
Real-time Fault Diagnosis for Large-Scale Nonlinear Power Networks

Wei Pan, Ye Yuan†, Henrik Sandberg, Jorge Gonçalves and Guy-Bart Stan

Abstract— In this paper, automatic fault diagnosis in large
scale power networks described by second-order nonlinear
swing equations is studied. This work focuses on a class of
faults that occur in the transmission lines. Transmission line
protection is an important issue in power system engineering
because a large portion of power system faults is occurring
in transmission lines. This paper presents a novel technique
to detect, isolate and identify the faults on transmissions
using only a small number of observations. We formulate the
problem of fault diagnosis of nonlinear power network into a
compressive sensing framework and derive an optimisation-
based formulation of the fault identification problem. An
iterative reweighted `1-minimisation algorithm is finally derived
to solve the detection problem efficiently. Under the proposed
framework, a real-time fault monitoring scheme can be built
using only measurements of phase angles of nonlinear power
networks.

I. INTRODUCTION

Power networks are large-scale spatially distributed sys-
tems. Being a critical infrastructure, they possess strict
safety and reliability constraints [1]. The behaviour of a
synchronous electrical motor located in a bus of the power
networks can be described by the so-called swing equation
[2]. In [3], [4], [5], a common technique to detect the faults
in the system described above is to generate a set of residuals
to indicate the presence of faults either in a centralised or
distributed fashion. However, it is well-known that a large
portion of power system faults occurring in transmission
lines doesn’t involve additive faults only. In addition, the
introduction of more components into the network will
increase the vulnerability of the transmission lines. Thus it
is critically important in power networks to automatically
diagnose the faults that occur.

In terms of fault diagnosis, one of the major goals is to
detect, isolate and identify the faults as soon as possible. One
objective here is then to present a method that allows to ad-
dress the recommendations provided by the IFAC Technical
Committee SAFEPROCESS, namely, we want to determine
whether there is an occurrence of a fault and the time of
its occurrence (detection), determine the kind, location and
time of detection of a fault (isolation), determine the size
and time-variant behaviour of a fault (identification).

W. Pan and G.-B. Stan are with Centre for Synthetic Biology and
Innovation and the Department of Bioengineering, Imperial College Lon-
don, United Kingdom.Y. Yuan and J. Gonçalves are with Control Group,
Department of Engineering, University of Cambridge, United Kingdom.
H. Sandberg is with Automatic Control Laboratory, School of Electrical
Engineering, Royal Institute of Technology (KTH), Sweden.

The authors gratefully acknowledge the support of Microsoft Research
through the PhD Scholarship Programs of Wei Pan. Ye Yuan and Jorge
Gonçalves acknowledge the support from EPSRC (project EP/I03210X/1).
Guy-Bart Stan gratefully acknowledges the support of the EPSRC Centre
for Synthetic Biology and Innovation at Imperial College London through
the Science and Innovation award (project EP/G036004/1).
†Corresponding author, email: yy311@cam.ac.uk.

The dynamics of the buses in the power networks can be
described by the so-called swing equation where the active
power flows are nonlinear functions of the phase angles. Due
to the typical large scale of power networks and the introduc-
tion of nonlinearities, fault diagnosis over the transmission
lines is a very challenging problem. To the best knowledge
of the authors, such a problem is seldom addressed from a
system and control perspective. In this paper, our approach
draws inspiration from the fields of signal processing and
machine learning by combining compressive sensing and
variational Bayesian inference techniques together to offer
an efficient method for fault diagnosis.

Contributions: We formulate the problem of fault diag-
nosis of nonlinear power networks with additive noise into a
sparse signal recovery problem. We derive a sparse Bayesian
formulation of the fault identification problem which is
casted into a nonconvex optimisation problem. We relax the
nonconvex optimisation problem into a convex problem and
develop an iterative reweighted `1-minimisation algorithm to
solve it efficiently.

