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Abstract— High-throughput data acquisition in synthetic bi-
ology leads to an abundance of data that need to be processed
and aggregated into useful biological models. Building dynam-
ical models based on this wealth of data is of paramount
importance to understand and optimize designs of synthetic
biology constructs. However, building models manually for each
data set is inconvenient and might become infeasible for highly
complex synthetic systems. In this paper, we present state-
of-the-art system identification techniques and combine them
with chemical reaction network theory (CRNT) to generate
dynamic models automatically. On the system identification
side, Sparse Bayesian Learning offers methods to learn from
data the sparsest set of base functions necessary to capture
the dynamics of the system into ODE models; on the CRNT
side, building on such sparse ODE models, all possible network
structures within a given parameter uncertainty region can
be computed. Additionally, the system identification process
can be complemented with constraints on the parameters to,
for example, enforce stability or non-negativity—thus offering
relevant physical constraints over the possible network struc-
tures. In this way, the wealth of data can be translated into
biologically relevant network structures, which then steers the
data acquisition, thereby providing a vital step for closed-loop
system identification.

I. INTRODUCTION

One of the goals in the Systems and Synthetic Biology is
to characterize possible network structures that can explain
the observed data. This is usually done by incorporating
the information content of noisy experimental data into
parametrized process models [1]. Then, these network struc-
tures give us a blueprint for the possible interactions between
chemical species. Building on that, one can understand a
complex biological process or even manipulated it by other
chemical species. Synthetic Biology is particularly successful
identifying small interaction networks in nature or even
building artificial ones from well understood biological parts
such as the repressilator. The need to grow this library of
well-characterized biological parts in order to build more
complex interaction networks drove the development of high-
throughput data acquisition. This type of data collection soon
generates a large volume of data which is incompatible with
the current model building methodology. Mainly because
of the current practice involves lots of fiddling with the
data and with the possible network structure by the users.
As the need for fast characterization of biological parts
drove development of high-throughput methods, the high-
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throughput methods drives the need for automatic model
building methods.

Automatic model building is standard practice in, for
example, machine learning, but usually, the building blocks
of such models are general nonlinear functions, e.g. Gaussian
kernels. In contrast to that, in Biochemistry we have a well-
understood family of nonlinear functions that can capture the
underlying chemical interactions. Even first principle models
can be built by these nonlinearities. For example, Chemical
Reactions Networks (CRNs) are often used to build such
models.

It is usually assumed that there is a one-to-one corre-
spondence between the dynamical model and the underlying
CRN structure. However, this is only true if one builds the
differential equations from the CRN structure. The other way
may yield multiple structures that exhibit the same dynamics.
Since the later direction is used in system identification, it
needs to be carefully investigated.

The existence of multiple network structures for a given
dynamics has been investigated extensively in [2], [3], [4].
However, this investigation was done with the assumption
of perfect measurements. The extension of the results has
been made to the uncertain case [5], [6]. As we show in this
paper, this allows us to handle noisy time series data and
to compute network structures using the same computational
tools developed for the noiseless case.

The goal of the paper is to develop a framework that
characterizes all possible network structures from time series
data. All possible structure means that it can be proven the
set of network structures, computed in our framework, is
complete and no other other network structure exists for
a given dynamical model. Complementing the underlying
optimization problem with further constraints on the dy-
namics or on the structure helps to reduce the number of
possible network structures, thus we can not only add a
priori knowledge to the identification process but measure
its impact on the number of possible network structure.
This allows us to compare the effect of different a priori
knowledge. Moreover, we can even characterize the set of
assumptions needed for a unique the network structure from
time series data.

Notations.: R>q denotes the nonnegative real numbers,
Ny is the set of integers including zero. [A];; denotes the
entry in the ith row and jth column of the matrix A. Fur-
thermore, [A];. denotes the ith row of matrix A, and diag|a]
denotes matrix which has the elements of a in the diagonal
and the rest is zero. Finally, A > 0 denotes a positive
semidefinite matrix and vec(A4) = [[A]1., [A]2.,...,[A]..]T



denotes transpose of the row expansion of matrix A €
Rnxm.

