
Identifying Biochemical Reaction Networks From Heterogeneous Datasets

Wei Pan, Ye Yuan∗, Lennart Ljung, Jorge Gonçalves and Guy-Bart Stan

Abstract— In this paper, we propose a new method to identify
biochemical reaction networks (i.e. both reactions and kinetic
parameters) from heterogeneous datasets. Such datasets can
contain (a) data from several replicates of an experiment
performed on a biological system; (b) data measured from
a biochemical network subjected to different experimental
conditions, for example, changes/perturbations in biological
inductions, temperature, gene knock-out, gene over-expression,
etc. Simultaneous integration of various datasets to perform sys-
tem identification has the potential to avoid non-identifiability
issues typically arising when only single datasets are used.

I. INTRODUCTION

The problem of identifying biological networks from
experimental time series data is of fundamental interest
in systems and synthetic biology [22]. For example, such
information can aid in the design of drugs or of synthetic
biology genetic controllers. Tools from system identification
[2] can be applied for such purposes. However, most system
identification methods produce estimates of model structures
based on data coming from a single experiment.

The interest in identification methods able to handle
several datasets simultaneously is twofold. Firstly, with the
increasing availability of “big data” obtained from sophis-
ticated biological instruments, e.g. large ‘omics’ datasets,
attention has turned to the efficient and effective integration
of these data and to the maximum extraction of information
from them. Such datasets can contain (a) data from repli-
cates of an experiment performed on a biological system
of interest under identical experimental conditions; (b) data
measured from a biochemical network subjected to different
experimental conditions, for example, different biological
inducers, temperature, stress, optical input, gene knock-out
and over-expression, etc. The challenges for simultaneously

W. Pan and G.-B. Stan are with the Centre for Synthetic
Biology and Innovation and the Department of Bioengineering,
Imperial College London, United Kingdom. Email: {w.pan11,
g.stan}@imperial.ac.uk.

Ye Yuan was with the Control Group, Department of Engineering,
University of Cambridge, United Kingdom. He is with Department of
Electrical Engineering and Computer Sciences, UC Berkeley. J. Gonçalves
is with the Control Group, Department of Engineering, University of
Cambridge, United Kingdom and with the Luxembourg Centre for Systems
Biomedicine, Luxembourg. Email: jmg77@cam.ac.uk. ∗ For corre-
spondence: yy311@berkeley.edu.

L. Ljung is with Division of Automatic Control, Department
of Electrical Engineering, Linköping University, Sweden. Email:
ljung@isy.liu.se.

The authors gratefully acknowledge the support of Microsoft Research
through the PhD Scholarship Program of Mr Wei Pan. Dr Ye Yuan ac-
knowledges the support from EPSRC (project EP/I03210X/1). Dr Guy-Bart
Stan gratefully acknowledges the support of the EPSRC Centre for Synthetic
Biology and Innovation at Imperial College London (project EP/G036004/1)
and of the EPSRC Fellowship for Growth (project EP/M002187/1). The
authors would like to thank Dr Aivar Sootla and Dr Tianshi Chen for helpful
discussions.

Supporing Information (SI) can be found online [1].

considering heterogeneous datasets during system identifi-
cation are: (a) the system itself is unknown, i.e. neither
the structure nor the corresponding parameters are known;
(b) it is unclear how heterogeneous datasets collected under
different experimental conditions influence the “quality” of
the identified system.

Secondly, in control or synthetic biology applications the
systems to be controlled typically need to be modelled first.
Highly detailed or complex models are typically difficult to
handle using rigorous control design methods. Therefore,
one typically prefers to use simple or sparse models that
capture at best the dynamics expressed in the collected
data. The identification and use of simple or sparse models
inevitably introduces model class uncertainties and parameter
uncertainties [3], [4]. To assess these uncertainties replicates
of multiple experiments is typically necessary.

Our approach is based on the concept of sparse Bayesian
learning [5], [6] and on the definition of a unified optimisa-
tion problem allowing the consideration of different param-
eter values for different experimental conditions, and whose
solution is a model consistent with all datasets available for
identification. The ability to consider various datasets si-
multaneously can potentially avoid non-identifiability issues
arising when a single dataset is used [7]. Furthermore, by
comparing the identified parameter values associated with
different conditions, we can pinpoint the influence specific
experimental changes have on system parameters.

The notation in this paper is standard and can be found in
SI Section S1.

