
Chapter 1

Analysis of synchronizing biochemical
networks via incremental dissipativity

Abdullah Hamadeh and Jorge Gonçalves and Guy-Bart Stan

1.1 Introduction

Synchronization, defined in a broad sense, is the phenomenon in which com-
municating agents coordinate outputs. The abundance of examples of this
process in nature and engineering has led to its becoming an active sub-area
of research in networks theory, as evidenced by the multitude of publications
on the subject (Boccaletti et al, 2006).

The aim of this chapter is to re-visit, generalize and extend earlier work
in (Stan et al, 2007; Hamadeh et al, 2012, 2008), on the synchronization of
interconnected control systems, in which a dissipativity approach is employed
to arrive at the coupling conditions necessary to ensure the convergence of
nodal outputs to a common value. The motivation for the development of
these tools comes from a systems biology example, namely the modeling
and analysis of synchrony in the neuronal networks that control circadian
rhythms in the mammalian hypothalamus (Gonze et al, July 2005). In this
context, the ‘network’ is composed of a set of cells (the network nodes). Each
cell communicates with its neighbors by sending a biochemical output signal
that reflects its internal state, and by taking as an external input, a measure
of outputs of its neighboring cells.
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An assumption we make is that the internal dynamics of each cell can be
modularized into a set of interconnected compartments. In (Stan et al, 2007;
Hamadeh et al, 2012, 2008) these compartments were connected in a ring that
is structurally similar to the Goodwin oscillator. Such a structure represents
a simple yet common genetic circuit whereby DNA is transcribed to mRNA,
which is then translated into a protein, which feeds back to inhibit mRNA
transcription. As shown in (Sontag, 2005), in many cases the dynamics of
such modules can be characterized, from an input-output perspective, as
being passive in the sense of (Willems, 1972). A biochemical circuit that is
formed by the interconnection of such modules thus lends itself to stability
analysis by the dissipativity theory tools developed in (Vidyasagar, 1981;
Arcak and Sontag, 2006; Sontag and Arcak, 2008). A particular advantage of
this approach with regards to biological systems is that the internal dynamics
of each module need not be known precisely.

To analyze synchronization in networks of such interconnected cells, (Stan
et al, 2007; Hamadeh et al, 2012) regards synchronization as the stability of
signals that represent the differences in output between two nodes. In paral-
lel with the use of passivity theory (Arcak and Sontag, 2006) to analyze the
stability of circuits composed of the interconnection of passive subsystems,
the work in (Stan et al, 2007; Hamadeh et al, 2012) employs the concept of
incremental passivity, first introduced in (Stan, March 2005; Stan and Sepul-
chre, 2007), to study the synchronization of cells composed of incrementally
passive subsystems. Given two identical copies of a system that has an input-
state-output description, the system is said to be incrementally passive if it
is passive with respect to the difference between its inputs, states and out-
puts (termed the incremental signals of the system). The class of network
agents we will study in this chapter is such that the compartments of each
individual node are subsystems that are individually incrementally output
feedback passive (Sepulchre et al, 1997). We will use measures of their incre-
mental passivity in order to quantify the degree of shortage of incremental
passivity of each node with respect to its coupling inputs and outputs. Then,
in analogy with the use of strong negative feedback for purposes of stabiliz-
ing output feedback passive systems, we will show that linear static coupling
that is strongly connected can similarly be used to incrementally stabilize the
network nodes, thus leading to asymptotic output synchrony and asymptotic
state synchrony under a zero-state detectability assumption on the differences
between the corresponding states and outputs of network nodes. Following
(Stan et al, 2007), an alternative input-output approach was developed in
(Scardovi et al, 2009) to analyze the synchrony of network agents that have
structures more general than the cyclic nodes studied in (Stan et al, 2007).
An aim of this chapter is to show that the incrementally passifying role of
coupling, which is analogous to the stabilizing role of feedback, can be used
for the analysis of synchrony in networks of nodes as general as those studied
in (Scardovi et al, 2009).
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With respect to other synchrony analysis tools in the literature such as
contraction theory (Lohmiller and Slotine, 1998; Demidovich, 1967; Pavlov
et al, 2004) or incremental input-to-state stability (Angeli, 2002), the method-
ology we present here takes an input-output, modular approach. This results
in a natural framework with which to analyze synchrony of agents composed
of the interconnection of subsystems, and little knowledge of the subsystem
dynamics is required. To illustrate our results, we apply them towards the
analysis of synchrony in networks of the repressilator genetic (synthetic) cir-
cuit (Elowitz and Leibler, 2000; Garcia-Ojalvo et al, 2004). Genetic circuits
can generally be posed in a modular form similar to that of the repressilator.
For this reason we envision that the tools we present here will prove to be
especially useful for the analysis of synchrony in networks of such systems.

1.2 Synchronization and incremental dissipativity

As networked systems are generally connected through their inputs and out-
puts, it is natural to characterize them through their input-output properties
to identify sufficient synchronization conditions. This chapter considers an
incremental dissipativity characterization of the network nodes that will be
termed incremental output-feedback passivity (iOFP). The following section
will give a brief introduction to the concepts of incremental dissipativity, first
introduced in (Stan, March 2005; Stan and Sepulchre, 2007).

1.2.1 Incremental dissipativity

Consider a system Υ represented by a state-space model of the form

Υ

{

ẋ = f(x, e), x ∈ R
r, e ∈ R

y = g(x), y ∈ R
(1.1)

where e(t), y(t), and x(t) denote its input, output and state respectively
and the functions f(x, e) : Rr × R → R

r and, g(x) : Rr → R are Lipschitz
continuous. Let xa(t) and xb(t) be two solutions of Υ , with the corresponding
input-output pairs (ea(t), ya(t)), and (eb(t), yb(t)). Denote by ∆x = xa − xb,
∆e = ea − eb, and ∆y = ya − yb the corresponding incremental variables.
System (1.1) is incrementally dissipative if there exists a radially unbounded
incremental storage function

S∆ : Rr → R, S∆ (∆x) > 0 : ∀∆x 6= 0, S∆(0) = 0, S∆ ∈ C1 (1.2)

and an incremental supply rate w (∆e,∆y) such that, if S∆(∆x) is at least
once differentiable (i.e. S∆ ∈ C1)
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Ṡ∆(∆x) ≤ W (∆e,∆y) (1.3)

is satisfied for all time t and along any pair of trajectories (xa(t), xb(t)) (see
(Willems, 1972) for a definition of dissipativity).

