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Abstract— We consider a synthetic gene circuit aimed at
regulating the flux through an unbranched metabolic network.
The control circuit has an operon architecture whereby the
expression of all pathway enzymes is transcriptionally repressed
by the metabolic product. We parameterize the gene regulatory
model in terms of the promoter characteristic and ribosome
binding site (RBS) strengths, both of which are common tune-
able knobs in Synthetic Biology. We show that enzymatic satura-
tion imposes bounds on the RBS strength design space. These
bounds must be satisfied to prevent metabolite accumulation
and guarantee the stability of the network. Simulation results
also suggest that the control circuit can effectively upregulate
enzyme production to compensate flux perturbations.

I. INTRODUCTION

The main goal of Synthetic Biology is to design cellular
systems that carry out customized biological functions. Since
the seminal works in [1], [2], the design of gene modules
with prescribed functionalities has undergone great progress
[3]. One of the most prominent applications of Synthetic
Biology is the manipulation of bacterial metabolism for
chemical production. Synthetic control of metabolism, how-
ever, is still in its infancy and there is a substantial need for
genetic control circuits that ensure the robust operation of
metabolic pathways under environmental perturbations and
cell-to-cell variability [4].

Two landmark implementations of engineered genetic-
metabolic circuits are the control of lycopene production [5]
and the metabolic oscillator described in [6]. Although it
is clear that feedback control is crucial to achieve robust
metabolic regulation, only few works have rigorously tack-
led the general design problem. Notably, the work in [7]
demonstrated the use of a synthetic toggle switch [2] as
an ON-OFF controller for metabolism, whereas in [8] the
authors explored different genetic control architectures for
biofuel production.

A common strategy in metabolic engineering is to modify
host microbes by expressing heterologous enzymes that con-
vert metabolic intermediates into a chemical of interest [4].
The consumption of intermediates diverts the flux allocated
to the native processes of the host (Fig. 1A), potentially
affecting its viability.

In this paper we address a synthetic gene circuit aimed
at compensating the loss in native flux due to perturbations
consuming the intermediates. We focus on an unbranched
metabolic pathway under transcriptional repression from the
product. We have previously studied the dynamics of multi-
promoter circuits in the absence of perturbations, e.g. with
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a hybrid model and feedback-regulated consumption of the
product in [9], and with a continuous model and constant
product consumption in [10]. Here we build on the analysis
in [10], and investigate an operon control circuit (whereby
all the metabolic genes are under the control of a single
promoter) under a nonlinear product consumption rate. To
ensure the survival of the host cell, the circuit must be
able to sustain a metabolic flux that feeds the product into
the downstream native processes. Our goal is therefore to
identify the constraints in the genetic parameter space that
guarantee the existence and stability of a metabolic flux.

We consider a nonlinear ODE model for the feedback
system that comprises kinetic equations for the metabolic
species and product-dependent enzyme expression (§II). We
parameterize the genetic model in terms of the promoter
characteristic and the ribosome binding site (RBS) strengths,
which are typically used as tuneable knobs in Synthetic
Biology applications. We find two bounds for the RBS
strengths that guarantee the existence of a steady state,
and consequently prevent metabolite accumulation (§III).
These bounds appear due to the enzymatic saturation and
are sufficient for local stability of the steady state (§IV).
We conclude with simulations that illustrate the ability of
the control circuit to upregulate enzyme expression and
compensate the flux loss due to a branch consuming an
intermediate (§V).

II. UNBRANCHED METABOLIC NETWORK UNDER
GENETIC FEEDBACK REGULATION

We consider an unbranched metabolic pathway as in Fig.
1B, where s0 denotes the concentration of substrate, s1 is an
intermediate metabolite, and s2 is the metabolic product. The
metabolic reactions occur at a rate vi (each one catalyzed
by an enzyme with concentration ei), and d denotes the
product utilization rate. The metabolic genes are encoded
in a single operon controlled by a product-responsive tran-
scription factor (TF) that represses enzyme expression (c.f.
the multi-promoter system considered in [10]). This kind of
transcriptional feedback is common, for example, in bacterial
nutrient uptake and amino acid metabolism [11], [12].