II. BACKGROUND

The concept of CRNs was introduced by Feinberg during
his seminal lectures, and since then it has become a widely
used modeling framework (see, [7]); first in process engi-
neering, then later in Systems and Synthetic Biology. The
dynamics of CRNs can be described by the class of kinetic
systems which offer certain algebraic proprieties that lead to
several powerful results (see, e.g., [8], [9] or [10]). There has
been a constant effort to characterize the systems theoretical
properties of kinetic systems (see, [11], [12] or [13] for more
details). This paper follows an optimization-based approach
which translates the dynamical and structural properties of
kinetic systems into the constraint set, see [14] or [3] for an
overview.

This section defines the system class represented by poly-
nomial Ordinary Differential Equations (ODEs) and defines
Chemical Reaction Networks as well; then establishes a
connection between the two. Building on these definitions,
we can introduce the optimization problems to compute
certain graph structures.

Let us define the following polynomial differential equa-
tion with state vector z € RY, and

.’ij:M(p(a’,‘)7 CC(O) eRgOv (1
where the matrix M € R"™*™ is the coefficient matrix and
o(x) : R, — RY, is a monomial-type vector mapping de-
fined as ¢;(z) =[]}, 2Pl =1, mand B e NJ*™.
Note that the system in (1), with certain sign constraints in
matrix M, belongs to the class of nonnegative systems, i.e.
R%, is forward invariant (see, e.g. Chapter 9 in [15]).

_Next, we define chemical reaction networks, which can be
characterized by three sets:

o asetof species: S={X; |i=1,...,n},

o aset of complexes: C = {C; | j =1,...,m}, where

n
Cj =2 a;X;
i € Ny j=1,....m, i=1,...,n,

aj; are called the stoichiometric coefficients,

« and a set of reactions: R C {(C;,C;) | C;,C; € C},
each ordered pair (C;, C;) has a reaction rate coefficient
ki; € R> so that the corresponding reaction C; — Cj
takes place if and only if k;; > 0.

j=1,...,m and

In the rest of the paper, we assume mass action kinetics, but
the results summarized in this section have been extended to
rational kinetics as well, see e.g. [16] for more details.

For computation purposes, we can characterize a CRN by
two matrices: the complex composition matrix ¥ € Ng*™
describes the complexes as follows

[Y]i; =

Qg Zil,...

and the set of reactions is encoded by the Kirchhoff matrix

kji if i 7 j
Aslis =9 2 5y ifi=3 @
1=1,l%i

The dynamics of a CRN can be written as a nonnegative
polynomial differential equation

i=YA" (x), x(0) € RL, 3)

where z represents the concentration vector of the species
and the monomial vector mapping ¥ (z) is defined as

2@ =[[" j=1...m W
=1

At this point, we can make a connection between a nonnega-
tive polynomial ODE and the dynamics of CRNs as follows:
a nonnegative polynomial ODE in (1) can be transformed
into the form of (3), i.e.

Mp(z) =Y Axtp (), 5)
if and only if the following condition is fulfilled
if [M]U < O,then [B]Zj > O, (6)
1=1,...,n,7=1,...,m.

If the above condition is satisfied, we call (1) a kinetic
system because it has at least one CRN realization. This
condition also ensures that there are no negative cross-effects
in the kinetic system, as it is explained in [17]. Furthermore,
using this condition a so-called canonical realization can be
computed from (1) (see [18] for the details). However, it
should be stressed that CRNs with different sets of complexes
and reactions can generate the same dynamics [17], [19].

In this paper, we assume that the set of used complexes
is known, which defines the matrix Y and consequently
the monomial vector mapping Y (). Note that the left
hand side of (5) is a multivariate polynomial function, while
the factorization on the right hand side defines a CRN
structure. Therefore, the sets of monomials in ¢ and ’(/)Y
are not necessarily identical. The reason for this is that the
monomials of pure product complexes do not appear in the
kinetic equations, but ¥ contains the monomials of each
complex, even if some of them have zero coefficients in the
equations. Naturally, ©»¥ must contain all the monomials of
. This means that without the loss of generality we can
assume that o = ¢¥ and write the matrix M accordingly.
Using this assumption, dynamical equivalence can be simply
represented as

M =YA,. )

The equation above shows that even with a fixed set of
complexes, several different A, matrices can lead to the
same dynamics. Hence, these different A, matrices are called
dynamically equivalent realizations of a kinetic system. The
total number of such realizations and their (structural and
dynamical) properties are the main focus of the past and the
current research presented in this paper.