II. MODEL FORMULATION

A. Power Networks Model

Power systems are examples of very complex systems in
which generators and loads are dynamically interconnected.
Thus they can be seen as networked systems, where each
bus can be viewed as a node in the network. We assume that
all the buses in the network are connected to synchronous
machines (motors or generators). Based on these common
assumptions, we provide the nonlinear model for the active
power flow in a power grid branch connected between bus
i and bus j. For i = 1, . . . , N , the behaviour of bus/node i
can be represented by the swing equation [2]

miδ̈i(t) + diδ̇i(t)− Pmi(t) = −
n∑
j=1

Pij(t), (1)

where δi is the phase angle of bus i, mi and di are the inertia
and damping coefficients respectively, Pmi is the mechanical
input power, Pij is the active power flow from bus i to j.

Considering that there are no power losses nor ground
admittances and letting Vi = |Vi|ejδi be the complex voltage
of bus i, the active power flow between bus i and bus j, Pij ,
is given by:

Pij(t) = w
(1)
ij cos(δi(t)−δj(t))+w(2)

ij sin(δi(t)−δj(t)), (2)

where w(1)
ij = |Vi||Vj |Gij and Gij is the branch conductance

between bus i and bus j; w(2)
ij = |Vi||Vj |Bij and Bij is the

branch susceptance between bus i and bus j.



If we let ξi(t) = δi(t) and ζi(t) = δ̇i(t), each bus i can
be assumed to have double integrator dynamics

ξ̇i(t) = ζi(t), (3)
ζ̇i(t) = ui(t) + vi(t), (4)

where ξi, ζi are the scalar states, vi(t) is a scalar known
external input, and ui is the control given by the nonlinear
control law

vi(t) =
Pmi(t)

mi
(5)

ui(t) = − di
mi

ζi(t)−
1

mi

N∑
j=1

[w
(1)
ij cos(ξi(t)− ξj(t))

+w
(2)
ij sin(ξi(t)− ξj(t))]. (6)

The variables ξi and ζi can be interpreted as phase and
frequency in the context of power networks.

In [6] and other papers, the cos(·) terms (no branch
conductance between buses) is not considered and further
assumption such as phase angles are close is made. In this
case, system (1) can be linearised around some equilibrium
point as

miδ̈i(t)+diδ̇i(t)−Pmi(t) = −
∑
j∈Ni

w
(2)
ij (δi(t)−δj(t)). (7)

If each bus in the power network corresponds to a node
then the underlying graph of this network can be defined
as G = (V, E), where V = {i}N1 is the set of nodes and
E ⊂ V × V is the edge set of the graph. The undirected
edge {i, j} is incident on vertices i and j if nodes i and j
share a transmission line, and a positive weight is associated
with this link. Moreover, Ni = {j ∈ V : {i, j} ∈ E} is the
neighborhood set of i. Each bus i is also assumed to have
double integrator dynamics as described in (3) and (4). The
difference is that ui(t) in (6) becomes as a linear equation

ui(t) = − di
mi

ξi(t)−
1

mi

∑
j∈Ni

w
(2)
ij (ξi(t)− ξj(t)). (8)

B. Fault Diagnosis in Power Networks
For the linearised system (8), a bus k ∈ V is faulty

if for some functions fξk(t) and fζk(t) not identical to
zero either ξ̇i(t) = ζi(t) + fξk(t), or ζ̇i(t) = ui(t) +
vi(t) + fζk(t). The functions fξk(t) and fζk(t) correspond
to fault signals. A fruitful model-based or observer-based
fault diagnosis methods are available for power networks (see
[6] and reference therein). However, specific aspects need
careful consideration when dealing with fault diagnosis in
power networks. Firstly, the simplified linear model can be
often applied in practice when the phase angles are close.
However, when the system is strained and faults are of large
magnitude, angles can be far apart. As a result, the linear
model cannot used to approximate the nonlinear model in (1)
anymore. Secondly, power networks are highly distributed
and interconnected, not more than one transmission line tend
to be faulty simultaneously. Thirdly, to be more realistic, the
noise should be incorporated into (1) as

miδ̈i(t) + diδ̇i(t)− Pmi(t) = −
n∑
j=1

Pij(t) + ηi(t), (9)

Then we can rewrite the state space mode (3) and (4) as:

ξ̇i(t) = ζi(t), (10)
ζ̇i(t) = ui(t) + vi(t) + ηi(t), (11)

where ni are assumed to be Gaussian noise with zero mean
and known variance σ2.

