = F(x) the prolonged system induces a flow
(S,∂xS) such that (t,x,δx) 7→ (S(t,x),∂xS(t,x)δx) is a solution of (20). Further-
more, if an exponentially stable equilibrium x∗ is such that the dominant eigenvalue
λ1 of the Jacobian J(x∗) is simple and real then the system is differentially positive
on the basin of attraction B(x∗). Additionally, the cone field K (x) can be built
(under diagonalizability assumption on J(x∗)) in such a way that the corresponding
eigenfunction φλ1(x) lies in K ∗(x) for all x. These properties seem to indicate that
our results such as Proposition 4 and Lemma 1 can potentially be extended to differ-
entially positive systems under additional restrictions. For instance, the case, where
the cone field Kx(x,u) does not depend on u (Kx(x,u) = Kx(x)) and Ku(x,u) is a
positive orthant (i.e., Ku(x,u) = Rm

≥0), appears as the simplest relaxation of mono-
tonicity. However, differentially positive systems depending on control signals (i.e.,
ẋ = F(x,u)) are not well-studied and many properties relevant to our problems are
still not established. Furthermore, certificates for such systems would potentially
involve checking conditions on the cone field for all x in the state space, which ap-
pears to be computationally expensive. Therefore, the computational burden will be
shifted from computing the optimal control to verifying system properties. On the
other hand, if the solutions to (14) exist, then we can still compute them while per-
haps sacrificing optimality. In this case, the approach can be used as a heuristic with
a justification based on the results obtained for monotone systems.

6 Numerical Examples

6.1 Controlling the Generalized Repressilator

The generalized repressilator represents an interesting case study analyzed theoret-
ically in [37]. We consider a generalized repressilator with eight chemical species
(states), which interact only with their direct neighbors in a ring topology. The cor-
responding dynamic equations are as follows:

ẋ1 =
p1

1+(x8/p2)p3
+ p4− p5x1 +u1,

ẋ2 =
p1

1+(x1/p2)p3
+ p4− p5x2 +u2,

ẋi =
p1

1+(xi−1/p2)p3
+ p4− p5xi, ∀i = 3, . . .8,

(22)

where p1 = 40, p2 = 1, p3 = 2, p4 = 1, and p5 = 1. This system has two ex-
ponentially stable equilibria x∗ and x• and is monotone with respect to the cones
Kx = PxR8 and Ku = PuR2, where Px = diag([1, −1, 1, −1, 1, −1, 1, −1]),
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Fig. 2 Level sets of Tconv with ε = 10−2, level set r = 0, and energy budget curve κτ = Emax.

Pu = diag([1, −1]), and x• �Kx x∗. It can actually be shown that the unforced sys-
tem is strongly monotone in the interior of R8

≥0 for all positive parameter values.
The control signal u1 can switch the system from the state x• to the state x∗, while
the control signal u2 can switch the system from the state x∗ to the state x•.

6.1.1 Switching Problem

We first consider the problem of switching from x• to x∗. We present the comparison
from [32] between the closed loop solution, which was discussed in this chapter, and
the open loop solutions from [33]. The open loop solution computes the level sets
of r(x•,κ,τ), which allows to pick (κ,τ) with an appropriate convergence time and
spent energy. In terms of analysis it is more convenient to plot the level sets of

the function Tconv(x•,κ,τ,10−2) = 1
|λ1|

ln
(

r(x•,κ,τ)
10−2

)
+τ instead of the function

r(x•,κ,τ). Note that the function r is computed with the dominant eigenfunction
associated with the target equilibrium x∗. In Figure 2, we plot the level set of the

function Tconv(x•,κ,τ,10−2) = 1
|λ1|

ln
(

r(x•,κ,τ)
10−2

)
+ τ , the level set Emax = 100

of the function κτ = Emax, and the level set r(x•,κ,τ) = 0. The last two are related
to the constraints of the static optimization program (14).

The function Tconv can escape to −∞ around the level set r(x•,κ,τ) ≈ 0. This
is not a conflict with the interpretation of the function Tconv, since it represents the
convergence time only if the value of |r(x•,κ,τ)| is larger than 10−2. Otherwise

1
|λ1|

ln
(
|r(x•,κ,τ)|

10−2

)
is negative, and the computational results are meaningless.

This also explains why the level sets of Tconv appear to have the same asymptotics
as the level set r(x•,κ,τ) = 0 in Figure 2.

