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Abstract— Unwieldy challenges, such as emergent behaviour
or lack of compositionality, hamper the rational engineering
of synthetic biomolecular systems. The use of mathematical
models would address many of these challenges, yet current
practices in synthetic biology make obtaining them time and
resource intensive. More importantly, in many cases, the process
of obtaining data for mathematical models is guided by intuition
rather than rigorous modelling requirements.

To make better use of the available resources, this tutorial
proposes an end-to-end framework for biomolecular system
identification. Given a biomolecular system inside a biological
organism, the framework leverages on system identification
techniques to automate the initial proposition of candidate
models for the system of interest. Then, statistical methods guide
the optimal design of experiments that enable discrimination
and calibration of the most plausible model candidates for the
underlying system.

We foresee that, by establishing a closed-loop between data-
gathering and model identification, the outlined approach
will accelerate and standardise computational modelling of
biomolecular systems.

I. INTRODUCTION

To solve the key challenges in synthetic biology, we need
to have the capability to regulate quantities of interest (e.g.,
biomolecules amounts) inside cells [1], [2]. Such capability
can be gained by, for example, designing internal or external
feedback loops [3], [4].

Successful feedback control approaches in synthetic biol-
ogy show that model-based controller design is necessary to
achieve the desired closed-loop behaviour [5], [6]. It is also
evident that identifying models for biomolecular systems is
challenging, and novel system identification approaches are
needed to tackle this challenge [1].

This tutorial presents an end-to-end framework where
experimental design, data collection and model identification
are executed in an automated fashion. Such a framework
allows users to fully harness the potential of lab automation
and eventually to more efficiently tackle the complexity of
biomolecular systems. The key components of such a frame-
work are the algorithmically guided design of experiments
and the automated model structure identification from the
measurement data [5], [7].
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These two key components are often neglected in
biomolecular system identification because of the compu-
tational demand of the underlying algorithms. However,
recent surveys in system identification highlight experiment
design as a vital step [8], [9]. An automated model structure
identification procedure is also crucial because as the amount
of available experimental data increases, building manually-
curated models becomes impractical.

It should be emphasised that, while this tutorial focuses
on one set of tools and metrics, individual components can
be replaced with available alternatives to adapt or improve
the performance of the overall framework. Furthermore, the
presented set of tools and metrics can be applied individu-
ally to gain a better understanding of certain aspects of a
biomolecular model.

The paper structure follows the flowchart presented in Fig.
3. Each section, after the preliminaries, introduced in Section
II, corresponds to a main step within the general framework
of Fig. 3.

II. PRELIMINARIES

A. Model Class

The model class for this tutorial is the class of nonlinear
nonnegative systems, which is given as

ẋ = f(x, u,θ), x(0) = x0(θ) ∈ Rn+
y = h(x,θ), (1)

where x ∈ Rn+ denotes the states of the model, usually
molecular counts or concentrations, hence the nonnegativity
requirement of the states. To have nonnegative states, the
vector field f(x, u,θ) has to be essentially nonnegative [10].

There are different levels of modelling details that can
be captured in the modelling process, e.g. from Chemical
Master Equations to rule-based models [2]; however, for
model identification, the class of nonnegative systems has
the many tools readily available.

B. Data measurement

The structure of h(x,θ) depends on the device(s) available
for measurements. In most cases, biological signals or ge-
netic activity is observed via fluorescent reporters—proteins
that emit light at a specific wavelength after excitation at a
different wavelength.

Some of the devices typically used in wetlabs
are plate readers (which provide time-series data),
chemostats/turbidostats (which correspond to a miniature
bioreactor where cellular density and/or growth conditions
are kept constant), flow cytometers (which provide snapshot



measurements from hundreds of thousands of cells [11]),
and microfluidics combined with video microscopy (i.e.
an array of microfluidic chambers observed in a camera’s
field of view). Each device comes with its own capabilities,
which defines h(x,θ), see e.g. Section VI in [3].

During the model identification process, our goal is to
characterize f(x, u,θ) (and sometimes h(x,θ) as well) by
executing experimental planning techniques introduced in
Section VI.