A. Metabolic pathway

The network in Fig. 1B exchanges mass with the en-
vironment and/or other networks in the cell. The model
accounts for this interaction via the input substrate s0 and
the product consumption rate d. Because we are interested
in biologically meaningful phenotypes, we assume that s0

is constant to ensure that the network can reach a nonzero
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Fig. 1. (A) Engineered metabolic branches divert the flux needed for the host
native processes to the synthesis of foreign compounds. (B) Transcriptional
repression of an unbranched metabolic pathway by a synthetic operon
controlled by a product-responsive transcription factor.

steady state. Note that if the substrate decays, the network
eventually reaches a zero equilibrium, whereby the substrate,
intermediate metabolites, and product are fully depleted. The
constant substrate assumption is also suitable for scenarios
where s0 is an extracellular substrate pool shared by a low
density cell population (so that the effects of cell-to-cell
competition are negligible).

In a pathway with n reactions and n metabolites, the rate
of change of metabolite concentrations can be described by

ṡi = vi(si−1, ei)− vi+1(si, ei+1), (1)

for i = 1, 2, . . . , n and vn+1 = d(sn). This model arises
from the mass balance between the reactions that produce
and consume si, and the enzyme kinetics are comprised
in the reaction rates vi(si−1, ei). The product consumption
rate is typically modeled as a nondecreasing and saturable
function, e.g. a Michaelis-Menten type [12] rate of the form

d(sn) =
dmaxsn
Kd + sn

, (2)

where dmax is the maximal consumption rate and Kd is
product concentration needed for half-maximal consumption.
To keep the analysis as general as possible, we will not
presuppose a specific form for the enzyme kinetics. Instead
we will generically assume that the metabolic reaction rates
are linear in the enzyme concentrations [13]:

vi(si−1, ei) = gi(si−1)ei, (3)

where gi is the enzyme turnover rate (i.e. the reaction rate
per unit of enzyme concentration). We will also assume that
the enzyme turnover rates are nondecreasing and saturable
functions of the metabolite concentrations, so that

g′i(si−1) > 0, lim
si−1→∞

gi(si−1) = ĝi, (4)

where ĝi is the maximal enzyme turnover rate. Assumptions
(3)–(4) account for a broad class of irreversible enzyme
kinetics [13], e.g. a turnover rate of the form gi(si−1) =
kcat is

q
i−1/

(
KM i + sqi−1

)
(where kcat i = ĝi and KM i is

the substrate concentration needed for half saturation) can
describe both irreversible Michaelis-Menten (for q = 1) and
Hill-type (for q > 1) kinetics.

B. Transcriptional circuit

In an operon architecture all the enzymes are under the
control of a single promoter (for the multi-promoter case see

[10]), and thus we model the rate of change of the enzyme
concentrations as

ėi = bi︸︷︷︸
∼RBS

strength

(
κ0 + κ1σ(sn)

)︸ ︷︷ ︸
promoter

characteristic

−γiei, (5)

for i = 1, 2, . . . , n. The equations in (5) come from the
balance between protein synthesis degradation (modeled as a
linear process with kinetic constant γi > 0). We parameterize
enzyme expression in terms of the promoter characteristic
and RBS strengths, both of which are common design
elements in synthetic gene circuits (see Fig. 2A).

a) Promoter characteristic: It describes the feedback
action of product-responsive TFs that repress gene transcrip-
tion. Promoters are typically described in terms of their tight-
ness (κ0) and dynamic range (κ1), see Fig. 2B. The tightness
refers to the level of baseline transcription (i.e. under full
repression by the product), whereas the dynamic range is
the gap between the ON and OFF transcription levels. We
model the regulatory effect of the TF as a Hill function
σ(sn) = θh/

(
θh + shn

)
with Hill coefficient h > 0 and

repression threshold θ > 0. The function σ is a lumped
description of the regulatory effect. It does not describe
the specific interaction between the product and the TFs,
but instead represents the net effect of the product on the
transcription rates.

b) RBS strengths: Ribosome binding sites (RBS) are
mRNA sequences that are bound by the ribosomes to initiate
translation [4]. We model the effect of the RBS strengths as
a gain that scales the total expression rate by a factor bi.
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Fig. 2. (A) The promoter characteristic and RBS strengths modulate gene
transcription and translation rates, respectively. (B) Typical characteristic of
a repressible promoter.