The closed-loop approach relies on computing the function r(x,κ,τ) at a given
point x, which is not necessarily an equilibrium. While it is fairly clear that the
closed-loop solutions are preferable, we still compare the closed and open loop
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Fig. 3 Closed-loop and open-loop switching. Left and right panels depict simulations for Settings
A and B, respectively. In both figures, xol

1 , xcl
1 stand for the trajectories of the state x1 in the open

and closed-loop settings, respectively, and uol, ucl stand for the corresponding control signals.

strategies subject to perturbations of parameters pi j. In particular we compute the
control signals using nominal parameter values, but the simulations are performed
using modified parameters
Setting A. We set pA

i1 = 50 for odd i.
Setting B. We set pB

i1 = 30 for odd i.
The Euclidean distance between the nominal initial point and the actual initial point
in Settings A and B is equal to 0.025 and 0.031, respectively, which is negligible.

In order to compute an open-loop optimal control policy based on the nomi-
nal model (i.e. with parameter values pi j), one can solve the static optimization
program (14). Figure 2 also offers a graphical solution to the problem and a de-
piction of possible tradeoffs in the problem. In our case, the optimal solution lies
at the intersection of the constraint curves (i.e. energy budget curve and level set
r(x•,κ,τ) = 0). We set Emax = 100 and for both closed and open-loop strategies we
pick a pair (κ0, τ0) = (3.53, 20) lying near the zero level set of r, which is not
on the energy budget constraint curve. We make this choice, in order to be able to
react to possible disturbances/modeling errors. The closed-loop control is updated
every tsamp = 2 time units. At i-th iteration the energy budget is updated for the en-
ergy spent. Then the values of r(x((i− 1)tsamp),κ,τ − (i− 1))tsamp) are computed,
where x((i−1)tsamp) is the current state of the system, and the values of κ are taken
on a uniform grid of 100 points in [2, 10]. Thereafter κ0 is updated by minimizing
the convergence time Tconv using computed values of r satisfying the terminal set
and the energy budget constraint. The simulation results are depicted in Figure 3. In
Simulation A, the system converges to the target equilibrium faster than the nom-
inal one (i.e, with parameters pi j) and the closed-loop solution saves energy and
limits the overshoot in comparison with the open-loop solution. In Simulation B,
the system converges to the target equilibrium slower than the nominal one, and all
the energy budget is spent. In this case, the closed-loop solution allows the switch,
while the open-loop (i.e. [33]) does not.
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Fig. 4 Switching between equilibria in a generalized repressilator system. In the left panel, the
level sets of the curve 1/ℜ(λ1) ln(φ ∗

λ1
(x)/10−2) are depicted. The trajectories in the right panel are

generated by the pairs (κ,τ) corresponding to the crosses on the left panel. Furthermore, for any
pair (κ,τ) lying on green dash-dotted, red dashed, blue solid level set of 1/ℜ(λ1) ln(φ ∗

λ1
(x)/10−2)

(the left panel) the corresponding trajectory will have a similar convergence time T as green dash-
dotted, red dashed, blue solid trajectories (the right panel), respectively.

6.1.2 “Stabilizing” an Unstable Periodic Orbit in the Generalized
Repressilator.

In [37] it was shown that the generalized repressilator admits an unstable periodic
orbit, which lies around the saddle point located in the order-interval [x•, x∗]. There-
fore, oscillations can be induced by pushing the trajectories from one stable equilib-
rium to another repeatedly. Here we also rely on pulse control functions, but in this
case we have two: r∗(x•,κ,τ) (for converging to x∗) and r• (for converging to x•)
defined using the eigenfunctions φ ∗

λ1
(x) and φ •

λ1
(x), respectively, which in turn are

defined on the basins of attraction B(x∗) and B(x•), respectively. Since the param-
eters in every i-th equation are the same we can compute only the function r∗ and
deduce r• by renumbering the states.

In the left panel Figure 4 we plot the level sets of the function T = ln( |r
∗(x•,κ,τ)|

10−2 ),
where crosses stand for representative pairs (κ,τ) and the trajectories corresponding
to those crosses are plotted in right panel of Figure 4. As the reader may notice, once
the function r∗ is computed the choice of the control signal is rather straightforward.
As demonstrated in [32], the pulse control function can also be used for closed-loop
switching where the pair (κ,τ) is updated at prescribed time intervals. Here, we
will use the pulse control functions in order to induce oscillations. Numerical sim-
ulations suggest that the trajectories follow a quasi-periodic orbit in Figure 4, while
switching between the stable equilibria using a pulse. Furthermore, the oscillations
can be sustained for an arbitrary long time, provided that the flow S(t,x0,κh(·,τ))
at time τ lies on the manifold separating the basins of attraction B(x∗) and B(x•).
This orbit, however, is unstable since an arbitrary small deviation from this mani-
fold will result in convergence of the flow to x∗ or x•. For this problem we will force
the flow to remain in a compact set M = [x•+δPx1,x∗−δPx1], where δ = 1, Px
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Fig. 5 Inducing oscillatory behavior in the generalized repressilator system with eight states. The
pulses for both u1 and u2 are equal, and are generated using a pair (κ, τ) = (44.5, 4). The control
signal u1 is applied at times t = 0, 111.92, while the control signal u2 is applied at times t = 57.97,
165.8.