II. MODEL

We consider dynamical systems described by nonlinear
differential/difference equation with additive noise:

δ(xnt) = fn(xt,ut)vn + ξnt n = 1, . . . , nx

=
∑Nn

s=1
vnsfns(xt,ut) + ξnt,

(1)

where δ(xnt) = ẋnt for continuous-time system; δ(xnt) =
xnt or xnt−xn,t−1 or some known transformation of histor-
ical data for discrete-time system; vns ∈ R and fns(xt,ut) :
Rnx+nu → R are basis functions that govern the dynamics.
To ensure existence and uniqueness of solutions, the func-
tions fns(xt,ut) are assumed to be Lipschitz continuous.
Note that we do not assume a priori knowledge of the form
of the nonlinear functions appearing on the right-hand side
of the equations in (1), e.g. whether the degradation obeys
first-order or enzymatic catalysed dynamics or whether the
proteins are repressors or activators.

When data are sampled, we assume the data matrix and
first derivative/difference data matrix satisfying (1) can be

obtained as x11 . . . xnx1

...
. . .

...
x1M . . . xnxM

 and

 δ(x11) . . . δ(xnx1)
...

. . .
...

δ(x1M) . . . δ(xnxM)

(2)

respectively.
Based on these defined data matrices, the system in (1) can

be written as yn = Ψnvn+ξn, n = 1, . . . , nx, where yn ,
[δ(xn1), . . . , δ(xnM)]

> ∈ RM×1, vn , [vn1, . . . , vnNn
]
> ∈

RNn×1, ξn , [ξn1, . . . , ξnM)]
> ∈ RM×1, and the dic-

tionary matrix Ψn ∈ RM×Nn with its j-th column being
[fnj(x1,u1), . . . , fnj(xM ,uM)]>. The noise or disturbance
vector ξn is assumed to be Gaussian distributed with zero
mean and covariance Π ∈ RM×M+

1. The identification
goal is to estimate vn of the linear regression formulation
yn = Ψnvn + ξn, n = 1, . . . , nx. Two issues need to be
raised here. The first one is the selection of basis function
fns(·, ·) which is key to the success of identification. Some
discussion on this can be found in SI Section S2, especially
for biochemical reaction networks. The second one is the
estimation of the first derivative data matrix which is not
trivial. In SI Section S3 , we provide a method to estimate
first derivatives from noisy time-series data.

If a total number of C datasets are collected from C
independent experiments, we put a subscript [c] to index
the identification problem associated with the specific dataset
obtained from experiment [c]. In what follows we gather in
a matrix A

[c]
n similar to Ψn the set of all candidate/possible

basis functions that we want to consider during the identifi-
cation. The identification problem is then written as:

y[c]
n = A[c]

n w[c]
n + ξ[c]n , n = 1, . . . , nx, c = 1, . . . , C. (3)

The solution to w
[c]
n to (3) is typically going to be sparse,

which is mainly due to the potential introduction of non-
relevant and/or non-independent basis functions in A

[c]
n .

Since the nx linear regression problems in (3) are inde-
pendent, for simplicity of notation, we omit the subscript n
used to index the state variable and simply write:

y[c] = A[c]w[c] + ξ[c], c = 1, . . . , C, (4)

in which,

A[c] ,
[
A

[c]
:,1, . . . ,A

[c]
:,N

]

=

f1(x

[c]
1) . . . fN (x

[c]
1)

...
...

f1(x
[c]

M [c]) . . . fN (x
[c]

M [c])

 ∈ RM
[c]×N ,

w[c] ,
[
w

[c]
1 , . . . , w

[c]
N

]>
∈ RN ,

ξ[c] ,
[
ξ
[c]
1 , . . . , ξ

[c]

M [c])
]>
∈ RM

[c]

,

(5)

where x
[c]
t =

[
x
[c]
1t , . . . , x

[c]
nxt

]
∈ Rnx is the state vector

at time instant t. It should be noted that N , the number
of basis functions or number of columns of the dictionary

1Note that the covariance matrix is not necessarily diagonal.

matrix A[c] ∈ RM [c]×N , can be very large. Without loss of
generality, we assume M [1] = · · · = M [C] = M .

Remark 1: The model class considered in (1) can be
enlarged in various ways. First, measurement noise, which
is ubiquitous in practice, can be accounted for using the
following linear measurement equation:

zt = xt + εt, (6)

where the measurement noise εt is assumed i.i.d. Gaussian.
Under this formulation, the noise-contaminated data zt rep-
resents the collected data rather than xt in (2). Second, the
additive stochastic term ξt in (1) is often used to model dy-
namic noise or diffusion. In many practical application, how-
ever, it is necessary to account for multiplicative noise in-
stead of additive noise. Multiplicative noise can be accounted
for by replacing (1) with ẋt = f(xt,ut)v + h(xt,ut)ξt. In
SI Section S4, we show how the framework presented here
can be modified to encompass these extensions.

III. IDENTIFICATION FROM MULTIPLE DATASETS

To ensure reproducibility, experimentalists repeat their ex-
periments under the same conditions, and the collected data
are then called “replicates”. Typically, only the average value
over these replicates is used for modelling or identification
purposes. In this case, however, only the first moment is used
and information provided by higher order moments is lost.
Moreover, when data originate from different experimental
conditions, it is usually very hard to combine the datasets
into a single identification problem. This section will ad-
dress these issues by showing how several datasets can be
combined to define a unified optimisation problem whose
solution is an identified model consistent with the various
datasets available for identification.

