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Abstract— Control algorithms combined with microfluidic
devices and microscopy have enabled in vivo real-time control
of protein expression in synthetic gene networks. Most control
algorithms rely on the a priori availability of mathematical
models of the gene networks to be controlled. These models
are typically black/grey box models, which can be obtained
through the use of data-driven techniques developed in the
context of systems identification. Data-driven inference of both
model structure and parameters is the main focus of this
paper. There are two main challenges associated with the
inference of dynamical models for real-time control of gene
regulatory networks in living cells. Since biological systems
are typically evolving over time, the first challenge stems
from the fact that model selection needs to be done online,
which prevents the application of computationally expensive
identification algorithms iterating through large amounts of
streaming data. The second challenge consists in performing
nonlinear model selection, which is typically too burdensome
for Kalman filtering related techniques due the heterogeneity
and nonlinearity of the candidate models. In this paper,
we combine sparse Bayesian techniques with classic Kalman
filtering techniques to tackle these challenges.

I. INTRODUCTION

The problem of identifying biological networks from ex-
perimental time series is of fundamental interest in systems
and synthetic biology. For example, such information can
aid in the design of drugs or of synthetic biology genetic
controllers [1]. Methods developed in the context of system
identification [2] can be applied for such purposes. While
predictive models proved to play a key role in the control
of synthetic gene circuit [3], [4], highly detailed or com-
plex models are typically difficult to obtain, analyse and
control. Therefore, one typically prefers to use simple or
sparse models that capture at best the dynamics expressed
in the collected data. The identification and use of simple or
sparse models inevitably introduces uncertainties in both the
structure and the parameters of the models [5], [6]. To reduce
the impact of such uncertainties on our understanding of the
underlying processes, it is common practice in quantitative
biology to use multiple experimental replicates to study a
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network of interest, generally represented by a non-linear
dynamical system.

The problem of identifying the parameters and/or the
states of a non-linear system is widespread in control sys-
tems engineering and received much attention in the recent
history: from Extended (or Unscented) Kalman Filters to
Particle Filters and Markov Chain Monte Carlo methods,
many techniques have been developed over the past decades
to address such problems. However these methods all require
some prior knowledge of the model structure, a luxury
seldom met in the context of synthetic gene circuits. What
is more, when the structure of the model is itself uncertain
these methods typically perform parameter estimation for all
the candidate models, in a sort of “brute-force approach”.
All the identified models are then compared against each
other using some information criterion (e.g. AIC, BIC, see
[2], [7]).

To improve on this practice we present here a framework
for efficiently identifying, from time-series data, nonlinear
ordinary differential equations models, with a special empha-
sis on functional forms or dependencies, that are commonly
used to capture the dynamics of gene regulatory networks.

Notation: The notation in this paper is standard. Bold
symbols are used to denote vectors and matrices. For a matrix
A ∈ RM×N , A(i, j) ∈ R denotes the element in the ith

row and jth column, A(i, :) ∈ R1×N denotes its ith row,
A(:, j) ∈ RM×1 denotes its jth column. For a column vector
α ∈ RN×1, αi denotes its ith element. In particular, IL de-
notes the identity matrix of size L×L. We simply use I when
the dimension is obvious from context. ‖β‖1 denotes the `1
norm of the vector β. diag [γ1, . . . , γN ] denotes a diagonal
matrix with principal diagonal elements being γ1, . . . , γN .
blkdiag[A[1], . . . ,A[C]] denotes a block diagonal matrix
with principal diagonal blocks being A[1], . . . ,A[C]. Tr(A)
denotes the trace of A. A matrix A � 0 means A is positive
semidefinite. A vector γ � 0 means each element in γ is
nonnegative.

II. RELATED WORK

A. Background
Transcription and translation are two intrinsically slow

processes (time scale of minutes in bacteria). While, on
one hand, this implies there is no stringent need to observe
cells with high sampling frequencies, it also means that
identification/control experiments of biomolecular circuits
usually last hours to days, i.e. much longer than similar
experiments carried out on electrical or mechanical systems.
Over such long time frames it is necessary to (a) effectively
trap cells and (b) observe their internal dynamics. We also
need to extract single cell trajectories while we (c) stimulate
them with time-varying profiles of the molecules that serve



