
Stochastic simulation of enzymatic reactions under transcriptional
feedback regulation

Jean-Baptiste Lugagne† , Diego A. Oyarzún‡ and Guy-Bart V. Stan‡

Abstract— The interaction between gene expression and
metabolism is a form of feedback control that allows cells
to up- or downregulate specific reactions according to the
environmental conditions. Although gene expression is an in-
herently stochastic process, the effect of genetic feedback on
the propagation of noise to the metabolic layer remains largely
unexplored. These systems operate in two timescales, and a
major challenge is to devise stochastic simulation techniques
that can cope with this stiffness in reasonable computational
time. We propose a simulation technique, based on the slow-
scale Stochastic Simulation Algorithm, to rapidly compute
realizations of the Markov process associated to an enzymatic
reaction under genetic feedback regulation. We show that in
the case of constant substrate, the enzyme-substrate complexes
have a binomial stationary distribution. With this result we can
avoid the explicit simulation of the binding/dissociation of the
enzyme and substrate, leading to a significant improvement in
computational speed. We discuss the extension of the algorithm
to networks of enzymatic reactions. The proposed method can
be used to systematically compute the stationary distributions of
the species for different combinations of model parameters, thus
opening the way for the identification of the cellular processes
that can modulate the amplification or attenuation of genetic
noise in enzymatic reactions.

I. INTRODUCTION

Metabolism and gene expression are key players in
enabling the self-regulation of living cells. Although
metabolism has been traditionally seen as a static chemical
workhorse of cells [1], recent studies have uncovered how
dynamic behaviours can emerge from the interplay between
gene expression and metabolic activity [2], and how this
interaction is key to cellular functions [3], [4], [5].

The metabolites needed for cellular functions are synthe-
sized through cascades of biochemical reactions catalyzed
by specific enzymes. The catalytic enzymes are produced
by the gene expression machinery, which in turn can be
modulated by some of the metabolites. This interaction leads
to a feedback interconnection between a metabolic pathway
and its associated gene regulatory network (see Fig. 1a). This
type of feedback systems appears in natural systems such as
the tryptophan operon [6], [7] (see Fig. 1b) and amino acid
biosynthesis [8] in the E. coli bacterium. Genetic feedback
circuits have also been designed to control the dynamics of
metabolic pathways [9], [10].

Biochemical reactions depend on specific binding events
between molecules, and therefore they are inherently stochas-
tic. Studies on metabolism usually neglect the effect of
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Fig. 1: Metabolic networks under transcriptional regulation. (a)
Feedback interconnection between a metabolic network (i.e. the
“plant”) and enzyme expression dynamics (i.e. the controller). (b)
Schematic of the tryptophan operon [6], [7] in E. coli, whereby
tryptophan interacts with a transcription factor (TrpR), repressing
the expression of the enzyme responsible for synthesis of trypto-
phan.

stochasticity on the dynamics of the metabolites. This sim-
plification is based on the fact that metabolites are typically
present in the order of thousands of molecules per cell, and
therefore the high molecule count will generally average out
any stochastic effects. In the case of genetic circuits, how-
ever, transcriptional initiation depends on molecules (such
as transcription factors, or σ factors) that may appear in less
than 10 molecules per cell [11], [12], [13].

In genetic-metabolic systems, noisy enzyme concentra-
tions drive the dynamics of the metabolites, which in turn
are back-fed to control enzyme expression. From classic
feedback control theory, we know that feedback systems may
amplify or reduce noise depending on the feedback architec-
ture and gain. It is therefore unclear whether the feedback
interconnection between gene expression and metabolism
amplifies or reduces the noise levels. This calls for a rigorous
analysis of the propagation of noise in genetic-metabolic
networks. Our goal in this paper is to present a statisti-
cally accurate simulation framework for genetic-metabolic
networks. The algorithm runs in reasonable computational
time, and thus allows to systematically explore the effect of
noise propagation between the genetic and metabolic layers.