A common strategy in Synthetic Biology is to control
protein degradation by adding a degradation tag to the
gene sequence [14], and thus we assume that all enzymes
are tagged and degraded at the same rate, i.e. γi = γ.
Altogether, the model for the metabolic network under one-
to-all negative regulation reads:

ṡi = gi(si−1)ei − gi+1(si)ei+1, i = 1, 2, . . . , n− 1,

ṡn = gn(sn−1)en − d(sn),

ėi = bi

(
κ0 + κ1 θh

θh + shn

)
− γei, i = 1, 2, . . . , n,

(6)



with a constant substrate s0. In the rest of the paper we
focus on the properties of the network as a function of the
promoter characteristic and RBS strengths.

III. DESIGN CONSTRAINTS CAUSED BY ENZYME
SATURATION

The operon circuit must be able to sustain a constant
metabolic flux that feeds the product into the downstream
native processes of the host. In this section we show how
this essential requirement translates into constraints on the
RBS strength design space.

We will denote the steady state metabolite concentrations,
enzyme concentrations, and reaction rates as s̄i, ēi and v̄i,
respectively, whereas the metabolic flux is d(s̄n).

A. Existence of the metabolic flux

The regulatory function satisfies σ(sn) ∈ (0, 1 ] for any
product concentration, and therefore from the genetic model
(5) we observe that the steady state enzyme concentrations
are bounded as ēi ∈

(
Eoff
i , Eon

i

]
with

Eoff
i = biκ

0/γ, Eon
i = bi

(
κ0 + κ1

)
/γ. (7)

The enzyme equilibria can be obtained directly by setting
ėi = 0 in (5)

ēi = Eoff
i +

(
Eon
i − Eoff

i

)
σ(s̄n),

=
bi
γ

(
κ0 + κ1σ(s̄n)

)
, (8)

whereas the steady state rates are v̄i = gi(s̄i−1)ēi. Because
the production utilization d(sn) saturates at dmax, we have
the following condition for the existence of a flux.

Proposition 1 (Existence of the flux): The network has a
unique metabolic flux d(s̄n) if and only if the RBS strength
of the first enzyme satisfies the bound

b1 <
dmaxγ

g1(s0)κ0
. (9)

Proof: At steady state the first reaction rate must match
the consumption rate, so that v̄1 = d(s̄n) and the steady state
product concentration satisfies

d(s̄n) = g1(s0)ē1. (10)

Combining (8) and (10) we can obtain the product concen-
tration as the solution of

d(s̄n)

g1(s0)
=
b1
γ

(
κ0 + κ1σ(s̄n)

)
, (11)

which can be computed as the intersection of the two curves
shown in Fig. 3A. Because of the bound on the utilization
rate, equation (11) may not have a solution (see Fig. 3B).
From these plots we find that the flux d(s̄n) exists only when

dmax

g1(s0)
> b1

κ0

γ
, (12)

which is equivalent to the upper bound in (9). Note that since
both sides of (11) are monotonic in s̄n, the flux is unique.
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Fig. 3. Existence of the metabolic flux. (A) The solution of (11) can be
seen as the intersection of two curves, h1(x) = d(x)/g1(s0) and h2(x) =
b1

(
κ0 + κ1σ(x)

)
/γ. (B) If condition (9) is not met, the curves do not

intersect and the flux does not exist.

B. Equilibria of the intermediate metabolites

In operon control all the enzymes are controlled by the
product, and therefore the solution of the algebraic equation
in (11) also determines the steady state levels of the remain-
ing enzymes (ēi, i ≥ 2, see (8)). We must therefore guarantee
that the resulting concentrations ēi in (8) can effectively
sustain their reactions at a rate d(s̄n).

By setting v̄i = d(s̄n) for i 6= 1, we can solve for the
intermediates from

gi(s̄i−1) =
d(s̄n)

ēi
. (13)

Because the enzyme turnover rates saturate at ĝi, equation
(13) has a finite solution only if d(s̄n)/ēi < ĝi, or equiva-
lently

ēi >
d(s̄n)

ĝi
. (14)

A convenient way of analyzing the validity of condition (14)
is by defining steady state enzyme levels normalized to their
basal and maximal values. We define the normalized enzyme
levels Ri ∈ (0, 1 ] as

Ri =
ēi − Eoff

i

Eon
i − Eoff

i

. (15)

With these definitions we can recast condition in (14) as

Ri > R̂i, (16)

with

R̂i =
d(s̄n)/ĝi − Eoff

i

Eon
i − Eoff

i

,

=
γ

κ1ĝibi
d(s̄n)− κ0

κ1
. (17)

Condition (16) is a compact description of the design con-
strains imposed by the saturable nature of enzyme kinetics.
We next use it to derive conditions for the existence of the
intermediates.