III. PROBLEM FORMULATION
Given the model and explanation above, we primarily

focus on the following setting in this paper.
Definition 1: If the dynamics of a power network can be

described by (10) and (11), the transmission line between
bus i and bus j is faulty when w(1)

ij changes to a new scalar
w̃

(1)
ij and/or w(2)

ij changes to a new scalar w̃(2)
ij , where w(1)

ij

and w(2)
ij are the weight for cos and sin terms defined in (6).

Problem 1: Based on the considerations above and Defi-
nition 1, the problem that we are interested in solving is the
following: knowing the measurements and the distribution
of the noise, how to estimate for the faults, namely, ∀i, j,
w

(1)
ij − w̃

(1)
ij and w(2)

ij − w̃
(2)
ij using a very small number of

samples.
To address Problem 1, we have the following assumption.
Assumption 1: The power networks described by (10) and

(11) is fully measurable, i.e., the phase angles of all the buses
can be measured.

A. Model Transformation
Applying the standard forward Euler discretisation to (10)

and (11) and assuming the discretisation step tk+1−tk = ∆t
is constant for all k, we obtain the following discrete-time
system approximation to the continuous-time system:

ξi(tk+1)− ξi(tk)

∆t
= ζi(tk), (12)

ζi(tk+1)− ζi(tk)

∆t
= ui(t) + vi(t) + ηi(tk). (13)

If we let

ei(tk+1) , −
(

(ζ(tk+1)− ζ(tk))

∆t
+
diζ(tk)

mi
− Pmi(tk)

mi

)
,

(14)
we have

ei(tk+1) =
1

mi

∑
j∈Ni

[w
(1)
ij cos(ξi(tk)− ξj(tk))

+w
(2)
ij sin(ξi(tk)− ξj(tk))] + ηi(tk),(15)

where ei, the power flow measurement, is treated as the
output of the system.

We let x(tk) = [ξ1(tk), . . . , ξN (tk)] and write (14) into a
vector form

ei(tk+1) = fi(x(tk))wtrue
i + ηi(tk), (16)

with
fi(x(tk)) = [f

(1)
i (x(tk)), f

(2)
i (x(tk))] ∈ R1×2N ,

f
(1)
i (x(tk)) = [cos(ξi(tk)− ξ1(tk)), . . . , cos(ξi(tk)− ξN (tk))] ,

f
(2)
i (x(tk)) = [sin(ξi(tk)− ξ1(tk)), . . . , sin(ξi(tk)− ξN (tk))] ,

wtrue
i = [w

(1)
i ,w

(2)
i ]T ∈ R2N×1,

w
(1)
i = [w

(1)
i1 , . . . , w

(1)
iN ],

w
(2)
i = [w

(2)
i1 , . . . , w

(2)
iN ],



where fi(x(tk)) indicate the transmission functions and
wi indicate the corresponding transmission weights that
represent the topology of the network.

B. Fault Diagnosis Problem Formulation

As stated in Definition 1, if there are no faults occurring
in the transmission lines between bus i and other buses,
the dynamics of the power networks will evolve according
to (16). The expected output for the next sampling time is
defined to be

êi(tk+1) = fi(x(tk))wtrue
i . (17)

From (16) and (17), it’s easy to find that ei(tk+1)− êi(tk+1)
is a stochastic variable with zero mean and variance σ2.
If there are faults occurring in the transmission lines be-
tween bus i and other buses, the corresponding transmission
weights will change from wtrue

i to wfault
i . Similar to the

definition of wtrue
i , wfault

i = [w̃
(1)
i , w̃

(2)
i ]T where w̃

(1)
i =

[w̃
(1)
i1 , . . . , w̃

(1)
in ] and w̃

(2)
i = [w̃

(2)
i1 , . . . , w̃

(2)
in ]. Then we have

ẽi(tk+1) = fi(x(tk))wfault
i + ηi(tk), (18)

where ẽi is the output when there are faults. From (17) and
(18), it’s easy to find that ẽi(tk+1)− êi(tk+1) is a stochastic
variable with mean fi(x(tk))(wfault

i −wtrue
i ) and variance

σ2. Denoting yi = ẽi − êi, wi = wfault
i −wtrue

i , we have

yi(tk+1) = fi(x(tk))wi + ηi(tk). (19)

