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Abstract— This paper is concerned with global asymptotic mechanism composed of a first-order dynamical system and
output synchronization in networks of identical feedback sys- an all-to-all network topology resulted in synchronizatiof
tems. Using an operator theoretic approach based on an ihe nodal states.

incremental small gain theorem, the method reformulates . .
the synchronization problem as one of achieving incremental !N OUr previous work [8], [9], we presented a constructive

stability using a coupling operator that plays the role of Mmethod showing that, under a strong linear static coupling
an incrementally stabilizing feedback. In this way, conditions condition, such cyclic systems will synchronize. The metho
on static or dynamic coupling operators that achieve output assumed that each CFS was composed of a ring of incremen-
synchronization of nodes of arbitrary structure are derived. tally output strictly passive subsystems, a quality anairsg

These conditions lead to a methodology for the construction of : g . AL
coupling architectures that ensure output synchronization of a (O the output strict passivity notion of dissipative system

wide range of systems. The result is illustrated for a network [10] that operates on incremental system signals. It was
of biochemical oscillators. shown that the linear static coupling acted as a passifying

| INTRODUGTION incremental feedback by increasing the degree of increshent
_ : - N output strict passivity of individual CFS subsystems (dian

This paper presents a sufficient condition for outpufied by the so-called incremental secant gain). In this way, t
synchronization in networks of interconnected dynamicatFs network was made incrementally diagonally stabie by
systems and provides a constructive means of establishirghucing the product of the incremental secant gains below
network interconnection structures that will result inmutt  a threshold, as [11] does for demonstrating CFS stability.
synchronization. - In [12], an input/output method was used to extend [8]

Output synchronization is a stability property for thepy determining synchronization conditions for nodes more
difference between the outputs of interconnected systerggneral than CFS, using the same linear static coupling
and can be studied using concepts stemming from inCrghechanism and the incremental diagonal stability idea.
mental stability [1] or contraction theory [2], [3]. Viewed |n this paper, we extend the class of nodes that can be
in another way, we can determine whether two couplegynchronized to systems composed offap operator with a
systems synchronize by studying the asymptotic attractivmity-gain feedback. The class of coupling structures anat
ity and stability of a synchronization manifold on whichconsidered in this paper is also extended beyond those,in [8]
corresponding states of the interconnected systems have1g] to include operators ofi,.. Taken together, the forward
common value. Several works have examinedltival sta-  paths of the nodes and the network coupling are shown to
b|||ty of the Synchronlzatlon manifold. In these, the geaier compose a feedback System_ By f|nd|ng a Coup"ng mecha-
approach has been to use transverse Lyapunov exponentsdim that ensures that this feedback system amplifies signal
and Master Stability Functions [5], [6] to show that underthogonal to the synchronization manifold by no more than
certain coupling conditions the components of the trajgeso unity, this paper uses an incremental small gain theorem to
transverse to the synchronization manifold are stable igstablish incremental, output stability and hence output
a neighborhood of the manifold. The key observation o§ynchronization. Finding such a coupling mechanism is an
[2], [3] is that proving asymptotic state synchronizationncremental variant of the classical sub-optirtl, control
requires showing that the differences between correspgndiproblem (see, e.g. [13], [14]). This provides a way of finding
states of the coupled systems satisfy a contraction pyoperhodal coupling mechanisms that ensure synchronization and
This can be done by constructing a Lyapunov function thafonstitutes the main design contribution of this paper.
operates on thesecrementakignals. In the case of identical ~ There are several contributions in this paper beyond [8]
systems, where outputs are continuous functions of thesstatand [12]. In both these works, proving synchronization
asymptotic state synchronization implies asymptotic outp involved taking advantage of the incremental dissipativit
synchronization. o properties of the nodal subsystems to prove incrementgt dia
~ Practical examples of synchronization phenomena aboug@al stability, which required the construction of a diaglon
in physical and biochemical systems, including cardia@pacLyapunov function. This is not straightforward, nor always
making and the maintenance of circadian rhythms in manyossible for nodes of arbitrary structure interconnectsidgi
organisms. In [7], a model of the mammalian circadiayeneral coupling mechanisms. The incremental small gain
pacemaker is presented, composed of a network of nod@georem approach herein simplifies the derivation of suffi-
each consisting of three-dimensional cyclic feedbackesyst cient synchronization conditions.
(CFS), the first outputs of which diffuse throughout the |twas also previously assumed in [8], [12] that subsystems
network to other nodes. Simulations showed that a COUp'II’w each node were direcﬂy Coup|ed to their Corresponding
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system representing the network to be of relative degreg on&he maps'; and the input/output signals from all nodes will

which, in terms of incremental signals implied that couglin pe combined so that the opera®r. £ —
: €

l:éi(?"‘”)

signals could only be exchanged between correspondigfines the map

nodal subsystems. We relax this condition to allow arbjtrar
coupling. We also relax the restriction that the inter-ioda
coupling must be linear and static and allow the coupling to

