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Abstract— Finding efficient methods to estimate model pa-
rameters or build models from time-series data is a central
quest in Systems and Synthetic Biology. To aid this search,
existing parameter estimation methods were adapted from other
fields, or new ones were developed. In this paper, we use the
Sparse Bayesian Learning (SBL) framework, which was first
developed in the field of signal processing, and implement
it as an iterative convex optimization problem. We extend
the existing SBL framework to accommodate constraints that
enforce certain systems properties, such as nonnegative state
variables or bounded state trajectories. These properties are
vital parts of a dynamical model in biology and chemistry but
are often overlooked in the parameter estimation literature. As
a result of this work, the extended framework can automatically
build “proper” dynamical models from time-series data. Finally,
the examples show that such framework complemented with
appropriate constraints can aid the model building process.

I. INTRODUCTION

Estimating the parameters or the complete model structure
of biological systems from time-series data is a crucial task
in synthetic biology because it enables us to understand,
analyse and optimise designs of synthetic biology constructs.
However, building models manually for each data set is in-
convenient and might become infeasible for highly complex
synthetic systems.

To tackle this problem, our long-term goal is to develop
a closed-loop system identification platform. The loop starts
with high-throughput data acquisition, and the platform pro-
cesses and aggregates the collected data into proper dynami-
cal models automatically. Next, it tests the estimated models
with the help of optimal experimental design [1], which
guides the data acquisition in the next iteration. Finally, this
procedure converges to an automatically built model that
captures the underlying dynamics of the measured biological
system.

Inside this platform, our modelling framework is within
the class of kinetic systems, because it is capable of mod-
elling the dynamics of the biological systems [2], and it has
a well-defined chemical reaction network representation [3].
Moreover, the Ordinary Differential Equations (ODE) that
describe the dynamics in this system class have a certain
algebraic structure, and this property can be exploited during
the system identification process. For example, a simple sign
pattern of the right-hand side terms guarantees that the model
remains in the system class [2]. These terms represent the
reaction rates that can be either monomials (mass action
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kinetics) or rational functions (Hill or Michaelis-Menten
kinetics) [4].

Two types of system identification problems can be for-
mulated in this system class. First, the reaction rates are
known, but not the corresponding reaction rate coefficients
(or reaction rate constants). In this case, we need to estimate
rate coefficients for each reaction rates. In the second case,
only a set of possible reaction rates are known a priori. This
set has many more terms than the model needs. The goal
is then to identify which reaction rates are not required to
describe the underlying biochemical process.

In both problems, most algorithms find the best fit to the
data, but the underlying model might not be nonnegative
or stable. Such solutions must be avoided by formulating
appropriate constraints.

System identification procedures are widely reported in the
literature [5], and the existing methods for parameter estima-
tion of kinetic systems certainly benefit from this knowledge
[6]. However the specificities of this system class—such as
the algebraic structure or nonnegative state equations—are
rarely exploited in these methods. The goal of this paper is to
show how an automatic model building procedure, based on
Sparse Bayesian Learning (SBL), can be complemented with
constraints that enforce prescribed system properties. More
importantly, other system identification approaches can use
these constraints, as long as they fulfil certain conditions.

The paper is organized as follows: in Section II, we will
introduce our modelling framework along with its algebraic
structure; in Section III, we will report the sparse model
building framework, which forms the backbone of our work.
The constraints used to complement the SBL algorithm will
be represented in Section IV. Finally, two examples illustrate
the results in Section V.

Notations: R≥0 denotes the nonnegative real numbers,
N0 is the set of integers including zero. [A]ij denotes the
entry in the ith row and jth column of the matrix A.
Furthermore, [A]i· denotes the ith row of matrix A.

II. KINETIC SYSTEMS

During the system identification procedure, we assume
that the dynamics of the underlying biochemical processes
can be modelled by the class of kinetic systems. In this
system class, for example, mass action or rational kinetics
(e.g. Hill or Michalis-Menten) can be represented.

Let us define the following ODE with polynomial right-
hand side and with state vector x ∈ Rn≥0, as

ẋ = Mϕ(x), x(0) ∈ Rn≥0, (1)



where the matrix M ∈ Rn×m is the coefficient matrix and
ϕ(x) : Rn≥0 → Rm≥0 is a monomial-type vector mapping
defined as

ϕj(x) =

n∏
i=1

x
[B]ij
i , j = 1, . . . ,m, (2)

and B ∈ Nn×m0 .
Note that the system in (1), with certain sign constraints

in matrix M , belongs to the class of nonnegative systems,
i.e. Rn≥0 is forward invariant (see, e.g. Chapter 9 in [2] or in
Section IV-A).

