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Abstract— Motivated by biological applications, this paper
addresses the problem of network reconstruction from data.
Previous work has shown necessary and sufficient conditions for
network reconstruction of noise-free LTI systems. This paper
assumes that the conditions for network reconstruction have
been met but here we additionally take into account noise and
unmodelled dynamics (including nonlinearities). Algorithms are
therefore proposed to reconstruct dynamical (Boolean) network
structure from time-series (steady-state) data respectively in
presence of noise and nonlinearities. In order to identify the
network structure that generated the data, we compute the
smallest distances between the measured data and the data that
would have been generated by particular Boolean structures.
Information criteria and optimisation techniques are introduced
to strike a balance between our definition of distance and model
complexity and we show how doing so enables us to recover the
true structure of the network. We conclude with biologically-
inspired network reconstruction examples which include noise
and nonlinearities.

I. INTRODUCTION

One of the fundamental interests in systems biology is the
discovery of the specific biochemical mechanisms that ex-
plain the observed behaviour of a particular biological system
[1]. In particular, we consider the problem of reconstructing
the network structure (thereby uncovering the underlying
mechanisms responsible for the observed behaviour) from in-
put and partially measured output data of a dynamical system
(observed behaviour). The biological network reconstruction
problem challenges come from the necessity to deal with
noisy and partial measurements (in particular, the number of
hidden/unobservable nodes and their position in the network
is unknown) taken from a nonlinear and stochastic network.

Even in the ideal situation where the underlying network is
assumed to be linear time-invariant (LTI) and the measure-
ments are assumed to be non-noisy, it can be shown that,
due to partial observability, this problem is unsolvable using
classical system identification techniques [2]. In particular,
identification of the system transfer function (obtained, for
example, using classic system identification approaches) is
useless to solve the network structure reconstruction problem
since transfer functions do not contain sufficient information
for that purpose (counter-examples can be found in [4]).
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In the literature, full observation of all system states is
typically assumed to be able to reconstruct the network [7],
[15], [9], [10], [16], [19]. However, when there exists hidden
states in the network (typically this is the real case if you
are considering to reconstruct unknown biological network),
these method will be ill-posed and might lead to wrong
network structure (examples can be found in [2]). Motivated
by this, we are focusing on the effect of hidden states in the
network that we are aiming to reconstruct.

Based on this latter observation, a new representation
for LTI systems, called dynamical structure functions was
introduced in [2]. Dynamical structure functions capture in-
formation at an intermediate level between transfer function
and state space representation (see Figure 1). Specifically,
dynamical structure functions not only encode structural
information at the measurement level, but also contain some
information about hidden states. Based on the theoretical
results presented in [2], we proposed some guidelines for the
design of an experimental data-acquisition protocol which
allows the collection of data containing sufficient information
for the network structure reconstruction problem to become
solvable. In particular, we have shown that if nothing is
known about the network, then the data-collection experi-
ments must be performed as follows:

(A.1) for a network composed of p measured species, the
same number of experiments p must be performed;

(A.2) each experiment must independently control a mea-
sured species, i.e., control input i must first affect
measured species i.

If the experiments are not performed in this way the network
cannot be reconstructed, and any network structure fits the
data equally well (e.g. a fully decoupled network or a
fully connected network). If biologists have already some
information about the network, as it is usually the case, then
these conditions can be relaxed as explained in [2].

Using dynamical structure functions as a mean to solve
the network reconstruction problem, the following aspects
need to be considered (see Figure 1):

First (see (A) in Figure 1), the properties of a dynamical
structure function and its relationship with the transfer func-
tion associated with the same system need to be precisely
established (this was done in [2]).

Second (see (B) in Figure 1), an algorithm for constructing
a minimal order state-space representation consistent with an
obtained dynamical structure function needs to be developed
(this was done in [3]). Using this last set of results, an
estimation of the minimal number of hidden nodes that
needs to be considered in the state space realisation can be
obtained. In the context of biology, this helps understand the
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Fig. 1. Mathematical structure of the network reconstruction problem using
dynamical structure functions. Red arrows mean “uniquely determine”, blue
arrows indicate our work.

minimal number of unmeasured molecules in a particular
pathway.