C. Input design

In order to manipulate the state of a biomolecular system,
we have two main options: either we can change the initial
values of the states, or we can design input signals, i.e.
perturbations to the system. The latter one is more suitable
for a wide range of experiments because having a tight,
known control on the initial condition might not be feasible
in a given experimental setup.

In terms of input, there are several types of molecular
mechanisms that can be used to change the internal state of a
biomolecular system: mostly chemical inducers or blockers;
they diffuse through the cell membrane and enhance or
reduce gene expression. A downside of these regulatory
molecules is that they need to be washed out from the sample
to decrease the input signal, which requires a special device
setup, e.g. microfluidic chambers, chemostats or turbidostats.

An optimal way to design input signals for (biomolecular)
systems is discussed in Section V.

D. The future of biomolecular System identification

There are many open challenges in biomolecular identifi-
cation, which are stemming from the complexity of the prob-
lem and the lack of biosensors. However, the combination of
lab automation, precise gene editing using CRISPR, and de-
creasing the cost of DNA synthesis, combined with systems-
and-control-theory-guided experiments opens exciting novel
avenues to tackle these challenges.

For example, the state-of-the-art system identification
techniques are frequency-domain based and typically use
multi-sine input signals [9]. At the cellular level, we are
currently ill-equipped for the easy generation of multi-sine
perturbations. One promising approach for the generation
of dynamic perturbations, including potentially multi-sine
perturbations, is optogenetics (where light induced protein
conformation change affects gene expression) [12].

III. AUTOMATIC GENERATION OF DYNAMIC MODELS

A. Estimating model structures from time-series data

Estimating (learning) model structure from time-series
or steady-state data has been extensively studied in the
literature, e.g. in [13], [14], [15]. Some reports formulate
the problem as an integer programming or a multi-objective
optimisation problem where one needs to find a Pareto
optimal solution. [16].

Recently, another approach has emerged where the model
structure estimation problem is formulated as an (undeter-
mined) linear regression problem. If the resulting problem is

underdetermined, then it has an infinite number of solutions.
However, the problem can be regularised by introducing
a penalty on model size/complexity, which then leads to
solutions given in terms of sparest model structures [17].

Nonlinear ODE models in biology typically have few
right-hand side terms to capture the dynamics. For example,
a Lotka-Volterra system, which has two equations and two
right-hand terms per equations, see e.g. [15]. For the right
choice of parameters, the dynamics, encoded by these four
terms in two equations, has a stable limit cycle, an explicitly
nonlinear feature. Another typical example is the Lorenz
attractor, which has two terms per equations and exhibits
chaotic dynamics. Such examples indicate that sparse models
are capable of capturing complex dynamical behaviours.

Typically, the dynamics of biomolecular systems can be
captured using mass action kinetics, Michaelis–Menten ki-
netics, or Hill kinetics [2]. Mass action kinetics leads to right-
hand-side ODEs where the parameters appear as factors in
a linear combination of nonlinear (i.e. product) terms. An
appealing feature of mass action kinetics is that it is linear
in parameters, so all the parameters can be estimated in the
framework presented next.

B. Estimating both ODE structure and parameters

Let us assume that the models under consideration can be
written as:

ẋi = φ(x)Θ̄.,i, i = 1, . . . , n, (2)

where x ∈ Rn+ is a vector of state variables, φ(x) : Rn+ →
Rm+ is a row vector of nonlinear functions (representing the
possible kinetics), and the parameter vector for each state are
the columns of Θ̄ ∈ Rm×n. In this paper, we only consider
initial value problems, thus x(0) = x0 is also given. The
solution of the differential equation is denoted by x(t).

We chose to show the model equation as in (2) to em-
phasize the fact that each state equation might depend on all
other state variables. Furthermore, we assume that we can
measure all of the state variables (full state observability).
The measurement matrix is then formulated as

Xi,j = xj(ti), i = 1, . . . , p, j = 1, . . . , n, (3)

where, ti is the time of the measurement at sampling time
point i, and we collect p samples for each state variable.

The regressor matrix A in Fig 1. can be computed by
evaluating φ(x) on the measurement data, namely

Ai,j = φj(X
>
i,·), i = 1, . . . , p, j = 1, . . . ,m. (4)

In (4), we assume that m � p, i.e. we have many more
right-hand-side terms, called “candidate functions”, than data
point, thus A is rank deficient.