is the matrix defining the partial order in the state variables. Note that the set M
contains the unstable periodic orbit for the chosen parameter values. We will update
the control signal only when the flow leaves M . For both u1, and u2 we use the pair
(κ,τ) = (44.5,4) to compute the control signals. The control signal u1 = κh(·,τ)
(respectively, u2 = κh(·,τ) ) forces the switch from x• to x∗ (respectively, from x∗
to x•), while resulting in a trajectory with lightly damped oscillations. The control
signal is switched from u1 to u2, when the flow has left M while approaching x∗.
Meaning that we set u2 = κh(·,τ) and u1 = 0. The control is switched from u2 to
u1, when the flow has left M while approaching x•. We depict the simulations in
Figure 5.

More uniform oscillations may potentially be obtained if we keep the flow inside
the set

M̃ = {z ∈ R8
≥0
∣∣φ •

λ1
(z)≥ 1/δ and φ

∗
λ1
(z)≤−1/δ},

for a small positive δ . This can be done by applying the control signal u1 =
κ1h(·, t1 +τ1) if the flow reaches the set {z ∈R8

≥0|φ •λ1
(z) = 1/δ} at the time t1, and

the control signal u2 = κ2h(·, t2 + τ2) if the flow reaches the set {z ∈ R8
≥0|φ ∗λ1

(z) =
−1/δ} at the time t2. The values of (κ1,τ1), (κ2,τ2) are chosen using the functions
r∗(x(t1), ·, ·), r•(x(t2), ·, ·), respectively, where x(t) denotes the value of the state x
at the time t.

We note that a similar control strategy was used in [37]. However, no computa-
tional approach to estimate the settling time of the trajectory, the pulse magnitude or
its length was provided. In [35], it was proposed to track other periodic trajectories
(such as, sine functions of time) instead using approximate dynamic programming.
However, the solution was very computationally expensive and offered little insight
into the problem. We finally note that the existence of an unstable periodic orbit is
not required to induce a periodic orbit in a monotone system as was demonstrated in
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vivo on a toggle switch system implemented in E. Coli in [16]. Again the theoretical
results in [29] justified an intuitive approach in [16].

6.2 HIV Viral Load Control

Viral load dynamics of the human immunodeficiency virus (HIV) in the bloodstream
can be modeled by a bistable system, where one stable equilibrium corresponds to
the high viral load (non-healthy state) and the other to the low viral load (healthy
state). Even though HIV is still present in “the healthy state”, the virus population
is suppressed by the immune system and cannot increase to life-threatening levels.
Drug therapies can lower the viral load, once a therapy is interrupted, however, the
viral load can return to the non-healthy state. Mathematically this means that the
trajectory of the model does not reach the basin of attraction of the healthy state
under this therapy protocol. Typically, a combination of therapies is used, which
mathematically can be expressed as temporal control signals. The objective is to de-
sign the therapies (control signals) so as to drive the viral load to the “healthy state”.
The therapies typically follow structured treatment interruption (STI) protocols, that
is, the therapies are interrupted at specific times. In this example, we will validate
this approach based on mathematical modelling. We take the modeling approach
developed in [1] and consider the following differential equations:

Ṫ1 = s1− γ1T1− (1−u1)β1V T1

Ṫ2 = s2− γ2T2− (1− f u1)β2V T2

Ṫ ∗1 = (1−u1)β1V T1− cT ∗T ∗1 −κ1ET ∗1
Ṫ ∗2 = (1− f u1)β2V T2− cT ∗T ∗2 −κ2ET ∗2
V̇ = (1−u2)NT k(T ∗1 +T ∗2 )− ((1−u1)ρ1β1T1 +(1− f u1)ρ2β2T2)V − cVV

Ė = λE +
bE(T ∗1 +T ∗2 )

(T ∗1 +T ∗2 )+Kb
E− dE(T ∗1 +T ∗2 )

(T ∗1 +T ∗2 )+Kd
E− cEE,

where T1 is the number of healthy CD4+ T-lymphocytes, T2 is the number of healthy
macrophages, T ∗1 is the number of infected CD4+ T-lymphocytes, T ∗2 is the number
of infected macrophages, V is the number of free virus particles and E is the number
of HIV-specific cytotoxic T-cells. Given the parameters

s1 = 104, γ1 = γ2 = 0.01, β1 = 8 ·10−7, s2 = 31.98,

f = 0.34,β2 = 10−4,cT ∗ = 0.7, κ1 = κ2 = 10−5, cV = 13
NT = Kb = 100, ρ1 = ρ2 = λE = 1, k = 0.7, bE = 0.3,

dE = 0.25, Kd = 500,cE = 0.1,

the system is not monotone and it has three equilibria, which will denote xu, x∗ and
x•. Computation with the Matlab symbolic toolbox gives the following values:
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Fig. 6 Level sets of the convergence time to the equilibrium x• (non-healthy state) for different
times p1, p2. The convergence time is a continuous function (as it is a function of the C1 dominant
eigenfunction), and hence for the considered combinations of p1 and p2 the switch to the healthy
state cannot be performed. Furthermore, numerical simulations suggest that the convergence time
is bounded from above and hence the flow lies relatively far from the manifold separating the
basins of attraction. This indicates that continuous therapies are not effective as an HIV treatment
protocol.