Third (see (C) in Figure 1), an efficient method is devel-
oped to reconstruct networks in the presence of noise and
nonlinearities. We assume that the conditions for network
reconstruction presented above in (A.1) and (A.2) have been
met. In our approach, we use the same information as
traditional system identification methods, i.e., input-output
data. However, with our method, steady-state (resp. time-
series data) can be used to reconstruct the Boolean (resp.
dynamical network) structure of the system.

The structure of the paper is as follows. In Section II,
dynamical structure functions are defined and fundamental
results concerning their usefulness in the network recon-
struction problem are stated. Section III presents the main
results of the paper, i.e., robust network reconstruction from
input-output data in the presence of noise and nonlinearities.
Finally, we conclude the paper with biologically-inspired
network reconstruction examples in Section IV.

A. Notation

For a matrix A ∈ CM×N , Ai j ∈ C denotes the element in
the ith row and jth column while A j ∈ CM×1 denotes its jth

column. For a column vector α , α[i] denotes its ith element.
We define eT

r = [0, . . . ,0,1rth ,0, . . . ,0] ∈ R1×N . I denotes the
identity matrix.

II. DYNAMICAL STRUCTURE FUNCTIONS AND NETWORK
RECONSTRUCTION

In [2] we introduced the notion of dynamical structure
functions and showed how they can be used to obtain nec-
essary and sufficient conditions for network reconstruction.
For the sake of clarity and completeness, we state these
previously obtained results here without proofs. We refer the
interested reader to [2] for the corresponding proofs.

Consider a nonlinear system ˙̄x = f (x̄, ū,w1), ȳ = h(x̄,w2)
with n states x̄, p measured states ȳ, n− p hidden states
z̄ (potentially a large number of them), m inputs ū, and
noise w1,w2. The system is linearised around an equilibrium
point (a point such that f (x̄∗, ū∗,0) = 0), and it is assumed
that inputs and noise do not move the states too far from
the equilibrium point so that the linearised system is a
valid approximation of the original nonlinear system. The

linearised system can be written as ẋ = Ax + Bu, y = Cx,
where x = x̄− x̄∗, u = ū− ū∗ and y = h(x̄,0)−h(x̄∗,0). The
transfer function associated with this linearised system is
given by G(s) =C(sI−A)−1B.

Partition the linearised system as follows[
ẏ
ż

]
=

[
A11 A12
A21 A22

][
y
z

]
+

[
B1
B2

]
u

y =
[

I 0
][ y

z

] (1)

where x = [yT zT ]T ∈ Rn, is the full state vector, y ∈ Rp

is a partial measurement of the state (we assume p > 1),
z are the n− p “hidden” states, and u ∈ Rm is the control
input. We restrict our attention to situations where output
measurements constitute partial state information, i.e., p < n.
Taking the Laplace transforms of the signals in (1), solving
for Z, and substituting into the Laplace transform of the
first equation of (1) of yields sY = WY +VU , where W =
A11 +A12 (sI−A22)

−1 A21 and V = A12 (sI−A22)
−1 B2 +B1.

Let D be the matrix composed of the diagonal elements of W
and write (sI−D)Y = (W −D)Y +VU . Then Y = QY +PU
where

Q = (sI−D)−1 (W −D) and P = (sI−D)−1 V (2)

Given the system (1), we define the dynamical structure
function of the system to be (Q,P).

It can be shown that G = (I−Q)−1 P. From this last equa-
tion, it can be seen that the dynamical structure function of
a system contains more minformation than the transfer func-
tion, and less information than the state-space representation
[2]. We can then conclude that, with no other information
about the system, dynamical or Boolean reconstruction is
not possible. In particular, this shows that the use of criteria
such as sparsity or decoupledness to guide our selection of a
candidate network structure can be misleading. Thus, if we
are to use these kinds of criteria, they must be firmly justified
a priori.

Proposition 1: [2] Given a p×m transfer function G,
dynamical structure reconstruction is possible from partial
structure information if and only if p− 1 elements in each
column of

[
Q P

]T are known that uniquely specify the
component of (Q,P) in the nullspace of

[
GT I

]
.

The importance of this result is that it identifies exactly what
information about a system’s structure, beyond knowledge of
its transfer function, must be obtained to be able to recover
the structure without appeal to a priori assumptions, such as
sparsity, or parsimony, etc.