It should be noted that a kinetic system—with a fixed set
of complexes—is uniquely characterized by the matrix pair
(Y, M), thus we can refer to it by this pair.

A. Reaction graph properties

In order to visualize our results, we use another rep-
resentation of CRNs, the so-called Feinberg-Horn-Jackson
graph, which is a weighted directed graph. In this graph, the
vertices are the complexes, the edges are the reactions, and
the weights are the reaction rate coefficients (k;;).

B. Optimization-based computation of realizations

Szederkenyi et al. showed that optimization problems can
be formulated to find realizations of the same kinetic system
with different dynamical or structural properties [2]. Jonhston
et al. also proved that there exists a unique superstructure
for each kinetic system, and all possible realizations are
contained by the superstructure as subgraphs [20]. This
superstructure is also called the dense realization since it
contains the most number of reactions for a given kinetic
system.

Based on the superstructure property, an algorithm was
developed to compute all possible realizations of a given
kinetic system [4]. This algorithm effectively excludes dif-
ferent edge patterns from the dense realization, and by
construction, it returns all possible realizations (see details
of the proof in [4]). Additionally, this algorithm can be
massively parallelized (see [21] for more details).

A Kkinetic system has not only a structurally unique dense
realization but a structurally sparse realization as well. How-
ever, this sparse realization is not always structurally unique,
meaning that multiple sparse realizations may exist and have
the same minimum number of reactions (i.e. edges in the
reactions graph).

Several graph properties can be translated as constraints in
an optimization problem, a non-exhaustive list includes weak
reversibility [22], complex balance [23], deficiency zero [24],
or deficiency one [25]. The resulting optimization problems
not only give solutions with the given graph properties, but
these may also give a certificate about the lack of such
realizations. For example, if one is looking for a weakly
reversible realization of a given kinetic system, and there
is provably no feasible solution to the optimization problem
complemented with the constraints of weak reversibility, then
there exists no weakly reversible realization for a given
dynamics. Thus, such optimization problems can be used to
characterize some of the structural and dynamical properties
of kinetic systems.

1) Computation of the dense realization: The computa-
tion of the dense reaction graph can be formulated as an
optimization problem. A possible approach for that would
be a mixed integer linear programming problem where the
number of reactions in the network has to be maximized,
see [2] for the details. To make the computation tractable
for large networks, an iterative algorithm to compute the
dense realization was reported in [26]. The main steps of
this algorithm are summarized below.

First, by combining (2) and (7), a linear programming
(LP) problem can be formulated with the following set of
constrains

M=YA,
[Aci; >0 i=1,...,m, j=1,....om i#j ()
[An]ii:_Z[AK]ji i=1,...,m,

=1

i

where dynamics of a kinetic system is given by (Y, M) and
A, € R™*™ js the decision variable of the optimization
problem.

In many cases, the edge exclusion from the reaction graph
is needed. Formally, a set 4 C R of reactions has to be
excluded from the network that can be written as a linear
constraint:

[Aﬁ]ji =0 (07, C]) € H. 9)

Second, we formulate the linear cost function as

maximize i i[E]” [Akij,

i=1 j=1

(10)

where the binary matrix E € {0, 1}™*"™ selects the elements
of A, into the cost function. Further details of the optimiza-
tion problem and the algorithm itself is given in [26].

C. Uncertain Kinetic Systems

So far, we encoded dynamics of a kinetic system by
(Y, M) and we assumed that the coefficients matrix M
is constant. We then computed certain graph structures. In
this section, we define a family of kinetic systems where
elements of the coefficient matrix belong to a set, denoted
by M which contains all admissible parameter vectors of the
kinetic system. Clearly, the properties of the kinetic system
depend on the set M. Therefore, we first characterize the
type of uncertainty considered in this paper. Then, building
on the results summarized in the previous section, we define
a convex optimization problem to compute the dense realiza-
tion and subsequently all realizations of the uncertain kinetic
system.

