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Abstract. This paper proposes an algorithm to identify biochemical
reaction networks with time-varying kinetics. We formulate the prob-
lem as a nonconvex optimisation problem casted in a sparse Bayesian
learning framework. The nonconvex problem can be efficiently solved
using Convex-Concave programming. We test the effectiveness of the
method on a simulated example of DNA circuit realising a switched
chaotic Lorenz oscillator.
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1 Motivation, background and related work

Identification of switched systems, which are characterised by the interaction of
both continuous and discrete dynamics, is widely used in many different fields
such as systems/synthetic biology, econometrics, finance, biochemical engineer-
ing, social networks, etc. In this paper, we are interested in the identification of
switched biochemical reaction networks. Biochemical processes can go through
different phases in time; for example, a cell cycle in bacteria or diurnal alterna-
tions in plants. These switches are typically triggered by time dependent pro-
cesses or by some external force. Therefore, the dynamics of biochemical re-
actions can be modelled as a collection of submodels amongst which switches
occur over time. For biochemical reaction networks, the submodels are typically
nonlinear due to mass action kinetics.

In classical switched system identification, the submodels are typically as-
sumed to be linear or of the switch affine type [1], which is often used to ap-
proximate nonlinear dynamics. In [2], the structure of submodels is fixed and
a minimal number of switches between submodels is inferred. However, these
techniques are not generally applicable to biochemical kinetics due to highly
nonlinear terms and model complexity. In the nonlinear case, there is an addi-
tional problem of nonlinear basis selection, which is fixed and predefined in the



linear case. Unlike the linear case, the number of nonlinear basis functions can
be infinite and one might have to use complicated nonlinear functions to model
the dynamics without any switches. In practice, if one is interested in obtain-
ing the least number of switches, the number of nonlinear basis functions will
typically grow, and vice versa, a small number of nonlinear basis functions will
result in many switches. Hence there are two different and competing minimi-
sation criteria: the number of switches between submodels and the number of
basis functions in each submodel.

In this paper, we cast the problem of identification of switched biochemical
reaction networks as a linear regression problem by defining a set of nonlinear
basis functions based on mass action kinetics. Minimising the number of switches
and/or the number of basis functions is typically addressed in such problems by
an `1 or `2 regularisation approach. In this paper, however, we take a sparse
Bayesian learning approach, which is shown to promote sparsity better than
to `1 methods [3–5]. By specifying sparse priors on the number of parameters
and the number of switches in this sparse Bayesian learning framework, the
identification problem is formulated as a nonconvex optimisation problem. By
exploiting the structure of the nonconvex optimisation problem, one can use
Convex-Concave programming techniques to solve the problem efficiently. One
illustrative example from DNA computation is used to show the effectiveness of
the proposed method.

2 Preliminaries on biochemical reaction networks

Consider a biochemical system with n species X1, . . . , Xn. We denote the con-
centration of species Xj as xj . Let U be the set of uni-species reactions and B
be the set of bi-species reactions. A uni-species reaction i ∈ U is defined by the
index ri ∈ {1, . . . , n} of its single reactant species, the associated real-valued rate
constant ki > 0, and the integer product coefficients for each species ci,j ≥ 0:
miXri

ki→ ci,1X1 + . . . + ci,nXn. A bi-species reaction i ∈ B is defined by the
indices ri,1, ri,2 ∈ {1, . . . , n} of its two reactant species, the real-valued rate
constant ki > 0, and the integer product coefficients for each species ci,j ≥ 0:
miXri,1 + niXri,2

ki→ ci,1X1 + . . . + ci,nXn. Using the law of mass action, the
dynamics of the concentrations xj ≥ 0 of species Xj are given according to the
ordinary differential equations

ẋj =−
∑

i∈U|ri=j

kix
mi
j −

∑
i∈B|ri,1=j

kix
mi
j xni

ri,2 −
∑

i∈B|ri,2=j

kix
mi
ri,1x

ni
j

+
∑
i∈U

ci,jkixri +
∑
i∈B

ci,jkixri,1xri,2 ,
(2.1)



We can expand (2.1) for more than two species, though this can be rarely found
in reality due to highly improbable simultaneous three-species molecular collision
mechanisms.

