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Abstract— In this work we propose a synthetic gene circuit
for controlling the variability in protein concentration at a
population level. The circuit, based on the use of an intracellular
nonlinear controller coupled to a cell-to-cell communication
mechanism, allows for independent control of the mean and
variance of a signalling molecule across cell population. Via a
piecewise affine approximation of the nonlinearity, we provide
set invariance results that imply the stability of the closed loop
system. We also obtain closed-form expressions for the mean
and variance as a function of the tuneable parameters of the
controller. The predictions offered by the theoretical analysis
are in agreement with numerical simulations performed with
physiologically realistic parameters in Escherichia coli.

I. INTRODUCTION

Since the seminal works in [1], [2], a number of biomolec-
ular devices have been developed to perform circuit-like
functions in living cells, including switches, pulse generators
and logic gates [3]. Substantial efforts are being undertaken
to scale up synthetic biology from individual modules to
whole systems capable of executing complex functions [4].

An area of particular relevance is the design of collective
cell behavior, whereby a prescribed population response
results from the interaction between individual cells. A com-
mon approach to induce collective behaviors is to use cell-
to-cell communication mechanisms. These typically rely on
the quorum sensing machinery from V. fischeri and have been
used for diverse purposes such as population synchronization
[5], cell density control [6], engineered pattern formation [7]
and the design of synthetic ecosystems [8].

Gene expression is an inherently stochastic process, and it
is widely acknowledged that genetic noise plays a key role
in cellular dynamics [9]. At a population level, the effect of
noise becomes apparent by the fact that genetically identical
cells produce the same protein at different concentrations.
The variability in protein concentrations can be quantified
with high-throughput technologies such as flow cytometry,
which allow to characterize the variability in terms of the
population histograms for the protein abundance [10].

Research in this area is partially supported by Spanish government
(FEDER-CICYT DPI2011-28112-C04-01) and European Union (FEDER).
Alejandro Vignoni thanks grants FPI/2009-21 and PAID-00-11/2714 of
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In this work we combine an intracellular feedback con-
troller with a cell-to-cell communication mechanism de-
signed to control the mean and variance of the signalling
molecule Acyl-Homoserine Lactone (AHL) across a popula-
tion of cells. AHL is an autoinducer molecule that diffuses
in the extracellular medium and acts as a communication
signal between cells. The feedback controller regulates the
production of the protein LuxI, which in turn controls the
synthesis of AHL (Fig. 1).
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Fig. 1. Different architectures for controlling the AHL distribution across
a population. The core principle is to use the PluxR promoter as an
interface to control the production of LuxI (thus modulating AHL and
the cell-to-cell communication). (A) Open loop production of LuxI without
communication. (B) Open loop production of LuxI with communication.
(C) Feedback-regulated production of LuxI without communication. (D)
Feedback-regulated production of LuxI with communication.

This mentioned heterogeneity in a population of cells is
usually modelled via deterministic ODEs with parameters
sampled from a given probability distribution, which is
sometimes termed as extrinsic noise [11]. The same approach
was used in this work to account for variability across the
population.

We first consider an ODE model for the intracellular



genetic circuit coupled with the dynamics of AHL export and
uptake (Section II). The saturable behavior of promoter ac-
tivity translates into a sigmoidal nonlinearity in the feedback
controller. By approximating the nonlinearity with a piece-
wise affine function (Section III), we find conditions under
which the system operates in a linear regime (Section IV).
We rely on set-invariance results similar to those developed
in [12] for continuous implementations of sliding mode
control, and in [13] for a sliding mode reference conditioning
scheme for coordination of multi-agents. Our main results
are closed-form expressions for the mean and variance of
AHL across the population (Section V). These indicate how
a target mean and variance can be achieved independently by
fine-tuning the controller parameters. The predictions offered
by our theoretical analysis are in agreement with numerical
simulations (Section VI) performed with physiologically
realistic parameters of Escherichia coli.

II. SYSTEM DESCRIPTION

A. Cell-to-cell communication and feedback controller
The proposed circuit combines two engineered gene net-

works previously implemented in E. coli: a cell-to-cell com-
munication system [14], and a synthetic repressible promoter
[15], see Fig. 2. The cell-to-cell communication circuit uses
components taken from the quorum sensing system of V.
fischeri [16], [17]. The feedback circuit comprises a luxI
gene under the control of the PluxR promoter. The protein
LuxI is the AHL synthase. AHL in turn can bind the protein
LuxR and form a complex that binds to the PluxR promoter
and represses the expression of the luxI gene. The circuit
therefore a negative feedback loop between the concentration
of intracellular AHL and the expression of luxI gene.
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Fig. 2. Schematic of the intracellular feedback control circuit in one cell
and the cell-to-cell communication mechanism.