Definition 1. (Stan, March 2005; Stan and Sepulchre, 2007) System Υ in
(1.1) is said to be

• incrementally passive when it is incrementally dissipative with incremental
supply rate W (∆e,∆y) = ∆y∆e.

• incrementally output feedback passive (iOFP
(

1
γ

)

) when it is incrementally

dissipative with the incremental supply rate W (∆e,∆y) = − 1
γ
(∆y)

2
+

∆y∆e with γ ∈ (−∞,∞).
• incrementally output strictly passive (iOSP) when it is incrementally dissi-

pative with the incremental supply rate W (∆e,∆y) = − 1
γ
(∆y)

2
+∆y∆e

and γ > 0.

When γ > 0 the system possesses an excess of incremental passivity of 1
γ
.

On the other hand, when γ < 0 the system possesses a shortage of incremen-
tal passivity and − 1

γ
quantifies the minimum gain of proportional negative

incremental output feedback required to make the system incrementally pas-
sive.

Definition 2 (Incremental secant gain). Following the concept of the
‘secant gain’ in (Sontag, 2005; Arcak and Sontag, 2006), the smallest γ > 0
such that the iOSP dissipation inequality in Definition 1 is satisfied will be
termed the incremental secant gain of the system.

Remark 1. (Stan, March 2005; Stan and Sepulchre, 2007) Passivity implies
incremental passivity for linear systems, that is, if the quadratic storage
function S(x) = 1

2x
∗Px ≥ 0 satisfies the dissipation inequality Ṡ ≤ yu

then the incremental storage function S∆ (∆x) = 1
2 (∆x)

∗
P∆x ≥ 0 satis-

fies the incremental dissipation inequality Ṡ∆ ≤ ∆y∆e. Passivity also im-
plies incremental passivity for a monotone increasing, static nonlinearity: if
φ(·) is monotone increasing, then (ea − eb) (φ (ea)− φ (eb)) = ∆e∆φ(e) ≥ 0,
∀∆e = ea − eb, ∆φ(e) = φ(ea) − φ(eb). Similarly, it is easy to show that
for linear systems, output strict passivity implies incremental output strict
passivity with the incremental secant gain equal to the secant gain.

1.2.2 Incremental output-feedback passivity and

synchronization

Thus far we have seen that a system is incrementally dissipative if, given any
two sets of initial conditions, input trajectories and corresponding outputs,
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the inequality (1.3) is satisfied. For this reason, the incremental dissipativity
property, which is a property of each individual node, can be used as an
analysis tool for an entire network composed of interconnected copies of such a
node. The main result that will link incremental output feedback passivity of
nodes of a network to (output) synchronization states that if each subsystem
is iOFP and the coupling strength between nodes is large enough then all the
nodes will asymptotically synchronize.

1.3 Notation

In the following sections, we consider networks composed ofN coupled identi-
cal nodes, each composed of n interconnected SISO subsystems. As a general
convention j = 1, · · · , N will denote the index associated to a particular node
of the network whilst i = 1, · · · , n will denote the index associated to a partic-
ular subsystem in a given node. The signals to be introduced in Assumption
1 below carry the following notations and are illustrated in Figure 1.1.

• The subsystem i of node j has a state vector xij ∈ R
s, an input eij =

uij +wij and output yij , with eij , uij , wij , yij ∈ R. The internal input uij

is a function of the outputs of different subsystems from the same node
j. The external input wij is a function of the outputs of corresponding
subsystems i from the different nodes.

• The vectors of the states, inputs, internal inputs, external inputs and out-
puts of the jth node are respectively denoted by xj , ej , uj , wj, yj , where
xj = [x∗

1j · · · x∗
nj

]∗ and ej , uj , wj , yj are similarly defined.

• The vectors of the ith states, inputs, external inputs and outputs of
each node are respectively denoted by Xi, Ei, Ui, Wi, Yi, where Xi =
[

x∗
i1

· · · x∗
iN

]∗
∈ R

N and Ei, Ui, Wi, Yi are similarly defined.
• The vectors of all the states, inputs, internal inputs, external inputs

and outputs are respectively denoted by X , E, U , W , Y , where X =
[X∗

1 · · · X∗
n ]

∗, and the vectors E, U , W , Y are similarly defined.
• The incremental states, inputs, internal inputs, external inputs and out-

puts are respectively denoted by ∆xij,m , ∆eij,m , ∆uij,m , ∆wij,m , ∆yij,m ,

where ∆xij,m , xij − xim , and the signals ∆eij,m , ∆uij,m , ∆wij,m , ∆yij,m
are similarly defined.

• The vectors of incremental states, inputs, internal inputs, external inputs
and outputs for two nodes j,m are respectively denoted by ∆xj,m, ∆ej,m,

∆uj,m, ∆wj,m, ∆yj,m, where ∆xj,m , xj − xm, and the signals ∆ej,m,
∆uj,m, ∆wj,m, ∆yj,m are similarly defined.

• The vector in R
NNns of all incremental state vectors ∆xij,m is denoted by

X∆.
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Fig. 1.1 Network of nodes and illustration of internal nodal structure. The subsystem
interconnection structure can be arbitrary.

1.4 Characterization of network nodes and their

dissipativity properties

The following assumption gives a formal description of the networks and
nodes that we shall consider in this chapter.

Assumption 1 Consider a network of N identical nodes. It is assumed that:

• Each node j is composed of n interconnected SISO subsystems of the form
(1.1), and each such subsystem i has state vector, input and output xij ,
eij , yij respectively.

• Each subsystem i is iOFP
(

1
γi

)

and therefore, for any two nodes j,m there

is associated with each subsystem i a function Sij,m(∆xij,m ) that satisfies
(1.2) and an incremental dissipation inequality of the form (1.3), with

Ṡij,m ≤ Wi(∆eij,m , ∆yij,m) = −
1

γi
(∆yij,m)2 +∆eij,m∆yij,m , γi ∈ R

(1.4)
• The input to subsystem i of node j is given by eij = uij + wij where uij

are inputs from within the same node j and uij =
∑n

ℓ=1
ℓ 6=i

αi,ℓyℓj , αi,ℓ ∈ R

and where wij is an exogenous input.

