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Abstract— Reconstruction of biochemical reaction networks
(BRN) and genetic regulatory networks (GRN) in particular
is a central topic in systems biology which raises crucial
theoretical challenges in system identification. Nonlinear Or-
dinary Differential Equations (ODEs) that involve polynomial
and rational functions are typically used to model biochemical
reaction networks. Such nonlinear models make the problem
of determining the connectivity of biochemical networks from
time-series experimental data quite difficult. In this paper, we
present a network reconstruction algorithm that can deal with
ODE model descriptions containing polynomial and rational
functions. Rather than identifying the parameters of linear or
nonlinear ODEs characterised by pre-defined equation struc-
tures, our methodology allows us to determine the nonlinear
ODEs structure together with their associated parameters. To
solve the network reconstruction problem, we cast it as a
compressive sensing (CS) problem and use sparse Bayesian
learning (SBL) algorithms as a computationally efficient and
robust way to obtain its solution.

I. INTRODUCTION
A long standing problem in systems biology is to recon-

struct biochemical reaction networks. Reconstruction means
to identify both the topology and the parameters of BRN.
More specifically, network reconstruction tries to recover
the set of nonlinear ODEs associated with the biochemi-
cal processes from time-series experimental data. A naive
reconstruction method consists in searching among all pos-
sible reactions the few that seem consistent with the time
series data. The associated computational burden of such
an approach is typically horrendous even for network of
modest dimensions. Within the systems biology and control
community, identification of BRN and GRN in particular, are
quite active research areas [1]–[4].

Many linear and nonlinear functions can be used to de-
scribe the dynamics of BRN in terms of biochemical kinetic
laws, e.g., first-order functions f([S]) = [S] , mass action
functions f([S1] , [S2]) = [S1] · [S2] , Michaelis-Menten
functions f([S]) = Vmax [S] /(KM + [S]), Hill functions
f([S]) = Vmax [S]

n
/(Kn

M + [S]n). Furthermore, it is not
uncommon that a single gene is regulated by more than
one transcription factor. In such situations, the combined
effect of these regulators on gene expression needs to be
described by a multi-dimensional input function. Such input
functions typically take the form of ratio of polynomi-
als involving the concentrations of the input transcription
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factors xi, i = 1, . . . , n, for example, f(x1, . . . , xn) =∑
i βi(xi/Ki)

ni/ (1 +
∑

i βi(xi/Ki)
mi), where Ki is the

activation or repression coefficient for the transcription factor
xi, βi is its maximal contribution to gene expression, and the
Hill coefficients are ni = mi > 0 for activators and ni = 0,
mi > 0 for repressors. These types of functions have been
shown to appropriately describe experimentally determined
input functions [5].

Our main objective is, given experimental time-series data,
to identify both the interconnection topology (the form of the
nonlinear functions) and their associated parameters. Without
prior knowledge on model structure, this is still an open
problem in system identification.

During his plenary talk at the 50th IEEE CDC, Prof.
Lenart Ljung emphasised on four opportunities for further
research and development in system identification. The major
two of these were: (a) the use of sparsity and (b) the use
of machine learning approaches [6]. The approach that we
consider in this paper is aligned with these two recommen-
dations. Specifically, our approach draws inspiration from
the fields of signal processing and machine learning, by
combining CS and SBL together to offer an efficient method
for biological network reconstruction.

The paper is organised as follows. In Section II, we
introduce the type of BRN model we consider in this paper.
In Section III, we formulate the network reconstruction
problem associated with the model class proposed in Section
II. In Section IV, we show how the reconstruction problem
can be converted into a CS problem. In Section V, we show
how SBL algorithms can be used to solve the CS problem.
In Section VI, we apply our method to the reconstruction
of the repressilator and show how it can be reconstructed
almost exactly using the CS framework. Finally, in Section
VII, we conclude and discuss several future problems that
we plan to address.