In the noiseless case, when there are no faults, ∀i, yi and
wi are zeros; when there are faults, certain yi are nonzeros.
So faults can be detected when not all yi are zeros. However,
in the noisy case, even when there are no faults, yi is nonzero
most of the time since it is a stochastic variable with zero
mean. This can be interpreted in a probabilistic way by
Chebyshev’s Inequality, i.e. P(|ei(tk+1)−êi(tk+1)| ≥ kσ) ≤
1
k2 where k ∈ R+. When there are no faults, that explains
the deviation between the expected and true outputs cannot
be much greater than zero with high probability. Thus when
|ẽi(tk+1)− êi(tk+1)| is above a predefined threshold (much
greater than σ), the faults can be isolated with high probabil-
ity (e.g. if the threshold is set to kσ = 10σ, the probability
is 99%). Based on the above explanations, we will later
summarise the fault detection and isolation procedures in
Algorithm 2. The remaining task is to identify the location
of the faults or equivalently find the nonzeros entries in
wi, which is known to be the fault identification procedure.
Assuming that M successive data points are sampled and
defining

yi , [yi(t1), . . . , yi(tM )]T ∈ RM ,

Φi ,

 f
(1)
i (x(t0)) f

(2)
i (x(t0))

...
...

f
(1)
i (x(tM−1)) f

(2)
i (x(tM−1))


=

 fi(x(t0))
...

fi(x(tM−1))

 ∈ RM×2N ,

ηi , [ni(t0), . . . , ni(tM−1)]
T ∈ RM ,

we can write n independent equations:

yi = Φiwi + ηi, (i = 1, . . . , N). (20)

We want to find wi given the output data stored in yi. To
solve for wi in (20) corresponds to solving linear regression
problems that can be solved using standard least square
approaches. Since there would be n independent linear
regression problems, we can just consider one single problem
and omit the subscripts i in (20) for simplicity of notation.
We then write

y = Φw + η. (21)

IV. ALGORITHM FOR SOLVING EQ. (21)

We address the linear regression problem under the fol-
lowing assumption.

Assumption 2: A maximum of S transmission lines are
faulty, i.e., w has at most S non-zero entries. In other words,
w is S-sparse or mathematically, ‖w‖0 ≤ S. The constant
S is assumed unknown to the system administrator.

Remark 1: Assumption 2 is a realistic one for small values
of S since in the context of a networked system, it is
typically not the case that all the transmission lines are faulty
simultaneously. Alternatively, in the case when the faults are
ubiquitous, we cannote that buses in power networks are
typically sparsely connected thus yielding that the number
of faults is relatively smaller than the size of the network N .

However, standard least square approaches cannot be used
to detect these faults efficiently. Typically, one can use the
pseudoinverse of Φ, Φ†, to get an estimate for w. For affine
systems such as (21), the pseudoinverse may be used to
construct the solution of minimum Euclidean norm among
all solutions. The estimation is generically dense (hence,
violating Assumption 2) and one cannot identify which
transmission lines are likely to be faulty by identifying the
nonzero entries of the estimated wfault

i −wtrue
i .

To alleviate the difficulties mentioned above, the linear
regression problem (21) can be defined as a compressive
sensing, or sparse signal recovery problem [7], [8], with
observation vector y, known regressor matrix Φ, unknown
coefficients w, and additive noise η. In sparse problems,
the prior belief is that only a small fraction of the elements
appearing in w are non-negligible. The general aim is to
identify the sparsest representation for w.

For y = Φw + η, the likelihood of the output given w is

P(y|w) = N (y|Φw, σ2I) ∝ exp

[
− 1

2σ2
‖y −Φw‖2

]
. (22)

We define a prior distribution P(w) as follows and and
compute the posterior distribution over w via Bayes’ rule:

P(w) ∝ exp

[
−1

2
g(w)

]
= exp

−1

2

∑
j

g(wj)

 , (23)

where g(wj) is an arbitrary function of wj . We then formu-
late a maximum a posteriori (MAP) estimate:

wMAP = arg max
w
P(w|y)

= arg min
w
{‖y −Φw‖22 + σ2g(w)}, (24)

where g(w) is defined as a penalty function.