as inducers for the network of interest. Most importantly
it is necessary to achieve these objectives with minimally
invasive techniques, i.e. using methods that ideally, will not
affect the processes we want to quantify (a point not to be
overlooked as factors like heat, e.g. generated by the light
used to obtain microscopy images, or mechanical stresses,
e.g. used to physically hold cells in place while imaging
them, will trigger stress responses in cells). For these reasons
we need to continuously (i) supply cells with nutrients and
(ii) remove toxic metabolites while (iii) retaining the ability
to condition their microenvironment to expose them to the
appropriate externally applied stimuli. All these require-
ments, combined, significantly limit the technologies that
can be used to identify and control biomolecular circuits
in vivo: for example commonly used methods, such as
flask-based sampling or bioreactors, are unable to provide
us with single cell trajectories. Microfluidics, enabling us
to fabricate transparent microchannels where cells can be
trapped and observed while being exposed to a continuous
flow of nutrients and chemicals controlled by a computer,
does allow to meet the requirements mentioned above.

In the view of the above, we will consider the setup
documented in [3] as the reference platform for the in
vivo implementation of our model selection approach. In
this configuration, described in Fig 1, a microfluidic device
containing the cells carrying the network of interest, is
mounted on the stage of a fully automated microscope that
takes phase contrast and fluorescence images of the cells at
regular time intervals. Such images are used by the computer
to locate cells (phase contrast) and estimate the amount of
protein (fluorescence imaging) in real-time via a custom
image processing algorithm developed in MATLAB. The
computer, then, uses a set of fluidic pressure actuators to vary
the level of inducer the cells are exposed to. Interestingly, this
configuration allows us to continuously (a) update our model
on-line and, potentially, (b) automtically carry out multiple
model-selection iterations within the same experiment, a
unique feature of this approach [8].

In order to extend the experimental throughput and in-
crease our model discrimination capabilities we will use the
MDAW microfluidic device described in [9]: in this device 8
independent model selection experiments can be carried out
at the same time. We will seed the same strain in each of the 8
chambers and image the 8 chambers at regular intervals. In so
doing we will obtain 8 independent datasets (each formed by
an exponentially growing number of single cell trajectories)
that we will use to design and implement our model selection
experiment.

1) Mathematical model: Throughout the paper, we will
assume that the process of interest can be modelled by a
discrete-time system of the form:

xt+1 = g(xt,ut,β) + υt,

zt = xt + ηt,
(1)

where the xt = [x1,t, . . . , xnx,t] ∈ Rnx is the state vector at
discrete time point t; β represents the vector of parameters
to be identified; the function g : Rnx×Rnu×Rnβ → Rnx is

Fig. 1. Technological platform for in-vivo model selection of synthetic
circuits. In this closed loop configuration the computer (upper right corner)
takes images of the cells in the microfluidic device (lower left corner) via
a microscope (upper left corner), quantifies the output of the network of
interest in real time and applies the next sample of input(s) via the fluidic
pressure actuation system (lower right corner).

nonlinear and depends (explicitly) on the input vector ut ∈
Rnu . The process noise υt ∈ Rnx and measurement noise
ηt ∈ Rnx are assumed to be mutually independent Gaussian
random variables with known positive covariance matrices
Qt and Rt, respectively.

The state vector xt usually contains concentrations of
certain chemical species of interest, such as mRNAs or
proteins. The output signal zt represents the quantities we
can measure experimentally.

B. Questions of interest

1) Estimation of the model structure, i.e. the func-
tional structure of gn(·) in (1).

2) Estimation the parameter vector β therein.
3) Identification of a single model from multiple

datasets emanating from perturbation experiments
performed on systems of the form given in (1)
that differ in terms of their parameters but not
their parametric structure.

For example, in the ideal noiseless case, a simple self-
induction gene network can be described as [10]:

dxt
dt

= −kxt +
Vmaxx

h
t

KM + xht
,

zt = xt.

(2)

where dxt
dt is a numerical estimation of the time derivative

of xt (see appendix of [11] for details), k is the decay rate
of gene product x, Vmax is the maximum gene expression
rate, KM is the threshold value in terms of the concentration
of gene product x that results in a production rate of
0.5Vmax, and h is the Hill coefficient (a.k.a. the cooperativity
coefficient) associated with the self-induction of gene x.



The identification problem can be formulated as: given
some time series data corresponding to discrete time point
measurements of the gene product, i.e. z1, z2, · · · , zM+1, can
the model given in (2) be identified or approximated?