II. MODEL FORMULATION

We consider dynamical systems described by nonlinear
ODEs with additive noise:

e = g(x) + ξ, (1)

where e = [e1, e2, . . . , en]T ∈ Rn are the system responses;
x = [x1, x2, . . . , xn]T ∈ Rn denotes the state vector; and
ξ ∈ Rn denotes a vector of additive noise. In continuous-
time systems, e denotes the derivative of the state variables,
i.e. e = ẋ = dx/dt and eq. (1) thus becomes: dx(t)

dt =
g(x(t)) + ξ(t). In discrete-time systems, e represents the
value of the state variables at the next discrete-time step,



i.e., e = x(tk+1). Then eq. (1) becomes: x(tk+1) =
g(x(tk)) + ξ(tk). Since biochemical reaction are typically
governed by mass action kinetics, Michaelis-Menten, or
Hill kinetics, g(x) belongs to a certain set of functions
of known form, e.g., mass action kinetic terms under the
form of product of monomials, monotonically increasing or
monotonically decreasing Hill functions, simple linear terms,
constant terms, etc. The nonlinear function g(x) can thus
be decomposed into a linear sum of basis functions fi(x),
e.g. g(x) =

∑L
i=1 vifi(x). Measuring/estimating the time

derivative from noisy data in continuous-time systems can
either be achieved using a measurement equipment with a
sufficiently high sampling rate, or be estimated using state-
of-the-art mathematical approaches [7].

Suppose the time series data are sampled from a real
experimental system at discrete time points tk. For BRN
with stoichiometric matrix S, eq. (1) can be written under
the form [8]:

e(tk+1) = Sf(x(tk)) + ξ(tk), (2)

where S =

 v11 . . . vL1

...
...

...
v1n . . . vLn

 =

 vT
1
...

vT
n

 ∈

Rn×L denotes the stoichiometry matrix; f(x) =
[f1(x), f2(x), . . . , fL(x)]T ∈ RL is the vector field;
and ξ = [ξ1, ξ2, . . . , ξn]T ∈ Rn represents energy-bounded
process noises which are assumed to be independent
and to be distributed according to normal probability
distributions: E[ξ(tp)] = 0, E[ξ(tp)ξT (tq)] = Qpqδpq ,

where δpq =

{
1, p = q,
0, p 6= q.

From experimental data given

as time series of both e and x, our objective is to identify
the stoichiometry coefficient in S. In the following section,
we shall propose an algorithm that uses time-series data to
reconstruct eq. (2).

III. RECONSTRUCTION PROBLEM
FORMULATION

A. Problem Formulation

Taking the transpose of both sides of eq. (2), we obtain:

eT (tk+1) = fT (x(tk))v + ξT (tk), (3)

where v = ST = [v1, . . . ,vn] ∈ RL×n. Assuming that M
successive data points are sampled and defining

y ,
[

y1 . . . yn

]
=
[
e(t1) . . . e(tM )

]T
=


e1(t1) . . . en(t1)
e1(t2) . . . en(t2)

...
. . .

...
e1(tM ) . . . en(tM )

 ∈ RM×n,

Θ ,


f1(x(t0)) . . . fL(x(t0))
f1(x(t1)) . . . fL(x(t1))

...
. . .

...
f1(x(tM−1)) . . . fL(x(tM−1))



=


fT (x(t0))
fT (x(t1))

...
fT (x(tM−1))

 ∈ RM×L,

v ,
[

v1 v2 . . . vn

]
∈ RL×n,

Ξ ,
[

Ξ1 . . . Ξn

]
=
[
ξ(t0) . . . ξ(tM−1)

]T
=


ξ1(t0) . . . ξn(t0)
ξ1(t1) . . . ξn(t1)

...
. . .

...
ξ1(tM−1) . . . ξn(tM−1)

 ∈ RM×n,

eq. (3) can be written as n independent equations:

yi = Θvi + Ξi, (i = 1, . . . , n). (4)

We want to find vi given the measured data stored in yi.
This a typical linear regression problem that can be solved
using standard least square approaches, provided that the
structure of the nonlinearities in the model are known, i.e.,
provided that Θ is known. However, in most cases, these
nonlinearities are unknown or difficult to assume a priori.
As a consequence, Θ itself is unknown and, therefore, vi

cannot be solved from eq. (4).
Fortunately, some a priori knowledge of the field in

which the models are developed can help. Indeed, depending
on the field for which the dynamical model needs to be
built, only a few typical nonlinearities specific to this field
need to be considered. For example, the class of models
that arise from BRN typically involve nonlinearities that
capture fundamental biochemical kinetic laws, e.g., first-
order degradation functions, mass-action kinetics, Hill and
Michaelis-Menten functions. In what follows we gather in a
matrix Φ similar to Θ the set of all candidate basis functions
that we want to consider for reconstruction:

Φ ,


F1(x(t0)) . . . FN (x(t0))
F1(x(t1)) . . . FN (x(t1))

...
. . .