Next, we define Chemical Reaction Networks (CRNs),
which can be characterized by three sets:
• a set of species: S = {Xi | i = 1, . . . , n},
• a set of complexes: C = {Cj | j = 1, . . . ,m}, where

Cj =
n∑
i=1

αjiXi j = 1, . . . ,m and

αji ∈ N0 j = 1, . . . ,m, i = 1, . . . , n,
αji are called the stoichiometric coefficients,

• and a set of reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C},
each ordered pair (Ci, Cj) has a reaction rate coefficient
kij ∈ R≥0 so that the corresponding reaction Ci → Cj
takes place if and only if kij > 0.

In the rest of the paper, we assume mass action kinetics, but
the results summarised in this section have been extended to
rational kinetics as well, see e.g. [7] for more details.

For computation purposes, we can characterise a CRN by
two matrices: the complex composition matrix Y ∈ Nn×m0

describes the complexes as follows

[Y ]ij = αji i = 1, . . . , n, j = 1, . . . ,m,

and the set of reactions is encoded by the Kirchhoff matrix
Aκ ∈ Rm×m as

[Aκ]ij =

 kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j.

(3)

The dynamics of a CRN can be written as a nonnegative
polynomial differential equation

ẋ = Y Aκψ
Y (x), x(0) ∈ Rn≥0, (4)

where x represents the concentration vector of the species,
and the monomial vector mapping ψY (x) is defined as

ψYj (x) =

n∏
i=1

x
[Y ]ij
i j = 1, . . . ,m. (5)

At this point, we can make a connection between a nonnega-
tive polynomial ODE and the dynamics of CRNs as follows:
a nonnegative polynomial ODE in (1) can be transformed
into the form of (4), i.e.

Mϕ(x) = Y Aκψ
Y (x), (6)

if and only if the following condition is fulfilled

if [M ]ij ≤ 0, then [B]ij > 0, (7)
i = 1, . . . , n, j = 1, . . . ,m.

Example: This small example illustrates the CRN defini-
tions. Consider the following CRN:

3 X2
k12−−→ 3 X1

k23−−→ 2 X1 + X2.

Then, we have two species (X1 and X2) and three complexes
(3X2, 3X1 and 2X1 +X2), based on these the CRN can be
encoded as

Y =

[ C1 C2 C3

x1 0 3 2
x2 3 0 1

]
, Aκ =


C1 C2 C3

C1 −k12 0 0
C2 k12 −k23 0
C3 0 k23 0

,
and finally, by setting k12 = 1 and k23 = 3, we have

M =

[
3 −3 0
−3 3 0

]
, ψYj (x) =

 x32
x31
x22x2

 . (8)

Although it is not discussed in this paper, when the un-
derlying reaction graphs are also computed, then one must
take into account that multiple reaction graphs may exist for
the same kinetic system. The details of how this nonunique
relationship, between the dynamics and the reaction graphs,
hinders the system identification process can be found in [3],
[8], [9].

It should be emphasised that a kinetic system with mass
action kinetics is always linear in parameters. Therefore, a
linear regression problem can be formulated to estimate its
parameters. However, depending on the amount of data avail-
able, we encounter an overdetermined or underdetermined
linear regression problem, as described in the next section.

III. AUTOMATED MODEL BUILDING

Our goal is to estimate the parameter of a system described
in (1), namely the entries of M . We then need to distinguish
between two cases:

1) The entries of ϕ(x) are known, thus we know exactly
which monomials are needed to describe the dynamics.
In that case, we only need to estimate which monomi-
als are participating in a given state equation. More
importantly, we need to correctly estimate those that
are not part of a given state equation, e.g. estimating
the position of the zeros in matrix M .

2) In a more challenging scenario, the ϕ(x) is not known
a priori, but only the participating chemical species:
Xi, i = 1, . . . , n. In such case, we assemble ϕ(x)
from all possible monomials up to a certain number of
species, e.g. the set of all possible pairs of the species:

{Xi +Xj | i = 1, . . . , n, j = 1, . . . , n}.

In this case, excluding all the monomials that are not
participating in the governing equations is the most
important task.

In both cases, the entries of ϕ(x) that are encoding the
number of possible monomials may exceed the number of
measurements, i.e. we have more parameters than measured
data points.