AR

)

)

take the form of any,. operator. This enables us to analyze and the nodes collectively satisfy the relation

models of dynamically coupled circadian oscillators sush a

[7].
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This paper is organized as follows. After detailing nota-

tion, the general forms of the network nodes and the coupling
mechanism we assume are described. The tools that will
be employed in the later sections of the paper are then
formally defined, followed by the main theorem. We then
discuss applications of the main theorem prior to presgntin

an example that demonstrates the paper’s contribution.

II. NOTATION

This paper will consider networks composed/éfnodes.
As a general convention,= 1, --- , N will denote the index

associated with a particular node. With reference to Figu

1, the forward path of each node has two input souvees
R™, u; € R™ and two output sources; € R?,y; € R".

« The vector of the outputs of th¢'™ node is given
by y; = [ v, Yn, ]", and the vectorsw; €
R™, u; € R",z; € RP are similarly defined.

« The vectorY; = [ y;, yin |7 € RY is a vector
of the i*" element of the vectorg;, Vj € 1,--- , N.
The vectorsW;, V;, U;, Z; € RN are similarly defined.

o The vector of all outputs y;; is Y =
[ Yy Y € RN™, The vectors
W ¢ RVN™ U ¢ RN" Z ¢ RMP are similarly
defined.

I, € R™" is the r-dimensional identity matrixi, (0,.)
is a column vector of ones (zeros) RT, 1, (0,«,) is a
matrix of ones (zeros) ifR"*".

We define the operatdi asIl = Iy — %1]\,“\1, NeZ,.

As described in [15], [8], the operatdf measures the lack
of consensus between the elements of a vector. For example,

for the vectorY; € RN the k'* element of the vectoflY; is

Yj

Fig. 1. Thej* node coupled using its input; and outputz;.

The nodej outputs signals to other nodes in the network

Ifﬁrough its output vectoz; and receives signals from them
t

ough its external input vectaw ;. It is assumed the nodal

coupling obeys the following properties:

(P1) A causal, locally Lipschitz continuous operator
C: ﬁiﬂ\ip — L™ maps the output vectof <
RN? = [Z},---, Z;]* to a signalV € RNV™ .=
[Vl*a o 7‘/7:1}*

(P2) OutputsV; of the coupling mapC in fl?l) diffuse
through the network to the external inputs; of
the ditfferent nodes via a weighted directed graph
g’ édeﬁned below), specific for evety=1,--- ,m
and representing the different diffusions of the
speciesV; to the network nodes. Associated with

each G' is the Laplacian matrixl’; € RN*V
that defines the topology of* by the mapping

W, = =T';V;. DefiningT" = diag{T";,--- ,T',,} we
have . .
W=-TIV=-IC(2) )
GraphG? = { A, D'} in (P2) has the definitions

Definition 1 (Weighted Adjacency MatrixA  weighted

adjacency matrix A = <pi, b, gl = 1,---,N,

the difference between thé" element ofY; and the average 4i ¢ RN*N s a positive matrix where' , represents the

of all the elements of;. Note thatII*II = II. We define
I, = I, ® I1.
We use the notatiorf - | to denote theC,—norm of a

weight of the edge from nodeto node;. We assume that
the graph is simple, i.ep;.,l > 0,Vj # landp;; =0,

_ ; : . J, L. .
signal. The spac€; is the space of square-integrable signals” pefinition 2 (Degree Matrix):The degree matrixD’ as-

on the domain[0, co) of dimensionr. The setl}, is the

extended space of square-integrabldimensional vectors
on the domain0,7,vT > 0. The notation|| - || denotes
the £, norm of a signal restricted to the domgih 7.