In a typical enzymatic reaction, the enzyme e reversibly



binds the substrate s to form a complex c, which in turn is
converted into a product p, thereby freeing the enzyme:

e+ s
1


2
c

3−→ p+ e (1)

The classic tool for simulating stochastic chemical systems
is known as the Stochastic Simulation Algorithm (SSA)
[14]. The SSA is exact and requires the simulation of every
reaction event. However, in enzymatic reactions the binding
and unbinding events (numbered 1 and 2 in (1)) are orders of
magnitude more likely to occur than the product formation
event (numbered 3 in (1)). As a consequence, the SSA
requires the computation of thousands of binding/unbinding
events per each product formation event, leading to imprac-
tically long simulation times.

The slow-scale Stochastic Simulation Algorithm (ss-SSA)
was proposed as a solution to this stiffness problem [15].
The algorithm is based on a form of timescale separation,
increasing the computational speed while obtaining statisti-
cally accurate realizations for the enzymes and metabolites.
In this paper we use an extension of the ss-SSA that accounts
for feedback regulation of the enzyme birth process. We first
describe a stochastic model for a single metabolic reaction
under transcriptional repression (Section II). We then show
how the ss-SSA algorithm proposed in [15] can be adapted
to include transcriptional regulation, and compare its per-
formance with the exact SSA and deterministic simulations
(Section III). We illustrate our approach by quantifying the
noise levels in a metabolic reaction as a function of the
repression strength (Section IV). We conclude with a gener-
alized version of the algorithm that can include unbranched
pathways of arbitrary length (Section V) and finally give
directions of future research (Section VI).

II. STOCHASTIC MODEL FOR A METABOLIC REACTION
UNDER TRANSCRIPTIONAL REPRESSION

We consider an enzymatic reaction subject to transcrip-
tional repression from the product, Fig. 2a. The system
consists of six reactions, Fig. 2b, and we denote as e1,
c1 and s2 the number of molecules of enzyme, substrate-
enzyme complex and product, respectively. We assume that
the number of substrate molecules, s01, is constant. This
assumption accounts for scenarios in which the substrate is
an extracellular nutrient pool consumed by a low density
cell population. Note that by this assumption we exclude the
case in which the metabolic reaction eventually depletes the
substrate (thus reaching a nil equilibrium).

The binding and dissociation of the enzyme and substrate
is represented by reactions 1 and 2 in Fig. 2b, whereas the
product formation is reaction 3. Each molecule of complex is
transformed into one s2 product molecule and one e1 enzyme
molecule through reaction 3. Reactions 4 and 5 represent
the birth and death of enzyme molecules, and reaction 6
describes the natural degradation and/or consumption of
product by the remaining cellular processes.

In stochastic chemical kinetics, reactions are described in
terms of their propensities. A reaction has a propensity a if
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Fig. 2: (a) Schematic of a single enzymatic reaction under tran-
scriptional repression from the product. (b) Corresponding reaction
network. (c) Propensity function of reaction 4 (enzyme birth) for
various values of α.

the probability that it occurs in the next infinitesimal time
dt is a × dt. For the system in Fig. 2b, if we define S =
(e1, c1, s2) as the vector of species counts, the propensities
ai(S) are:

TABLE I: propensity functions of the system in Fig. 2b
a1 = m1e1s01, a2 = m2c1,

a3 = m3c1, a4 =
β

1 + (s2/α)
,

a5 = m5e1, a6 = m6s2.

The propensity a4 represents the feedback effect of the
product on the production of enzyme molecules. Tran-
scriptional regulation depends on the interaction between
the product and regulatory molecules (such as transcription
factors), but for simplicity we have opted for a propensity a4

that is a lumped description of the regulatory effect. We thus
model the feedback repression by a decreasing Michaelis-
Menten function. The feedback interaction does not consume
product molecules. In the definition of a4, the parameter β
is the maximal enzyme birth propensity, whereas α is the
number of product molecules required to reduce the birth
propensity by 50% (i.e. the repression threshold), see Fig.
2c.