Eq. (2.1) can be modelled using the general form: ẋ = Sv(x), where x is
the vector of species whose elements are xj , S is the stoichiometry matrix and
v(x) is a vector of propensity functions. The matrix S and the propensity vector
v(x) can be built based on the biochemical reactions and their rates. Hence,
without loss of generality we can assume that S is a matrix whose elements are
real constants and v(x) is a vector whose elements are nonlinear functions of x

as in (2.1). Biochemical processes can go through different phases in time; for
example, a cell cycle in bacteria or diurnal alternations in plants. These switches,
which are typically triggered by time dependent processes or by some external
force, can be fitted into our model as follows: ẋ = Sα(t)v(x), where α(t) is a
sequence of integers in a bounded set and Sα(t) takes values from an unknown
set {S1, . . . ,SNmodes

} depending on time.
In what follows, we consider the system dynamics expressed in discrete-time

and subjected to additive i.i.d. Gaussian noise ξ(k) with known statistics.

x(k + 1) = Sα(k)v(x(k)) + ξ(k). (2.2)

3 Problem formulation

3.1 Linear Regression Problem Formulation

Taking the transpose of both sides of (2.2) and considering the ith state variable
xi of (2.2), we can obtain

xi(k + 1) = v>i (x(k)) ·
(
S
α(k)
i,:

)>
+ ξi(k),

=
(
fi1(x(k)) . . . fiN (x(k)

)
·wi(k) + ξi(k),

(3.1)

where S
α(k)
i,: represent the ith row of Sα(k); and fij represent the basis functions

we use to reconstruct the model. The form of these functions can be any of those
described in (2.1). In (3.1), wi(k) = [wi1(k), . . . , wiN (k)]>, and the noise ξi(k)
is assumed to be i.i.d. Gaussian distributed: ξi(k) ∼ N (0, σ2

i ), with E(ξi(p)) =

0, E(ξi(p)ξi(q)) = σ2
i δpq, with δpq =

{
1, p = q

0, p 6= q
. Now, let’s assume that time-

series measurements from a biochemical network are collected in a vector yi,
where yi =

(
xi(2) . . . xi(M + 1)

)>
. We state the problem as identifying the

system (2.2) based on these measurements. That is, our goal is to find all matrices
S1, . . . ,SNmodes

and the switching sequence α(k) from the measurements stored
in yi. Since the formulation in (3.1) is similar for all the state variables xi,
i = 1, . . . , N , in what follows we drop the subscript i to ease the notation.



By defining the following block matrix and vectors

A ,

f1(x(1)) · fN (x(1))
. . . . . . . . .

f1(x(M)) · fN (x(M))


=
[
A1 . . . AN

]
∈ RM×MN ,

w ,
[
w1(1), . . . , w1(M) . . . wN (1), . . . , wN (M)

]>
=
[
w>1 . . . w>N

]> ∈ RMN ,

Ξ , [ξ(1), . . . , ξ(M)]
> ∈ RM .

(3.2)

we can reformulate the linear regression equations in (3.1) as

y = Aw +Ξ. (3.3)

There are two issues that needs to be considered at this stage. First, each
block wi = [w1(1), . . . , w1(M)] is associated only with certain basis function. The
solution w to (3.3) is therefore typically going to be block sparse, which is mainly
due to the potential introduction of non-relevant and/or non-independent basis
functions in A. Second, in the switched case, we have to penalise the number of
switches from t1 to tM and/or the number of modes Nmodes, which can be fixed
in advance or set equal to M . Clearly such a problem has an infinite number
of solutions, especially in the noisy setting. Therefore, we refine the problem
statement to identify the system (2.2) with the least number of non-zero blocks
in w and the least number of switches in the sequence α(k).

These are actually two different and competing criteria: if we want the least
number of switches, the number of non-zero parameters in w will grow, and vice
versa, a small number of non-zero parameters in w will result in many switches.

3.2 Minimising the Number of Switches

To limit the number of switches, we need to ensure that Sα(k) stays the same from
time k to time k + 1. Hence we need to add a condition maximising the sparsity
of Sα(k+1) − Sα(k) for all k. This leads to the following problem statement:

Problem 1. Given y and A and the block partitions formulated in (3.3), find
a w that can explain the data with the minimal number of switches and the
minimal number of non-zero blocks in w.