B. Mathematical model

In a population of N cells, the concentrations of LuxI,
internal AHL and external AHL can be modelled by the
following set of ODEs

ẋi
1 = κ0 +κ1

θ n

θ n + xi
2

n − γ1xi
1, (1)

ẋi
2 = κ2xi

1−d
(
xi

2− xe
)
− γ2xi

2, (2)

ẋe =
de

N

N

∑
i=1

(
xi

2− xe
)
− γexe, (3)

where xi
1 is the concentrations of LuxI protein in the ith cell,

xi
2 is the concentration of internal AHL in the ith cell, and

xe is the concentration of external AHL.
In equation (1) modelling the LuxI concentration, κ0 is the

tightness or basal expression of the promoter, and κ1 is the
dynamic range of the promoter. The regulatory effect of the
promoter is modelled as a Hill-like function, whereby n is
the Hill coefficient and θ is the half concentration constant
or repression threshold.

In equation (2) modelling the internal AHL concentration,
the kinetic constant κ2 models first order AHL synthesis,
whereas d is the internal transport constant. Both molecules,
LuxI and internal AHL, are subject to first order degradation
processes with kinetic constants γ1 and γ2, respectively. The
kinetic constant de is the external transport constant and γe
is the degradation rate of external AHL. Note that in (3) we
take into account the difference between the external and
internal volumes with the factor 1

N , as in [18].
In the model (1–3) we have made the following approx-

imations: a) we assume the expression of mRNA is in a
quasi-stationary state, neglecting the fast transient required
by the mRNA concentration to reach its steady-state value,
b) we consider the DNA/repressors complex also reaches
very quickly its steady state value, allowing us to model
the repression with a Hill function, c) we do not explicitly
model the dimerization of the LuxR protein and its binding to
AHL, and d) we assume that the LuxR gene is constitutively
expressed and is not a limiting factor in the process.

For the purpose of obtaining analytic results, we model
the variability between cells by taking the tightness of the
PluxR promoter, κ0, as a random variable with a normal
distribution (κ0 ∼ N

(
µ,σ2

)
). Here µ and σ2 are the

mean and variance across the population. However, to obtain
more biologically-realistic results, more sources of variability
should be included in the analysis. In the simulations we
validated our analytical results by adding variability in all
remaining parameters (we draw the parameters for each cell
from a random distribution, see Fig. 4 and Section VI).

The following notation will be used hereafter:
the partial states x1 and x2 are defined as
x1 =

[
x1

1, . . . ,x
N
1
]T ∈ RN, x2 =

[
x1

2, . . . ,x
N
2
]T ∈ RN and

the full state x = [x1,x2,xe]
T ∈ R2N+1. The vector of

equilibrium points of the partial states x1 and x2 for the
whole ensemble will be denoted x̄1 and x̄2. The equilibrium
of xe can be expressed as a function of the equilibrium



points of xi
2:

x̄e =
1
N

(
de

de + γe

) N

∑
i

x̄i
2 =

ε

N

N

∑
i

x̄i
2 =

ε

N
1T

Nx̄2, (4)

where ε = de
de+γe

, and x̄e, x̄i
2 are the equilibrium values of xe

and xi
2. The vector 1N ∈ RN denotes the vector with all its

elements equal to 1.
The variability of the promoter tightness κ0 translates into

a probability distribution for the steady state concentrations
of LuxI and internal AHL across the population. In the
remaining of the paper we will focus on quantifying this dis-
tribution, exploring how the intracellular feedback controller
together with the cell-to-cell communication can be used to
reduce variability of gene expression in the population.