Assuming that the molecular binding events are Marko-
vian, the probability density function of the species molecule
numbers, P (S), satisfies the Chemical Master Equation
(CME)

∂P (S, t)
∂t

=
6∑
i=1

ai(S−Ri)P (S−Ri, t)−
6∑
i=1

ai(S)P (S, t),

(2)
where Ri is the ith column of the reaction matrix

R =

 −1 1 1 1 −1 0
1 −1 −1 0 0 0
0 0 1 0 0 −1


The CME is a deterministic differential equation for the

time evolution of the probability density function P (S). To



quantify the levels of noise, we focus on the properties of the
stationary distribution, i.e. the time-independent distribution
P (S) such that ∂P/∂t = 0 in the CME. For a given
distribution with mean µ and variance σ2, the molecular
noise is typically defined as the coefficient of variation η =
σ/µ or the Fano factor F = σ2/µ (note that neither of these
quantities are good proxies for the the noise intensity when
species display heavily skewed or multimodal stationary
distributions). From the CME, an analytic solution for P (S)
can be obtained only in special cases, see e.g. [16]. An
numerical alternative is to approximate P (S) by computing
histograms of sufficiently long sample paths of the associated
Markov process. The sample paths can be computed with the
Stochastic Simulation Algorithm (SSA) [14], which provides
statistically exact realizations of the stochastic process.

A key difficulty in using the SSA for metabolic systems
under genetic feedback is that catalytic reactions are nu-
merically stiff. The binding and dissociation processes in
enzyme kinetics (reactions 1 and 2 in Fig. 2b) are much more
probable events than the conversion of the substrate-enzyme
complex into product (reaction 3 in Fig. 2b). This leads to
impractically long simulation times, as the SSA requires
the simulation of every reaction event and this typically
involves thousands of binding and dissociation events per
each product-forming event. Moreover, this numerical stiff-
ness is aggravated when one also considers the production
of enzyme molecules by gene expression, as this occurs on a
much slower timescale than the enzymatic reactions. In the
next section we show how this obstacle can be overcome
using an adapted version of the slow-scale SSA introduced
in [15].

For further reference, the deterministic model for the
system in Fig. 2b is

d[e1]
dt

=
βc

1 + ([s2]/αc)
+ (m2 +m3)[c1] (3)

− (m5 +m1c[s1]0)[e1], (4)
d[c1]
dt

= m1c[s1]0[e1]− (m2 +m3)[c1], (5)

d[s2]
dt

= m3[c1]−m6[s2], (6)

where [x] = x/(NaV ) is the concentration of species x,
Na is the Avogadro constant, and V is the cell volume
(10−15L). Note that some of the parameters differ from
those found in the propensity functions a1−6 in Table I.
βc = β/(NaV ), αc = α/(NaV ) and m1c = m1NaV need
to be scaled for the deterministic model; the remaining ones
are unchanged.

III. STOCHASTIC SIMULATION ALGORITHM FOR STIFF
BIOCHEMICAL SYSTEMS

We base our approach on the slow-scale Stochastic Simu-
lation Algorithm (ss-SSA), which was proposed as a means
to accelerate the simulation of stiff reactions [15]. The ss-
SSA exploits a separation between fast and slow reactions
to avoid the simulation of the former ones.

The basic principle behind the ss-SSA is to assume that the
fast processes reach a stable stationary state in a much shorter
timespan than the expected time between two consecutive
slow reactions. If this assumption holds, then instead of
simulating the individual fast reactions, the algorithm sets
the molecule counts for the species reacting in fast reactions
as the mean of their stationary distribution (for a detailed
description of the algorithm, see [15]). The validity of the
assumption can be numerically checked by comparing the
fluctuation time [17] of the fast processes with the expected
time to the next slow reaction (which can be deduced
from the propensities of the slow reactions). The original
formulation of the ss-SSA considered a constant enzyme
pool as in (1) and it was shown in [15] that the stationary
distribution of the complex, Ps(c1), can be approximated as
a Gaussian. The ss-SSA for a reaction with constant enzyme
can be summarized as:

Step 0: initialisation
Initialize the number of molecules, reaction constants,
and random number generators.
The loop:
Step 1: Monte Carlo step
Generate random numbers to determine the time inter-
val to the next slow reaction (reaction 3 in (1)).
Step 2: Update
Increase the time step by the randomly generated time
in Step 1, and apply the slow reaction (reaction 3
in (1)) to molecule numbers. Compute the stationary
distribution of c1, and set its molecule count to the
mean.
Step 3: Iterate
Go back to Step 1 unless the number of reactants is
zero or the simulation time has been exceeded.