III. MODEL STRUCTURE IDENTIFICATION

A. Addressing questions of interest 1 and 2 by solving a
linear regression problem

In our previous work [12], [11], we developed a frame-
work for nonlinear ODE model identification based on the
following assumption:

Assumption 1: The nonlinear functions that define the
ODE model are expressed as a linear combination of non-
linear terms which do not contain unknown paramaters. The
only unknown parameters are the linear coefficient that define
the linear combination.

When this assumption is satisfied, the system in (1) can
be expressed as follows for n = 1, . . . , nx:

xn,t+1 = gn(xt,ut,β) + υn,t (3)

=
∑Nn

s=1
βnsfns(xt,ut) + υn,t, (4)

zn,t = xn,t + ηn,t, (5)

where βns ∈ R and {fns(xt,ut) : Rnx × Rnu → R, s =
1, . . . , Nn} defines the set of all candidate/possible basis
functions that govern the dynamics of xn. The functions
fns(xt,ut) are assumed to be Lipschitz continuous.

Suppose that the right-hand side of equation (4) is un-
known. We showed in [12] that, under Assumption 1, we can
address the first two questions of interest within the frame
box in Section II-B by identifying the unknown parameters
in the following linear regression problem

yn = Anβn + ξn, n = 1, . . . , nx (6)

Suppose the data are collected at M + 1 time instances and
Nn basis functions are used in the expansion given in (4).
Equation (6) then has the following structure:

yn , [zn,2, . . . , zn,M+1]
> ∈ RM

An , [An(:, 1), . . . ,An(:, Nn)]

=

 fn1(z1,u1) . . . fnNn(z1,u1)
...

...
fn1(zM ,uM ) . . . fnNn(zM ,uM )

 ∈ RM×Nn ,

βn , [βn1, . . . , βnNn ]
> ∈ RNn

ξn , [ξn1, . . . , ξnM ]
> ∈ RM

(7)
The noise vector ξn in (6) is still Gaussian distributed with

zero mean but is now characterised by a non-diagonal (possi-
bly fully-parametrised) covariance matrix Πn ∈ RM×M+ (see
Appendix of [11]). The solution βn to the linear regression
problem in (6) is typically going to be sparse, which is
mainly due to the potential introduction of non-relevant
and/or non-independent dictionary functions in An.

Since the nx linear regression problems in (6) are inde-
pendent, for simplicity of notation, we omit the subscript n
used to index the state variable and simply write Eq. (6) as:

y = Aβ + ξ, (8)

B. Addressing questions of interest 1, 2 and 3 by performing
identification from multiple datasets

In this section, we will show how the third point in
Section II-B can be addressed.

To ensure reproducibility, experimentalists repeat their ex-
periments under the same conditions, and the collected data
are then called “replicates”. Typically, only the average value
over these replicates is used for modelling or identification
purposes. In this case, however, only the first moment is used
and information provided by higher order moments is lost.
Moreover, when data originate from different experimental
conditions, it is usually very hard to combine the datasets
into a single identification problem. This section will ad-
dress these issues by showing how several datasets can be
combined to define a unified optimisation problem whose
solution is an identified model consistent with the various
datasets available for identification. This can be done using
the approach proposed in [11], which consists in merging
a total number of C datasets collected from C independent
experiments. We put a subscript [c] to index the identification
problem associated with the specific dataset obtained from
experiment [c], i.e. we replace A with A[c], and similarly for
y, β and ξ. The linear regression problem in (6) can then
be written as:

y[c] = A[c]β[c] + ξ[c], c = 1, . . . , C. (9)

Let Ai = blkdiag[A[1](:, i), . . . ,A[C](:, i)], and βi =

[β
[1]
i , . . . , β

[C]
i ]>, for i = 1, . . . , N . We further define

y =

 y[1]

...
y[C]

 ,A =
[

A1 · · · AN

]
,

β =

 β1

...
βN

 , ξ =

 ξ[1]

...
ξ[C]

 ,
(10)

which gives
y = Aβ + ξ. (11)

This yields a formulation very similar to that presented pre-
viously in (8). However, in the multi-experiment formulation
(11), there is now a special block structure for y, A and β.
Note also that the experimental platform described in Section
II-A specifically allows multiple experiments to be carried
out at the same time, therefore exploiting the power of the
approach we describe. Further detail can be found in [11].