III. APPROXIMATION OF THE INTRACELLULAR
CONTROLLER

To simplify the analysis, we approximate the Hill function
in (1) by the piecewise affine saturation function shown in
Fig. 3. Its slope is taken to be the same as that of the
Hill function at the half concentration constant θ , which is
a sensible approximation for the typical values of the Hill
coefficient n. Under this approximation, equation (1) can be
rewritten as:

ẋi
1 = usat(xi

2)− γ1xi
1, (5)

with

usat(xi
2) =

 κ i
0 +κ1 if xi

2 < θ −δ

κ i
0−

κ1n
4θ

xi
2 +

κ1n
4 + κ1

2 if
∣∣xi

2−θ
∣∣< δ

κ i
0 if xi

2 > θ +δ ,
(6)

and δ being the midpoint of the linear section:

δ =
2θ

n
. (7)

As mentioned before, the Hill function, together with
its approximation usat, can be understood as a controller
with fixed structure and tunable parameters. Our goal is to
tune the controller parameters so as to shape the statistical
distribution of the steady state concentration of AHL. We
can conveniently reparameterize the saturation function usat
using only three parameters. Rewriting (6) using S = κ1n

4θ
,

T = θ , R = κ1
2 and δ = R

S we obtain

usat(xi
2) =

 κ0 +2R if xi
2 < T −δ

κ0−S
(
xi

2−T
)
+R if

∣∣xi
2−T

∣∣< δ

κ0 if xi
2 > T +δ .

(8)

IV. OPERATION IN THE LINEAR REGIME

In this section we obtain sufficient conditions under which
the set

Φx =
{

x ∈ R2N+1 :
∣∣x̄i

2−T
∣∣≤ δ ,∀i = 1, . . . ,N

}
, (9)

is an attractive invariant set for all the cells in the intercon-
nected population (see Fig. 3). Later in Section V we will
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Fig. 3. Characteristic of the promoter. Hill function and its piecewise affine
approximation for n = 5, θ = 5 resulting in δ = 2.

use this result to obtain closed-form expressions for the mean
and variance of the protein concentration.

We first define the mean system states as [x̃1, x̃2,xe]
T , with

x̃ j =
1
N

N

∑
i=1

x j
i , j = 1,2. (10)

The dynamics of the mean system can be expressed by

˙̃x1 = ρ− γ1x̃1, (11)
˙̃x2 = κ2x̃1− (d + γ2) x̃2 +dxe, (12)
ẋe = dex̃2− (de + γe)xe. (13)

Where ρ = 1
N ∑

N
i=1 usat(xi

2). Notice that 1
N ∑

N
i=1 κ i

0 = κ̃0 is the
sample estimator of the mean µ , and that using (8) we get
1
N ∑

N
i=1 usat(xi

2) ∈ [µ,2R+µ].
Equation (11) corresponds to an exponentially stable lin-

ear system with bounded input ρ and time constant 1/γ1.
Therefore, x̃1 there will get arbitrarily close to its steady state
x̃1 ∈

[
µ

γ1
, µ+2R

γ1

]
after a finite time t?. The same argument

holds for the subsystem formed by (12)-(13) with bounded
input x̃1, and thus xe will get arbitrarily close to its steady
state

xe ∈
εκ2

d (1− ε)+ γ2

[
µ

γ1
,

µ +2R
γ1

]
, (14)

after a finite time t?? > t?.
Since xe is a bounded signal, equations (2), (5) and (8) for

the ith cell can be rewritten using the variable change z = xi:{
ż1 =−γ1z1 +u(z2)

ż2 = κ2z1− (d + γ2)z2 + ze,
(15)

where z = [z1,z2]
T ∈ R2 and ze = xe is a bounded external

perturbation with bounds ze < ze < ze from (14). Note that
the index i was dropped for simplicity of notation.



The idea is to obtain a bound on the control signal u(z2)
that ensures convergence of the trajectories of (15) to the set
Φ, and that makes it invariant, with Φ defined as:

Φ =
{

z ∈ R2 : z2 < z2 < z2
}
. (16)

To this end, it is convenient to use a structure for u(z2) which
is more general than equations (6) and (8):

u(z2) =


κ1 +κ0 z2 < z2u

uin(z2) z2u < z2 < z2u

κ0 z2 > z2u.

(17)

with κ0 < uin(z2) < κ1 + κ0 a bounded but not necessary
continuous function of z2 and z2 < z2u and z2u < z2.