If we define γ , [γ1, . . . , γN ]
T ∈ RN+ , we can represent

the prior in the following relaxed (variational) form:

P(w) =
∏
j

P(wj), P(wj) = max
γj>0

N (wj |0, γj)ϕ(γj), (25)

where ϕ(γj) is a nonnegative function which is treated as
a hyperprior with γj being its associated hyperparameters.
Throughout, we call ϕ(γj) the “potential function”. We have
also shown that logP(

√
wj) is concave on (0,∞) [9].

For a fixed γ = [γ1, . . . , γN ], we define a relaxed prior
which is a joint probability distribution over w and γ

P(w;γ) =
∏
j

N (wj |0, γj)ϕ(γj)

= P(w|γ)P(γ) ≤ P(w), (26)

where P(w|γ) ,
∏
j N (wj |0, γj),P(γ) ,

∏
j ϕ(γj). Since

is P(y|w) is Gaussian in (22), we can get a relaxed posterior
which is also Gaussian

P(w|y,γ) =
P(y|w)P(w;γ)∫
P(y|w)P(w;γ)dw

= N (mw,Σw), (27)

where

mw = ΓΦT (σ2I + ΦΓ−1ΦT )−1y, (28)
Σw = Γ− ΓΦT (σ2I + ΦΓ−1ΦT )−1Φ, (29)

with Γ , diag[γ].
Now the key question is how to choose the most

appropriate γ = γ̂ = [γ̂1, . . . , γ̂N ] to maximise∏
j N (wj |0, γj)ϕ(γj) such that P(w|y, γ̂) can be a “good”

relaxation to P(w|y). Using the product rule for probabili-
ties, we can write the full posterior

P(w,γ|y) ∝ P(w|y,γ)P(γ|y)

= N (mw,Σw)× P(y|γ)P(γ)

P(y)
. (30)

Since P(y) is independent of γ, the quantity

P(y|γ)P(γ) =

∫
P(y|w)P(w|γ)P(γ)dw

is the prime target for variational methods [10]. This quantity
is known as evidence or marginal likelihood. A good way
of selecting γ̂ is to choose it as the minimiser of the sum of
the misaligned probability mass, e.g.,

γ̂ = arg min
γ≥0

∫
P(y|w) |P(w)− P(w;γ)| dw

= arg max
γ≥0

∫
P(y|w)

∏
j

N (wj |0, γj)ϕ(γj)dw.(31)

The second equality is a consequence of P(w;γ) ≤ P(w)
(see (26)). The procedure in (31) is referred to as evidence
maximisation or type-II maximum likelihood [11]. It means
that the marginal likelihood can be maximised by selecting
the most probable hyperparameters able to explain the ob-
served data. Once γ̂ is computed, an estimate of the unknown
weights can be obtained by setting ŵ to the posterior mean
(28):

ŵ = E(w|y; γ̂) = Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1y. (32)

Theorem 1: [9] The optimal hyperparameters γ̂ in (31)
can be achieved by minimising the following cost function

Lγ (γ) = log
∣∣σ2I + ΦΓ−1ΦT

∣∣
+yT (σ2I + ΦΓ−1ΦT )−1y +

∑
j

p(γj),(33)

where p(γj) = −2 logϕ(γj), and the cost function is
nonconvex.

Furthermore, based on duality lemma (see Sec. 4.2 in
[12]), we can create a strict upper bounding auxiliary func-
tion Lγ,w(γ,w) of Lγ(γ) in (31),

Lγ,w(γ,w)

, 〈γ∗,γ〉 − h∗(γ∗) + yT
(
σ2I + ΦΓ−1ΦT

)−1

y

=
1

σ2
‖y −Φw‖22 +

∑
j

(
w2

j

γj
+ γ∗j γj

)
− h∗(γ∗). (34)

,
1

σ2
‖y −Φw‖22 +

∑
j

(
w2

j

γj
+ γ∗j γj

)
. (35)

For a fixed γ∗, we notice that Lγ∗(γ,w) is jointly convex
in w and γ and can be globally minimised by solving over
γ and then w. Since w2

j/γj + γ∗j γj ≥ 2wj
√

γ∗j , for any w,
γj = |wj |/

√
γ∗j minimises Lγ∗(γ,w).