In what follows, we give a self-contained description of the
corresponding identification algorithm. The reader is referred
to [11] for a full explanation of the algorithm and of its
variables.

C. Challenges inherent to the identification of biological and
biochemical systems

The a priori selection of a good set of dictionary functions
fns(x,u) in (4) is key to the identification process. Some
a priori knowledge of the provenance of the data and the



Algorithm 1 Identification Algorithm using Heterogeneous
Datasets

1: Collect C groups of time series data from C independent
experiments;

2: Select the candidate basis functions that will be used to
construct the dictionary matrix described in Section III;

3: Initialise θ0i = 1, ∀i, α0
i =

θ0i
C , Λ0 = I;

4: Initialise S0 = 1
λI, λ = 1;

5: for k = 0, . . . , kmax do
6: βk+1 can be obtained by solving:

min
β

1

2
(y −Aβ)

>
Sk (y −Aβ) +

N∑
i=1

‖θki · βi‖2;

(12)
7: Update γk+1

i =
‖βk+1
i ‖2√
Cαki

.

8: Let Yk+1 = (Aβk+1 − y) · (Aβk+1 − y)>;
9: Sk+1 can be obtained by solving:

min
S�0

Tr
(
Yk+1 + Λk

)
S− log det S; (13)

10: Update αk+1 = diag{
[
−(Γk)−1 + A>SkA

]−1} ·
diag{−(Γk)−2}+ diag−1{Γk};

11: Update θk+1
i = Cαk+1

i ;
12: Update Λk+1 = A(Γ−k + A>SkA)−1A>;
13: if a stopping criterion is satisfied then
14: Break;
15: end if
16: end for

field for which the models are developed can be particularly
helpful for this. For example, the typical nonlinearities used
to create nonlinear ODE models of gene regulatory networks
can be restricted to those known to capture fundamental
biochemical kinetic laws, e.g. first-order functions f(x) =
αx, mass action functions f([x1, x2]) = βx1 ·x2, Michaelis-
Menten functions f(x) = Vmax

K+x , or Hill functions f(x) =
Vmax

K+xh
. Using our framework, as stated in Assumption 1,

h and K are assumed to be known a priori, whereas
α, β, Vmax can be identified through the process described
in the previous sections.

A first challenge using our framework is thus to find
practical solutions to the identification of the parameters
embedded nonlinearly in the dictionary functions, e.g. the
paramters h and K of the Hill functions.

A naive solution to the estimation of the Hill coefficient, h,
is to introduce more nonlinear terms in the set of dictionary
functions, each with a different Hill coefficient. Since h ∈
Z+ and very few biological systems are characterised by
Hill coefficients larger than 8, the number of such terms
is typically relatively low. On the basis of this, the set
of Hill functions Vmax

K+xh
with h = 1, 2, · · · , 8 is a good

candidate subset to be included in the set of dictionary
functions. Furthermore, even if the true function is not a
member of the considered set of dictionary functions, it
is often the case that the true dictionary function can be
approximated by a linear combination of the other members
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Fig. 2. Hill functions can be approximated by linear combinations of other
Hill functions.

of the set of dictionary functions. For example, suppose the
true function to be identified is 1

1+x2 and that the set of
dictionary functions is { 1

1+x ,
1

1+x3 ,
1

1+x4 }. The true function
1

1+x2 can be approximated as a linear combination of the
other rational functions present in the set of dictionary
functions: 1

1+x2 ≈ a · 1
1+x + b · 1

1+x3 + 0 · 1
1+x4 , where

a and b are some real numbers that can be identified using
our framework, see Figure 2(a).

The estimation of the Hill threshold parameter K can be
dealt with in a similar manner as for the Hill coefficient
h. For example, the nonlinear Hill function 1

1.5+x2 can be
approximated by a linear combination of Hill functions with
different values of K: 1

1.5+x2 ≈ a
1+x2 + b

2+x2 , where a and
b are some real numbers that can be identified using our
framework, see Figure 2(b).

Another important challenge emerges when one wants to
perform real-time control of a system of interest. In such
case, typically, both the state variables x and the parameter
β of the model of the system to be controlled need to be
estimated.

In the following section, we propose a framework that
combines our model structure identification algorithm (Algo-
rithm 1) with classical filtering algorithms to offer a solution
to the above mentioned challenges.