For example, based on domain knowledge, one can as-
semble a set of candidate functions as polynomials:

φ(x) =
[
x1 x2 x1x2 x2

1 x2
2 x2

1x2 x1x
2
2

]
. (5)

The vector of functions in (5) represents a set of candidate
functions for a two-state chemical reaction network with
mass action kinetics.
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Fig. 1. For each state variable, measurements are stored in X and the time
derivative of x, denoted ȳ, is calculated. The set of candidate functions are
stored in φ, evaluated on X, and stored in A. Solution to the minimisation
problem define the returned model structure and correspond to the sparest
θ which fit the linear regression problem at best.

Additionally, we can compute the time derivative of x(t)
as

ȳi(t) =
d

dt
xi(t), i = 1, . . . , n. (6)

There are multiple ways to numerically approximate the time
derivative from measurement data, see e.g. [18], [19], [20].

Then, for each state, the parameter vector θ can be esti-
mated as a solution of the minimisation problem described
in Fig. 1, and the results collected into ˆ̄Θ. The estimated
model is then given as

˙̃xi = φ(x̃) ˆ̄Θ.,i, i = 1, . . . , n. (7)

It is important to point out that for this model-structure
estimation process to be generate biologically relevant mod-
els, domain-specific constraints need to be added to the
estimation process. These constraints can be used to enforce
non-negative states, bounded trajectories or stability [21].

The above presented estimation procedure is implemented
in the ODE composer toolbox [22].

C. Generating set of candidate models

The next step of the framework needs a set of candidate
models. For this reason, the candidate models are generated
using the residual error and number of the non-zero candidate
functions, see Fig. 2. Ahead of model selection, these candi-
date model structures are ranked in the preliminary analysis,
as discussed in the next section.

IV. PRELIMINARY ANALYSES OF THE CHARACTERIZED
STRUCTURES

Once plausible network structures have been defined,
we move to the next stage in our framework (Fig. 3)
and carry out preliminary analyses that aim at assessing
parameter identifiability and sensitivity to the measurable
outputs. These analyses are performed on all candidate model
structures.

Identifiability analyses assess the possibility of assigning
unique values to the parameters θ of a model structure M
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Fig. 2. Generating set of candidate models for the model selection step.

from the system output: a prerequisite for model calibration.
Identifiability is distinguished in structural identifiability and
practical identifiability.

A. Structural identifiability

Structural identifiability relates to the model structure M
and experimental scheme (denoted by ϕ): the set of exper-
imental conditions including time-varying stimuli, sampling
times, experiment duration and initial conditions. The aim
of structural identifiability is to assess the possibility of
estimating parameters under ideal conditions (i.e. noise-free
and time continuous data). While multiple methods have
been developed for structural identifiability [23], [24], [25],
the analysis is rarely performed due to the computational cost
associated with the required symbolic manipulations, which
scales with model non-linearity and complexity. To test
local structural identifiability, we use the STRIKE-GOLDD
toolbox [26], wherein the analysis is framed as a generalisa-
tion of observability. Specifically, the software augments the
state vector x with the parameter vector θ and recursively
computes a generalised observability-identifiability matrix
using the Lie derivatives of the output function h(x,θ).
Once the minimum number of Lie derivatives for which the
matrix has full rank has been computed, the calculation of
each additional derivative is followed by the reassessment of
the rank. The computation stops either when the maximum
number of Lie derivatives (i.e. the length of the augmented
state vector minus one) has been reached or addition of a new
derivative does not change the rank. At this stage, the full
rank of the observability-identifiability matrix ensures local
structural identifiability, while a lower rank denotes lack of
identifiability for a specified list of parameters.

B. Practical identifiability

Practical identifiability quantifies the expected uncertainty
of the parameter estimates of each model structure, subject
to a hypothetical experimental scheme. Using Monte-Carlo
sampling, numerous (ideally > 500) noise-corrupted time-
series are simulated in response to a predefined experimental
profile. After running parameter estimation on each in silico
replicate, we obtain a set of parameter vectors which are
assumed to be contained in an hyper-ellipsoid [27]. Principal
Component Analysis (PCA) applied to the 90% interquartile
range of the solutions hence details the correlation between



parameters (eccentricity of the hyper-ellipsoid) and uncer-
tainty in their estimates (volume of the hyper-ellipsoid).
As described in [27], additional quality measures can be
computed from the hyper-ellipsoid for the sake of comparing
the expected informative content of experimental schemes.