To consider heterogeneous datasets in one single formu-
lation, we stack the various equations in (4) (see Eq. (7)).
Each stacked equation in Eq. (7) corresponds to a replicate
or an experiment performed by changing the experimental
conditions on the same system.

In Eq. (7), Ai = blkdiag[A
[1]
:,i , . . . ,A

[C]
:,i], and wi =

[w
[1]
i , . . . , w

[C]
i]>, for i = 1, . . . , N . Based on the stacked

formulation given in Eq. (7) we further define

y =

 y[1]

...
y[C]

 ,A =
[

A1 · · · AN

]
,

w =

 w1

...
wN

 , ξ =

 ξ[1]

...
ξ[C]

 ,
(8)

which gives
y = Aw + ξ. (9)

This yields a formulation very similar to that presented
previously for a single linear regression problem. However,
in the multi-experiment formulation (9), there is now a
special block structure for y, A and w.

Remark 2: When w[i] is fixed to be w for all the exper-
iments, i.e. w[1] = · · · = w[C] = w, we can formulate the

 y[1]

...
y[C]

 =

A

[1]
:,1 . . . A

[1]
:,N

. . .
A

[C]
:,1 . . . A

[C]
:,N

︸ ︷︷ ︸

C Blocks

 w[1]

...
w[C]

+

 ξ[1]

...
ξ[C]

=

A

[1]
:,1 A

[1]
:,N

. . .
. . .

. . .
A

[C]
:,1 A

[C]
:,N

︸ ︷︷ ︸

N Blocks

w
[1]
1

...
w

[C]
1

...
w

[1]
N
...

w
[C]
N

+

 ξ[1]

...
ξ[C]

 = [A1 · · · AN]

 w1

...
wN

+

 ξ[1]

...
ξ[C]

 .

(7)

identification problem as a single linear regression problem
by concatenation: y[1]

...
y[C]

 =

 A[1]

...
A[C]

w +

 ξ[1]

...
ξ[C]

 . (10)

To incorporate prior knowledge into the identification
problem, it is often important to be able to impose constraints
on w. In biological systems, positivity of the parameters
constituting w is an example of such constraints. The other
motivation for constrained optimisation comes from stability
considerations. Typically, the underlying system is known a
priori to be stable, especially if this system is a biological
or physical system. A lot of stability conditions can be
formulated as convex optimisation problems, e.g. Lyapunov
stability conditions expressed as Linear Matrix Inequalities
[8], Gershgorin Theorem for linear systems [9], etc. Only few
contributions are available in the literature that address the
problem of how to consider a priori information on system
stability during system identification [10], [11]. To be able
to integrate constraints on w into the problem formulation,
we consider the following assumption on w.

Assumption 1: Constraints on the weights w can be de-
scribed by a set of convex functions: H [I]

i (w) ≤ 0, ∀i;
H

[E]
j (w) = 0, ∀j, where the convex functions H [I]

i : RN →
R are used to define inequality constraints, whereas the
convex functions H [E]

j : RN → R are used to define equality
constraints.

IV. METHODS

To get an estimate of w in (9), we use Bayesian modelling
to treat all unknowns as stochastic variables with certain
probability distributions [13]. For y = Aw+ξ, it is assumed
that the stochastic variables in the vector ξ are Gaussian
distributed with unknown covariance matrix Π, i.e., ξ ∼
N (0,Π).

In what follows we consider the following variable sub-
stitution for the inverse of unknown covariance matrix or
precision matrix: S , Π−1. In such case, the likelihood of
the data given w is

P(y|w) = N (y|Aw,Π) ∝ exp

[
−1

2
(Aw − y)>S(Aw − y)

]
.

(11)

A. Sparsity Inducing Priors

In Bayesian models, a prior distribution P(w) can
be defined as P(w) =

∏N
i=1 P(wi) where P(wi) ∝

exp
[
− 1

2

∑C
j=1 g(w

[j]
i)
]

=
∏C
j=1 exp

[
− 1

2g(w
[j]
i)
]

=∏C
j=1 P(w

[j]
i), with g(w

[j]
i) being a given function of w[j]

i .
Generally, w in (9) is sparse, and therefore certain spar-
sity properties should be enforced on w. To this effect,
the function g(·) is usually chosen to be a concave, non-
decreasing function of |w[j]

i | [6]. Examples of such functions
g(·) include Generalised Gaussian priors and Student’s t
priors (see [6], [14] for details).