D. Optimization-based computation of uncertain realiza-
tions

We assume two properties of the parametric uncertainty.
First, the nominal matrix M € M is given, thus we have
one member of the family of kinetic systems. Second, the
nominal M is perturbed by an unknown matrix A, and
we only know the upper bound of the uncertainty in some
norm, e.g. in Frobenius norm: ||A||r < p, where p € R>q.
With these assumptions, we can characterize the possible
parameters vectors as vec(M) = vec(M) + pu where
vec(M) € R™™ is the vectorization of the parameter matrix
M € R™™™ and u € R™ is given as u = vec(A).

The uncertainty set around the nominal M is given by

(1)

M = {vec(M) + pu, ||ullz < 1}.



This type of uncertainty describes a sphere around vec(M ),
which can be translated to an second order conic (SOC)
constraint as follows

Ivec(M) — vec(M) |3 < p (12)

where vec(M) is an optimization variable. We can add (12)
as an SOC constraint to the optimization problem defined in
(8), (9), (10) and compute the dense realization with spherical
uncertainty using the Algorithm 1 from [26].

In this paper, we are more interested in the case where
the uncertainty not uniform in all directions. In this case,
the ellipsoidal uncertainty is defined by 3 € R™™*™™ and
3. > 0 and the corresponding uncertainty set is the following

M = {vec(M) + Ru,||ul|]> < 1},
where R € R™*™™ js defined by the Cholesky decompo-
sition, ¥ = R T R. Then, using the same derivation as above,
the modified M can be represented as a SOC constraint

IR (vec(M) — vec(M))||3 < 1. (13)

Again, just as in the spherical case, we can compute the
uncertain dense realization. For the complete treatment of
uncertain kinetic systems and the proofs, see [5]. It should
be mentioned that other types of uncertainty are possible
for a kinetic system, as long as the uncertainty set can be
translated as convex constraints, the dense realization exists,
see [5] and [6].

Besides the framework described in this paper, a useful
application of this technique could be the design of dynam-
ics, i.e. designing a kinetic system which operates inside the
prescribed operational limits or design envelope, see [27] for
details on CRN controller design.

At this point, we have the tools to compute the uncertain
dense realization. As it was shown in [5] as well as [6] that
the all possible realizations can be computed in the uncertain
case as well.

In summary, in order to calculate the dense and subse-
quently all realizations, we need to define Y, the nominal
coefficient matrix M and a spherical or ellipsoidal uncer-
tainty. Therefore, the next step is to compute M from time
series data with the assumption of that Y is known.

III. PARAMETER ESTIMATION

There are many possible ways to estimate the parameters
of a kinetic system from time series data, see e.g. [28] or
[29]. In this paper, we work with the following assumptions:
all state variables can be measured, and the set of complexes
(i.e. the matrix Y') is known a priori. The former assumption
can be relaxed, by using state estimation for the unmeasured
states. However, Y is usually assumed to be known, because
it represents our knowledge about the participating chemical
complexes.

For the purpose of parameter estimation, we need to
discretize the kinetic system in (1). Using sufficiently small
sampling time, we apply the forward Euler method and get

z(0) = w0, k=1,...,N, i=1,...,n,

where tj, is the sampling time point, x;(tj) is the ith state
variable at time tj, o € RZY, are the initial values, the
yY (x) is the ith element of vector mapping " (), the
vector [M];. is the ith row of matrix M, the h is the
sampling time, and the N is the last sampling time point.
For the framework later on, we need the time derivate of x.
It can be estimated in many ways (see [30] for details). In our
case, it is given from the forward Euler method. Therefore,
we assume that the measurement of ith state variable of the
discrete kinetic system is available in this transformed form

yO(ty) = ;i (tr) _hxi(tk—l)

Then, we get a linear process for each state variable which
is linear in parameters, and the ith state is given as

77 (1, 0) = @(te-)0DT + vi(tr),

. k=1,...,N,i=1,...,n.

5)

where the parameter vector is defined as #(Y) = [M], . and
the regressor vector is given as

B(ty_1) = (16)
(1 (x(tr—)), P2(x(te—1))s oy Ym(z(tr-1))].

and the measurement noise is v; ~ N(0,0?). We assume
that the distribution of measurement noise is the same for
all the output channels.