IIl. CHARACTERIZATION OF NETWORK NODES AND
NODAL COUPLING STRUCTURE

LetF; : £50T" — £5*" be a strongly causal, locally Lips-

*

chitz continuous map [16] from input vectprw} uj |* €
R™*" to output vector| z; y; |° € RP*", wherew; €
R™, u; € R", z; € RP, y; € R™.

A network of N identical interconnected systems will be

considered, where each node, with index 1, - - a

,N,is
feedback system of the form shown in Figure 1, defined as

Wi
u;

=R W))Wy ®

sociated with the adjacency matri’ is a diagonal matrix
D' = diag{d;}, j = 1,--- ,N, D' € RN*N with §;(i) =
Zé\% ngl-o

gefinition 3 (Laplacian Matrix): The weighted Laplacian
matrix I'; associated with the adjacency matdx is defined
asl; = Di— A = {F;l}, Gl=1,--  Nwith D, (i, k) =
Zf:l_ pjan Vi =1, N andl;(i,k) = —pi,, ¥j # 1.0
The jinterconnection ruléy;, = —I';V; then corresponds to
the linear consensus protocel, = — Zl]il péJ (vi, —vi,)
(see [17]). We make the following assumptionsIon

(A1) rank(T;) = N -1

A2) T, +T7 >0

(A3) i1y =T1y =0xn
Assumption (A1) holds provided that the graph is strongly
connected (see [17]). Assumption (A3) holds if the graph



is balanced, i.e. ifA1y = A*1y (see [18]). Furthermore, is satisfied for alll’ > 0. B
this latter property implies (A2) (see [18]). Note that thes Definition 5 (Incremental’, gain?: Suppose the maf'
assumptions do not imply that, is symmetric which would is incrementally finite-gainC, stable in the sense of Defi-

be equivalent to assuming an undirected graph. nition 4. The incremental’, gain of the mapF is defined
For a matrixI'; € RV*Y we define),, = A\, (I';) (for as . )
i=1,---,N) as thert® smallest eigenvalue of the matrix y(F) := inf{7|37 > 0 such that (7) holds
L(I; + 1), the symmetric part of the matrik;. Characterizing the incremental finite-gadly stability of
the mappingF allows us to analyze signals that are orthog-
onal to thesynchronization manifolg;, = --- = y;,, Vi. In

Theorem 1 the small gain theorem will be applied to the map
F under the relation (3) to provide a sufficient condition for
the L, stability of the signalll,,Y’, thus leading to output
synchronization, which is defined as follows:

Definition 6 (Output synchronization)The outputs of a
collection of N nodes of the form (1) are said to be output
synchronized wheny;, = y;,,¥i € {1,---,n},Vjk €
{17 e 7N} ~

The signalll,,Y provides a measure of the difference
between network outputs. This can be seen by noting that

n N N
*TT% T 1

Fig. 2. TheN nodes are coupled using outputs € RP and inputs YTILLILY = N Z Z (yi; — Yin)?

w; € R™. The network coupling is composed of a mép = —I'V = i= k=1

~I'C(Z), whereC : L3’ — £N™, andT is a collection of Laplacian . Lo~ .
matricesI'; which determine the network topology by mapping sigrials  Therefore proving that the signhl, Y € £Y" and assuming

(not shown) to the nodal external inputé; (not shown). that outputsy” are uniformly continuous in time would imply
that Y will tend to the synchronization manifold as signals
Consider a network oV nodes of the form satisfyin%), transverse to the manifold decay to zero. Formally, this
53), coupled using an interconnection structure that @sis means thatim; ... |y;. (t) —v;,. (t)| =0,Vi =1,--- ,m and
P1), (P2). The interconnection of (2) and the coupling (4\)/j,k €1,---,N so that, in the limitt — oo, the network

creates the closed loop system composed of the Map nodes’ outputs synchronize in the sense of Definition 6.
Therefore the interconnected network composed of (2), (3) Theorem 1:Consider a network in whichV identical

and the coupling (4) can be regarded as the feedback SYStEMles of the form given by (1) are interconnected with a
Y =F(U) (5) coupling structure that satisfies (P1), (P2), leading to the
U=Y (6) system (5), (6). If the maf is incrementally finite-gain
L, stable in the sense of Definition 4 with incremental
gainy(F) < 1, and if outputsy;, (t) for j = 1,--- , N and
¢t = 1,---,n are uniformly continuous off0, c) then the
e network outputs are such théitm; . [y, (1) — ys,. ()] =
0,vi = 1,---,n,Vj,k = 1,---, N thus achieving output
synchronization in the sense of Definition 6 tas> co.
! | Proof: From the strong causality oF, the network
vl By ! ! interconnection is well-posed by Theorem 4.1 of [16] and
| Voo T existence and uniqueness of solutions is thus guaranteed.
The remainder of the proof is an application of the