...
F1(x(tM−1)) . . . FN (x(tM−1))

 ∈ RM×N

(5)
This leads to n independent equations similar to (4):

yi = Φwi + Ξi, (i = 1, . . . , n). (6)

where wi = [w1i, w2i, . . . , wNi]
T ∈ RN . We will introduce

in section IV a method that allows us to reconstruct wi from
time-series observations of x (used to construct Φ) and yi.

B. Problem Transformation

Once the matrix Φ is constructed so as to contain all the
candidate basis functions that we want to consider in the
reconstruction, the remaining task is to propose an efficient
method that allows to find the solution wi of the linear
regression problem defined in (6). Since there would be n
independent linear regression problems, we can just consider
one single problem and omit the subscripts i in (6) for
simplicity of notation. We then write

y = Φw + Ξ. (7)



Typically the weighting vector w solution of (7) is k-
sparse. Mathematically, we say that a signal w is k-sparse
when it has at most k non-zero entries, i.e., ‖w‖0 ≤ k.
We let Ωk = {w : ‖w‖0 ≤ k} denote the set of all k-
sparse vectors. On one hand, since the nonlinear form of the
equation is typically unknown, there can potentially be a very
large number of candidate functions. On the other hand, the
acquisition of sufficient biological time series data over long
time spans is quite difficult due to the typical cost of wet-lab
experiments and current technological limitations in terms of
the type and quality of the measurements. Furthermore, BRN
are typically sparse [9]. As a consequence, we typically have
N �M for ΦM×N and w sparse.

The linear regression problem (7) can thus be defined as a
compressive sensing, or sparse signal recovery problem [10],
[11], with observation vector yi, known regressor matrix Φ,
unknown coefficients w, and additive noise Ξ. In sparse
problems, the prior belief is that only a small fraction of
the elements appearing in w are non-negligible. The general
aim is to identify the smallest subset of columns of Φ, whose
linear span contains the observations y.

IV. COMPRESSIVE SENSING

A. Algorithm for Compressive Sensing

Since we want to get the sparsest solution of w, we impose
a penalty on the `0-norm of w, ‖w‖0, i.e., on the number
of nonzero terms in w. This leads to the regularisation
regression problem:

ŵ = arg min
w
{‖y −Φw‖22 + ρ ‖w‖0}. (8)

where ρ is a tradeoff parameter. Unfortunately, this optimisa-
tion problem is both numerically unstable and NP-complete;
therefore some relaxations are typically used to recast this
problem into another one for which efficient algorithmic
solutions exist. The most common relaxation is to use the
`1-norm instead of the `0-norm [10], so that the optimisation
problem becomes

ŵ = arg min
w
{‖y −Φw‖22 + ρ ‖w‖1}. (9)

The approach presented in eq. (9) is known as Lasso. A
number of methods have been proposed to solve Lasso
problems, including `1-minimisations (convex optimisation)
[10] and greedy algorithms [12]. A sufficient condition for
exact reconstruction with both of these algorithms is the
so called restricted isometry property (RIP) [10]: A matrix
Φ ∈ RM×N is said to satisfy the RIP with coefficients
(K, δ) for K ≤ M , 0 ≤ δ ≤ 1, if for all index sets
I ⊂ {1, . . . , N} such that |I| ≤ K and for all q ∈ R|I|, one
has (1−δ) ‖q‖22 ≤ ‖Φiq‖22 ≤ (1+δ) ‖q‖22, where Φi denotes
the matrix formed by the columns of Φ with indices in I .
It was shown in [10], [12] that both `1-minimisations and
greedy algorithms lead to exact reconstruction of K-sparse
signals if the matrix Φ satisfies the RIP with a constant
parameter 0 ≤ δ ≤ 1. One major drawback is that RIP
can be difficult to check. Another related and easier-to-check