IV. MODEL REFINEMENT

Our method allows inference of model structures that can
be decomposed as linear combinations of nonlinear functions
chosen from a dictionary set. We note, however, that the
identification of parameters nonlinearly embedded in these
functions is a non-trivial task. As we saw in the previous
section, a naive approach consists in augmenting the set of
dictionary functions with various candidate nonlinearities for
which nonlinearly embedded parameters are given specific
values. We would then rely on the approximation of the
true nonlinearities as a linear combination of these dictionary
functions, i.e. on estimating the true nonlinearity as an “in-
terpolation” from discretely valued candidate nonlinearities.

On the other hand, filtering methods have been widely
used to estimate parameters for a given (nonlinear) paramet-
ric structure [7]. The main issue with filtering methods is
that they require a priori knowledge of such model structures



and cannot easily be used to infer model structures in other
ways than by trying individual structures and comparing
them using model selection criteria. Typically, this process
has a very high computational cost.

In the following section, we show how our model structure
inference (described in Algorithm 1) can be used to identify
nonlinear terms that can benefit from further refinement using
filtering approaches. For example, if the right hand side of
one of the equations in the identified model was to contain
a linear combination of the form 0.2684

1+x + 0.7292
1+x3 , a new

parametric structure could be created where this term is
replaced by Vmax

K+xh
. This new parametric model structure can

then serve as the starting point for filtering methods, which
are then used to estimate the values of the parameters in
the new parametric structure. Furthermore, the parameters
identified using our model structure inference method (see
Algorithm 1) can be used as initial guesses or priors for the
filtering methods.

A. State extension and filtering

As mentioned above, our model structure inference
method can be used to identify nonlinear terms that can
benefit from further refinement in their structure. Let the
new parametric structure obtained through such refinement
be given by: 

xt+1 = g(xt,ut,γ) + υt,

zt = xt + ηt,

x1 = g0,

(14)

where g0 is the initial guess of the state vector x.
Extended or unscented Kalman filtering are celebrated

methods used to identify both the state variables in x and
the parameters in γ of a given parametric model structure
such as the one provided in (14). Simultaneous identification
of state variables and parameters can be done using a “state
extension” approach where constant parameters such as those
contained in the model parameter vector γ are considered
as additional state variables with a rate of change equal to
zero. In this way, constant parameters are treated as constant
functions of time as opposed to constant numbers [13].

The parameters identified using our model structure infer-
ence method (see Algorithm 1) can be used as initial guesses
or priors for the parameters γ.

Filtering can be made more tractable by considering that
the unknown parameters γ evolve according to a Brownian
motion. For this, we introduce a new variable φk and
consider the following linear process model:[

φt+1

γt+1

]
=

[
I 0

∆τ I

] [
φt
γt

]
+ %t , (15)

where %t has covariance:

Q% := σ2

[
∆τ ∆τ2/2

∆τ2/2 ∆τ3/3

]
,

where σ2 must be chosen a priori. We further define the

augmented state parametric structure as:

x̄t ,

 xt
φt
γt

 , ḡ(x̄t,ut) ,

 g(xt,ut,γt)
φt

γt + ∆tφt

 ,
ῡt ,

[
υt
%t

]
, ḡ0 ,

 g0

φ0

γ0

 ,
(16)

where ḡ0 is the initial state estimate.
We can now write the full augmented dynamic model as

x̄t+1 = ḡ(x̄t,ut) + ῡt,

zt = [Inx ,0]x̄t + ηt,

x̄1 = ḡ0.

(17)

The new process noise ῡt has positive definite covariance
matrix

Q̄t =

[
Qt 0
0 Q%

]
.

Using such a state extension approach, the problem of
parameter estimation is converted into a problem of state
estimation, for which the goal is to estimate the extended
state x̄ from measurements of the output z. More precisely,
we are trying to determine the initial conditions ḡ0, which,
when used to initialise the system (14), generates the ob-
served output z.

B. Algorithm combining model structure identification and
model refinement

In this section we present Algorithm 2, which constitutes
the main algorithm combining 1) our model structure iden-
tification method (Algorithm 1) with 2) model refinement of
model structures using filtering. Model structure identifica-
tion is done off-line and thus requires batched data (historical
sensor measurements) which were collected a priori. Once a
‘rough’ model structure is obtained, model refinement can
be performed on-line by feeding streaming data (sensor
measurements that arrive in real-time), e.g. obtained from
the microfludic device in Fig. 1.