C. Sensitivity analysis

Through a global sensitivity analysis, the parameters of
each model structure are then ranked according to their rel-
ative influence on the model predictions y. The contribution
of each parameter θ to the observables o in an experimental
scheme ϕ is assessed through diverse importance factors
derived from the relative sensitivities (see, e.g [28]),

sϕ,oθ =
∆θ

∆yϕ,o
∂yϕ,o

∂θ
. (8)

Considering that only initial estimates of parameters are
available, the ranking is calculated for nlhs parameter vectors
θ ∈ Θ, obtained through Latin Hypercube sampling of the
parameter space Θ, as constrained by available experimental
data. In this method, nlhs samples for each parameter are
obtained by dividing its range in nlhs non-overlapping inter-
vals and then randomly selecting a value from each interval.
Among the importance factors computed to rank parameters,
δmsqr can be used to quantify the sensitivity of a specific
model structure to each of its parameters. The definition of
δmsqr for a specific parameter θ for a set of nϕ experiments,
no observables, and T sampling times is:

δmsqrθ =
1

ND

√√√√
nlhs∑

mc=1

nϕ∑

ϕ=1

no∑

o=1

T∑

j=1

([sϕ,oθ (tϕ,oj )]mc)2, (9)

with ND = nlhsnϕnoT .
It is important to note that, due to its generality, the above

formulation masks the effect of a specific experiment or ob-
servable on parametric sensitivities. However, an analogous
analysis can be run to gather information on parameters that
are more relevant in a given experimental scheme.

We run practical identifiability, sensitivity analysis, and
optimal input design (described in the following) using the
computational modules implemented in the AMIGO2 toolbox
[29].

V. OPTIMAL EXPERIMENTAL DESIGN FOR MODEL
DISCRIMINATION

The availability of a series of model structures Mi(θi),
with i = 1, 2, ..., P , demands the solution of model selection:
the problem of discriminating the most plausible model
among rival candidates. As the model selection is seldom
performed due to the high computational and experimental
costs it introduces, we address it using sequential Optimal
Experimental Design (OED). Indeed, OED provides a suite
of statistical methods to guide the definition of experimental
schemes (time-varying inputs, measured outputs, sampling
times and experiment duration) that balance the trade-off
between the incurred costs and the information gained on
the biological system.

Adopting a frequentist approach to model discrimina-
tion, we design optimal experiments by maximising the
divergence of the predicted responses of pairs of models
and their associated confidence intervals. To overcome the
burden of designing

(
2
P

)
experiments to select among P

candidates, we focus on the design of experiments that
enhance discrimination of the two most promising model
structures according to the goodness of fit ranking on existing
datasets. Following [30], we embed OED for model selection
in a dynamic optimisation framework and search for the
experimental scheme that maximises:

ϕT = arg max
ϕ∈Φ

E
θ1∈Θ1,θ2∈Θ2

∫ tf

t0

[ŷ(ϕ,θ1, t)−

ŷ(ϕ,θ2, t)]
TQ[ŷ(ϕ,θ1, t)− ŷ(ϕ,θ2, t)]dt,

(10)

where θi, with i = 1, 2 is the parameter vector of model
Mi, whose entries are randomly sampled from a normal
distribution with mean and standard deviation set by the
current parameter estimate value and confidence interval.
ŷ(ϕ,θi, t) denotes the predicted responses of model Mi,
parameterized with θi, under the experimental scheme ϕ.
Finally, Q is a diagonal weighting matrix accounting for
magnitude differences in the simulated observables.

To save computational effort, we restrict the design to
the decision of control values of the time-varying inputs
(i.e. piece-wise constant functions of fixed duration) used
to stimulate cells growing in a microfluidic device. This
corresponds to addressing an optimal input design (OID)
problem. We note that the assumption of a fixed sampling
frequency minimises the impact that the continuous approx-
imation of the output functions, which saves computational
time, exerts on the loss of the notion of sampling times
[31]. Numerically, dynamic optimisation relies on control
vector parametrization (CVP), a direct approach that converts
the infinite dimensional problem into a finite nonlinear
programming problem and proves amenable to large scale
ODE models. The time-series (u∗j ,yj) gathered with the
optimally designed experiment are used to augment the
available dataset and update the parameter estimates of all
model structures. This supports the re-ranking of the models
according to their adequacy. The steps described above are
repeated until one model M is considered a winner, as it
outranks the best rival by a (subjectively chosen) quantitative
threshold ε.