Note that making T − δ = z2 and T + δ = z2, equations
(6) and (8) plus κ0 represent (17), and when the set Φ is
invariant, then the set Φx (9) is also invariant. Also, the set
Φ can be rewritten as Φ = Φ∩Φ, the intersection of two sets
Φ and Φ where

Φ =
{

z ∈ R : φ(z2) =−z2 + z2 < 0
}

(18)

and
Φ =

{
z ∈ R : φ(z2) = z2− z2 < 0

}
. (19)

In [12] a boundary layer set is proven to be uniformly
ultimately bounded, for systems with unitary relative degree
(where the control action u appears explicitly in the first
derivative of the output φ ). The system in (15), however,
has relative degree two when we take the control to be u(z2)
and the outputs to be φ(z2) and φ(z2). To overcome this
problem, we exploit the triangular structure of the system
and design u(z2) using a backstepping-like approach. We can
then use geometric invariance ideas to make the desired set
Φ invariant. With this technique we get the following result.

Theorem 1: The set Φ is an invariant and attractive set for
z2 if the following inequalities hold

κ0 +κ1 > γ1
(d + γ2)z2− ze

κ2
(20)

and

κ0 < γ1
(d + γ2)z2− ze

κ2
(21)

Proof: The proof will be sketched in four steps, two
for the set Φ (18) and another two for the set Φ (19). First
we will use z1 = u? as a virtual control action in the second
equation of system (15). This will allow us to find the set S
of all z1 that make Φ an invariant set for z2. In the second
design step, we will find the set of all u(z2) that make S
invariant for z1.For the remaining two steps we proceed in a
similar way to make S and Φ invariant sets for z1 and z2
respectively.

First consider{
ż2 = κ2u?− (d + γ2)z2 + ze

φ(z2) =−z2 + z2
(22)

And now the goal is to find u? in order to make set Φ

invariant.

Φ =
{

z2 ∈ R+ : φ(z2)< 0
}

(23)

This is equivalent to find bounds on u? to make the vector
field point inside Φ, when z2 reaches the boundary of the set
Φ.

Consider the z2-system (22). Using
f (z2,ze) =−(d + γ2)z2 + ze and g(z2) = κ2 it is possible to
rewrite ż2 = f (z2,ze)+g(z2)u?. In order to find the lower
bound u?, we need to find the direction of the vector field
with respect to the boundary of the set Φ. To obtain the
control signal that makes Φ invariant, we apply the explicit
invariance condition [13]:

u


≤ uφ : z ∈ ∂Φ∧Lgφ > 0

≥ uφ : z ∈ ∂Φ∧Lgφ < 0
not defined : z ∈ ∂Φ∧Lgφ = 0

free : z ∈Φ\∂Φ

(24)

Here L f φ accounts for the Lie derivative of φ along the
direction of the vector field f , and uφ =−L f φ

Lgφ
.

In our case, we get

u?φ =− (d + γ2)z2− ze

−κ2
(25)

and hence z2 is an upper bound of z2. For the perturbation
term ze, we will use its lower bound ze, as it is an anti-
cooperative term with respect to z2. We obtain the following
lower bound for u?, that we will call u?min:

u?min =
d + γ2z2− ze

κ2
(26)

Then, if the following holds

u? > u?min, ∀z2 /∈Φ. (27)

the trajectory of z2 is forced to remain inside Φ.
Secondly, we proceed with the first equation of system

(15). Remembering that u? = z1, we have{
ż1 =−γ1z1 +u(z2)

σ(z1) =−z1 +u?min
(28)

Define the set S as:

S =
{

z1 ∈ R+ : σ(z1)< 0
}

(29)

when z2 /∈ Φ. The goal now is to find a bound on u(z2) so
as to make the set S invariant.

Using the same methodology and the explicit invariant
condition, we get

uσ = γ1z1. (30)

To bound z1 we use the fact that the application of the control
signal (30) is only required when σ > 0. Hence u?min is an
upper bound of z1. This allows us to obtain the bound umin
for u:

umin = γ1u?min = γ1
(d + γ2)z2− ze

κ2
(31)



Then the set Φ is an invariant and attractive set for z2 if

u(z2)> γ1
(d + γ2)z2− ze

κ2
∀z2 /∈Φ (32)

Equivalent steps can be applied with the set Φ to obtain:

u(z2)< γ1
(d + γ2)z2− ze

κ2
∀z2 /∈Φ. (33)

Now, using u(z2) = κ0 when z2 /∈ Φ, and u(z2) = κ0 + κ1
when z2 /∈Φ, we get that the following inequalities

κ0 +κ1 > γ1
(d + γ2)z2− ze

κ2
(34)

and
κ0 < γ1

(d + γ2)z2− ze

κ2
(35)

must hold to make Φ an invariant set.