In Algorithm 2, we define a trial as the application of
the model structure identification procedure described in
Algorithm 1 using a given set of dictionary functions and
a given regularisation parameter λ.

V. NUMERICAL SIMULATIONS

We use the example in our previous work [11] with the
same parameters and initial condition settings for both model
and Algorithm 1. An eight species generalised repressilator
[14] is considered, where each of the species represses an-
other species in a ring topology. The corresponding dynamic
equations that we would like to identify from time series
data are as follows:
dx1,t
dt

=
p11

K1 + xp138,t

+ p14 − p15x1,t,

dxi,t
dt

=
pi1

Ki + xpi3i−1,t
+ pi4 − pi5xi,t, ∀i = 2, . . . 8,

(18)



Algorithm 2 Online Model Selection Algorithm
1: IDENTIFICATION:

Require: Batched Data
2: procedure IDENTIFICATION(S trials)
3: for s = 1, . . . , S do
4: Choose a regularisation parameter λs;
5: Choose a set of dictionary functions;
6: Using the set of dictionary functions, construct

As from batched data;
7: Ms = IDENTIFICATION(λs,As); % Apply

Algorithm 1 to get a model Ms;
8: end for
9: Pick the top Ŝ rankedMs models based on a certain

model selection criterion.
10: end procedure
11: Update:
12: procedure UPDATE(Ŝ trials)
13: Update candidate functions as stated in the introduc-

tion to Section IV;
14: end procedure
15: FILTERING:
Require: Streaming Data
16: procedure FILTERING(Ŝ trials)
17: while New data zt is available do
18: for s = 1, . . . , Ŝ do
19: Mnew

s = FILTERING(zt); % Apply Filter-
ing techniques to refine model Ms

20: end for
21: end while
22: if Not convergent then goto IDENTIFICATION
23: end if
24: end procedure

where dxi,t
dt is a numerical estimation of the time derivative

of xi,t (see appendix of [11] for details).
We assume the mean value for these parameters across

different species and experiments are p̄i1 = 40, Ki = 1,
p̄i3 = 3, p̄i4 = 0.5, p̄i5 = 1, ∀i. We simulate the ODEs in
(18) to generate the time series data. In each “experiment”
or simulation of (18), the initial conditions are randomly
drawn from a standard uniform distribution on the open
interval (0, 1). As an example, we have considered that in
each experiment parameters of the true system (18) can vary
by up to 20% of their mean values and so are drawn from a
uniform distribution over [0.8p̄ij , 1.2p̄ij ].

The numerical simulation procedure can be summarised
as follows:

1) The deterministic system of ODEs (18) is solved
numerically with an adaptive fourth-order Runge-Kutta
method;

2) Gaussian measurement noise with variance σ2 is added
to the corresponding time-series data obtained in the
previous step1;

3) The data is re-sampled using uniform intervals2;

1In the example presented here, for simplicity of exposition, we consider
the noiseless case corresponding to σ = 0.

2In this example, the interval length is set to 1.

4) A dictionary matrix is constructed as illustrated in
Section III;

5) Algorithm 1 is used to identify the model.
Following the procedure described in Section III, the

candidate dictionary matrix A in step 5) above is constructed
by selecting as candidate nonlinear dictionary functions those
typically used to represent terms appearing in ODE models
of Gene Regulatory Networks. As a proof of concept, we
only consider linear, constant and Hill functions as potential
candidate functions. The set of Hill functions with Hill
coefficient h, both in activating and repressing form, for the
ith state variables at discrete time point t, are:

hill(xi,t,Ki, hnum, hden) ,
xhnum
i,t

Ki + xhden
i,t

(19)

where hnum and hden represent the Hill coefficients. When
hnum = 0, the Hill function has a repression form, whereas
an activation form is obtained for hnum = hden 6= 0.

We are interested in identifying the regulation type (linear
or Hill type, repression or activation) and the correspond-
ing parameters pi1, the basal expression rate pi4 and the
degradation rate constant pi5, as well as Ki, ∀i. Since there
are 8 state variables, we can construct the dictionary matrix
A with 8 (basis functions for linear terms) +(8 ∗ 8) (8
Hill functions with Ki ∈ {0.5, 1.5} and hnum, hden ∈
{2, 3}, both repression and activation form) +1 (constant
unit vector) = 73 columns. The corresponding matrix A is
given in Eq. (20). Note that none of the Hill functions in the
set of dictionary functions has a value of Ki equal to 1.