Proposition 2 (Existence of the intermediates): The
steady state intermediate concentrations exist if and only if
the RBS strengths satisfy

bi
b1
>
g1(s0)

ĝi
, for all i. (18)



Proof: The steady state concentration of the first
enzyme is ē1 = d(s̄n)/g1(s0), and therefore we can write
the first expression level R1 in terms of the flux d(s̄n)

R1 =
d(s̄n)/g1(s0)− Eoff

1

Eon
1 − Eoff

1

,

=
γ

κ1g1(s0)b1
d(s̄n)− κ0

κ1
. (19)

We can readily check that

R1 − R̂i =
γ

κ1

(
1

b1g1(s0)
− 1

biĝi

)
d(s̄n), (20)

and therefore the condition in (18) implies R1 > R̂i. From
(8) we note that Ri = σ(s̄n) and therefore all enzymes have
the same relative expression levels. In particular, it holds that
Ri = R1 for all i, and therefore the RBS bound in (18) also
implies that the critical condition (16) is met.

Taken together, the conditions in (9) and (18) limit the
design space of the RBS strength in terms of the tightness
of the promoter (κ0), the substrate availability (s0), the
saturation of the enzyme kinetics (ĝi) and the maximal
product utilization (dmax). These conditions therefore depend
on a combination of genetic and metabolic parameters, which
reflects how the design constraints appear due to the interplay
between the enzyme expression and metabolic dynamics.

If the bound for the first enzyme in (9) is not met,
the substrate will be consumed at a higher rate than the
maximum product utilization, and therefore the design will
lead to an infinite accumulation of the product. Analogously,
violation of at least one of the bounds in (18) will lead to
an infinite accumulation of an intermediate, see Fig. 4A.

In Figs. 4B–C we illustrate the effect of promoter tightness
and substrate availability on the feasible region for the RBS
strengths. Tighter promoters relax condition (9) and therefore
enlarge the feasible region. In the limit case of a perfect
“leakless” promoter (i.e. κ0 = 0), condition (9) does not
limit the RBS strength of the first enzyme. Conversely,
an abundant substrate tightens the feasible region via two
parallel phenomena: firstly, by condition (9) it limits the RBS
strength of the first enzyme to avoid saturation of the prod-
uct utilization; secondly, by condition (18), more substrate
requires a stronger expression of the downstream enzymes to
avoid their saturation. These two effects demonstrate how the
saturation of enzymes and flux constrains the design space
in substrate-rich scenarios.

IV. STABILITY OF THE OPERON CONTROL CIRCUIT

To examine the local stability of the control circuit, we
write the vector of metabolite and enzyme concentrations as
s and e, respectively, so that the model can be written as[

ṡ
ė

]
=

[
fs(s, e)
fe(sn, e)

]
, (21)

where the vector fields fs and fe can be directly obtained
from (6). Our analysis relies on the examination of the
structure of the Jacobian matrix of (6), an approach that
proved successful in earlier works (e.g. [15] for the case
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Fig. 4. Design constraints for the RBS strengths. (A) The feasible region
prevents the accumulation of intermediates and product; the region is limited
by conditions (9) and (18). (B) Tighter promoters enlarge the feasible region,
whereas (C) leakier promoters or more substrate tighten the constraints.

of metabolic pathways under product inhibition and linear
kinetics). The elements of the Jacobian matrix are

∂fsi
∂sj

=


ai j = i− 1,

−ai+1 j = i,

0 otherwise,

(22)

∂fei
∂sj

=

{
κ1
iσ
′(s̄n) j = n,

0 otherwise,
(23)

∂fsi
∂ej

=


gi(s̄i−1) j = i,

−gi+1(s̄i) j = i+ 1,

0 otherwise,

(24)

∂fei
∂ej

= −γ, for all j. (25)

The coefficients ai are defined as

ai = g′iēi, i = 2, 3, . . . n, (26)
an+1 = d′, (27)

where g′i = ∂gi(si−1)/∂si−1|s̄i−1
and d′ = ∂d(sn)/∂sn|s̄n .