Corollary 1: [2] If m = p, G is full rank, and there is no
information about the internal structure of the system, Q,
then the dynamical structure can be reconstructed if each
input controls a measured state independently, i.e., without
loss of generality, the inputs can be numbered such that P
is diagonal. Moreover, H = G−1 characterises the dynamical
structure as follows

Qi j =−
Hi j

Hii
and Pii =

1
Hii

. (3)



Proposition 2: [3] Given a dynamical system (1) and the
associated dynamical structure functions (Q,P) constructed
as explained above, the following conditions must hold

A11−diag{A11}= lim
s→∞

sQ(s); (4)

B1 = lim
s→∞

sP(s). (5)

III. ROBUST NETWORK STRUCTURE RECONSTRUCTION

In this section, we consider the problem of robustly re-
constructing dynamical network structures. Data are obtained
from input-output measurements of a noisy nonlinear system.
From this type of data we aim to find the internal network
structure Q associated with the linearised system (1).

For simplicity of exposition, we assume that there is no a
priori information on the internal network structure Q. The
results still follow if some a priori information about Q is
available, and such information can typically be used to relax
the experimental protocol according to Proposition 1. Hence,
data are collected according to the measurement protocol
described in the introduction:
(1) the number of distinct data-collection experiments is the
same as the number of measured species. This in particular
implies that u(t),y(t) ∈ Rp ;
(2) each input ui controls first the measured state yi so that
P is a diagonal matrix (p× p). To average out the noise,
data-collection experiments are repeated N times.

In the following two subsections (III-A and III-B), we
propose two approaches for estimating the dynamical struc-
ture function (Q,P) from measured input-output data. The
first approach is indirect and involves estimating the transfer
function G followed by computing (Q,P) from G. Since
some information is lost in the process of estimating G,
we consider a second approach where (Q,P) is directly
estimated from data (without estimating first G). Concerning
the type of input-output data collected, we first consider time-
series input-output data and then the special case where only
steady-state data are available.

A. Dynamical network reconstruction from identified trans-
fer functions

Consider a transfer matrix G(s) estimated from noisy data.
According to Corollary 1, if G is full rank there is a unique
Q and diagonal P satisfying (I−Q)G = P. Since G is an
approximation of the actual system, Q and P will typically
be mere approximations of the actual dynamical structure
function. Moreover, due to noise and unmodelled dynamics,
it is likely that Q does not even have the correct Boolean
structure.

The main idea to solve the network reconstruction problem
from noisy data is the following. For p measured states,
Q has p2− p unknowns. We want to quantify the distance
from G (or directly from the measured data) to all possible
Boolean structures (and there are 2p2−p of them). Some of
such distances will be large revealing that the corresponding
Boolean structures are likely not the correct structures while
other will be small making them candidates for the correct
structure.

Definition 1: A Boolean mapping b : Q(s)→ b(Q), where
b(Q) is a Boolean matrix with the same dimension as the
transfer matrix Q and ∀i, j {b(Q)}i, j = 0 if Qi j(s) = 0 for all
s, otherwise, {b(Q)}i, j = 1.

For a given p, there are 2p2−p possible Boolean networks
Bk (remember that Q(s) has zeros on the diagonal and
therefore b(Q) will always have zeros on the diagonal) which
can be ordered using the index k = 1, ...,2p2−p.

Definition 2: A Boolean structure Bk corresponding to a
Boolean network Bk is defined as follows: {Q(s) : b(Q) =
Bk}.

The distance from G to the Boolean structure Bk is defined
as the smallest perturbation ∆ to G (measured in some norm)
so that the perturbed system G∆ belongs to the set of transfer
functions G̃ such that Q∈Bk, where Q is obtained from (I−
Q)G̃=P. Finding the distance from G to a Boolean structure
Bk, gives us a quantitative information about how much we
would need to perturb G (or the data) to obtain a new system
transfer function for which the associated Q corresponds to
the considered Boolean structure, i.e., for which Q ∈Bk.

There are many possible approaches to define such “small-
est perturbations”, including several uncertainty models and
norms to choose from. This choice is key to obtain a
convex minimisation problem. In order to obtain a convex
minimisation problem, we consider the output (could also
be input) feedback uncertainty model. In this framework, the
“true” system is given by (I +∆)−1G, where ∆ represents
unmodelled dynamics, including nonlinearities, and noise.