To quantify the identification accuracy of the algorithm,
we use the root of normalised mean square error (RN-
MSE) as a performance index, i.e. RNMSE = ‖β̄estimate −
β̄true‖2/‖β̄true‖2 where β̄true (resp. β̄estimate) represents the
average of the C parameters values (resp. the average of
the C identified parameters values). Similarly to what we
showed in Fig. 1 of [11], we observe that a larger number of
experiments C or a larger length of single time series data M
leads to a smaller RNMSE value.3 In our simulation, we take
C = 10 and M = 100. The corresponding RNMSE for the
application of Algorithm 1 to the identification of model (18)
is RNMSE = 0.047 when 50 independent experiments are
considered.

Since the identification procedure for each state variable
is independent, we only focus on the identification of the
dynamics ẋ1. Similar results are obtained for the identifica-
tion of the other equations Both the linear term x1 and the
constant term can be identified with an average parameter
estimation value of p̄14 = 0.501 ≈ 0.5 and p̄15 = 1.07 ≈ 1.

In our result, both dictionary funtions 1
0.5+x3

8,t
and 1

1.5+x3
8,t

are selected by Algorithm 1 to be part of the dynamics of
dx1,t/dt, and the average of the corresponding parameters
over C = 10 experiments are 8 and 35.7, respectively.
This means that 40

1+x3
8,t

can be approximated by 8
0.5+x3

8,t
+

3The RNMSE values for varying values of C and M are not shown here
due to space limitation.



A =

 x11 . . . x81 hill(x11, 0.5, 0, 2) . . . hill(x81, 1.5, 0, 3) hill(x81, 1.5, 3, 3) 1
...

...
...

...
...

...
...

x1M . . . x8M hill(x1M , 0.5, 0, 2) . . . hill(x8M , 1.5, 0, 3) hill(x8M , 1.5, 3, 3) 1

 ∈ RM×73. (20)

0 2 4 6 8 10

x

0

10

20

30

40

50

60

70

80
Hill functions with different K

40

0.5+x3

40

1+x3

40

1.5+x3

8

0.5+x3 +
35.7

1.5+x3

Fig. 3. After refinement iterations (see Figure 4) the parameters γ1 and γ2
of the new structure γ1
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3
8

selected to replace 8
0.5+x38

+ 35.7
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(identified
from Algorithm 1) are estimated to be γ1 = 39.99 and γ2 = 0.9998,
respectively.
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Fig. 4. Evolution of the estimated values of the parameters in equation (21)
as a function of the number of streaming data iterations of the Unscented
Kalman Filter.

35.7
1.5+x3

8,t
. The corresponding fitting result can be found in

Figure 3.
Next we turn to model refinement (“Filter” in Algorithm 2)

using an Unscented Kalman filter [13]. For this, we consider
the following equation for dx1/dt:

dx1,t
dt

=
γ1

γ2 + x38,t
+ γ3 − γ4x1,t. (21)

where dx1,t

dt is a numerical estimation of the time derivative
of x1,t. where the new parametric structure γ1

γ2+x3
8,t

has been

used to replace the term 8
0.5+x3

8,t
+ 35.7

1.5+x3
8,t

that was identified
by Algorithm 1. Fig. 4 shows the evolution of the estimated
values of the parameters in equation (21) as a function of
the number of streaming data iterations of the Unscented
Kalman Filter.

VI. DISCUSSION

In this work we presented a novel approach to the iden-
tification of the structure and parameters of synthetic gene

networks; after introducing the general theoretical framework
we applied this approach to the identification of a synthetic
oscillator (generalised 8-gene repressilator) with promising
results. Ongoing work is focusing on two main directions to
extend this work. First, we are investigating the minimal sam-
pling rate necessary to yield adequate numerical estimates of
the first derivative dx/dt. Second, further results, not shown
in this paper, indicate that RNMSE is high when dynamic
noise and measurement noise are high: we are currently
working on finer characterisation of the “quality” of the
identification in terms of the Signal-to-Noise ratio. Finally,
in this paper, we only considered Unscented Kalman Filter.
The performance of other filtering techniques will be studied
as part of future work.
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