Note that because gi and d are nondecreasing it follows that
ai ≥ 0. We also note that the steady state terms gi(s̄i−1) can
be written in terms of the ratio between two enzyme levels
as gi(s̄i−1) = g1(s0)ē1/ēi, which using (8) simplifies to
gi(s̄i−1) = g1(s0)b1/bi. We can therefore write the Jacobian

as a block matrix J =

[
J11 J12

J21 J22

]
, where the four blocks

are n× n matrices

J11 =


−a2 0 0 · · · 0
a2 −a3 0 · · · 0

0 a3
. . . . . .

...
...

. . . . . . −an
...

0 · · · · · · an −d′

 , (28)



J12 = g1(s0)b1


b−1
1 −b−1

2 0 · · · 0
0 b−1

2 −b−1
3 · · · 0

0 0 b−1
3

. . .
...

...
. . . . . . . . . −b−1

n

0 · · · · · · · · · b−1
n

 , (29)

J21 = κ1σ′


0 · · · 0 b1
...

. . . . . . b2
...

. . . . . .
...

0 · · · 0 bn

 , J22 = −γI, (30)

and σ′ = ∂σ(sn)/∂sn|s̄n . With these definitions, we have
the following stability result.

Proposition 3 (Local stability): Under the conditions of
Propositions 1 and 2, the network has a locally stable steady
state. Moreover, its Jacobian has:
• n− 1 stable eigenvalues at λ = −γ,
• n− 1 stable eigenvalues at λ = −ai, i = 2, 3, . . . , n,
• and two stable eigenvalues at

λ =
−(d′ + γ)±

√
(d′ − γ)2 + 4κ1

1σ
′g1(s0)

2
. (31)

Proof: This is an extension of Propositions 2 and 3 in
[10] to the case of a saturable consumption rate d(s̄n).

Proposition 3 provides useful analytic expressions for the
modes of the feedback system and has two main conse-
quences. First, the repeated eigenvalues at λ = −γ are
independent of the circuit design parameters, and hence they
correspond to fixed modes of the control circuit. Although
they can be adjusted by changing the degradation rate (e.g. by
using various degradation tags), they cannot be suppressed
by fine tuning the regulatory parameters and they translate
into (n−1) modes of the form e−t/γ , te−t/γ , ..., tn−2e−t/γ .
Enzyme degradation rates are inversely proportional to their
half-lives, which are in turn much longer than metabolic
time scales (half-lives are in the order of minutes to hours,
whereas metabolic time scales are typically milliseconds to
seconds [13]). Therefore, depending on the initial conditions
the network can potentially display very slow transients, and
this appears to be aggravated in long pathways.

Second, we observe that as the steady state product grows,
both d′ and σ′ tend to vanish, and therefore one of the
eigenvalues in (31) approaches the imaginary axis. This
implies that, although in principle the promoter dynamic
range κ1 and RBS strength b1 can be designed to maximize
the flux (i.e. by shifting the steady state s̄n towards the right
in Fig. 3A we get a higher flux d(s̄n)), this can only be done
at the expense of a dramatic reduction in the response speed.

V. FLUX COMPENSATION BY ENZYME UPREGULATION

A common strategy in metabolic engineering is to modify
bacteria by expressing heterologous enzymes that convert
natural metabolic intermediates into a compound of interest
[4]. Since the target compound is synthesized by “branching
out” a specific intermediate from a natural pathway, part of
the metabolic flux needed to sustain the host native processes

is redirected to the production of the foreign chemical. In
this section we show simulation results suggesting that a
synthetic operon circuit can dramatically dampen the effect
of perturbations on the native flux.

To account for a branch consuming an intermediate sj at
a rate dext, we modify the model in (6) by including dext as
a consumption rate in the ODE for sj

ṡj = gi(si−1)ei − gi+1(si)ei+1 − dext. (32)

We can show that the branch introduces an additional lower
bound for the RBS strength of the first enzyme. This bound
adds on to the ones in Propositions 1 and 2, and has the
form b1 > d̄extγ/

(
g1(s0)

(
κ0 + κ1

))
, where d̄ext is the

steady state value of dext (we omit the details due to length
constraints).