Fig. 3. The network of interconnected nodes is representeéldebfeedback S~ma” _gain theorem t_o_the incremental Si_gﬂELY. Since
system (5), (6) resulting from the interconnection of (B), &nd (4). F _is incrementally finite-gainl, stable it follows that
ITL,Y|| < 5(F)|IL,U| + 7. From the condition/ = Y
in (6) we havgIl,Y| < 5(F)|IL,Y| + 7. The condi-
IV. MAIN RESULTS tion (F) < 1 then ensures thail,Y € £ since
The approach that will be taken in analyzing synchronizall,,Y|| < ﬁ(m” Since outputsy;, are uniformly con-
tion involves placing a metric on the difference betweefinuous, we can invoke Barbalat’'s lemma (see [19]) to prove
the corresponding outputs of the network nodgs and  that lim, ., (IT,,Y)*(II,Y) = 0 which is true if and only
then identifying the coupling conditions needed for thesg lim, .|y (t) — v, (t)] = 0, Vi = 1,--- ,n,Vj, k =
differences to reduce to zero. To measure consensus betwgen . .= § u
network signals we shall make use of the projector mdltix  Remark 1:The condition that outputg; be uniformly
The following notion of incremental finite-gaifi, stability continuous can be met if the outputs are bounded and con-
m” bet usekd todcharactenze the convergence properties ghuous. The continuity condition can be met, as discussed
€ network nodes. . . - in [20], for the example of operatois having a state-space
Definition 4 (Incremental f'n'te'%fl% stability): The reaEIizz]ition wherein tkﬁ)e time gerivative of thg state is zallabfc
mapF from the input signal/ € R ™ to the output signal | inschitz function of the state and where the output is a
Y € R™" is an incrementally finite-gairC,-stable map if -ntinuous function of the state.
there existy, 7 = 0 such that the inequality Theorem 1 poses the problem of synchronizing a network
.Y |7 < A|TU|r +7 (7) of feedback systems as one of finding a coupling structure

1j=1

which is illustrated in Figure 3.




that makes the incrementdl, gain of F smaller than unity.
In the case where the network nodes are not connected Proof: The proof follows from the fact that
(' = OnmxnNm), the mapF will generally not satisfy the

conditions of Theorem 1 by having too large (or infinite) an [ Ofp ®II Onvpxia } { H.(s) @ In  Hz\(s)® I }
incrementalC, gain. In the following, it will be demonstrated NoxNp g ®% He,(s) @I Hyr,(s)®INn
how the coupling can be used to reduce the incremetial :{sz (s)®In H.,(s)®In M I @I Onmxnn }
gain to meet the synchronization conditions of Theorem 1. Hy,(s)®In Hr,(s) @Iy [ ONnxym  Tn @11

V. LINEAR DYNAMIC COUPLING which is obtained from the properties of the Kronecker

In this section we shall give sufficient conditions forprOOIUCt applied to the transfer functidi(s). -
synchronization in the sense of Definition 6 to take place We assume that networks of nodes of the form (8) are

when the network coupling is composed of an LTI dynamicahterconnected using a coupling scheme that satisfies (P1),
system and when network nodes are composed of multip{p2), and now restrict the analysis to the case where the
subsystems, at least one of which is LTI. We shall show thamapC is an LTI system with corresponding transfer function
in the case where the LTI subsystem inputs and outputs a€&s). We will next examine the conditions under which the

used to couple the nodes, an LTI coupling can be chosen eeupling mapC is such that

as to render the nodes incrementally stable.

Consider a network ofV nodes of the form (1), each

composed of a cascade of two subsystethsand G with
unity gain feedback, as shown in Figure 4. et ¢ R™,

z; € RP, r; € RY, u; andy; € R". The mapsH : LT —
LEF and G : £4, — £} (respectivelyH : £
£YPT and G : £ — £V") are such that

el L)

with R being defined analogously to signalsU, W, Z in

Section I1.
WJL Zy'
f._[—.‘\
rj
u; Yi

Fig. 4. A network node composed of a cascade of an LTI systernd
an Lo operatorG, with unity gain feedback.