Under Assumption 1, and by linearity we have
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∆eij,m = ∆wij,m +
n
∑

ℓ=1
ℓ 6=i

αi,ℓ∆yℓj,m (1.5)

Combining this relation with the incremental dissipation inequality of the ith

subsystem yields

Ṡij,m ≤ −
1

γi
(∆yij,m)2 +∆wij,m∆yij,m +∆yij,m

n
∑

ℓ=1
ℓ 6=i

αi,ℓ∆yℓj,m (1.6)

Definition 3 (Interconnection matrix). For the vector of elements {γ} ,
[

γ1 · · · γn
]∗
, define the interconnection matrix A(γ) as

A(γ) ,



















− 1
γ1

α1,2 · · · α1,n−1 α1,n

α2,1 − 1
γ2

α2,3 · · · α2,n

α3,1 α3,2 − 1
γ3

. . .
...

...
. . .

. . .
. . . α4,n

αn,1 · · · αn,2 αn,n−1 − 1
γn



















which is such that

n
∑

i=1






−

1

γi
(∆yij,m)2 +∆yij,m

n
∑

ℓ=1
ℓ 6=i

αi,ℓ∆yℓj,m






=

1

2
(∆yj,m)∗(A(γ)∗+A(γ))∆yj,m

Lemma 1. For an interconnection matrix A(γ) as defined in Definition 3,
there exist diagonal matrices D > 0, D ∈ R

n×n, D = diag{d1, · · · , dn} and
K ≥ 0, K ∈ R

n×n, K = diag{k1, · · · , kn} so that for all diagonal matrices
K ′ = diag{k′1, · · · , k

′
n} ∈ R

n×n which satisfy K ′ ≥ K, there exists ǫD,K > 0
which is such that

1

2
(A(γ̃)∗D +DA(γ̃)) ≤ −ǫD,KIn, γ̃ = {γ̃i}, γ̃i ,

γi

1 + k′iγi
(1.7)

Proof. Since γ̃i =
γi

1+k′

i
γi

and γ̃ = {γ̃i}, it follows that A(γ̃) = A(γ) − K ′.

To prove the existence of a pair of matrices D > 0,K ≥ 0, that satisfy
(1.7), note that if D = In then there always exists a set of elements k′i
which are individually sufficiently large in magnitude to make the diagonal
elements of A(γ̃) negative and also sufficiently large in magnitude to ensure
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that A(γ̃)∗D+DA(γ̃) = A(γ̃)∗ +A(γ̃) < 0 by diagonal dominance1. Taking
any such pair D,K which are such that

1

2
((A(γ)−K)∗D +D(A(γ)−K)) ≤ −ǫD,KIn

is satisfied with ǫD,K > 0, then since D(K ′ −K) ≥ 0, it necessarily follows
that for any K ′ ≥ K

1

2
(A(γ̃)∗D +DA(γ̃)) ≤ −ǫD,KIn

This completes the proof.

Lemma 1 proves that the diagonal stability of interconnection matrices can
always be achieved by making their diagonal elements large in magnitude and
negative in size. The following theorem makes use of this result to quantify
the shortage of passivity of the network nodes from the degree of passivity
of the individual nodal subsystems.

Theorem 1. For a network of identical nodes that satisfy Assumption 1,
there exist diagonal matrices D > 0, D ∈ R

n×n, D = diag{d1, · · · , dn} and
K ≥ 0, K ∈ R

n×n, K = diag{k1, · · · , kn} so that for the storage function
Sj,m =

∑n
1=i diSij,m each network node is iOFP(−K) and satisfies the in-

cremental dissipation inequality

Ṡj,m ≤ −ǫD,K(∆yj,m)∗(∆yj,m) + (∆yj,m)∗D(K∆yj,m +∆wj,m) (1.8)

where ǫD,K > 0 is such that

1

2
(A(γ̃)∗D +DA(γ̃)) ≤ −ǫD,KIn, γ̃ = {γ̃i}, γ̃i ,

γi

1 + kiγi
(1.9)

and where A(·) is as defined in Definition 3.

Proof. The first step of the proof is to add and subtract to each dissipation

inequality (1.6) the term ki
(

∆yij,m
)2
, with ki ≥ 0, to obtain

Ṡij,m ≤ −
1

γ̃i
(∆yij,m)2 + ki(∆yij,m)2 +∆yij,m

n
∑

ℓ=1
ℓ 6=i

αi,ℓ∆yℓj,m +∆wij,m∆yij,m

(1.10)
where

γ̃i =
γi

1 + kiγi

1 Note that the choice of matrix D = In is not unique and in most cases a matrix D can
be constructed to reduce the sizes of elements ki required to achieve negative definiteness
of A(γ̃)∗D +DA(γ̃).
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Now, defining the incremental storage function Sj,m(∆xj,m) as the linear
sum Sj,m =

∑n
i=1 diSij,m , its time derivative becomes

Ṡj,m≤

n
∑

i=1

di






−

1

γ̃i
(∆yij,m)2+∆yij,m

n
∑

ℓ=1
ℓ 6=i

αi,ℓ∆yℓj,m+∆wij,m∆yij,m+ki
(

∆yij,m
)2







=
1

2
(∆yj,m)∗(A(γ̃)∗D+DA(γ̃))(∆yj,m)+

n
∑

i=1

di

(

∆wij,m∆yij,m+ki
(

∆yij,m
)2
)

=
1

2
(∆yj,m)∗(A(γ̃)∗D+DA(γ̃))(∆yj,m)+(∆yj,m)∗D(K∆yj,m+∆wj,m)

where di > 0, ∀i, D = diag(d1, · · · , dn), and A(γ̃) is as defined in Definition
3 but with the vector of elements γ̃ = {γ̃i}. The key step at this point is that,
following the definition of γ̃i, increasing ki sufficiently can make the quantity
γ̃i positive if γi is negative. In this way the subsystem i, which satisfies the
incremental dissipation inequality (1.10) becomes iOFP(−ki).

Moreover, if each ki is made sufficiently large, the values of γ̃i can be made
small enough so that a diagonal matrix D can be constructed which makes

1

2
(A(γ̃)∗D +DA(γ̃)) ≤ −ǫD,KIn (1.11)

for some ǫD,K > 0, as shown in Lemma 1. Therefore if quantities ki and di
are chosen so that (1.11) is satisfied then

Ṡj,m ≤ −ǫD,K(∆yj,m)∗(∆yj,m) + (∆yj,m)∗D(K∆yj,m +∆wj,m)

and the node is therefore iOFP(−K) since a negative feedback of ∆wj,m =
−K∆yj,m would render the node iOSP. This completes the proof.