The next step is to find a ŵ that minimises Lγ∗(γ,w).
When γj = |wj |/

√
γ∗j is substituted into Lγ∗(γ,w), ŵ can

be obtained by solving the following weighted convex `1-
minimisation problem

ŵ = arg min
w
{‖y −Φw‖22 + 2σ2

∑
j

uj |wj |}

= arg min
w
{‖y −Φw‖22 + 2σ2

∑
j

√
γ∗j |wj |},(36)

where
√

γ∗j are the weights. We can then set

γj =
|ŵj |√
γ∗j
,∀j, (37)

and, as a consequence, Lγ∗(γ,w) will be minimised for any
fixed γ∗.

Consider again Lγ,w(γ,w) in (34). For any fixed γ and
w, the tightest bound can be obtained by minimising over γ∗.
The tightest value of γ∗ = γ̂∗ equals the slope at the current
γ of the function h(γ) , log |σ2I + ΦΓ−1ΦT |+

∑
j p(γj).

Using basic principles in convex analysis, we then obtain the
following analytic form for the optimiser γ∗:

γ̂∗ = ∇γ

log |σ2I + ΦΓ−1ΦT |+
∑
j

p(γj)


= diag

[
ΦT

(
σ2I + ΦΓ−1ΦT

)−1
Φ
]

+ p′(γ),(38)

where p′(γ) = [p′(γ1), . . . , p′(γN )]
T .

The algorithm is then based on successive iterations of
(36), (37) and (38) until convergence to γ̂. We then compute
the posterior mean and covariance as in (28) and (29)

ŵ = Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1y, (39)
Σŵ = Γ̂− Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1Φ, (40)



where Γ̂ = diag[γ̂]. The above described procedure is
summarised in Algorithm 1.

Algorithm 1 Reweighted `1-minimisation on hyperparame-
ter γ
Data: Successive observations of y from t0 to tM .
Result: Posterior mean for w.
Step 1: Set iteration count k to zero and initialise each
u
(0)
j =

√
γ∗j , with randomly chosen initial values for γ∗j , ∀j,

e.g., with γ∗j = 1, ∀j.
Step 2: At the kth iteration, solve the reweighted `1-
minimisation problem

ŵ(k) = arg min
w
{‖y −Φw‖22 + 2σ2

∑
j

u
(k)
j |wj |}.

Step 3: Compute γ(k)j =
|ŵ(k)

j |√
γ
∗(k)
j

,∀j.

Step 4: Update γ̂∗
(k+1)

using (38)

γ̂∗
(k+1)

= diag

[
ΦT

(
σ2I + ΦΓ(k)ΦT

)−1
Φ

]
+ p′(γ(k)).

Step 5: Update weights u(k+1)
j for the `1-minimisation at

the next iteration u(k+1)
j =

√
γ̂∗j

(k+1)
.

Step 6: k → k+1 and iterate Steps 2 to 5 until convergence
to some γ̂.
Step 7: Compute ŵ = E(w|y; γ̂) = Γ̂ΦT (σ2I + ΦΓ̂ΦT )−1y.

Based on Algorithm 1, we can summarise the fault diag-
nosis algorithm in Algorithm 2.

Remark 2: If a convex optimisation algorithm is used,
there will be no exact zeros during the iterations and, strictly
speaking, we will always get a solution with 0-Sparsity
even when the RIP condition holds. However, some of the
estimated weights will be very small compared to other
weights, e.g., ±10−3 compared to 1, i.e. the “energy” some
of the estimated weights will be several orders of magnitude
lower than the average “energy”, e.g., ‖wj‖22 � ‖w‖22. Thus
a threshold needs to be defined a priori to prune the “small”
weights at each iteration. An important feature of Algorithm
1 is its very cheap algorithmic complexity since the re-
peated execution scales as O(MN‖w(k)‖0) (see [13], [14]).
Since at each iteration certain weights are estimated to be
zero, certain dictionary functions spanning the corresponding
columns of Φ are pruned out for the next iteration.

V. NUMERICAL STUDY

The effectiveness of our theoretic developments is here
illustrated for a randomly generated power network with
20 buses. If all the buses are fully connected, the possible
number of transmission lines is 380. Here we assume the
number of transmission lines is 79 (the sparsity of the
network is around 20%). Its dynamics can be described by
nonlinear swing equations as in (10) and (11). w(1)

ij and w(2)
ij

are positive real numbers as showed in Fig. 3a. Let the noise
variance σ2 = 1. All the coefficients of the model we use
are selected similar as those in [2], [15].