property is “coherence”. The coherence of a matrix Φi is
defined as

µ(Φ) = max
j<k

|〈Φj ,Φk〉|
‖Φj‖2‖Φk‖2

, (10)

where Φj and Φk denote the jth and kth columns of Φ,
respectively. It was shown that RIP guarantees incoherence
of Φ, i.e. µ(Φ) = 0. This means that `1 relaxations lead to
exact reconstruction only when Φ is orthogonal: columns of
Φ are strongly uncorrelated.

However, in real applications, correlation between the
columns of Φ is usually high (µ(Φ) is close to 1). Since
the dictionary matrix Φ is basically composed of time series
data, it is difficult to a priori guarantee low correlation.
Sometimes Φ even suffers rank deficiency. Consequently,
given real data, the `0 regularisation regression problem in
(8) can be hard to solve as an `1 relaxation problem (see (9))
using convex optimisation or greedy algorithms. A different
approach thus needs to be considered. Thanks to recent
results in machine learning, we propose hereafter a method
intended to solve the compressive sensing problem defined
in (8) in situations where `1 relaxations usually do not work.
Our approach uses a Bayesian formulation [13]–[15].

B. Bayesian formulation of the CS problem

Bayesian modelling treats all unknowns as stochastic
variables with certain probability distributions [16]. In the
problem formulation y = Φw + Ξ, we assume that the
stochastic variables in Ξ are independent and characterised
by a Gaussian distribution with zero mean and variance
σ2. We further define the precision or inverse-variance as
β = 1/σ2. The data likelihood can then be shown to be

p(y|w) = N (y|Φw, β−1)

= (2πσ2)−
M
2 exp

(
− 1

2σ2
‖y −Φw‖2

)
.(11)

Obtaining maximum likelihood estimates for w under these
conditions is equivalent to searching for a minimal `2-norm
solution to eq. (7).

The sparseness of w can be imposed by using a prior of
the form

p(w) ∝
∏
j

exp(−|wj |p) = exp(−
∑
j

|wj |p). (12)

where λi > 0, 0 < p ≤ 1. Combining p(y|w) and p(w), we
get the posterior distribution

p(w|y) ∝ p(y|w)p(w) (13)

Based on the above, we can formulate a maximum a poste-
riori (MAP) estimate for w:

wMAP = arg max
w

p(w|y)

= arg min
w
− log p(y|w)− log p(w)

= arg min
w
{β

2
‖y −Φw‖22 +

∑
j

|wj |p}. (14)

Specifically, when p = 1, (14) becomes equivalent to the `1-
regularisation formulation in (9) which is convex; when 0 <



p < 1, the cost function is not convex anymore and the MAP
estimation has no guarantee to find the global minimum.

In the following section, we show that the use of hier-
archical priors alleviates the afore mentioned problem. The
CS problem can thus be converted into a linear-regression
problem with a prior which is sparse. Given the sensing
matrix Φ, we show in the next section how the sparse weights
w and the inverse of noise variance β can be estimated using
a sparse Bayesian learning approach.

V. RECONSTRUCTION VIA SPARSE BAYESIAN
LEARNING

A. Specification of Hierarchical Priors

Instead of imposing a prior on w, as defined in the
last section, a SBL approach is adopted. Namely, we use
hierarchical priors over the distribution of w. The main
advantage of such an approach is that it allows us to impose
a Gaussian prior with zero-mean on each element wj ∈ w,
i.e.,

p(w|α) =

N∏
j=1

N (wj |0, α−1
j ). (15)