1.4.1 Network Coupling Topology

Now consider a network composed of N identical nodes, where each node is
iOFP(−K) as shown in Theorem 1. Assume that the nodes are connected
using their ith subsystems through a weighted directed graph Gi (the graph
can be different for each i) and assume that the coupling structure is restricted
to a linear, static input-output interconnection, so that the ith subsystem on
the jth node is coupled to the ith subsystem on other nodes in the network
through its inputs wij and outputs yij using the Laplacian coupling matrix
Γi ∈ R

N×N , so that Wi = −ΓiYi. The graph Gi = {Ai,Di} has the following
definitions.

Definition 4 (Weighted Adjacency Matrix). A weighted adjacency ma-
trix Ai =

{

ρij,l
}

, j, l = 1, · · · , N , Ai ∈ R
N×N , is a positive matrix where
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ρij,l represents the weight of the edge from node l to node j. It is assumed
that the graph is simple, i.e. ρij,l ≥ 0, ∀j 6= l and ρij,j = 0, ∀j, l.

Definition 5 (Degree Matrix). The degree matrix Di associated with the
adjacency matrix Ai is a diagonal matrix Di = diag{δij}, j = 1, · · · , N ,

Di ∈ R
N×N with δij =

∑N
l=1
l 6=j

ρij,l .

Definition 6 (Laplacian Matrix). The weighted Laplacian matrix Γi ∈
R

N×N associated with the adjacency matrix Ai is defined as Γi = Di −Ai =
{

Γij,l

}

for j, l = 1, · · · , N and Γij,j = δij, ∀j = 1, · · · , N and Γij,l = −ρij,l ,

∀j 6= l. The matrix Γ̃ is defined as

Γ̃ , diag{Γ1, · · · , Γn}

The interconnection rule Wi = −ΓiYi then corresponds to the linear con-
sensus protocol wij = −

∑N
l=1 ρij,l

(

yij − yil
)

(see (Olfati-Saber and Murray,
2004)). The following assumptions are made on Γi:

• (A1) rank(Γi) = N − 1
• (A2) Γi + Γ T

i ≥ 0
• (A3) Γi1N = Γ T

i 1N = 0N

The conditions (A1)-(A3) characterize the coupling structure we consider
here as diffusive coupling (Pogromsky and Nijmeijer, 2001). Assumption
(A1) holds provided that the graph is strongly connected (see (Olfati-Saber
and Murray, 2004)). Assumption (A3) holds if the graph is balanced, i.e. if
Ai1N = Ai∗1N (see (Cremean and Murray, 2003)). Furthermore, this latter
property implies (A2) (see (Cremean and Murray, 2003), which uses Ger-
shgorin’s disk theorem to prove this fact). Note that these assumptions do
not imply that Γi is symmetric which would be equivalent to assuming an
undirected graph. We denote by λki

the kth eigenvalue of the symmetric part
of the Laplacian Γi, which is given by 1

2 (Γi + Γ ∗
i ).

The eigenvalues λki
are such that λ1i < λ2i ≤ · · · ≤ λNi

. From (A2) it
follows that λki

≥ 0 whilst from (A1) λ1i = 0. From (A3) λ1i = 0 corre-
sponds to the eigenvector 1N . The quantity λ2i has a special significance in
graph theory and is known as the algebraic connectivity. As will be shown in
Theorem 2 this quantity is a measure of the coupling strength of the network
Laplacian Γi.

To compare each nodal output with its average over all the N nodes out-
puts, the projector matrix Π ∈ R

N×N , which is first defined in (Stan, March
2005; Stan and Sepulchre, 2007)

Π , IN −
1

N
1N1∗

N (1.12)

is employed. This projector measures the instantaneous difference between
a signal and its average over all nodes in the network, e.g. the jth element
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of ΠY1(t) measures the difference between output y1j (t), j = 1, · · · , N and

the average output 1
N

∑N
j=1 y1j (t). Note that the projector has the following

properties from (Stan, March 2005; Stan and Sepulchre, 2007)

• Π∗Π = Π

• Π = Π∗

• Π1N = 0N

We also define the matrix

Π̃r , Ir ⊗Π (1.13)

which will be used to measure consensus in the concatenated signal vectors
(for example the concatenated output vector Y ).

1.4.2 Main result on network synchronization

Because the nodes are identical, the incremental storage function Sj,m is such
that, given any two sets of initial conditions, inputs, states and outputs for
any two nodes j,m ∈ {1, · · · , N}, their corresponding trajectories satisfy an
incremental dissipation inequality of the form (1.8). Due to Assumption 1,
the incremental storage function Sj,m has the properties Sj,m (∆xj,m) > 0
∀∆xj,m 6= 0n, Sj,m(0n) = 0. As we have seen in Theorem 1, equation (1.8)
can be arrived at by a suitable choice of matrices D,K.

In Theorem 2 below, the following property will be used to deduce state
synchronization from output synchronization.

Definition 7 (Incremental zero-state detectability). A system of the
form (1.1) is incrementally zero-state detectable if, ∆u(t) = 0 and ∆y(t) = 0,
∀t, implies limt→∞ ∆x = 0r.

In the following theorem, the result on global asymptotic state synchro-
nization of network nodes is given.

Theorem 2. (Asymptotic State Synchronization) Consider a network of N
identical nodes satisfying Assumption 1, linearly coupled through the inter-
connection matrices Γi so that Wi = −ΓiYi where matrices Γi satisfy the
assumptions (A1), (A2), and (A3). Assume that each node is incremen-
tally zero-state detectable as in Definition 7 and is iOFP(−K) as shown
in Theorem 1, so that for every pair of nodes j,m ∈ {1, · · · , N} there
exists a radially unbounded incremental storage function Sj,m satisfying
(1.8). Assume also that the network satisfies the strong coupling assump-
tion L ≥ K where L = diag{λ21 , · · · , λ2n}. Then, each bounded network
solution that exists for all t ≥ 0 is such that ∀i = 1, · · · , n, ∀j, l = 1, · · · , N :
limt→+∞

(

xij (t)− xil(t)
)

= 0 (global asymptotic synchronization). In addi-
tion to global asymptotic synchronization, any bounded network solution is
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such that the state solution of each node converges to the omega-limit set of
the isolated node.