If we index the vector w appropriately, the problem of minimising the number
of switches can be formulated by enforcing Djwj sparse, where the matrix Dj

is defined as follows:

Dj ,

1 −1. . . . . .
1 −1

 ∈ R(M−1)×M . (3.4)



If we further define

Bj ,

[
I

ρDj

]
∈ R(2M−1)×M,,B ,

B1

. . .
BN

 ∈ RN(2M−1)×MN , (3.5)

Problem 1 can be formulated as follows

min
w

1

2
‖y −Aw‖22 + λ‖Bw‖`0 , (3.6)

where ρ in (3.5) is a trade-off parameter between the number of switches and
the number of non-zero parameters, while λ in (3.6) is known as a regularisation
parameter in penalised linear regression problems. Using the specially designed
matrix B defined in (3.5), we can penalise a) the number of switches that occur
and b) the number of non-zero element in every identified model.

For matrices B with the special form given in (3.5), algorithms minimising
the number of non-zero elements and the number of switches belong to the class
of so-called fused LASSO algorithms [6]. For general B matrices, the problem
defined in (3.6) would be solved using generalised LASSO algorithms [7].

Overall, instead of employing LASSO-type algorithms to obtain an approx-
imated solution, we are going to tackle the problem from a sparse Bayesian
learning perspective [3, 4] as this gives much sparser solutions.

4 Sparse Bayesian Learning

In order to estimate P(w|y), firstly the prior distribution over w should be speci-
fied. In problem (3.6), we not only want to minimise the number of basis functions
but also the number of switches. Therefore, sparsity promoting priors should be
specified for P(Bj,:wj), ∀j, where Bj,: is the jth row of B. These priors can be
chosen as super-Gaussian [8]. It means that for every parameter Bj,:wj , we de-
fine a hyper-parameter γj such that P(Bj,:wj) = maxγj>0N (Bj,:wj |0, γj)ϕ(γj).
In this case the priors P(Bw) can be computed as follows:

P(Bw) = max
γ>0

∏
j

N (Bj,:wj |0, γj)ϕ(γj). (4.1)

where γ is a vector of γj and ϕ(·) is a nonnegative function of the hyperparam-
eters, which can be given depending on a selection specific sparsity promoting
distribution, such as a Laplace distribution, a Student’s t distribution, etc. Note
that, if the parameter vector γ is known, we can estimate P(Bw|y;γ) instead
of computing P(Bw|y). Therefore, the problem should be recasted in terms of
finding the most appropriate hyperparameters of the priors: γ̂. A good way of se-
lecting γ̂ is to choose it as the minimiser of the sum of the misaligned probability



mass, e.g.,

γ̂ = argmin
γ>0

∫
P(y|w) |P(Bw)− P(w;γ)| dw

= argmax
γ>0

∫
P(y|w)P(Bw;γ)dw.

(4.2)

The procedure in (4.2) is referred to as evidence/marginal likelihood maximisa-
tion [3, 4]. It means that the marginal likelihood can be maximised by selecting
the most probable hyperparameters able to explain the observed data. Defining
Γ as a diagonal matrix with diagonal entries γj , the parameters w and γ can be
estimated by solving the optimisation problem in Proposition 1:

Proposition 1. The optimisation problem in (4.2) is equivalent to the following
non-convex problem

min
γ>0,w

{ 1

σ2
‖y −Aw‖22 + w>B>Γ−1Bw

+ log |Γ|+ log |B>Γ−1B + σ−2A>A|+
N∑
j=1

p(γj)}
(4.3)

where Γ is a diagonal matrix with entries γ on the diagonal and p(·) = log(ϕ(·)).

Proof. The proof is similar to that derived in [4, 5]. Therefore, we omit it due
the space limitation.

We approach the solution to this problem by separating the objective function
into the following parts:

f(w,γ) =
1

σ2
‖y −Aw‖22 + w>B>Γ−1Bw

g(γ) = log |Γ|+ log |B>Γ−1B + σ−2A>A|+
N∑
j=1

p(γj).

Proposition 2. The function f(w,γ) is jointly convex in w and γ, while the
function g(γ) is concave.

Proof. It is easy to verify the first part of this proposition. A proof on concavity
of the sum of log-determinant functions in the second part for general matrices
B can be found in [5, Theorem 3.1 (3)].

Proposition 2 allows us to use Convex-Concave Programming [9] in order to
find a stationary point, which results in:(

wk+1,γk+1
)
= argmin

w,γ>0
f(w,γ) +∇γ(g(γ

k))>γ (4.4)



In order to make the algorithm more transparent we also separate the min-
imisation into separate minimisation programmes over w and γ: By defining
εk+1 , ∇γ(g(γ

k)), the optimal solution in (4.4) over γ can be computed an-
alytically as γj = Bj,:w/

√
εj , ∀j and for every fixed w. Now we only need to

minimise in (4.4) over w as follows:

wk+1 = argmin
w

1

2
‖Aw − y‖22 + σ2

∑
j

‖εkj ·Bj,:w‖1,

while the hyperparameters are updated as γk+1
j = Bj,:w

k+1/
√
εj , ∀j. To sum-

marise the algorithm, one can initialise γ0j at any positive real scalar. Some
additional insight can be obtained by initialising ε0j = 1, ∀j instead. In that
case, the first iteration becomes a linear regression problem with `1 penalty on
the parameters Bw:

w1 = argmin
w

1

2
‖Aw − y‖22 + σ2‖Bw‖`1 .