The availability of a closed-form expression for the sta-
tionary distribution of the complex is a major advantage,
as it allows to rapidly compute its mean and speed up the
calculations dramatically.

As pointed out in [15], the algorithm can be extended to
account for systems with more slow reactions by adding a
randomized selection step to choose which slow reaction is
executed in each step. In the case of the system of Fig. 2,
we effectively have four slow reactions (labelled as 3, 4, 5
and 6 in Fig. 2b), and therefore we included the following
selection step (analogous to selection of the next reaction in
the classic Stochastic Simulation Algorithm)

Step 1*: Selection step
Generate random numbers to determine the next slow
reaction to occur (among reactions 3, 4, 5, and 6 in Fig.
2b) as well as the time interval to the next reaction.

To obtain a closed-form expression for the stationary dis-
tribution of the complex c1, we use the method of “stepping
functions” described in [17]. The stepping functions describe
the propensity that a random variable either increases or
decreases by 1. The stepping functions for the number of
complex molecules are W− = a2(c1) and W+ = a1(e1, s01),



where the propensities a1 and a2 are defined in Section
II. Because the total amount of free/bound enzymes xt =
e1 + c1 and free/bound substrate (s01 + c1) are constant in
between two slow reactions (reactions 3 to 6 in Fig. 2),
we can write W+ = W+(c1). The distribution Ps(c1) for
c1 = 0, 1, . . . , xt, can be obtained by iterating the recursion
relation Ps(c1) = Ps(c1 − 1)W+(c1 − 1)/W−(c1), which is
given by

Ps(c1) =
m1s

0
1(xt − c1 + 1)
m2c1

Ps(c1 − 1). (7)

Iterating the expression in (7) we get

Ps(c1) = Ps(0)
c1∏
j=1

m1s
0
1(xt − j + 1)
m2j

,

= Ps(0)
(
xt
c1

)(
m1s

0
1

m2

)c1
. (8)

Since Ps(c1) must satisfy
∑xt

c1=0 Ps(c1) = 1, substituting in
(8) and solving for Ps(0) we obtain

Ps(0) =

(
1 +

xt∑
c1=1

(
xt
c1

)(
m1s

0
1

m2

)c1)−1

,

=

(
xt∑
c1=0

(
xt
c1

)(
m1s

0
1

m2

)c1)−1

,

=
(

1 +
m1s

0
1

m2

)−xt

. (9)

Combining equations (8) and (9) we get a Binomial distribu-
tion for c1 with probability m1s

0
1/(m1s

0
1 +m2) and number

of trials xt:

Ps(c1) =
(

m2

m1s01 +m2

)xt
(
xt
c1

)(
m1s

0
1

m2

)c1
,

=
(
xt
c1

)(
m1s

0
1

m1s01 +m2

)c1 ( m2

m1s01 +m2

)xt−c1
.

(10)

Note that the distribution of e1 can be inferred from the
relation e1 = xt − c1. This procedure is independent of the
slow reactions, and therefore as long as the two timescales
remain well separated we can use the expression for Ps(c1)
to systematically study the effect of the transcriptional pa-
rameters on the noise levels.

We ran our implementation of the ss-SSA for a set of
parameters that lead to physiologically realistic molecule
numbers. The results are shown in Fig. 3, where we verify
that the mean molecule numbers match the steady state of
the deterministic model in (3)–(6). In Fig. 3b-c we compare
the ss-SSA against the results given by the exact SSA.
The stationary distributions are statistically indistinguishable
from each other, and moreover, an exact SSA simulation that
took ∼20 hours on 6 CPU cores was reduced by the ss-SSA
method to 9 minutes on a single core.
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Fig. 3: Performance of the ss-SSA for a catalytic reaction with tran-
scriptional feedback. (a) One realization of the product molecules
obtained with the ss-SSA in blue, and the deterministic result for the
same system in black. The stationary distributions of the product (b)
and enzyme (c) molecule counts computed from a long realization
(final time = 8 × 105 s), for the ss-SSA and exact SSA, and the
corresponding deterministic results. The parameter values are in
Table II, and the repression threshold was set to α = 10.