Solving the problem in the first case is common practice
with the assumption that more measurements than parameters
are available. Usually, an ODE model is formulated, since
the model structure is known, and then it is simulated with
parameter guesses generated by the parameter estimation
algorithm. The speed of this approach is heavily dependent
on two factors: the speed of the ODE solvers (some param-
eter combinations can create very stiff ODEs, which slows
down the numerical integration), and the convergence speed
of the optimisation solver (usually gradient information is
used, which is generated by numerical approximation or by
sensitive equations, and either can slow down convergence).

Solving the problem in the second case is usually avoided
because of data scarcity or computational challenges.

In this paper, we show a solution for both estimation
problems, by focusing on the second case; the first case
naturally falls into the developed solution. Moreover, we
assume that we have an underdetermined problem. i.e. in-
finitely many of solutions exist. To tackle this, we need to
impose further constraints on the underdetermined problem
to find an acceptable solution.

A. Parameter estimation model

Our goal is to estimate the parameter of the following
system

y = Aw + ν, (9)

where y ∈ Rp is the measurement vector, the matrix A ∈
Rp×m is the regressor, the parameter vector is w ∈ Rm and
ν ∼ N (0, λI) is the measurement noise.

Since the kinetic system in (1) is linear in parameters, we
can formulate a linear regression for each row of the matrix
M independently. For the derivation, we will focus on just
one state variable, and at the end of this section, we will
estimate all rows of the matrix M at once.

Each state can be written as

ẋi = [M ]i,·ϕ(x), i = 1, . . . , n, (10)

and we have a measurement vector of each state such that

X =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tp) x2(tp) . . . xn(tp)

 , (11)

where, tk is the time of the measurement at sampling time
point k.

Additionally, we compute the time derivate of x as

yi =
d

dt
xi, i = 1, . . . , n. (12)

Then, we generate the measurement data as

yi =
[
yi(t2) yi(t3) . . . yi(tp)

]>
, i = 1, . . . , n, (13)

where superscript i denotes the ith state.
The mapping ϕ(x) is evaluated on the measurement matrix

X ∈ Rp×m, namely

[A]i,j = ϕj([X]i,·), i = 1, . . . , p, j = 1, . . . ,m. (14)

With this framework, we can formulate the linear regression
problem as

ŵi = argmin
w

||yi −Awi||2, i = 1, . . . , n. (15)

Once we have a solution for each state equation, we have

M̂i,· = ŵi>, i = 1, . . . , n. (16)

The zero entries in ŵi control which monomial in ϕ(x) gets
selected into the ith state equation.

B. Sparse Bayesian Learning

Since we assume that we have more parameters than
measurements (p < m), this linear regression problem is
underdetermined.

To solve this problem, we use the so-called Sparse
Bayesian Learning (SBL) method, which was developed in
[10], [11]. The underlying algorithm is outlined here for
reference, but the details can be found in [10]. The SBL
algorithm has been used for parameter estimation and model
building in [12], [13], [14]

Until the end of this section, we drop the i superscript for
clarity.

The estimation of w for each state can be formulated in a
Bayesian setting, where we place a prior distribution on the
parameters as

p(w) =

m∏
j=1

p(wj), p(wj) = max
γj≥0

N (0, γj)ζ(γj), (17)

where ζ(γj) is a nonnegative function.
The likelihood function is

p(y|w) ∝ exp

(
−1

2
||y −Aw||22

)
. (18)

The goal of the algorithm below is to compute the value
of γj for each wj , while trying to maximise the number of
γj with zero value.

To do so the following algorithm was developed in [10]:

• Step 1: initialise each zj = 1, j = 1, . . . ,m

• Step 2: ŵ = argminw ||y −Aw||22 + 2λ
∑
j z
−1/2
j |wj |

• Step 3: compute γoptj = z
−1/2
j |ŵj |, j = 1, . . . ,m

• Step 4: compute zopt = ∇γ log |Σy|
• Step 5: iterate Step 2, 3 and 4 until γ converges to some

value.

In this algorithm, λ is a regularisation term, which is de-
termined by the variance of the measurement noise (assumed
to be known a priori), and

∑
y = λI + AΓA>, where

Γ = diag[γ].
Step 2 is a convex optimisation problem, see [10]. In-

terestingly, in the first iteration, the algorithm is a LASSO
problem [15], which is then improved at each iteration of
the algorithm.



C. Computing the matrix M at once

Most of the system properties depend on M and therefore,
our goal is to impose constraints on matrix M . To achieve
that we need to compute all entries of M in one optimisation
problem.