In (15), α = (α1, . . . , αN ) ∈ R1×N represents a vector
of N independent hyperparameters, with αj controlling the
precision (or the inverse of the variance) of the prior imposed
on w. It is this form of prior that is eventually responsible
for the sparsity properties of the model (see [13] for more
details). It is common to place a Gamma prior on α:

p(α|a, b) =

N∏
j=1

Γ(αj |a, b). (16)

where the Gamma distribution is defined as: Γ(ξ|a, b) =
(b)a

Γ(a)ξ
a−1 exp[−bξ], where Γ(a) =

∫∞
0
ta−1e−tdt is called

the ‘Gamma function’, ξ > 0 denotes a hyperparameter,
a > 0 is the shape parameter, and b > 0 is a scaling
parameter. The Γ distribution is generally chosen as the
prior for the precision of a Gaussian distribution because
(a) it corresponds to its conjugate prior, thereby greatly
simplifying the analysis and (b) it also includes the uniform
distribution as a limiting case. The overall prior on w is then
evaluated as

p(w|a, b) =

N∏
j=1

∫ ∞
0

N (wj |0, α−1
j )Γ(αj |a, b)dαj . (17)

The density function Γ(αj |a, b) is the conjugate prior for αj

when wj plays the role of observed data and N (wj |0, α−1
j )

is the associated likelihood function. Based on this, the
integral

∫∞
0
N (wj |0, α−1

j )Γ(αj |a, b)dαj can be evaluated
analytically. It can be shown that this integral corresponds to
the Student’s t-distribution which is strongly peaked around
wj = 0. Consequently, the prior in (17) is a sparseness prior
for w. Similarly, a Gamma prior is introduced on β

p(β|c, d) = Γ(β|c, d). (18)

B. Bayesian Inference via Relevance Vector Machine

Given y and Φ and assuming that the hyperparameters α
and β are known, the posterior distribution for w conditioned
on the data can be obtained by combining the likelihood and
prior with Bayes’ rule. After some calculations, this yields:

p(w|y,α, β) =
p(y|w, β)p(w|α)

p(y|α, β)
= N (m,Σ). (19)

This posterior distribution of w is Gaussian and the associ-
ated mean and covariance matrices are given as

m = βΣΦTy (20)
Σ = (A + βΦTΦ)−1 (21)

where A = diag(αj). In the context of Relevance Vector
Machines (RVM), the associated “learning” problem be-
comes the search for the hyperparameters α and β. RVM
is a Bayesian sparse kernel method for regression and clas-
sification [13]. It shares a lot of characteristics with support
vector machines [16]. In RVM, these hyperparameters are
estimated from the data by maximising

p(y|α, β) =

∫
p(y|w, β)p(w|α)dw.

This is known as the marginal likelihood. Its maximisation
is known as evidence approximation maximisation [17].

To avoid the convolution of two Gaussians, one can use
log marginal likelihood L (α, β). This leads to

L (α, β) = log p(y|α, β)

= log

∫
p(y|w, β)p(w|α)dw

= −1

2

[
M log 2π + log |C|+ yTC−1y

]
,(22)

where the M ×M matrix C = σ2I + ΦA−1ΦT . A type-
2 maximum likelihood approximation employs the point
estimates for α and β to maximise L (α, β). By setting the
required derivatives of the marginal likelihood to zero, we
can obtain the following re-estimate equations [13], [17]

αnew
j =

γj
m2

j

, (j = 1, 2, . . . , N), (23)

where the posterior mean weight mj is the jth element of
m appearing in (20) and γj , 1 − αjΣ(jj), with Σ(jj)
representing the jth diagonal element of the posterior weight
covariance matrix Σ defined in (21). Estimation of γj and
mj can be efficiently done via the Expectation-Maximisation
(EM) algorithm, an iterative procedure for maximum likeli-
hood parameter estimation from data sets with missing or
hidden variables. For a noise variance σ2 = 1/β, the re-
estimate equation is

(βnew)
−1

=
‖y −Φm‖22
M −

∑
j

γj
. (24)