It must be emphasized that kinetic system with mass
action kinetics is always linear in parameters, therefore the
standard algorithms and tools for analysis from the parameter
estimation literature can be applied in this case [1]. For
example, we can use the well-known Least Squares method
to calculate the parameters of (15) as the following
60 = arg;nin%lly@ — 0[5 (17)

The problem with this path is that the Least Squares
method does not promote sparsity. In fact, it rather tries
to associate non-zero value to all parameters. However, the
dynamics of a state variable is usually not driven by all the
monomials in ¢(x), but only a subset of them.

Therefore, we need to have either a constrained param-
eter estimation method, which knowns a priori the zero
coefficients or a parameter estimation method that promotes
sparsity. Among many candidates for the later one, Sparse
Bayesian Learning gained popularity recently, mostly be-
cause of guarantees for convergence and sparsity.

A. Sparse Bayesian Learning

Sparse Bayesian Learning was proposed by Tipping and
was applied to Relevance Vector Machines where the task
is to find a sparse regression or classification [31]. In-
dependently from the Bayesian framework, Candes et al.
developed a framework that uses iterative reweighting of the
L1 norm penalty on the parameters [32]. Candes ef al. makes
the connection to MM algorithms, which is a fundamental
way to iteratively solve non-convex optimizations problems.
Recently, Wipf et al., building on the work of Candes
and Tipping developed a framework which uses iterative



reweighting of either L1 or L2 norm to find sparse solution
of broad range of problems, e.g. sparse signal representation
[33], [34], automatic relevance determination [35], source
localization on MRI measurements [36].

Here, we only give a short outline of the Sparse Bayesian
framework, and therefore readers are strongly encouraged to
read [34] and [33] for a thorough treatment of the subject.
The following introduction follows the notations from [33].

Throughout the derivation, we assume that we have the
following process model

y=®0+v (18)

where y € RY is the measurement vector, ® € RV*™ jg

a dictionary of features, # € R™ is the parameter vector,
and v ~ N(0,\I) is the measurement noise. Our goal is
to estimate the sparsest 6, which then select the sparest
dictionary to describe the measurements.

As first step in the derivation, the Least Squares problem
in (17) can be transformed into a Gaussian likelihood as

1
p(010) xex (~ 3y — 013

The prior information about the parameters is expressed
in terms of non-negative latent variables v € RZ; as follows

(19)

p(0;) = m%/\/(ei; 0,7)¢(v:) (20

YiZ

p(0) o Hp(ei),

where ((v;) is a non-negative function. This form of the
prior distribution allows us to express wide range of penalty
functions that are needed to promote sparsity in the parameter
vector [37]. This structure already hints that if we can set
the variance of some of the parameters to zero, then the
corresponding parameter value becomes zero. To achieve that
we need to introduce some more technical details.

For a fixed +, we have an approximate prior as

py(0) = [TV (055 0,7:)¢ (7).

=1

21

Using the Gaussian prior and likelihood, we get an approx-
imate posterior

R 0)p~ (0
0ly) = PRI = N 20) @
vy
where
po = TOT(AN+drd") "y (23)
Y = I—TO® (A +oI'd")tor (24)

where T = diag[y]. The next step is estimating - in a way
the is amenable to the above computation. According to
[34], an estimator for «y can be constructed using variational
representation which involves solving

y = argmin / p(y10)p(6) — P (8)|d0 25)
Y
= argmax / p(ylo) [TV (6:;0,7:)¢(7:)dbi. 26)
o .

i=1

The above expression has analytical solution, after applying
—21og(+), the cost function is
Cly) =y S, "y +log £, + > f(v) @7)
i=1
where f(7;) = —2log(¢(v;)) and ¥, = Al + ®T'd".

The above cost function in not convex, but an iterative
optimization can be established mainly using results from
convex analysis. First, the data dependent term in (27) can
be reexpressed as

Ty—1 1 s N~
y ¥,y =min |y — 0|5 + . (28)
0 A i=1
Then, we can create a strict upper bounding function on C'(7)
by

1 " 62
C(,0) = 1lly - o0|[5 +Z; +1og [By] + > f(7)-
i=1 " i

If we minimize over ~, then

C(0) = Iglolc(% 0) = |ly — ®0][3 + \g(0) (29)
where
) n 92
9(6) = min 25 + log |5y | + zlj Fon). (30)

In the rest of the paper, we assume that f(y;) = 0, for
i =1,...,m because we are interested in maximal sparsity.
For further details on f(;) and comparison of different
regularization terms, see [38].