Assumption 1:The mapH is strongly causal, is locally
Lipschitz continuous, is linear with transfer mati(s)
Cpraxm+n and has the decomposition

] — I:{Zw (S) I:{Zu (8)

H(s) = { Heo(s) o (s) }

where H, (s) € CP*™, H, (s) € CP*", H, (s) € CI*™,
H,, (s) € C7*™. The corresponding composite mBf{s) =

H(s) ® Iy is such that

H(s)= {EIZUJ(S) H.,(s) :|:|:sz(5)®IN -E{Zu(s)®IN:|

H,, (s) H.,(s) H.,(s)®Iy Hy,(s)®In

and satisfies the Laplace domain relation

Z(s) W(s)

20 | =me | §Y ©)

I,V = C(II,2) (11)
In the Laplace domain, condition (P1) becomes
V(s) = C(s)Z(s), which, pre-multiplied byll,, becomes
I1,,V(s) = IL,C(s)Z(s). Clearly, any linear mapC
with transfer functionC(s) € CN™*N? satisfying (11)
needs to also satisf{C(s)Il, = II,,C(s). The following
assumption and proposition give a condition under which
(11) is satisfied.

Assumption 2:The interconnection between thé nodes
is given byWW = —T'V = —T'C(Z), where

« The mapC : £3? — L)™ satisfies (P1) and is a
ocally Lipschitz continuous LTI system with

causal,
transfer function
Cia(s) Chp(s)
C(s) = : : (12)
Crma(s) Conp(8)
where, for k = 1,---.m, I = 1,---,p, the
map Cy(s) € CN*VN satisfies Cy (s)lyxn =

1nxnChr,i(s) and is such that/(s)

o I satisfies the coupling rule (P2) _

_ Proposition 2: Under Assumption 2 the transfer function
C(s) is such that

C(s)Z(s).

IL,, W (s) = —T'C(s)II, Z(s) (13

_ Proof: The transfer function of ma@ obeysWW (s) =
—I'C(s)Z(s). The rest of the proof follows from the fact that
III" = T'II and that Assumption 2 implies the commutativity
of transfer matrice€’s, ;(s) with II. [ |

Remark 2:The class of transfer function§’;(s) that
satisfy the conditiorC;, ;(s)1nxn = 1nxnCh.i(s) includes
the class of circulant matrices and all binary permutatioins
the rows and columns of circulant matrices because the row
and column sums of such matrices are equal.

Remark 3:Topologically, having a coupling matrix

Using Assumption 1, the following proposition gives con-C(s) = {Cru(s)} that is non-diagonal means that nodal
ditons for the existence of a mapping from the vectoPUtputsz; are combined from potentially several nodes to

of incremental input signals to the mdf(s), given by
[ 1L,,W(s)* T,U(s)* | to the vector of incremental
output vectors| 11, Z(s)* TI,R(s)* |
Proposition 1: Map H : £X(mt) . pNe+a) - yith
transfer functionH(s) is, under Assumption 1, such that
I1,7(s — 1L, W (s
[ R | = [ o |

Ul(s) (10)

produce a signav; which is then distributed throughout the
network using the Laplacian matrix.
We now give a sufficient condition for the synchronization
of dynamically coupled networks of nodes of the form (8).
Lemma 1:Consider a network ofV nodes of the form
(8). Suppose that Assumptions 1 and 2 are satisfied and
suppose also that the mé&pin (8) is causal, locally Lipschitz
continuous and incrementally finite-gaily stable as defined
in Definition 4 with incrementalZ; gain 4(G) so that



pﬁnYH < 4(G)|I,R| + 7. Defining the upper linear (<] ]

ractional transformation (LFT) 2
(), FO(s)) = =ik N=l=
_ -1 _ u yi 2 Y2

H,.(s) = Hy, ()0C(s) (Inp + H., ()TC(s) ) Ha, (s)
14) .

then under the uniform continuity assumption of Theorem -r
1, the network synchronizes d@s— oo in the sense of

Definition 6 if
o ) I4 Il —
| F(H(s),TC(s))]loo < 3G (15)

Proof: As in the proof of Theorem 1, the network r.
interconnection composed of (8) and (4) constitutes a well- ™ r v

posed system as a result of the strong causalitiAof , _ o
From Assumptions 1 and 2, Propositions 1 and 2 shofg- 5. lllustration for a network of four nodes of the form) @ith identical

that the transfer functiondl(s) and C(s) satisfy (10) coupling blocksC(s) andl’ = I, @ T