Based on this choice of dynamic uncertainty, the problem
is defined as follows. Given a particular Boolean structure
Bk, the objective is to minimise ‖∆‖, in some norm, such that
Q obtained from (I +∆)−1G = (I−Q)−1P has the desired
Boolean structure, i.e. Q ∈Bk.

We can rewrite the above equation as ∆=GP−1(I−Q)−I.
So, we are looking to minimise ‖GP−1(I −Q)− I‖ over
Q ∈ Bk and P diagonal. Since P is diagonal, its inverse
P−1 is also diagonal. Define a new matrix X = P−1(I−Q)
whose diagonal is the diagonal of P−1 and for which the off
diagonal elements are given by P−1

ii Qi j. Since Q ∈Bk this
imposes structural constraints on X , i.e., some off-diagonal
Xi j = 0. These zero Xi j correspond to those Qi j which are
equal to zero (since Xi j = P−1

ii Qi j for i 6= j).
Definition 3: For all k, define Xk , {X(s) : b(X) = Bk +

Ip}, where Ip is identity matrix of dimension p. X(s) ∈Xk
if the following conditions hold

(i) when i 6= j, Xi j(s)= 0 if Bk,i j = 0, i.e., the (i, j) element
Bk is 0; all other Xi j(s) are free variables;

(ii) when i = j, Xii(s) is a free variable.
Using Defintion 3, the distance from G to a particular

Boolean structure Bk can be written as αk = infX∈Xk ‖GX−
I‖2 which is a convex minimisation problem with a careful
choice of a norm.

Next, we show that this problem can be casted as a least
squares optimisation problem. If we use the norm defined
by ‖∆‖2 = sum of all ‖∆i j‖2

2, where ‖ ·‖2 stands as the L2-
norm over s = jω , then using the projection theorem [12]



the problem reduces to

αk = inf
X∈Xk

‖GX− I‖2 = inf
X∈Xk

∑
i
‖GXi− ei‖2

2

= ∑
i

inf
Yi
‖AiYi− ei‖2

2

= ∑
i
‖Ai(A∗i Ai)

−1A∗i ei− ei‖2
2,

where Xi is the ith column of X ∈ Xk, Yi is a column
vector composed by the free (i.e., nonzero) elements of Xi,
Ai is obtained by deleting the jth column of G when the
corresponding element Xi( j) is 0 for all j, and (·)∗ denotes
transpose conjugate. The infimum is achieved by choosing
Xi = (A∗i Ai)

−1A∗i ei, and A∗i Ai is always invertible since G is
full rank in Corollary 1.

If experiments are repeated N times (as they should) and
we obtain a transfer function Gi for each experiment, then
the above analysis still follows simply by forming a higher

dimensional matrix G =
[(

G1
)T · · ·

(
GN
)T
]T

.

B. Dynamical network reconstruction directly from time-
series data

The previous sections used a two-step approach in which
system identification was first used to estimate a transfer
function from measured input-output data and then, in a
second step, the identified transfer function was used to
obtain a dynamical structure function representation of the
system which is optimal in terms of a particular metric.
This section proposes a method which allows identification
of the optimal dynamical structure function representation
directly from the measured input-output data. The advantage
of this direct network structure reconstruction from data is
that no information is lost during the initial transfer function
identification stage.

Due to the equivalence between dynamical uncertainty
perturbations, we are free to chose, without loss of generality,
the type of uncertainty perturbation that best suits our needs.
For the direct method, instead of a feedback uncertainty
as was considered in the previous section, the uncertainty
perturbation we are considering here is the additive dynamic
uncertainty on the output, i.e., Y = G∆(U +∆). In this case,
we think about the “distance” in terms of how much we need
to change the input (data) to fit a particular Boolean structure.
Since G∆ = (I−Q)−1P = X−1, the equality Y = G∆(U +∆)
can be written as

∆ = XY −U,

where X ∈Xk, for some particular Boolean network k. Recall
that structural constraints in Q can be imposed directly on
X from the equality X = P−1(I−Q). We can therefore use
system identification theory for non-causal autoregression
models under the structural constraints to identify X (which
might be non-causal). In this case, the distance is defined as
the maximum likelihood of the estimation problem.