Proof. Summing the storage functions Sj,m given in (1.8) for all node pairs
j,m and then scaling by 1

2N gives the incremental storage function S(X∆) =
1
2N

∑N
j=1

∑N
m=1 Sj,m for the network. From (1.8), S obeys the dissipation

inequality

Ṡ ≤ −ǫD,K(Π̃nY )∗(Π̃nY )+(Π̃nY )∗(D⊗IN )∗((K⊗IN )Π̃nY +Π̃nW ) (1.14)

Using (A3) and the relation Wi = −ΓiYi, we have ΠWi = −ΠΓiYi =
−ΓiΠYi and therefore Π̃nW = −Γ̃ Π̃nY , where Γ̃ = diag{Γ1, · · · , Γn}. From
this, (1.14) becomes

Ṡ ≤ −ǫD,K(Π̃nY )∗(Π̃nY ) + (Π̃nY )∗(D ⊗ IN )∗((K ⊗ IN )Π̃nY − Γ̃ Π̃nY )
(1.15)

From (A1)-(A3), ΠYi = Yi −
(

1
N
1∗
NYi

)

1N = 0 iff Yi ∈ ker(Γi). Since
ker(Γi) is of dimension one, it follows that

(ΠYi)
∗
ΓiΠYi ≥ λ2i (ΠYi)

∗
ΠYi (1.16)

Letting L = diag{λ21 , · · · , λ2n} and substituting (1.16) in (1.15) yields

Ṡ ≤ −ǫD,K(Π̃nY )∗(Π̃nY ) + (Π̃nY )∗(D(K − L)⊗ IN )∗Π̃nY

Noting that the diagonal matrix D > 0, then if, ∀i λ2i (Γis) > ki (strong
coupling) then K − L < 0. This gives the Lyapunov inequality

Ṡ ≤ −ǫD,K(Π̃nY )∗(Π̃nY ) (1.17)

If this inequality holds, then letting S0 = S(X∆(0)), the initial value of the
incremental storage function for the whole network, we note that, since S ≥ 0
and Ṡ ≤ 0, the set M = {X∆|S(X∆) ≤ S0} is an invariant set. Note that M
also contains the origin X∆ = 0NNns which is a strict minimum of S(X∆)
since S(X∆) > 0 for X∆ 6= 0NNns and S(0NNns) = 0. Due to (1.17), this
minimum is also a stable incremental equilibrium point of the network.

From (1.17), and using the LaSalle invariance principle, the incremen-
tal signal X∆ will converge to the largest invariant subset of {X∆ ∈
R

NNns|Ṡ(X∆) = 0} as t → ∞. Due to (1.17), Ṡ(X∆) = 0 only if Π̃nY = 0Nn.
This implies asymptotic output synchronization since ∀i and for any pair
j,m ∈ {1, · · · , N}, limt→∞(yij (t) − yim(t)) = 0. Furthermore, from the in-

cremental zero-state detectability assumption, the condition Π̃nY = 0Nn

and the fact that there is no external input to the network means that
limt→∞ X∆ = 0NNns. This proves that each network solution that exists for
all t ≥ 0 is, regardless of initial conditions, such that ∀i = 1, · · · , n,∀j,m =
1, · · · , N : limt→+∞

(

xij (t)− xim(t)
)

= 0.
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Since Γ1N = 0, the effect of the coupling disappears when output syn-
chrony is reached and each node in the network is then effectively isolated.
Therefore, in addition to global asymptotic state synchronization, for any
bounded network solution, the solution of each node converges to the omega-
limit set of an isolated node. This completes the proof.

The preceding discussion has presented two main ideas, formalized in The-
orems 1 and 2. In the Theorem 1 it was shown that any node of the form
specified in (1) (that is, any node composed of an interconnection of subsys-
tems that obey an iOFP property) is iOFP(−K), where K ≥ 0 is a diagonal
matrix. In Theorem 2, it is then shown that an iOFP(−K) node can be made
to synchronize by sufficiently strong coupling, where the coupling strength
is quantified by the eigenvalues of the diagonal matrix L (which are the al-
gebraic connectivities of Laplacians Γi). In effect, the coupling acts as an
incrementally stabilizing negative feedback that compensates for any short-
age of incremental passivity by the nodes.

Lemma 1 and Theorem 1 show that the network nodes are iOFP(−K),
K = diag{k1, · · · , kn}, by demonstrating that, associated with any given K

is another matrix D > 0 such that A(γ̃)∗D +DA(γ̃) < 0 where

γ̃ = {γ̃i}, γ̃i =
γi

1 + kiγi
(1.18)

If D = In the diagonal elements of A(γ̃)∗ +A(γ̃), equal − 2
γ̃i
. By sufficiently

increasing each ki, the diagonal elements of A(γ̃)∗ + A(γ̃) can therefore be
made negative and large enough for A(γ̃)∗ + A(γ̃) to become diagonally
dominant and hence negative definite. However, the size of the eigenvalues of
K required to achieve diagonal dominance is usually conservatively high.

Moreover, it is important to note that, for a given interconnection matrix
A(γ) the diagonal matrices D and K that make each node iOFP(−K) are
not unique, and there are, in fact, some choices that are ‘better’ than others
in that some matrices D can be used to make A∗(γ̃)D +DA(γ̃) = (A(γ) −
K)∗D + D(A(γ) − K) < 0 using matrices K which are more sparse than
others (by the sparsity of K we mean the number of zeros on its diagonals).
The sparser the matrix K, the fewer the coupling connections that need to
be made between the nodes since for every positive ki, λ2i needs to also
be positive to meet the synchronization condition of Theorem 2. If K is a
positive definite diagonal matrix then all subsystems need to be coupled in
order to meet the synchronization condition. This results in a conservative
coupling structure.

For certain nodal structures it is possible to find conditions on the values
of the elements γ̃i such that A(γ̃)∗D + DA(γ̃) < 0 using matrices K that
are only positive semi-definite. For example the work in (Stan et al, 2007;
Hamadeh et al, 2012) uses the results of Arcak and Sontag (2006) to show
that for nodes with a cyclic feedback structure there exists D > 0 such that
A(γ̃)∗D +DA(γ̃) < 0 if and only if the secant condition
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γ̃1 · · · γ̃n < secn
(π

n

)

is satisfied. The value of each γ̃i can be made arbitrarily small (and positive)
by increasing ki. Therefore to construct a matrix D > 0 such that A(γ̃)∗D+
DA(γ̃) < 0 , it is sufficient to increase the values of the elements ki to the
point where the secant condition is met. In fact, as shown in (Stan et al, 2007;
Hamadeh et al, 2012), if all elements γi are positive, the secant condition can
be met by making only a single element ki positive and sufficiently large in
magnitude.