VI. OPTIMAL EXPERIMENTAL DESIGN FOR MODEL
CALIBRATION

The outcome of model selection is a structure M with
an initial set of parameters θ which we assume to be in
an arbitrarily small neighbourhood of the optimal values θ∗.
Once the structureM has been set, our objective is to refine
parametric estimates so that θ = θ∗: this is the goal of Model
Calibration.

We treat Model Calibration as a dynamic optimisation
problem [27]; our objective is to maximise the amount of
information obtained from a in vivo experiment. We estimate
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Fig. 3. Flow chart of the framework for systematic modelling of biological systems. Existing time series D is leveraged upon to postulate a set of model
structures. These are ranked according to their plausibility in light of the data. Once preliminary analyses (identifiability and sensitivity) are carried out on
each model candidate, the 2 top ranked model structures are better discriminated using Optimal Input Design (OID) for model selection. The experiment is
run and the segment of data acquired at iteration j, (u∗j ,yj), augments the pre-existing dataset. All model structures are re-calibrated on the updated data
and re-assessed in light of them. Sequential OID for model selection is repeated until the best model, i.e. the one that outranks all rivals is identified. Hence
parameter estimates are refined using on-line OID for model calibration. This loop terminates when the improvement in the accuracy of the parameter
estimates meets a user-defined threshold ε.

the information yield of an experiment using the Fisher
Information Matrix defined as:

F =

no∑

o=1

T∑

j=1

∇θyo(tj | θ) Qo(tj) ∇θyo(tj | θ), (11)

with: yo generic observable of the system (e.g. a fluorescent
reporter, in total: no), Qo(tj) ∈ Ω ⊂ Rmoj×moj nonnegative
definite symmetric matrix (related to the experimental error),
T number of time points. Many measures of information Ψ
are defined over F , two of the most popular ones are D- and
E-optimality. D-optimality seeks to maximise the det(F);
via the Cramer-Rao bound, we can easily see that this corre-
sponds to minimise the lower bound estimate of the product
of the variances associated to the parametric estimates. E-
optimality, instead, seeks to maximise the minimum of the
eigenvalues of F ; i.e. minimise the maximum uncertainty on
parametric estimates.

To maximise the information yield, we can optimise either
(a) the input time profile or (b) the observables we measure

or (c) the sampling times—as well as any combination of
the three. For the sake of simplicity here we focus on
optimisation of the system’s input only; this is also known as
Optimal Input Design (OID) and can be formalised, at each
iteration k, as the following optimisation problem:

u∗k = arg max
u∈ U

Ψ(F(M(θk, u))). (12)

At this point we leverage on the cyber-physical nature of our
platform [32] to translate the input we have identified solving
the optimisation problem u∗k into a physicochemical stimulus
to cells trapped in a microfluidic device and periodically
observed via videomicroscopy. The response of the cells yk
is used to update parameter estimates; this is cast again as
an optimisation problem whereby, in light on the new data,
we seek to find the new parameter estimates θ that minimise
the sum of the squares of the residuals (LSQ) between the
model prediction and the experimental data

θ∗ = arg min
θ∈Θ

LSQ(yk,M(θk, u
∗
k)). (13)



We then iterate, potentially within the same experiment (on-
line Optimal Experimental Design), over this loop: stimulat-
ing the cells, quantifying their response, updating our model
and redesigning optimal inputs, in light of the new model,
until we detect parametric convergence.

VII. CONCLUSIONS

This tutorial has presented a framework for the identifica-
tion of biomolecular systems using a four-step process (auto-
mated model building, preliminary analyses, model selection,
and model calibration). The framework has demonstrated
a possible integration of different computational tools [21],
[26], [29] and a microfluidics platform to provide the users
with a data-driven, efficient solution for biomolecular system
identification.
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