In the rest of the analysis, we focus on (30). The log]| - |
is a concave function on semidefinite matrices [39] and X,
is a positive semidefinite matrix and an affine function in .
Thus log |3, | is a concave, non-decreasing function in y and
can be expressed as

log |2,] :m>if)1z—r’y—h*(z) 3D

where h*(z) is the concave conjugate of log |, | and given
by

h*(z) = glzlg 2Ty —log|%,|. (32)
Based on that, we rewrite (30) as
g(0) = min 0T+ 2Ty — h*(2). (33)
Fixing 6 and z, then optimizing over -y, yields
NPt =226, i =1, m. (34)
Substituting v°P* back to (33), we get
g(0) = 121121511:212,2Z 1/2|9i| — h*(2). (35)

Now, we only need to calculate the optimal z. For a fixed
v, we get
2Pt = V., log|%,| (36)
= diag[®' %, '®] = diag[® " (A + OT'®")P].
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Fig. 1. The figure depicts the overall scheme of the framework developed in
this paper. D denotes the time series data collected from experiments. Then,
this information is used to estimate the parameter of the model M, along
with the covariance matrix X. From these, the uncertain dense realization is
computed by Algorithm 1 in [26]. In the final step, all possible realizations
are computed and this set can be further analyzed. The framework allows us
to complement either the parameter estimation or the structure computation
with constraints, thus the possible network structures can be further reduced.

Then, we can substitute I' = diag[y°P!] to get a value for
2°Pt,

This yields an iterated optimization problem

o Step 1: initialize each z; = 1,7 = 1,.
o Step 2: 0 = argmlne lly — <I>9||2 + 2)\2 271/2|9 |

« Step 3: compute 7" = |9 [, i L,m
« Step 4: compute z°Pt = V7 log |Ey|
e Step 5: iterate Step 2, 3 and 4 until v is converged to

some value.

It should be noted that the first iteration of the above
algorithm is the LASSO optimization, and we try to improve
on that, hence the name iterated reweighted L1 optimization.

IV. CHARACTERIZING NETWORK STRUCTURES

At this point, we can merge the Sparse Bayesian Learning
algorithm and the computational tools developed for CRNs
into a framework which is shown in Figure 1. As a first step,
time series data are feed to the parameter estimation step
(see, Section III-A), then using the optimization problems
from Section II-D, the uncertain dense realization is com-
puted. From this, all possible graph structures are computed.
Thus, this framework transforms the available information in
the time series data into possible network structures relying
only on few assumptions.

Both parts of the framework solve optimization problems.
Therefore these optimization problems can be complemented
with constraints enforcing structural or dynamical properties.

A. Examples

We illustrate the framework shown in Figure 1 on an
example. This example was presented in [28] as a benchmark
problem for network inference. The network structure is
shown in Figure 2 and its CRN formulation is given as

(37
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Fig. 2. This example network is taken from [28]. The parameters of the
network are k12 = 0.3386, k1,3 = 0.8244, k51 = 0.8496, k52 =
0.4290, k3,5 = 0.7364 and k4,3 = 0.5630.

Fig. 3. The dense realization computed from data with 02 = 10~% and
confidence level a@ = 0.05. The parameters of the network are k1o =
0.2920, k5,2 = 0.2645, k5,1 = 0.9208, k1,3 = 1.2262, k4,3 = 0.6108,
k’3,5 = 0.6495, k371 = 0.3227, k372 = 0.1800 and k‘4’1 = 0.5714.

and
—1.163 0 0 0 0.8492
0.3386 0 0 0 0.4290
A = 0.8244 0 —-0.7364 0.5631 0 (38)
0 0 0 —0.5631 0
0 0 0.7364 0 —1.2782

the CRN has 5 complexes and 6 reactions, the coefficient
matrix is given as M = Y A,. The dynamically equivalent
(noiseless case) dense realization has also 6 reactions and
the network has no other dynamically equivalent realization,
i.e. in the noiseless case only one network structure exists.