To illustrate the dynamic response of the feedback circuit,
we simulate the network in Fig. 1B under a flux perturbation
that consumes the intermediate s1. We consider a pathway
with two metabolites and two enzymes with Michaelis-
Menten kinetics with kcat i = 32s−1 and KM i = 4.7µM.
These are representative values for PRA isomerase (extracted
from the BRENDA database, EC number 5.3.1.24), a tran-
scriptionally regulated enzyme involved in the tryptophan
pathway of E. coli. We use a substrate concentration s0 =
KM 1 (so that g1(s0) is at half-saturation) and we use product
consumption parameters dmax = 0.416µMs−1 and Kd =
0.2µM, both taken from an experimentally validated model
for the tryptophan pathway [12]. The enzyme degradation
rate is 2 × 10−4s−1 (half-life ∼1h), whereas the promoter
parameters are θ = Kd, h = 2. We consider a promoter of
up to 100-fold repression (i.e. we take (κ0 +κ1)/κ0 = 100),
and choose κ1 so that the maximal steady state enzyme
levels are Eon

1 = 0.25µM and Eon
2 = 1µM for RBS

strengths bi = {1, 4}. These RBS strengths comply with
the feasible region of Fig. 4 and the Eon

i values are within
the physiological range of E. coli [16].

Before the perturbation (induced at 500min), the network
is in steady state with a flux ∼19.5µM/min. We model the
branch as an S-shaped rate that reaches 75% of the pre-
stimulus flux in ∼1hr. The simulations in Fig. 5 show how
the synthetic operon circuit upregulates enzyme expression
by ∼68% in response to the activation of the branch. In
terms of both flux and product concentration, we observe a
dramatic improvement compared to open loop case (i.e. with
unregulated constant enzyme concentrations chosen to match
the pre-stimulus flux): the operon circuit compensates the
loss in native flux from 75% (open loop) to ∼7.5%, whereas
the drop in steady state product concentration is brought
down from ∼93% (open loop) to ∼27%.

VI. DISCUSSION & OUTLOOK

We have presented a detailed analysis of a synthetic
gene circuit aimed at controlling an unbranched metabolic
pathway. The goal of this control system is to dampen flux
perturbations that divert the native flux to the production of
foreign molecules. The control strategy relies on encoding
the metabolic genes in a single operon repressed by a
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product-responsive TF. This architecture allows for enzyme
upregulation in response to a drop in the metabolic product
concentration, thereby compensating the loss in flux.

Genetic control of metabolism has been extensively stud-
ied in the case of natural systems. These studies typically fo-
cus on understanding how observed phenotypes emerge from
the genetic-metabolic crosstalk [9], [17], and a number of
detailed mechanistic models for operon regulation have been
developed [11], [12]. In Synthetic Biology, however, the goal
is to design regulatory circuits for controlling metabolism in
a customized fashion. Model-based design therefore requires
mathematical descriptions that are explicitly parameterized in
term of common biological knobs used in Synthetic Biology.
Consequently, our model is deliberately not mechanistic, and
instead describes the genetic feedback in terms of tuneable
parameters such as the promoter’s dynamic range, RBS
strengths and protein half-lives.

Our analysis has revealed a number of constraints in RBS
strength design space. These need to be satisfied to prevent
metabolite accumulation and guarantee the stability of the
network. The bounds depend on a combination of transcrip-
tional and kinetic parameters, thereby highlighting how the
design constraints appear due to the interplay between the
genetic and metabolic subsystems. Simulations of the feed-
back system with realistic parameter values show promising
results, suggesting that the proposed control strategy can
effectively compensate the effect of flux perturbations on the
host native processes.

We remark that the derived design constraints are only
baselines for the functioning of the circuit. In most appli-
cations the design must also account for objectives such
as maximization of yield or minimization of transcriptional
effort. These multi-objective design problems require the use
of optimization methods to search for optimal combinations
of feedback parameters within the feasibility sets derived

here. In addition, in this work we have considered an
unbranched pathway in isolation from the other cellular
pathways. In practical applications, the cross-talk between
pathways may have a detrimental impact on the performance
of the control circuit, and therefore we are carrying out
further investigations to account for branched metabolic
pathways.

The wetlab implementation of genetic-metabolic circuits
can be costly and time consuming. Our work provides new
insights into which factors need to be addressed at a design
stage, potentially facilitating the implementation in future
Synthetic Biology applications.
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