Note that αnew
j , j = 1, . . . , N and βnew are functions

of m and Σ. Furthermore, m and Σ are a function of
α and β in equations (20)-(21). This suggests an iterative



algorithm, which iterates between equations (20)-(21) and
equations (23)-(24) until a convergence criterion has been
satisfied. During this iteration process, many of the αj tend
to infinity when the corresponding wj are very small or zero.
Usually, only a few αj are small. From (19), this implies
that p(wj |y, αj , β) becomes highly (in principle, infinitely)
peaked at zero. This implies that we can be a posteriori
‘certain’ that wj is zero. The corresponding basis functions
in Φ can thus be ‘pruned’, and sparsity of w can be achieved
[13]. Computation of covariance in (21) must invert N ×N
matrices which is a O(N3) procedure, thereby making EM
algorithms relatively slow if a large number of basis func-
tions is considered. Fortunately, a fast marginal likelihood
maximisation was developed in [14], [15] by analysing the
properties of the log marginal likelihood function in eq. (22).
This enables a principled and efficient sequential addition
and deletion of candidate basis function (columns of Φ) to
monotonically maximise the log marginal likelihood.

C. Fast Marginal Likelihood Maximisation

To efficiently optimise (22) on one hyperparameter αl with
all other hyperparameters fixed, we can decompose (22) as

L (α, β) = −1

2
[M log 2π + log |C−l|+ yTC−1

−l y

− logαl + log(αl + sl)−
q2
l

αl + sl
]

= L (α−l, β)

+
1

2

[
logαl − log(αl + sl) +

q2
l

αl + sl

]
,(25)

where sl = φTl C−1
−l φl, ql = φTl C−1

−l y, C−l = σ2I +∑
k 6=l α

−1
l φkφ

T
k , and φl is the lth column of Φ. Since

L (α−l, β) is independent of αl, the maximum of (25) w.r.t.

αl is obtained at [15]: αl =

{
s2l

q2l−sl
, if q2

l > sl,

∞, if q2
l ≤ sl.

Thus the marginal likelihood can be maximised w.r.t. one
single hyperparameter at a time. This fast algorithm has a
computational complexity of O(NM2).

VI. IDENTIFICATION OF THE REPRESSILATOR

We consider here a classical dynamical system in sys-
tems/synthetic biology which we will use to illustrate the
BRN reconstruction problem at hand. The repressilator is
a synthetic oscillator network that was conceived and con-
structed by Elowitz and Leibler [18]. The network consists
of three genes repressing each other in a ring structure.

A mathematical description the repressilator that includes
both transcription and translation dynamics is described as

dx1

dt
= −γ1x1 +

α1

1 + xn1
6

+ θ1,
dx4

dt
= −γ4x4 + β1x1,

dx2

dt
= −γ2x2 +

α2

1 + xn2
4

+ θ2,
dx5

dt
= −γ5x5 + β2x2,

dx3

dt
= −γ3x3 +

α3

1 + xn3
5

+ θ3,
dx6

dt
= −γ6x6 + β3x3.

(26)

Here, x1, x2, x3 denote the concentrations of the mRNA tran-
scripts of genes 1, 2, and 3, respectively whereas x4, x5, x6

denote the protein concentrations of the respective genes.
α1, α2, α3 denote the maximum promoter strength for their
corresponding gene, γ1, γ2, γ3 denote the mRNA decay rate,
γ4, γ5, γ6 denote the protein decay rate, β1, β2, β3 denote the
protein production rate, θ1, θ2, θ3 denote the basal transcrip-
tion rate. The set of ODEs in (26) corresponds to a topology
where gene 1 is repressed by gene 2, gene 2 is repressed
by gene 3, and gene 3 is repressed by gene 1. Using the
standard forward Euler method to numerically solve ODEs,
we obtain trajectory of the six states x1, . . . , x6 in Fig. 1.
These trajectories are then sampled to generate a time-series
of gene expression data.
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Fig. 1: Time series of x1, . . . , x6 for model (26).

Take gene 1 for example. The hill coefficient n1 will
typically have a range from 1 to 6 due to biochemical
constraints. The core question here is: how can we determine
the nonlinear structure and kinetic parameters of the ODEs
in (26)? Note that we do not assume a priori knowledge of
the nonlinear functions forms, e.g., whether the degradation
obeys first-order or enzymatic catalysed dynamics or whether
the proteins are repressors or activators.