H.(s)

and (13). LetH(s) = H,(s) where H,(s) =
[ H.,(s) H.(s)]andH,(s) = [ H. (s) H,,(s) | Equivalently the transfer matrix of the coupling opera€r
By Assumption 1 and the map = G(R) we have also has the decompositi@(s) = C'(s)®In. This coupling
s topology is illustrated in Figure 5.
[Z]:{ H.((W*,U"]") ]:F( [WD (16) Corollary 1: Consider a network ofV nodes (illustrated
YT GH(W™,U7T) U for N = 4 in Figure 5) of the form (8) satisfying the

where H, and H, are time domain maps the transferuniform continuity assumption of Theorem 1 in addition

functions of which arefL,(s) and H,(s) respectively. By [© Assumptions 1 and 2. Suppose that the n@apn (8)
combining the map& and C we arrive at the closed loop S an incrementally finite-gainC, stable map which has

systemF and hence we can apply Theorem 1 by verifyingncrementalCs gain5(G). In the case where

that the magy” = F(U) is incrementally finite-gairC, stable ;h%;ae[t)rlidgr?d ”;g“g?etﬁé d?ag.c;r;al': aa%nh = (15\ (gie
with £, gain 5(F) < 1. To find an upper bound ofi(F), y Icar v ! Izatioh = :
first consider the feedback system with /;/\Z dlig{)\loa'“ Ant and Ay > Ayog >
o _ _ ~ _ st A > 1= VY.
{ I,Z(s) } _ { H.,(s) H.,(s) } {I{ml/_V s) } « the transfer matrixC(s) has the structure of (12) and
I, R(s) Hr,(s) Hr,(s) | [I1.U(s) 17) for each k,l Cy(s) = Ciu(s)In, where C(s) =
I, W (s) = —T'C(s)1,Z(s) {Ck,(s)} € C™*P and C;gl(s) € (C:
S Lo S the coupling transfer matrixC(s) = C(s) ® Iy ensures
The map fromll,U(s) to 1 R(s) is given byIl,R =  synchronization of the nodes ds— oo in the sense of
F(H(s),I'C(s))IL,U where F(-,-) is the upper LFT Definition 6 if, for j =2,---, N,
F(H(s),T'C(s)) B F(H(s),\C(s)) < G (18)
= H,,(s) = Hy, (s)7C(s) Iy + o, ()FC(s))  H., (s )

_ ~ whereF(H(s), \;C(s)) is the upper LFT
Note that the well-posedness property discussed earlier in FH M) =

the proof implies the invertibility of 7, + H.,, (s)'C(s)) Ty, (9) Mg Ho ()G () Iy 4+ Ay Hon (5)C(5)] . (5)
(see, e.g. [21]). IfF(H(s),['C(s)) € Ho its incremen- Proof: Proof omitted due to lack of space.

tal £, gain is then given by7 (]-“(FI(s),fC(s))) = "

| F(H(s),T'C(s))||o. The mapF is composed of the cas- _ _ )
cade of the maps (H(s) fC(s)) and G. and their incre- In this section we will apply Corollary 1 to a network of
P = nodes where each node is a dynamical system modelling the

mental £, gains satisfyy(F) < 5(F(H(s),I'C(s)))%(G). i . . . .
’ N ochemical oscillator due to Goodwin [22]. We consider a
Therefore, by Theorem 1, the output synchronization Ogetwork of N — 6 nodes of the form

VI. EXAMPLES

nodes of the form (8) in the sense of Definition 6 is achiev

ast — oo if | F(H(s),[C(s))l|e < =(k- B O, = eyt g, uy = oy
The following corollary of Lemma 1 and Theorem 1 %2 = ~5%2; T 3571,
gives sufficient conditions for the synchronization of nethy 3 = —5%3; T 572, )
nodes in the case where the coupling oper&fors block _ = _ R =0
diagonal. This means that the output vectgrfrom each ~ “7 — ™% " =% PLTITLIT Y <o

node j is mapped onto the vector; via a transfer matrix (19)

in C™*? that we shall denote by'(s) and which has the ~ We assume that the nodes are coupled using outputs
decompositionC(s) = {C*M(S)} with C’k,z(S) € C. The 3, and inputsw;, and we shall use Theorem 1 to find a
signalsv;., i = 1---,m,j = 1,--- , N are then mapped coupling scheme(_f_ensurin synchronization a@s— oo in
onto the nodal input vectd#” via the concatenated Laplacianthe sense of Definition 6. As in (9) we have

matrix I', as in (P2). The coupling operatd _therefore Z6) | _ e [ W(s)| _[H.,(s) H.,(s)|[ W(s)

takes the block form in (12), wherelsyy, ;(s) = Cy 1(s)In. { R(s) }— H(S)[ U(s) }—{}—Iw(s) H, (s) H U(s) }