1.4.3 Network of repressilator circuits

As an example demonstrating the methods presented in this chapter, we
consider the synchronization of a network of repressilator circuits, (Elowitz
and Leibler, 2000). The repressilator is a synthetic oscillating genetic circuit
that was developed in Escherichia coli (E. coli), and is composed of a cyclic
network of three genes and their protein products, wherein each protein in-
hibits the transcription of the next gene in the cycle. The circuit is illustrated
schematically in Figure 1.2 and works in the following cyclic manner:

• The E. coli gene lacI expresses the protein LacI which inhibits transcrip-
tion of the gene tetR.

• The gene tetR expresses the protein TetR which inhibits transcription of
the gene cI.

• The gene cI expresses the protein CI which inhibits transcription of the
gene lacI.

A dimensionless dynamical model of the repressilator is given in (1.19)-
(1.24), where states x1j , x3j , x5j respectively represent concentrations of the
mRNA transcribed from lacI, tetR and cI and states x2j , x4j , x6j respec-
tively represent concentrations of the proteins LacI, TetR and CI (here, the
subscript j is an index denoting the particular repressilator circuit for the
network analysis which is to follow).

ẋ1j =− x1j + g(x6j ) (1.19)

ẋ2j =− x2j + x1j (1.20)

ẋ3j =− x3j + g(x2j ) (1.21)

ẋ4j =− x4j + x3j (1.22)

ẋ5j =− x5j + g(x4j ) (1.23)

ẋ6j =− x6j + x5j (1.24)



1 Analysis of synchronizing biochemical networks via incremental dissipativity 15

cI lacI

tetR

CI LacI

TetR

Fig. 1.2 The repressilator genetic network.

where g(xij ) =

{

5
1+x2

ij

xi ≥ 0

5 xij ≤ 0

In (Garcia-Ojalvo et al, 2004) a modification to the repressilator circuit
is proposed that enables the coupling of the multiple such circuits for the
purpose of building a synchronized genetic clock. The authors propose the
inclusion in the repressilator of an intercellular communication mechanism
found in the bacterium Vibrio fischeri. In this mechanism, the protein LuxI
is used to synthesize an autoinducer (AI) molecule which diffuses through
the cell membrane. The AI forms a complex with the protein LuxR, which
in turn activates the transcription of certain genes. The authors suggest that
this coupling mechanism be added to the repressilator circuit in E. coli in
addition to an extra copy of the lacI gene so that the coupling functions as
a feedback loop in the following way

• The LacI protein inhibits the transcription of gene luxI as it does tetR.
• The LuxR-AI complex induces the expression of the additional lacI gene.

The AI molecule forms the inter-cellular coupling signal for this network.
The authors decompose the concentration of AI into that inside and out-
side the cell membrane. The authors further assume that the diffusion of AI
into and out of the cell is a relatively fast process, and therefore under a
quasi-steady-state assumption (as in (Dockery and Keener, 2001)) and the
additional assumption that AI does not degrade outside the cell, it is possible
to make the approximation that intra- and extra-cellular AI are of the same
concentration, which we denote by x9j . The dimensionless dynamical model
of the coupled repressilator proposed in (Garcia-Ojalvo et al, 2004) therefore
modifies (1.19) to
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ẋ1j =− x1j + g(x6j ) + f(x9j ) f(x9j ) =

{

x9j

1+x9j

x9j ≥ 0

0 x9j < 0
(1.25)

(1.26)

and, for a network of N repressilators, (Garcia-Ojalvo et al, 2004) models the
time evolution of x9j by

ẋ9j = −x9j + x4j −
1

N
ρ9

N
∑

k=1

(x9j − x9k) (1.27)

cI lacI

tetR

CI LacI

TetR

lacI

LacI

luxI

LuxI

AI

LuxR

AI

Fig. 1.3 The repressilator genetic network modified with the coupling mechanism sug-
gested in (Garcia-Ojalvo et al, 2004). The dashed box represents the cell membrane.

For the purposes of this example, we shall slightly modify the model. In
(Garcia-Ojalvo et al, 2004) it is assumed that LuxI and TetR behave iden-
tically, which is why LuxI is represented in (1.27) by x4j . We relax this
assumption and assume TetR and LuxI behave independently, as do the con-
centrations of mRNA transcribed by tetR and luxI. The concentration of
mRNA transcribed by luxI and the concentration of LuxI protein are de-
noted by x7j and x8j respectively. The revised coupled oscillator model that
we shall consider is then given by the following set of ODEs
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ẋ1j =− x1j + g(x6j ) + f(x9j ) (1.28)

ẋ2j =− x2j + x1j (1.29)

ẋ3j =− x3j + g(x2j ) (1.30)

ẋ4j =− x4j + x3j (1.31)

ẋ5j =− x5j + g(x4j ) (1.32)

ẋ6j =− x6j + x5j (1.33)

ẋ7j =− x7j + g(x2j ) (1.34)

ẋ8j =− x8j + x7j (1.35)

ẋ9j =− x9j + x8j −
1

N
ρ9

N
∑

k=1

(x9j − x9k) (1.36)

Here, ρ9 is a measure of coupling strength. The uncoupled (ρ9 = 0) model
(1.28)-(1.36) is illustrated in Figure 1.4, where each block represents an incre-
mentally passive subsystem. For i = 1, · · · , 9 each subsystem Hi represents
the dynamic block

ẋij = −xij + eij , eij = uij + wij

yij = xij

Each Hs
i represents the monotonically increasing static map

ysij =

{

−g(us
ij
), i = 2, 4, 6

f(us
ij
), i = 9

Inputs uij to each dynamic block Hi are such that

uij =























yi−1j , i = 2, 4, 6, 8
−ys6j + ys9j , i = 1

−ysi−1j , i = 3, 5

−ys2j , i = 7

y8j , i = 9

Inputs us
ij

to each static block Hs
i are such that

us
ij
=

{

yi−1j , i = 2, 4, 6
−y9j , i = 9

For blocks Hi the incremental storage function Si = 1
2∆x2

ij,m
satisfies the

incremental dissipation inequality

Ṡi = −
1

γi
(∆yij,m)2 +∆yij,m∆eij,m
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where γi = 1 for i = 1, · · · , 9. For blocks Hs
i the incremental storage function

Ss
i = 0 satisfies the incremental dissipation inequality

Ṡs
i ≤ −

1

γs
i

(∆yij,m)s
2

+∆ysij,m∆yij,m

where

γs
i =

{

supxij
∈R

−g′(xij ) i = 2, 4, 6

supxij
∈R

f ′(xij ) i = 9

Note that from the definitions of outputs yij for this example, each
node is incrementally zero-state observable since for all i and any j,m

|yij − yim | = 0 ⇔ |xij − xim | = 0. This implies the iZSD property required
in Theorem 2 to deduce asymptotic state synchronization from asymptotic
output synchronization.