Then we update γ1j using γ1j = Bj,:w
1/
√
ε0j . Using this initialisation, we prov-

ably get results at least not worse than the generalised LASSO algorithm. Al-
gorithm 1 summarises this approach, which converges to a stationary point in
w and γ [9]. Algorithm 1 can be seen as a particular version of the reweighted
LASSO approach with a Bayesian update on the weights. The program (4.4) is

Algorithm 1 Switched Systems Identification Algorithm

1: Initialise ε0j = 1, ∀j = 1, . . . , N(2M − 1),
2: for k = 0, . . . , kmax do
3: Update the parameters as follows:

wk+1 = argmin
w

1

2
‖Aw − y‖22 + σ2

∑
j

‖εkj ·Bj,:w‖1

γk+1
j =

Bj,:w
k+1√
εkj

εk+1
j = −

Bj,:(B
>(Γk+1)−1B + ρkA>A)−1B>j,:

(γk+1
j )2

+
1

γk+1
j

4: if a stopping criterion is satisfied then
5: Break
6: end if
7: end for

convex, quadratic and uncostrained; however, the size of the problem can be ex-
tremely large. Two techniques to speed-up the solution can be adopted: pruning



the parameter w space after each iteration as in [10], and/or using distributed
computation methods such as ADMM, e.g. [11]).

5 Results

In this section, we consider time-series data obtained from a chaotic Lorenz
Oscillator implemented in vitro using DNA computations [12]. From the associ-
ated biochemical reactions, a polynomial ODE can be derived using the law of
mass action. We artificially generate data using this oscillator model but change
certain parameters at certain time. This can be realised in vitro by changing
experiment conditions or enzyme concentrations. The Lorenz oscillator can be
described by the discretised differential equations[

y1(k + 1)− y1(k)
δt

,
y2(k + 1)− y2(k)

δt
,
y3(k + 1)− y3(k)

δt

]
= [p1(k)(y2(k)− y1(k)), y1(k)(p2(k)− y2(k)), y1(k)y2(k)− k2(k)y3(k)] .

where we the fix sampling time to δt = 0.02 (arbitrary units).
Initially (“Mode 1”), the parameters are p1 = 10, p2 = 30, p3 = 8/3. From

k = 201 to k = 400 (“Mode 2”), the parameters are changed to p1 = 10, p2 =

30, p3 = 4. For the kinetics of y1 and y3, the nonlinear dynamics change after
switching from Mode 1 to Mode 2. For y2, the parameters do not switch. We
construct the basis functions in (3.1) as(

y01(k)y
0
2(k)y

0
3(k), y

0
1(k)y

0
2(k)y

1
3(k), . . . , y

n1
1 yn2

2 (k)yn3
3 (k)

)
.

We index the parameter vector w(k) as [w000(k), w001(k), . . . , wn1n2n3(k)], choose
λ = 1 and ρ = 100 and set the initial condition to [y1(1), y2(1), y3(1)] =

[0.2444,−2.217, 2.314]. Finally, we set n1 = 1, n2 = 1 and n3 = 1. The true
and estimated parameters’ evolution over time are shown in Figure1.

6 Conclusion

In this paper we proposed an efficient way to solve the switched system identifi-
cation problem for biochemical reaction networks. For this purpose, an efficient
framework based on sparse Bayesian learning has been proposed to solve this
problem by specifying sparse priors on the number of parameters and the num-
ber of switches. Future work lies in the identifiability of such switching systems
and how to design proper excitation signals to guarantee identifiability of the
switching systems from output data.
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(a) True and estimated parameters for y1.
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(b) True and estimated parameters for y2.
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(c) True and estimated parameters for y3.

Fig. 1: True (upper panel) and estimated (lower panel) parameters’ evolution over
time. The horizontal axis represents time, whereas the vertical axis represents
the estimated coefficients. From top to bottom, the index goes from 001 to 111.
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