We also letY = G(R) = [ g(r1,) g(ris) ]*. As the
map H(s) satisfies Assumption 1, then by Proposition 1

e | =80 | R |

We assume that the nodal coupling satisfies Assumpti

2:outputsZ = 7, = [ 21, - z1, |* are input into
an LTI system with transfer functiol©(s) = Cy1(s) =
c(s)In,c(s) € C, which is of the form (12) and which
represents the coupling dynamics. The outpuCg) then
diffuses through the network with Laplacian matfix=I';
and feeds into the nodal inputs;,. Formally, we have
W{(s) Wi(s) —T'C(s)Z(s) —T1C11(s5)Z1(s).

Bi-directional Ring: N=6

Bi-directional Ring: N=6

4 2 0 -2 -4 -100 0.
X

0 20 40 60 80
Time

(a) Limit cycle (b) Time evolution of staters;

Fig. 6. Synchronization of & = 6 CFS network with a bi-directional
ring topology.

Oyﬂith of each node with the coupling, it was shown that if the

coupling sufficiently reduces the incremental gain of the
operator then output synchronization is achieved. This led
to a methodology for designing coupling architectures that
ensure output synchronization.

The choice of possible synchronizing coupling in-
put/output signals has been extended beyond [8], [12] by
relaxing the condition that the network nodes be of relative

This assumed coupling structure satisfies Assumption 2 degree one. The class of admissible coupling mechanisms

0171(5)1_NxN = 1yxnC1,1(s), and therefore by Proposi-

tion 2, C(s) is such thafll; W (s) = —I'C(s)I1; Z(s).
Now suppose thal'; has the bidirectional ring structure

2 —1 0 0 0 -1

1 2 -1 0 0 0
ol 0 -1 2 -1 0 0

=51 0 o -1 2 -1 o (20)
0 0 0 -1 2 -1

-1 0 0 0 -1 2

_ For this examplep = 1 and the coupling block is such that [2}

C(s) = c(s)In. The coupling matrixC'(s) in Corollary 1 is
therefore given byC'(s) = ¢(s). The condition of Corollary
1 for synchronization is that

IHr, (5) . My, (5)C(8)[Ip + AHz, ()C ()] 7 Hz, (5) oo
— h(s 1
TR || o < T
: (21)
for A = Aa, -+, Ay, the non-zero eigenvalues df Using

the Matlab LMI Toolbox we can construct a coupling) =

A, | B L
r 1 2" ) satisfying (21) for\ = 2222~ where
C, | D, 2
—0.2010  —2.1205  13.6910 2.0560
A = 21205  2.6265 —11.0119 | B, = 9.0191
—13.6910 —11.0119  —8.1417 —68.2687
Cr=[ —2.5700 11.2739 —85.3358 | D, =0
(22)

It can be verified that this coupling s) also satisfies (21)

for j = 2,--- , N and therefore guarantees synchronizatio
in the sense of Definition 6. Figure 6(a) shows the limit cyclg¢; 7]
of the states ofV = 6 nodes of the form (19) interconnected

using the coupling blocke(s) in (22) and T'; with the

bidirectional ring structure given above. Figure 6(b) show[;g

the evolution with time of states,. Note that sincey,; is
a continuous function of3. it follows that synchronization
of outputzs, implies synchronization of statg ;.

VIl. CONCLUSION

has also been extended from linear, static maps to the class
of Lo, operators.

Whilst the approaches to analyzing synchrony given in
[8] and in this paper differ, these two studies share the same
underlying idea of using the nodal coupling to decrease the
incremental gains of the forward paths of network nodes in
order to achieve incremental stability.
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A sufficient condition for the output synchronization of
a network of dynamical systems has been presented. By
considering the operator formed by combining the forward