Consider the following matrix regression problem

Y = AW + V, (19)

where

Y =
[
y1 y2 . . . yn

]
, (20)

W =
[
w1 w2 . . . wn

]
, (21)

matrix A is the same as before and νi ∼ N (0, λiI).
The cost function in Step 2 above can be rewritten as

Ŵ = argmin
W

n∑
i=1

(
||yi −Awi||22 + 2λi

m∑
j=1

(zij)
−1/2|wij |

)
. (22)

Because we sum up convex functions the new cost function
is also convex.

Using the Sparse Bayesian Learning and the underlying
optimisation problem (22) extended to the multi-state case,
we can automatically build models from time-series data.
However, this approach has two caveats:
• Only linear parameters can be estimated. For example,

estimating the cooperativity of a Hill function is not
possible with the current setup. Some solutions to this
problem have been proposed in [16].

• All state variables must be measured. This is a se-
vere limitation to our approach, however, designing
observers for the unmeasured states could alleviate this
problem.

We are now ready to impose constraints on Ŵ .

IV. ENFORCING SYSTEM PROPERTIES

The SBL framework solves an underdetermined system
of equations which has infinitely many solutions. Among
those, the algorithm in Section III-C aims to find the sparsest
solution. Even if the sparest solution fits the data, it might
not represent a nonnegative system or a kinetic system.
Moreover, the resulting ODE might be unstable. To tackle
these problems, we develop constraints that encode certain
system properties and are then used to define an optimisation
problem under such constraints. In particular, we investigate
here how to use constraints to enforce a solution, which
represents a kinetic system, and how to find a system which
has bounded trajectories.

A. Enforcing kinetic systems

The SBL framework builds first-order ODEs, but we
want to restrict the results to kinetic systems, which are
nonnegative and have a CRN representation [8]. In Section
II, we have introduced the definition of kinetic systems using
CRNs. In this section, we start from a polynomial ODE and
state under which conditions a CRN representation, e.g. a
directed graph, exists. This is called kinetic realisability of

nonnegative systems or inverse problem of reaction kinetics
[2], [17].

Consider the following ODE as

ẋ = f(x), x(0) ∈ Rn≥0, (23)

then, a necessary and sufficient condition for kinetic realis-
ability of a polynomial ODE is the following:

fi(x) = −xigi(x) + hi(x), i = 1, . . . .n, (24)

where gi and hi are polynomials with nonnegative coeffi-
cients.

The criteria in (24) was reported in [17], along with an
algorithm to construct a CRN realisation from (24).

The structure of (24) enables us to formulate a convex
constraint for the optimisation problem in (22).

The constraint for the ith state equation is the following

if xi /∈ ϕj(x), then wij(x) ≥ 0, j = 1, . . . ,m. (25)

Such set of inequality constraints are added to the optimisa-
tion problem for each state variables.

B. Enforcing bounded trajectories

Due to the structure of right-hand side in (1), we can
construct a Lyapunov-type function (see e.g. [18], [19]) for
a kinetic system, which then guaranties that the system has
bounded trajectories.

Let us define

V (x) = k>x (26)

where k ∈ Rn is a column vector and k > 0 (element-wise)
and x is the solution of (1).

Then, the time derivate of V is

V̇ (x) = k>ẋ = k>Mϕ(x). (27)

To have bounded trajectories, V̇ needs to satisfy

V̇ = k>Mϕ(x) ≤ 0 (28)

Since all the parameters of a kinetic system are in M , we can
formulate the following bilinear constraint, assuming that M
is known and k is a decision variable,

k>M ≤ 0 (29)
k > 0

where ≤ and > are element-wise inequalities.
If such a k > 0 exists for a kinetic system, then the un-

derlying CRN is called subconservative [20], and the kinetic
system has bounded trajectories. Further system properties
of such systems are explored in [3], [8].

Example: Let us use the example form Section II, where

M =

[
3 −3 0
−3 3 0

]
,

then finding k > 0 is easy for this system, e.g.

k =

[
1
1

]
would statisfy (29).
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Fig. 1. This example network is taken from [21]. The parameters of the
network are k12 = 0.3386, k13 = 0.8244, k51 = 0.8496, k52 = 0.4290,
k35 = 0.7364 and k43 = 0.5630.

Incorporating in the SBL framework: Within the SBL
framework, the parameters of the kinetic system are not
known, thus M is unknown. In such a case, both k and W
are decision variables, thus the optimisation problem with
cost function in (22) and constrains in (29) is not convex,
and we need to resort to general solvers, e.g. fmincon in
Matlab.