H1 H2 Hs
2

H3 H4 Hs
4 H5 H6 Hs

6

H7 H8 H9 Hs
9

Fig. 1.4 Block diagram representation of the uncoupled repressilator genetic circuit of
the model (1.28)-(1.36). Dashed lines represent inhibitory reactions.

With the above definitions of the input-output relations between the dif-
ferent blocks of Figure 1.4, it is now possible to construct an incremental
storage function S(X∆) for the incremental state vector X∆. For the two
sets I = {1, · · · , 9} and Is = {2, 4, 6, 9} let

S(X∆) =
1

2N

N
∑

j=1

N
∑

j=1

(

∑

i∈I

diSij,m +
∑

i∈Is

dsiS
s
ij,m

)

where di, d
s
i > 0. Defining

Y =
[

Y ∗
1 Y ∗

2 Y s∗

2 Y ∗
3 Y ∗

4 Y s∗

4 Y ∗
5 Y ∗

6 Y s∗

6 Y ∗
7 Y ∗

8 Y ∗
9 Y s∗

9

]∗

where Y s
i =

[

ysi1 · · · ysiN
]∗

and defining

K = diag{k1, k2, k
s
2, k3, k4, k

s
4, k5, k6, k

s
6, k7, k8, k9, k

s
9}

where
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{

ki = 0 i = 1, . . . , 8
ki > 0 i = 9

and ksi = 0, i ∈ Is (1.37)

we then have the incremental dissipation inequality

Ṡ ≤ Y ∗Π̃∗
n((A(γ)

∗D +DA(γ))⊗ IN )Π̃nY +W ∗
9Π

∗ΠY9

≤ Y ∗Π̃∗
n((A(γ̃)

∗D +DA(γ̃))⊗ IN )Π̃nY + k9Y
∗
9 Π

∗ΠY9 +W ∗
9Π

∗ΠY9

(1.38)

with D = diag{d1, d2, d
s
2, d3, d4, d

s
4, d5, d6, d

s
6, d7, d8, d9, d

s
9} and the intercon-

nection matrix

A(γ̃) =



















































− 1
γ̃1

0 0 0 0 0 0 0 −1 0 0 0 1

1 − 1
γ̃2

0 0 0 0 0 0 0 0 0 0 0

0 1 − 1
γ̃s
2

0 0 0 0 0 0 0 0 0 0

0 0 −1 − 1
γ̃3

0 0 0 0 0 0 0 0 0

0 0 0 1 − 1
γ̃4

0 0 0 0 0 0 0 0

0 0 0 0 1 − 1
γ̃s
4

0 0 0 0 0 0 0

0 0 0 0 0 −1 − 1
γ̃5

0 0 0 0 0 0

0 0 0 0 0 0 1 − 1
γ̃6

0 0 0 0 0

0 0 0 0 0 0 0 1 − 1
γ̃s
6

0 0 0 0

0 0 −1 0 0 0 0 0 0 − 1
γ̃7

0 0 0

0 0 0 0 0 0 0 0 0 1 − 1
γ̃8

0 0

0 0 0 0 0 0 0 0 0 0 1 − 1
γ̃9

0

0 0 0 0 0 0 0 0 0 0 0 1 − 1
γ̃s
9



















































(1.39)
where

γ̃i =
γi

1 + kiγi
and γ̃i

s =
γs
i

1 + ksi γ
s
i

and where the interconnection matrix A(γ) is of the same structure as A(γ̃)
but with γ̃i, γ̃

s
i replaced with γi, γ

s
i .

Theorem 1 shows that there always exists a matrix K ≥ 0 such that (1.38)
is iOSP(−K). However in the case of this network the only state directly
coupled to others in the network is the state x9j , and therefore the coupling
can only compensate for a shortage of incremental passivity as in Theorem
2 if K is limited to the form (1.37) since the matrix L in Theorem 2 is
constrained by the coupling to the structure

{

λ2i = 0 i = 1, · · · , 8
λ2i > 0 i = 9

and λs
2i = 0, i ∈ Is

In other words, with this incremental output passification method, it will only
be possible to prove asymptotic global state synchronization under strong
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coupling if decreasing γ̃9 by increasing k9 is sufficient to guarantee that there
exists D > 0 such that A(γ̃)∗D +DA(γ̃i) < −ǫD,KIn for some ǫD,K > 0.

To see if this is possible, first note the branched structure of the block
diagram shown in Figure 1.4. A similar branched structure was analyzed in
(Sontag and Arcak, 2008), which derived a necessary and sufficient condition
on the quantities γ̃i and γ̃s

i for the diagonal stability of the interconnec-
tion matrix associated with the branched structure in that reference. The
nodal structure in Figure 1.4 is different to that in (Sontag and Arcak, 2008).
However, similar arguments to those in (Sontag and Arcak, 2008) can be
used to derive at least a necessary condition for the diagonal stability of
A(γ̃) in (1.39). The main idea in (Sontag and Arcak, 2008) concerning such
structures is that a necessary condition for the diagonal stability of A(γ̃)
is that all its principal submatrices are also diagonally stable (Barker et al,
1978). For A(γ̃), consider the principal submatrix obtained by deleting the
10th− 13th rows and columns and the principal submatrix obtained by delet-
ing the 4th − 9th rows and columns. These are

A(γ̃)(10−13) =

































− 1
γ̃1

0 0 0 0 0 0 0 −1

1 − 1
γ̃2

0 0 0 0 0 0 0

0 1 − 1
γ̃s
2

0 0 0 0 0 0

0 0 −1 − 1
γ̃3

0 0 0 0 0

0 0 0 1 − 1
γ̃4

0 0 0 0

0 0 0 0 1 − 1
γ̃s
4

0 0 0

0 0 0 0 0 −1 − 1
γ̃5

0 0

0 0 0 0 0 0 1 − 1
γ̃6

0

0 0 0 0 0 0 0 1 − 1
γ̃s
6

































and

A(γ̃)(4−9) =























− 1
γ̃1

0 0 0 0 0 1

1 − 1
γ̃2

0 0 0 0 0

0 1 − 1
γ̃s
2

0 0 0 0

0 0 −1 − 1
γ̃7

0 0 0

0 0 0 1 − 1
γ̃8

0 0

0 0 0 0 1 − 1
γ̃9

0

0 0 0 0 0 1 − 1
γ̃s
9























These two principal submatrices exhibit a cyclic feedback structure (with
negative feedback). As discussed above, the stability of systems with this
structure was studied in (Arcak and Sontag, 2006), where it was shown that
the matrix such as A(γ̃)(10−13) is diagonally stable if and only if