IV. EFFECT OF TRANSCRIPTIONAL FEEDBACK ON THE
PROPAGATION OF NOISE

We explored the effect of transcriptional feedback on the
properties of enzymatic noise in the catalytic reaction of Fig.
2. We computed the stationary distributions of the enzyme
numbers for a range of values of the repression threshold
α spanning four orders of magnitude, and then computed
their mean µ and coefficient of variation η. The results are
presented in Fig. 4. They indicate two key aspects:
• A strong repression (or equivalently, a low repression

threshold α) decreases the probability of enzyme births,
leading to a lower mean and standard deviation of
enzyme molecules.

• A strong repression can dramatically increase the noise
level (up to five-fold for tested range of α), suggesting
that feedback repression enhances the fluctuation of the
enzyme numbers around its mean value. In contrast,
for a large repression threshold α, the noise level is
equal to its open-loop value, i.e. the level of noise when
there is no feedback from the product and the propensity
of enzyme birth is set to its maximal value β. This is
consistent with the fact that

lim
α→∞

a4(s2) = β, (11)

thus indicating that the feedback disappears for suffi-
ciently large repression threshold.

It is important to emphasize that the curves in Fig. 4 can
be obtained in reasonable computational time (∼10–20 min
per data point on a single CPU machine). This task would



TABLE II: Parameter values for the stochastic simulations.
Note that m1 was set to 1 since the simulations only depend
on the ratio m2/m1.

Parameter Description Value
m1 substrate-enzyme binding constant 1 molecule−1.s−1

m2 complex dissociation 28300 s−1

m3 product formation 3.2 s−1

m5 enzyme degradation 10−3 s−1

m6 product consumption 2× 10−2 s−1

β maximal enzyme birth 0.16 molecule.s−1

s01 number of substrate molecules 3000 molecule
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Fig. 4: Mean (µ, blue), standard deviation (σ, cyan) and noise level
(η, green) of the enzyme molecule counts in the reaction network
of Fig. 2 for different repression thresholds α. The noise level η is
defined as coefficient of variation, and its values were normalized to
the open-loop level (i.e. the coefficient of variation obtained when
a4 = β, shown in dashed line). The parameters values were set to
the values in Table II.

have been impractical with other simulation techniques. For
example, when using the exact SSA each point in Fig. 4
would take ∼20 hours to compute (recall the exact SSA
results in Fig. 3).

V. EXTENSION TO METABOLIC PATHWAYS UNDER
TRANSCRIPTIONAL FEEDBACK

In our aim to scale up the proposed simulation technique
to pathways with complex stoichiometries, as a first step
we extended the algorithm to unbranched pathways of any
length.

To automate the input of pathway data, the algorithm takes
a Systems Biology Markup Language (SBML) description of
the network. This prevents typical error-prone steps such as
defining the reaction matrix (typically of tens of reactions
affecting tens of species). SBML is the standard format for
storing, processing and exchanging of models in systems
biology, and there exist a wide range of software tools to
produce SBML descriptions of complex networks.

The most important challenge when dealing with whole
metabolic pathways is the presence of several fast processes.
We first need to identify the fast processes, compute their
corresponding stationary distributions, and make sure we

update them only when necessary (i.e. only when a slow
reaction that changes their stationary state occurs).

The current version of the algorithm singles out the fast
processes from the list of fast reactions specified by the user,
and identifies the list of slow reactions that can influence
them. The algorithm then matches each fast process with
one of the stationary distributions we have available. So far
we only have the distributions for an enzymatic reaction with
variable and constant substrates (i.e. the Gaussian distribution
derived in [15] and the Binomial distribution derived in this
paper, see (10)). These distributions are sufficient for sim-
ulating unbranched pathways of monomolecular reactions,
but more complex networks, such as branched pathways or
multi-enzyme catalytic reactions, need further investigation.