C. Penalising connections

Information criteria: The above methodology suffers from
a crucial weakness: there are several Boolean structures with

distances smaller or equal than the distance to the “true”
network. Indeed, the extra degrees of freedom of the fully-
connected network allow the corresponding distance αk to
be the smallest of all. This is similar to the noisy data over-
fitting problem encountered in system identification where
the higher the order of the transfer function, the better the fit.
Obviously, if we only focus on noisy data best fit, eventually
we end up fitting noise and so a large system order is not
typically a good choice. Therefore, a compromise has to be
struck.

If the true network has l non-existent connections (l off-
diagonal elements in Q are zero) and the data are non-
noisy, then there are 2l − 1 different networks that have a
smaller or equal distance (due to the additional degrees of
freedom provided by the extra connections). When noise
is present, then the “true” network will typically have an
optimal distance similar to these other l networks. The
question of how to find the “true” network thus arises.
With repeated experiments, small enough noise (i.e., large
enough signal-to-noise ratio) and negligible nonlinearities,
the optimal distances of those l networks are comparable,
and they are typically much smaller than those of the other
networks. To try to reveal the “true” network, one can
strike a compromise between network complexity (in terms
of number of connections) and data fitness by penalising
extra connections. The are several methods to strike this
compromise. Here, we introduce methods known as Akaike’s
information criterion (AIC) [5], or some of its variants such
as AICc (which is AIC with a second order correction for
small sample sizes), and the Bayesian information criterion
(BIC) [13].

The AIC-type approach is a test between models - a tool
for model selection. Given a data set, several competing
models may be ranked according to their AIC value, with
the one having the lowest AIC being the best. From the AIC
value one may typically infer that the best models are in a tie
and the rest are far worse, but it would be arbitrary to assign
a value above which a given model is rejected [13]. The AIC
value for a particular Boolean network Bk is defined as:

AICk = 2Lk− lnαk, (6)

where Lk is the number of (non-zero) connections in the
Boolean network Bk and αk is the optimal distance based on
this parameter constraint.

Reconstruction with the zero norm: To directly take the
number of connections into account in the formulation of the
optimisation problem, we redefine the optimisation problem
as:

DO = inf
X∈Xk

(
‖XY −U‖2 +β‖X‖0

)
, (7)

where β is a parameter balancing data-fitting and model
complexity (i.e., the number of non-zero connections). In
(7), ‖X‖0 denotes the number of nonzero element in the
matrix X , and is known as the zero norm. Notice that this
minimisation problem can be equivalently written as (if we



choose the 2-norm):

inf
X∈Xk

(
‖XY −U‖2

2 +β‖X‖0
)

= ∑
i

inf
Xi

(
‖XT

i Y −UT
i ‖2

2 +β‖XT
i ‖0

)
, (8)

where XT
i is the ith row of X ∈Xk and UT

i is the ith row of
U .

Directly solving such optimisation problem is in general
NP-hard. A frequently discussed approximation for steady-
state data can be found in [10]. Moreover, since there are p
independent optimisations in eq. (8), we can choose different
βi for each i. Alas, there is no clear rule for selecting β to
balance optimally the two terms in eq. (8). How to calculate
the correct β without information a priori is a currently open
problem [10].

D. Boolean network reconstruction from steady-state data

So far we have assumed that time-series data are available.
Frequently, however, experimentation costs and limited re-
sources only permit steady-state measurements. In addition,
with steady-state measurements it is typically possible to
perform a larger number of experiments for the same time,
effort and cost. As shown below, most of the connectivity of
the network together with the associated steady-state gains
(and the associated positive or negative sign) can still be
reconstructed from steady-state data. However, no dynamical
information will be obtainable. In other words, for most cases
we can still recover the Boolean network from steady-state
data.

Assume that after some time of maintaining the control in-
put concentrations at a constant value, the measured outputs y
have converged to a steady-state value. This is equivalent (if
the system is stable or quasi-stable [1]) to assume that we can
obtain G(0), i.e., G(s) evaluated at s = 0. (I−Q(s))G(s) =
P(s) evaluated at s = 0 becomes (I −Q(0))G(0) = P(0).
From this equation, all of the results given in Section III-
A and III-B follow provided that no element of G(s) has a
system zero [14] at 0. In that case, a nonzero element in the
obtained Boolean network indicates the existence of a causal
relationship between the corresponding pair of nodes while
a zero element indicates the absence of such relationship.