γ̃1γ̃2γ̃
s
2 γ̃3γ̃4γ̃

s
4 γ̃5γ̃6γ̃

s
6 < sec9

(π

9

)

(1.40)

whilst A(γ̃)(4−9) is diagonally stable if and only if
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γ̃1γ̃2γ̃
s
2 γ̃7γ̃8γ̃9γ̃

s
9 < sec7

(π

7

)

(1.41)

Since γ̃9 appears in (1.41) only, these two necessary conditions can only be
met by strengthening the coupling if (1.40) is satisfied a priori.

If it were possible to modify the repressilator circuit so that the coupling
state is x1j or x2j it could then be possible to diagonally stabilize A(γ̃) by
reducing the incremental secant gains γ̃1, γ̃2 or γ̃s

2 by increasing k1, k2, k
s
2

and then compensating for the shortage of incremental passivity with strong
coupling. This is because the quantities γ̃1, γ̃2, γ̃

s
2 appear in both (1.40) and

(1.41), and these two necessary conditions can therefore be satisfied under
such a change. To see this, we propose a modification to the repressilator
model wherein lacI is replaced with a different gene, the protein product of
which behaves as LacI in inhibiting the transcription of luxI and tetR, but
with the difference that the new protein product is also a coupling signal in
the same manner as AI. Equation (1.29) is then modified to

ẋ2j = −x2j + x1j −
1

N
ρ2

N
∑

k=1

(x2j − x2k) (1.42)

For this example, we consider a network of N = 4 nodes of the form (1.28)-
(1.36) but with (1.29) replaced with (1.42). The incremental secant gains γi
can be calculated from the model to be as follows:

γi = 1, for i = 1, · · · , 9 γs
i = 3.25, for i = 2, 4, 6 γs

9 = 1

Since the coupling is only through the states x2j and x9j , strong coupling can
incrementally passify the network nodes only if K = diag{0, k2, 0, · · · , 0, k9}
as L would have the same structure as K.

We set k2 = 12 and k9 = 0, which makes γ̃2 = 0.04 and γ̃9 = γ9 = 1.
Otherwise, ki = ksi = 0, which leaves γ̃i = γi, ∀i 6= 2 and γ̃s

i = γs
i for

i = 2, 4, 6, 9. Without a sufficient condition on the gains γ̃i that guarantees
the diagonal stability of A(γ̃), it is nevertheless possible to use an LMI solver
to find a matrix D > 0 such that A(γ̃)∗D+DA(γ̃) < 0. One possible matrix
D is given by

D = diag{1, 17, 208, 53, 57, 19, 7, 7, 3, 17, 18, 19, 26} (1.43)

which is such that A(γ̃)∗D + DA(γ̃) < −0.0014In. and therefore S(X∆)
satisfies the incremental dissipation inequality

Ṡ ≤ (Π̃nY )∗((A(γ̃)∗D +DA(γ̃))⊗ IN )Π̃nY + k2Y
∗
2 Π

∗ΠY2 +W ∗
2 Π

∗ΠY2

≤ −0.0072(Π̃nY )∗Π̃nY + k2Y
∗
2 Π

∗ΠY2 +W ∗
2Π

∗ΠY2

(1.44)
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The coupling is given by the relation W2 = −Γ2Y2 where, from (1.42), Γ2

has the all-to-all structure

Γ2 = ρ2

(

IN −
1

N
1N×N

)

and λ22 = ρ2. From Theorem 2, we require λ22 ≥ k2 to guarantee synchro-
nization.

This condition therefore requires ρ2 > 12. The simulation in Figure (1.5)
shows the synchronization of the output y2j across the network nodes as well
as the asymptotic stability of the synchronization error in the output y2j un-
der this coupling. Note that this figure also demonstrates the synchronization
of state x2j since y2j = x2j .
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Fig. 1.5 Synchronization of four repressilator circuits. Left: Synchronization of output
y2j . Right: Synchronization error of output y2j .

1.5 Discussion

This chapter has presented a constructive approach to finding sufficient con-
ditions for global asymptotic state synchronization in networks of identical
nodes. The principal assumptions are that each node is composed of iOFP
subsystems, and that these subsystems are directly coupled to their corre-
sponding subsystems on other nodes in the network using linear static cou-
pling.

By taking advantage of the iOFP property, it was possible to quantify the
degree of the shortage of incremental passivity of each node (Theorem 1).
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In Theorem 2 it was shown that the nodal coupling can act as a passifying
feedback and the degree of shortage of passivity was used to determine a lower
bound on the minimum coupling strength required to render each node iOSP
and hence guarantee asymptotic output synchronization. With an additional
iZSD assumption, this also implied asymptotic state synchronization. These
two theorems demonstrated that for arbitrary nodal structures satisfying
Assumption 1, it was always possible to characterize the shortage of passivity
and it was always possible to find a strong enough coupling topology that can
eliminate this shortage and thus achieve asymptotic state synchronization.

Inequalities such as (1.4) is an incremental dissipation inequality that can

be used to represent general (iOFP
(

1
γi

)

) subsystems. Therefore if a given

network satisfies our sufficient conditions for synchrony and we were to re-
place the ith subsystem of each node in the network with another subsystem
that has a shortage of passivity that is equal to or less than that of the
original subsystem, the network with the new subsystem would also synchro-
nize. This ability to modify the parameters, and indeed the structure, of the
network subsystems and yet maintain synchrony lends a significant degree of
robustness to the results we have presented. In the applied setting of synchro-
nizing biochemical reaction networks such as (Gonze et al, July 2005), where
biological parameters typically vary significantly, placing a biologically plau-
sible upper bound on the quantity γi would allow us to analyze synchrony in
such a system in a way that is robust to such parametric variations. Further-
more, the proposed methodology can also have implications for the design of
synthetic circuits that synchronize upon interconnection because it can yield
insight into the what system outputs could serve as network coupling signals
that lead to incremental stability.
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