1) Least Squares Method: In the first part, we test the
performance of the simple Least Squares method assuming
that the zero elements of matrix M are known, i.e. we have
a constrained Least Squares with equality constraints (LSE).
For this part, we generated 50 experiments with different
initial values, sampled with Latin Hypercube sampling be-
tween [0, 1], and simulated the process for T' = 10 sec. For
each state variable, we had the following measurement noise

2 =104, and the sampling time was h = 0.01.

From the LSE, the covariance matrix is available in
close form. We then set the confidence level at = 0.05
and computed the dense realization of the uncertain kinetic
system with Algorithm 1 from [26]; the dense realization
is shown in Figure 3. This realization has 9 reactions,
shown in Fig. 3), thus the extra three reactions open up
the possibility for multiple realizations. After computing all
possible realizations using the algorithm from [21], we got
56 structurally different reaction networks.
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Fig. 4. Number of realizations depending on the variance of the measure-
ment noise. LSE case.

Clearly, even in this generous scenario—all state variables
are directly measured, limited measurement noise is added—
gave us several different network structures within the given
uncertainty bounds.

As a next step, we show for this example how the number
of possible structures depend on the measurement noise. For
that reason, we generated 100 different o values between
10~* and 10'. Then, the overall procedure from Figure 1
was done for all the different noise scenarios. The Figure 4
shows the results.

As we can see in Figure 4, the number of realizations
saturates above a given noise level. This is because we have
reached the combinatorially possible number of realizations,
which is given by

R
Roae = zd: <R7ld>

i=1

(39)

where R, is the number of edges in the dense realization.
If we have some prior information on the minimum number
edges in the network, then the index ¢ can start from that
number. Clearly, then we have fewer number of possible
network structures.

If we reach the maximum number of possible realizations
for a kinetic system that means that the parameters estimation
provided no restriction on the possible structures. Therefore,
by computing Riz o) where R) is the number of realizations
for a given noise level, we have a simple measure which
tells us how much information we gained from the parameter
estimation about the possible network structures.

2) Sparse Bayesian Learning: In the second part, we test
the performance of the SBL algorithm. The example is the
same as before, but this case we did not assume we know
the zero entries of M; it will be estimated by the SBL
algorithm. We have generated only 10 different initial values
and simulated the system for 7" = 10sec with sampling time
h = 0.1. Thus, we have significantly less measurement data
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Fig. 5. Number of realizations depending on the variance of the measure-
ment noise. SBL case

for all state variables, then in the previous case.

Again, we generated different measurement noise levels
and executed the overall procedure from Figure 1. The
results of this part is summarized in Figure 5. As we can
see, we have significantly fewer possible realizations in the
investigated range. In this range of noise level the position of
the zero elements in the M matrix was correctly estimated,
outside this range the sparsity pattern was not estimated
correctly. Additional measurements could potentially extend
the range where the sparsity pattern can be restored, but this
falls outside of the scope of the current paper.

At this stage, we completely characterized the possible
network structures. By adding different a priori knowledge,
we can measure the effect of this knowledge on the number
of structures and compare them with each other. From the
dense realization, shown in Figure 3, we identify three
reactions that are possible reactions given the data, but the are
not part of the original network. By excluding these reaction
one at the time, we can compare the resulting number of
realizations. This is shown in Figure 5, shown with different
symbols.

V. CONCLUSIONS AND FUTURE WORKS

We have developed a framework that computes the pos-
sible network structures from time series data. Assuming
that all state variables are measured and the participating
chemical complexes are known, we have used the Sparse
Bayesian Learning to estimate the parameter of the dynami-
cal model. From the statistics of the parameter estimation all
possible network structures have been computed. We have
given a simple metric to judge the information content of
the time series data as a ratio of the current number of
network structures and combinatorially possible ones. We
have also shown that we can control the number of network



structures by adding additional a priori information. In fact,
we can compare the effect of different a priori information
on the number of possible structures, since without any
constraints the framework—by construction—provides all
possible network structures. As future work, we would like to
further characterize data and noise dependence of the Sparse
Bayesian Learning algorithm and add further constraints
to limit the possible network structures or automatically
generate the set of constraints needed for a unique network
structure.
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