Next we show how the network reconstruction prob-
lem of the repressilator model in (26) can be formu-
lated under the form presented in (6). Following the pro-
cedure in (2) and (3), we construct a matrix of candi-
date functions Φ by selecting the most commonly used
candidate basis functions used to model BRN. As a
proof of concept, we only consider Hill functions as
potential nonlinear candidates. The set of Hill functions
with Hill coefficient i, both in activating and repressing
from, for each of the 6 state variables reads: hill(tk) ,[

1
1+xi

1(tk)
, . . . , 1

1+xi
6(tk)

,
xi
1(tk)

1+xi
1(tk)

, . . . ,
xi
6(tk)

1+xi
6(tk)

]
1×12

, where
i represents the Hill coefficient. In what follows we consider
that the Hill coefficient can take integers from 1 to 6. To
also take into account basal transcription expression rates,
we add to the last column of Φ a unit vector. Since there
are 6 state variables, we can construct the basis matrix Φ
appearing in (VI) with 6 (basis functions for linear terms)
+(6 ∗ 12) = 72 (basis functions for hill functions) +1
(basis function for basal expression) = 79 columns, e.g.
Φ(tk) = [x1(tk), . . . , x6(tk), hill1(tk), . . . , hill6(t1), 1] ∈
R6+72+1. Assuming k = 0, . . . ,M − 1, we then construct
Φ =

[
ΦT (t0), . . . ,ΦT (tM−1)

]T ∈ RM×79.

Considering (6) with the basis function matrix Φ men-



tioned above, the corresponding target weight matrix w
should be:

−γ1 0 0 β1 0 0
0 −γ2 0 0 β2 0
0 0 −γ3 0 0 β3
0 0 0 −γ4 0 0
0 0 0 0 −γ5 0
0 0 0 0 0 −γ6

017×1 015×1 016×1

α1 α2 α3 072×1 072×1 072×1

054×1 056×1 055×1

θ1 θ2 θ3 0 0 0


.

As an illustration, we define wtrue as with chosen values:

−0.3 0 0 1.4 0 0
0 −0.4 0 0 1.5 0
0 0 −0.5 0 0 1.6
0 0 0 −0.2 0 0
0 0 0 0 −0.4 0
0 0 0 0 0 −0.6

017×1 015×1 016×1

4 3 5 072×1 072×1 072×1

054×1 056×1 055×1

0.02 0.02 0.01 0 0 0


.

Let tT = 50, sampling interval tk+1−tk = 1, and M = 50
points are collected. The noise variance is fixed at 10−2.
We run the algorithm with 100 runs. Among the sparsest
solutions, we select the one with minimal ‖westimate −
wtrue‖. The chosen solution westimate is

0.300 0 0 1.401 0 0
0 −0.398 0 0 1.502 0
0 0 −0.499 0 0 1.600
0 0 0 −0.200 0 0
0 0 0 0 −0.400 0
0 0 0 0 0 −0.600

017×1 015×1 016×1

3.999 3.002 5.001 072×1 072×1 072×1

054×1 056×1 055×1

0.019 0.019 0.0093 0 0 0


.

The algorithm is implemented in MATLAB R2012a. The
calculation is run on a standard laptop computer (Intel Core
Duo i5-5250 2.50GHz with 8GB RAM). The computation
time for each run is less than 0.1 second.

VII. CONCLUSION AND DISCUSSION

In this paper, a new network reconstruction method for
biochemical reaction networks is proposed. This method
takes advantage of compressive sensing and sparse Bayesian
learning. The proposed method only requires time series
data and does not assume prior knowledge about the model
structure (topology and nonlinear functional forms) and pa-
rameters. The problem is posed in such a way that candidate
nonlinear functions specific to the type of models used (here
BRN) are sought after. The key idea is to adopt a formu-
lation which allows to transform the nonlinear identification
problem into a compressive sensing problem and to solve
it efficiently using a sparse Bayesian learning approach. We
have illustrated how this approach can be used to efficiently
reconstruct the nonlinear ODEs of a repressilator based on
time series data.

We have so far assumed that the system is fully ob-
servable. However, in reality, measurement observations will
typically be partial [19] (in particular, the number of hid-
den/unobservable nodes and their position in the network is
usually unknown). How to generalise our framework to the
case of hidden nodes and partial observations is another topic
of further study in our group.
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