Since the sampling frequency is around 50 Hz [2], [15], we
assume the sampling interval to be 20ms. We thus assume

Algorithm 2 Diagnosis for faults

Initialization:
Set a threshold σ∗ as indicated in Section III-B, e.g.
10× σ;

Iteration:
1: for k = 0, . . . , T do
2: % T is an integer indicating the count of sampling

and the number of diagnosis rounds;
3: Collect ξi(tk) and ζi(tk) in (12) and (13)
4: for i = 1, . . . , N do
5: Calculate the output data ei(tk+1) in (14);
6: Calculate the expected output êi(tk+1) in (17);
7: if |ei(tk+1)− êi(tk+1)| > σ∗ then
8: Fault is detected for bus i; % {fault detection

procedure}
9: Compute yi(tk+1) in (19);

10: if |yi(tk+1)| > σ∗ then
11: Isolate bus i; % {fault isolation procedure}
12: end if
13: end if
14: Set M ← k;
15: Apply Algorithm 1 to identify the faults ŵi; %

{fault identification procedure}
16: end for
17: if ∀i, ‖ŵi‖0 converge to some constant then
18: Break;
19: end if
20: end for
Output:

An estimate for the faults ŵ in (20), i = 1, . . . , n;

that the discretisation step in Section III is performed using a
sampling interval ∆t = 20ms. Consider the power networks
model in (10) and (11). At time instant t = 3s, there are
faults occurring in five transmission lines simultaneously.
Specifically, the behaviour of the faults can described as
follows: ∀(i, j) ∈ {(5, 18), (7, 2), (11, 15), (16, 18), (19, 9)},
w

(1)
ij and w

(2)
ij in (6) respectively (which correspond to cos

and sin terms) are set to zeros. 5 buses are involved in these
transmission lines, i.e. buses 5, 7, 11, 16 and 19. Following
the setup in Algorithm 2, we want to detect and isolate
these 5 buses. After detection and isolation, the identification
procedure will be performed. We consider σ∗ = 10σ = 10
to initialise Algorithm 2.

First, we detect and isolate the buses with |yi(tk+1)| > σ∗.
It is shown in Fig. 1 that at time instant t = 3.02s (only
one sampling time after the faults occur), buses 5, 11, 16
and 19 can be isolated. After 3 identification rounds, bus
7 is isolated to be faulty at time instant t = 3.06s. Next,
we identify the faults that occur in the transmission lines
connecting the buses isolated, i.e. buses 5, 7, 11, 16 and 19.
In Fig. 2, the time trajectory of ‖ŵi‖0 for i = 5, 7, 11, 16, 19
are depicted starting at the time point t = 3.02s when the
faults are detected. We set the pruning threshold (mentioned
in Remark 2) to 10−3, i.e., ‖wj‖22/‖w‖22 < 10−3. We define
a positive integer n∗ to indicate the identification rounds
which are required to terminate the identification procedure,
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Fig. 1: Time-series of yi for all buses. The dashed lines are
indicating for bus i, i = 5, 7, 11, 16, 19.
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Fig. 2: Time-series of the sparsity of the estimated fault, i.e.
‖wfault

i −wtrue
i ‖0 for bus i = 5, 7, 11, 16, 19.

e.g. n∗ = 10. As shown in Fig. 2, at time instant t = 3.52s,
the sparsity of the estimated fault, i.e. ‖wfault

i −wtrue
i ‖0 for

bus i = 5, 7, 11, 16, 19 all become to 2 and keep unchanged
hereafter. At time instant t = 3.72s, 10 rounds after t =
3.52s, we terminate the identification procedure. Finally at
time instant t = 3.72s, the sparsity for all the estimated
faults is stable and we stop the algorithm. In Fig. 3a and
Fig. 3b, we illustrate the true weight matrix and the estimated
absolute error matrix |wfault

i − wtrue
i |. As we can see, all

the 5 faults that are occurring in the transmission lines have
been identified with high accuracy.

VI. CONCLUSION
In this paper, we consider the problem of automatic fault

diagnosis in large scale power networks described by second-
order nonlinear swing equations. This work is in particular
focusing on a class of faults that occur in the transmission
lines. Later we applied tools from compressive sensing and
variational Bayesian inference to detect, isolate and identify
the faults.
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