V. EXAMPLES
The example used in this section was presented in [21] as

a benchmark problem for network inference. The network
structure is shown in Figure 1 and its CRN formulation is
given as

Y =


1 0 1 0 0
0 2 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (30)

and

Aκ =


−1.163 0 0 0 0.8492
0.3386 0 0 0 0.4290
0.8244 0 −0.7364 0.5631 0

0 0 0 −0.5631 0
0 0 0.7364 0 −1.2782

 . (31)

This CRN has 5 complexes and 6 reactions and the param-
eters of the orignal system are

M = (32)

x1 x2x2 x1x3 x4 x2x5

−0.3386 0 −0.7364 0.5630 0.8496
0.6772 0 0.7364 0 −0.4206
0.8244 0 −0.7364 0.5630 0

0 0 0 −0.5630 0
0 0 0.7364 0 −1.2786

.
A. Estimating a kinetic system

Using the parameters in (32), we have generated five
different set of initial conditions (uniformly sampled between
0 and 50) and simulated the system for T = 0.5 min. The
time derivative of measured data was also calculated, then
zero mean additive Gaussian noise with σ2 = 0.1 was added
to y. Using Latin-hypercube sampling, we have selected a
total of p = 45 measurements for each state variables.

x1 x2 x3 x4 x5
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||yi − ŷi||2

Fig. 2. Trajectory differences between the original and reconstructed model
in (33) (red), as well as the residual error on the data fit (blue) for each
states. The error metrics were calculated using five randomly generated
initial conditions and both models were simulated for 1 min.

This example has five species and the dictionary contains
all possible pairs and triplets of these species, plus a constant
term, thus the dictionary consists of m = 56 functions.

We evaluated these dictionary functions on the generated
measured data using (14).

At this point, we have yi ∈ Rp, i = 1, . . . , n and A ∈
Rp×m. Based on this, we can then solve the optimisation
problem with the cost function (22) and constraint (25) using
the Mosek solver. As the result we have

M̂ = (33)

x1 x1x3 x4 x2x5 x5

0 −0.73804 0 0.84692 0.16033
0.6772 0.7364 0 −0.4206 0
0.8244 −0.7364 0.563 0 0

0 0 −0.563 0 0
0 0.7364 0 −1.2786 0

.
Figure 2 shows the residual error in the data fit (blue) and
the trajectory differences between the original and the recon-
structed system (red) for each states. With this current setup,
we can restrict the reconstructed systems to the nonnegative
orthant.

B. Estimating a kinetic system with bounded trajectories

In this second example, we want to estimate M , but with
constraint (29) in order to have bounded the state trajectories,
however this makes the optimisation problem non-convex.
For this a proof-of-concept example, we used the following
settings.

The dictionary contains all possible pairs of the species
and a constant term, which gives m = 21. We generate more
data using the previous settings, which gives us p = 200.
Using fmincon in Matlab, we estimate the matrix M in
(35) and

k =
[
0.1037 0.0033 0.0330 0.2459 0.0811

]>
. (34)

The reconstructed model has three extra terms compared to
the original model, but all state variables are nonnegative and
the state trajectories are bounded. Figure 3 shows the residual




1 x1 x2 x3 x4 x5 x1x1 x1x2 x1x3 x1x4 x1x5 x2x2 x2x3 x2x4 x2x5 x3x3 x3x4 x3x5 x4x4 x4x5 x5x5

0 −0.259 0 0 0.401 0 0 0 −0.741 0 0 0 0 0 0.848 0 0 0 0 0 0
0 0.648 0 0 0 0 0 0 0.7071 0 0 0 0 0 −0.433 0 0 0 0 0 0
0 0.647 0 0 0.521 0.089 0 0 −0.656 0 0 0 0 0 0 0 0 −0.144 0 0 0
0 0 0 0 −0.440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.088 0 0 0.716 0 0 0 0 0 −1.277 0 0 0 0 0 0

 (35)
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Fig. 3. Trajectory differences between the original and reconstructed model
in (35) (red), as well as the residual error on the data fit (blue) for each
states. The error metrics were calculated using five randomly generated
initial conditions and both models were simulated for 1min.

error in the data fit (blue) and the trajectory differences
between the original and the reconstructed system (red).

VI. CONCLUSIONS

In this paper, we have demonstrated an extension to the
Sparse Bayesian Learning framework where the parameters
of all state equations are estimated simultaneously. Addition-
ally, we have reported constraints that guide the automatic
model building in order to ensure that the resulting models
have certain system properties. In particular, we have shown
how to ensure nonnegative state variables or bounded state
trajectories in the reconstructed model. As part of ongoing
work we are investigating similar constraints to ensure sta-
bility or structural identifiability.
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