V. CONTROL OF PROTEIN MEAN AND VARIANCE

In this section we show that the mean and variance of
the AHL concentration across the cell population can be
controlled independently with different parameters of the
controller. This constitutes the main contribution of this
paper.

Under the conditions of Theorem 1 we know that every in-
dividual system will eventually operate in the linear regime:

ẋi
1 = κ

i
0−S

(
xi

2−T
)
+R− γ1xi

1, (36)

The dynamics of the whole ensemble can then be written as
a (2N +1)−dimensional linear system:

ẋ =

 −γ1IN SIN 0N
κ2IN −(d + γ2)IN d1N

0T
N

de
N 1T

N −(de + γe)

x+

 κ0 +(ST +R)1N
0N
0

 , (37)

We define the matrix ΠN as

ΠN = IN−
1
N

1N×N, (38)

where IN ∈ RN×N is the identity matrix and 1N×N ∈ RN×N

has all its entries equal to 1.
Note that ΠN is idempotent (i.e. ΠNΠN =ΠN) and satisfies

ΠN1N = 0N.
Setting ẋ = 0 in (37) and using (4) we get a system of 2N

linear equations for the steady states x̄1 and x̄2:
[

γ1IN SIN
κ2IN − [d (1− ε)+ γ2]IN−dεΠN

][
x̄1
x̄2

]
=

[
κ0 +(ST +R)1N

0N

]
(39)

Theorem 2: Under the conditions for Theorem 1, the
mean and variance of the distribution of x2 for a population
of N cells can be controlled independently by tuning the
parameters of each cell intracellular controller as follows:

E
{

x̄i
2
}
=

1
S+β

(µ +ST +R) (40)

Var{x̄i
2}=

[
1

(S+β − εd)2 +
1
N

(
1

(S+β )2 −
1

(S+β − εd)2

)]
σ

2

(41)

Proof: Consider the system in (2), (3) and (5) with
the approximation in (8) under the conditions of Theorem 1,
then all cells in the population operate in the linear region
Φ. From (39) we have

γ1x̄1 +Sx̄2 = κ0 +(ST +R)1N (42)

and
x̄1 = [(d (1− ε)− γ2)IN +dεΠN ]

x̄2

κ2
. (43)

Replacing (43) in (42), we obtain[(
S+

[d (1− ε)+ γ2]γ1

κ2

)
IN +dεΠN

]
x̄2 = κ0 +(ST +R)1N .

(44)

Exploiting the structure of the matrix in (44) we obtain a
closed-form expression for x̄2 (details omitted for brevity):

x̄2 =

[
1
α

IN +

(
1

α− εd
− 1

α

)
ΠN

]
(κ0 +(ST +R)1N) ,

(45)
where β = [d(1−ε)+γ2]γ1

κ2
and α = S+β .

If κ0 ∼ N
(
µ,σ2

)
, the expected value of x̄2 along the

population can be computed using properties of the ΠN
matrix:

E{x̄2}=
1

S+β
(µ +ST +R)1N (46)

A closed-form expression for the variance of x2 can be
obtained similarly

Var{x̄2}=

[
1

α2 IN +

(
1

(α− εd)2 −
1

α2

)
ΠN

]
σ

2IN. (47)

The expressions in (40)–(41) can be finally obtained
directly from (46)–(47).

The expression in (41) indicates that the variance can be
controlled independently from the mean with the parameter
S, and its sensitivity is

∂Var{x̄i
2}

∂S
=− 2

N

[
1

(S+β )3 +
N−1

N (S+β − εd)3

]
σ

2, (48)

which indicates that a steep feedback (i.e. with a high value
of S) tends to reduce the population level variability.

VI. SIMULATIONS

To demonstrate the potential of the proposed control
strategy, we ran numerical simulations of the different control
architectures shown in Fig. 1. The parameters values used
are shown in Table I. These are physiologically realistic
values for E. coli, and similar to those typically found in
the literature [15], [16], [18]–[21].

In order to compare the different architectures, we observe
the variances and adjust the means to be similar in all cases.

Note that nowadays, the Ribosome Binding Site (RBS)
strength is one of the more suitable biological tuning knobs,
which can be selected with high predictability [22]. Thus,
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Fig. 4. Time course and steady state histogram of 10.000 cells for
architecture D with closed loop with cell to cell communication (with
n = 1.5)

consider rewriting (1) taking into account the RBS strength
in the following way:

ẋi
1 = RBSs

(
κ̂

i
0 + κ̂

i
1

θ n

θ n + xi
2

n

)
− γ1xi

1. (49)

The new parameters κ̂0 and κ̂1 are fixed among all the
examples to a 10% of leakiness and 10-fold dynamic range
[18], [19], [21]. Hence, the RBS strength RBSs will be used
as the only tuning knob in order to have the same mean of
AHL in architectures B, C and D than in architecture A.