After these first steps of initialisation and pre-processing
of the data in the SBML file, the algorithm remains the same
as we previously described in Section III. The only difference
now is that we update fast processes only if their stationary
state is affected by the reaction that was just fired:

Step 2*: Update
Increase the time step by the randomly generated time
in Step 1, and apply the slow reaction to molecule
numbers. Compute the new stationary distribution only
for the fast processes that were affected by the slow
reaction in Step 1.

Updating the fast processes only when necessary has two
advantages: it greatly reduces the amount of computation at
each step, and it helps with the numerical validation of the
timescale separation. Because all fast processes are affected
by different slow reactions, we need to check the validity of
the assumption on timescale separation for the fast processes
with respect to only the slow reactions that can affect them.

In Fig. 5 we show the algorithm output for a cascade of
three enzymatic reactions. The simulation of longer pathways
takes longer time than single reactions, but the computation
time is still reasonable for our purposes (∼30min per real-
ization).

VI. CONCLUSIONS

In this paper we have presented a stochastic simu-
lation framework for enzymatic reactions under genetic
feedback regulation. The algorithm exploits the separation
of timescales between the formation/dissociation of the
enzyme-substrate complex and the dynamics of enzyme ex-
pression. This allows to obtain sample paths of the stochastic
processes in reasonable computational time with a marginal
loss of accuracy with respect to the exact Gillespie algorithm.

Gene expression is an inherently stochastic process, and
therefore catalytic reactions are driven by noisy signals that
back-propagate via the genetic feedback. Although cells
must dampen noise to execute their functions accurately,
some cell decisions are stochastically-driven [18], whereas
in other cases cells exploit noise to enhance their phenotypic
diversity and improve the robustness of their population [19].
A major challenge is therefore to understand how cells use
the feedback architecture and strength as a mechanism to



e1
e2
e3

time (s) 

Enzymes levels
(nb. of mol.)

50

40

30

20

10

0
0 200 400 600 800 1000

(a)

s2
s3
s4

time (s)

Metabolites levels
(nb. of mol.)

3000

2000

1000

10008006004002000
0

(b)

Fig. 5: Time course of a pathway of 3 enzymatic reactions, with
a one-to-all transcriptional feedback loop from the product to the
three enzymes. (a) Levels of enzymes (b) Levels of metabolites. All
three enzymatic reactions in the cascade have the same parameters
as in Table II, with only the first one based on the constant substrate
model we developped. Second and third are based on non-constant
substrate models (see [15]). The feedback loop parameters remain
unchanged, and α = 100.

amplify or attenuate the propagation of genetic noise to the
metabolic layer.

The algorithm we have proposed provides a means to
systematically explore the effect of different feedback con-
figuration and parameters on the resulting noise levels of
the molecular species. We have highlighted this applica-
tion in Section IV, as part of our preliminary studies on
the effect of transcriptional repression on the propagation
of genetic noise. These results indicate that transcriptional
repression can dramatically increase the noise levels of the
enzyme molecule numbers (as measured by the coefficient of
variation of their stationary distribution). This observation is
consistent with recent findings [20] and can be understood as
the outcome of two complementary phenomena: firstly, the
mean enzyme count decreases with the feedback strength,
and secondly, this reduction is more drastic than the change
observed in standard deviation. The resulting coefficient of
variation therefore tends to increase for increasing feedback
strength.

We are currently working on a number of extensions of
this work, including a systematic study of noise propagation
in different feedback topologies and the extension of the
algorithm to whole pathways of enzymatic reactions. As

pointed out in Section V, we have developed an algorithm
that can automatically perform such analysis for unbranched
pathways described under the form of SBML files. In the
case of more complex stoichiometries, the main challenge is
to obtain analytic expression for the stationary distributions
of the enzyme-substrate complexes, which is one of our
subjects of active research.
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