xu =
(
6.64 ·105, 49.97, 1.21 ·103, 11.33, 6.29 ·103, 2.07 ·105

)
,

x• =
(
1.63 ·105, 4.99, 1.19 ·104, 45.59, 6.39 ·104, 23.54

)
,

x∗ =
(
9.67 ·105, 620.51, 76.01, 6.09, 415.37, 3.5311 ·105

)
.

The equilibrium xu is a saddle with an unstable manifold of dimension 1; x∗ cor-
responds to the “healthy” state, and x• corresponds to the “non-healthy” state. The
equilibria x•, x∗ are exponentially stable with complex dominant eigenvalues, which
rules out monotonicity. In [1], the authors considered an optimal control problem,
which they have addressed using an approximated solution to the Pontryagin’s max-
imum principle. The optimal therapies u1 and u2 take only values between zero and
one, however, it is noticeable that these strategies are not pulses (Figure 4 in [1]).
We will show that switching from the unhealthy state to the healthy one is highly
unlikely using temporal pulses.

In [1, 6], the optimal therapies were designed in such a way that the maximal
values of u1 and u2 are equal to 0.7 and 0.3, respectively. Therefore, we assume that

u1(t) = 0.7h(t, p1)

u2(t) = 0.3h(t, p2)

This means that we have a vector p with two entries and τ =max(p1, p2). Therefore,
we can use the discussion above in order to compute the function r(x•,p,τ) defined
using the eigenfunction φλ1 around the equilibrium x•. Since τ is equal to one of the
two pi, we can plot the function r in the parameter space p1, p2. The computation
results are depicted in Figure 6.
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It is noticeable that the function r is finite for all p, which means that the switch
to x∗ is not occurring. Moreover, when p2→∞, the flow converges to the origin. As
can be verified through simulation, small nonnegative state values of x around 0 lie
in the basin of attraction of x•. This means that the switching to x∗ using these types
of pulses is not possible. This validates the STI approach studied in [1], according
to which both therapies have to be interrupted at specific times in order to reach the
“healthy” state x∗. The more interesting and important question of how to design
(not necessarily optimally) the control signals u1 and u2 is currently hard to answer
using the presented approach.

We note that some bistable systems with complex dominant eigenvalues of the
Jacobian at the equilibria are amenable to switching using pulses. In fact, the be-
havior of these systems can be extremely complex. In [33], it was shown that such a
control strategy is successful for switching between equilibria in a Lorentz system,
which has chaotic attractors.

7 Conclusion

In this chapter, we discussed how to use the Koopman operator (and its eigenfunc-
tions) to solve the problem of convergence to an equilibrium. The problem is cast
using the concept of isostables — level sets of the dominant Koopman eigenfunc-
tion. For monotone systems, this reformulation allows rewriting of the optimal con-
trol problem as a static optimization program under additional regularity assump-
tions. The core idea of the method is to use isostables as a target set for the optimal
control problem, which simplifies the computation of time-parametrized optimal
control signals. This method can be applied to control bistable systems, if the con-
trol variable, considered as a constant parameter, forces a bifurcation in the system,
and the resulting equilibrium is attractive and lies in the basin of attraction of the
target equilibrium. Therefore, the approach can be applied to non-monotone sys-
tems, at the cost of a potential loss of optimality. For example, this approach was
applied to the synchronization of cardiac cells [32], event-based regulation around
a saddle point [29], switching under parametric uncertainty [29], and the problem
of inducing oscillations as discussed above. At the moment optimality of solutions
is guaranteed for the class of monotone systems, but as we discussed in Section 5.3
optimality results can potentially be extended to a larger class of systems. Another
interesting question is whether Koopman eigenfunctions (or their properties) can be
used to predict a parametric form of control signals that provide solutions to the
convergence problem. Advances in the data-based Koopman operator algorithms
such as Dynamic Mode Decomposition (DMD), can potentially open the door for
data-efficient data-based control methods.
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19. A. Mauroy and I. Mezić. Global stability analysis using the eigenfunctions of the koopman
operator. IEEE Trans Autom Control, 61(11):3356–3369, 2016.
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