Fig. 4 shows the simulation of 10000 ODEs (equations
1-2) one for each cell i. The values for the parameters were
drawn from a normal distribution with mean equal to the
nominal value of the parameter in Table I and a variance of
5% of that value. The steady state distributions for all the
architectures (see Fig. 5) were obtained from the same kind
of simulations with corresponding parameters (Table I).

In Fig. 5 we can see how the different architectures
impact on the steady state distribution of AHL. The mean,
the variance, and the coefficient of variation (CV) of AHL
resulting from the simulations are shown also in Table I.

From the results in Table I and from the distributions of
AHL in Fig. 5, it appears that both the feedback-regulated
production of LuxI, and the cell-to-cell communication
through AHL are required for best performance. Case D
(bottom plot from Fig. 5) have smaller variances than cases
A, B and C (top plot from Fig. 5).

Also comparing the two distributions in the bottom plot
from Fig. 5 it appears that a steep feedback n = 3 tends to
reduce the population level variability as predicted by (48)
with respect to a less steeper one n = 1.5.

VII. CONCLUSIONS

In this paper, we investigated the design of a synthetic
gene controller aimed at reducing gene expression variability
at the population level. As a proposed synthetic biology
implementation, we considered a cell-to-cell communica-
tion system coupled with an intracellular genetic controller
characterized by a sigmoidal nonlinearity. To simplify the
mathematical analysis, the nonlinearity was approximated by
a piecewise linear function. Based on this approximation,

Fig. 5. Steady state distributions for 10.000 cells of AHL concentration
in the different architectures of Fig. 1. In the top figure architectures A, B
and C are shown. The bottom figure shows, architecture D with n = 1.5 and
also with a steeper controller n = 3.

TABLE I
NOMINAL VALUES FOR THE PARAMETERS USED IN THE SIMULATIONS.

MEAN, VARIANCE AND CV FOR EACH ARCHITECTURE.

Architecture

Parameter A B C D Units Reference

�1 0.0173 min-1 [20,21]

���� 0.76 15 0.125 4.6 4.6 nM.min-1 [19,21]

� - - 63.24 nM [15,21]

� - - 1.5 1.5 3 - [15]

�2 0.04 min-1 [21]

� - 0.3 - 0.3 min-1 [16]

�� - 0.006 - 0.006 min-1 [16]

�2 2.82e-3 min-1 [18,20]

E �2
� 63.55 64.36 62.65 63.25 63.25 nM

Var �2
� 89.43 10.10 32.13 6.23 4.12 nM

CV �2
� 0.1488 0.0494 0.0905 0.0395 0.0321



we established: (i) conditions under which the non saturated
region of the controller is an attractive invariant set, and (ii)
closed-form expressions for the first two moments of the
distribution of AHL across a population. We also demon-
strated how the parameters of the controller can be fine-tuned
to independently control the mean and the variance of the
distribution.

With the progress of current experimental techniques,
adjusting genetic parameters has become feasible and has
paved the way for the use of rigorous control-theoretic
approaches for the design of genetic circuits. In this line we
think that having a model-based guideline to design genetic
networks has tremendous potential in Synthetic Biology.

For example, changing cooperativity with protein seques-
tration techniques [23] can allow us to tune S (the slope
of the nonlinearity), whereas sequence repeats in the spacer
region of the RBS [22] can be used to adjust R by changing
the RBS strength. The threshold T can also be tuned with
similar techniques [23], for example by shifting the position
where the complex LuxR-AHL binds (called Lux-box) [15]
or by making single point mutations in the Lux-box.

As a proof of concept, in this work we proposed the
basis for protein distribution control along a population by
controlling the distribution of the signalling molecules AHL.
Using this signal to drive the production of a protein of
interest could be used to control its distribution. We are
working in that direction and investigating different ways
in which this could be done. We are also considering the
implementation of the proposed genetic circuit in vivo using
synthetic biological parts (for example Biobricks), and the
analysis of mixed population scenarios in which feedback-
regulated cells coexist with unregulated ones, so as to design
distributed approaches to biocomputing.
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