IV. BIOLOGICALLY-INSPIRED EXAMPLES

This section illustrates with one example1 the theoreti-
cal results presented in the previous section. We consider
the application of our method to the reconstruction of the
underlying dynamic network responsible for chemotaxis in
Rhodobacter sphaeroides. The network is represented in
Figure 2(a) (see [6], [11] for a detailed explanation of this
model and its biological interpretation). It involves 10 species
dynamically interacting through a complex set of intercon-
nections. As an illustrative example of the application of
our method, we consider the case where steady-state data
are collected from 3 species only: Y p

3 , Y p
6 and the “motor”

1Due to space limitation, we only put one example here, other examples
can be found, for example, in [4]
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Fig. 2. (a) Network representing the dynamical interaction between the
10 species believed to be responsible for the chemotactic response of
Rhodobacter sphaeroides. We assume that only species Y p

3 , Y p
6 and “motor”

are measured (circled in red). (b) Network connecting the measured states
only.

(circled in red in Figure 2(a)). As a proof of concept of
the type of results that our method allows to obtain, we
generate data for these 3 species based on simulations of
the nonlinear ordinary differential equation model proposed
in [6]. Gaussian noise with variance 0.04 is then added to the
collected data to simulate measurement noise in the data set.
These noisy data are then fed to our reconstruction algorithm
in order to assess its ability to recover the correct network
structure.

We follow our prescribed experimental protocol where
data are collected for each measured species when a step is
imposed on the corresponding input while the other inputs
are zero. Again, for simplification, only steady-state data
(approximated as the final value reached over the considered
time interval) are used. Based on the complete network given
in Figure 2(a), the correct network that we should aim to
recover is presented in Figure 2(b).

Boolean structure αk AICc
[0 0 0 0 0 0] 1.93 7.18

...
[0 1 1 1 1 1] 0.157 29.7
[1 0 0 1 0 0] 0.0309 0.786
[1 1 0 1 0 0] 0.0306 5.56

...
[1 1 0 1 1 1] 0.0287 24.6
[1 0 1 1 0 0] 0.0274 5.22
[1 1 1 1 0 0] 0.0271 12.4

...
[1 1 1 1 1 1] 0.0252 48.2

TABLE I
THE BINARY VALUES IN THE TABLE ARE ARRANGED ACCORDING TO

THE FOLLOWING ORDER [Q21 Q31 Q12 Q32 Q13 Q23]. THE RED ROW

INDICATES THE BOOLEAN NETWORK OBTAINED AS A RESULT OF AICC

METHOD, WHILE THE BLUE ROW INDICATES THE TRUE ONE.

Computing the corresponding distances and AICc values
for all the 26 = 64 possible Boolean networks (Table I), we
observe that the network with the smallest AICc (Figure 4(e))
is not the correct network in Figure 2(b). This is not because
the method failed but because of the very low signal to noise
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Fig. 4. Candidate networks with AICc values. Black arrows represent
spurious connections.

ratio (0.003<< 1) observed in the measurements (it is called
interampattaness in [18]) when a step is imposed on u2 (see
Figure 3). Y p

6 has a very small influence on Y p
3 since the

pathway from Y p
6 to Y p

3 includes a reversible reaction with
very small rate constant.

The next set of smallest values of AICc in Table I consists
of 4 networks, including the true one. The corresponding
candidate networks for the reconstruction are represented in
Figure 4. These five candidate networks can then be further
discriminated by performing additional and more precise
experiments, with reduced noise and increased amplitude of
the input step signals (if possible) to help differentiate them.

V. CONCLUSION AND FUTURE WORK

This paper proposes a new network reconstruction method
in the presence of noise and nonlinearities based on dy-
namical structure functions. The key idea is to find minimal
distances between the existent data and the the data required
to obtain particular Boolean networks. The method was illus-
trated with two biologically-oriented examples. They showed
that, even in the presence of nonlinearities and considerable
noise, network reconstruction was possible. Eventually, when
the signal to noise ratio was too small, reconstruction was

no longer possible, but that is true irrespective of the method
used.

Obviously, the method has limitations with respect to
nonlinearities. With stronger nonlinear terms the method
will eventually fail. For example, network reconstruction for
oscillatory systems is still an open problem. However, when
applied to the reconstruction of various equilibrium point
models given in the literature, we observed that reconstruc-
tion was always possible when the signal-to-noise ratio of
the measured data was not too small (far less than 1).
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