Computing the posterior mean E(w|y) is typically in-
tractable because the posterior P(w|y) is highly coupled
and non-Gaussian. To alleviate this problem, ideally one
would like to approximate P(w|y) as a Gaussian dis-
tribution for which efficient algorithms to compute the
posterior exist [13]. For this, the introduction of lower
bounding super-Gaussian priors P(w

[j]
i), i.e., P(w

[j]
i) =

maxγi>0N (w
[j]
i |0, γi)ϕ(γi), can be used to obtain an an-

alytical approximation of P(w|y) [14].
Note that problem (9) has a block-wise structure, i.e. the

solution w is expected to be block-wise sparse. Therefore,
sparsity promoting priors should be specified for P(wi), ∀i.
To do this, for each block wi, we define a hyper-parameter
γi such that

P(wi) = max
γi>0
N (wi|0, γiIC)ϕ(γi)

= max
γi>0

C∏
j=1

N (w
[j]
i |0, γi)ϕ(γi),

(12)

where ϕ(γi) is a nonnegative function, which is treated as
a hyperprior with γi being its associated hyperparameter.
Throughout, we call ϕ(γi) the “potential function”. This
Gaussian relaxation is possible if and only if logP(

√
wi)

is concave on (0,∞). Defining

γi = [γi, . . . , γi] ∈ RC , Γi = diag [γi] ,

γ = [γ1, . . . ,γN] ∈ RNC , Γ = diag [γ] ,
(13)

we have

P(w) =

N∏
i=1

P(wi) = max
γ>0
N (w|0,Γ)ϕ(γ). (14)

B. Cost Function

Once we introduce the Gaussian likelihood in (11) and
the variational prior in (14), we can get the following
optimisation problem jointly on w, γ and S.

Proposition 1: The unknowns w,γ,S can be obtained by
solving the following optimisation problem

L(w,γ,S) = min
w,γ,S

{− log |S|+ log |Γ|+ log |Γ−1 + A>SA|

+ (y −Aw)> S (y −Aw) + w>Γ−1w +

N∑
j=1

p(γj)},

(15)
where Γ is given in (13).

Proof: The derivation can be found in the SI S5. The
proof mainly relies on using marginal likelihood maximisa-
tion.

C. Algorithm

The cost function in (15) is convex in w and S but
concave in Γ. This non-convex optimisation problem can be
formulated as a convex-concave procedure (CCCP). It can be
shown that solving this CCCP is equivalent to solving a series
of iterative convex optimisation programs, which converges
to a stationary point [15]. Let

u(w,γ,S) , (y −Aw)
>

S (y −Aw) + w>Γ−1w − log det S,

v(γ,S) , −

log |Γ|+ log |Γ−1 + A>SA|+
N∑
j=1

p(γj)

 .
It is easy to check that v(γ,S) is a convex function with

respect to γ. Furthermore, log | · | is concave in the space
of positive semi-definite matrices. Since we adopt a super-
Gaussian prior with potential function ϕ(γj),∀j, as described
in (12), a direct consequence is that p(γj) = − logϕ(γj)
is concave, and, therefore, −p(γj) is convex [5].2 Note
that u(w,γ,S) is jointly convex in w, γ and S, while
v(γ,S) is jointly convex in γ and S. As a consequence,
the minimisation of the objective function can be formulated
as a concave-convex procedure

min
γ�0,S�0,w

u(w,γ,S)− v(γ,S). (16)

Since v(γ,S) is differentiable over γ, the problem in (16)
can be transformed into the following iterative convex opti-
misation problem

wk+1 = argmin
w

u(w,γk,Sk) (17)

γk+1 = argmin
γ�0

u(wk,γ,Sk)−∇γv(γ
k,Sk)>γ (18)

Sk+1 = argmin
S�0

u(wk,γk,S)−∇Sv(γ
k,Sk)>S. (19)

2In this paper, the prior is chosen as a Student’s t prior thus p(γj) = 1.

Using basic principles in convex analysis, we then obtain
the following analytic form for the negative gradient of v(γ)
at γ (using the chain rule):

αk ,−∇γv(γ,S
k)>|γ=γk

=∇γ

[
log |Γ−1 + A>SkA|+ log |Γ|

]
=diag{

[
−(Γk)−1 + A>SkA

]−1

} · diag{−(Γk)−2}

+ diag−1{Γk}
=
[
αk

11 · · · αk
1N

]︸ ︷︷ ︸
N Blocks

=
[
αk
11, . . . , α

k
11︸ ︷︷ ︸

C Elements

· · · αk
1N , . . . , α

k
1N︸ ︷︷ ︸

C Elements

]
.

(20)

Therefore, the iterative procedures (17) and (18) for wk+1

and γk+1, respectively, can be formulated as[
wk+1,γk+1

]
= argmin

γ�0,w
(y −Aw)

>
Sk (y −Aw)

+

N∑
i=1

(
w>i wi

γi
+ Cγiα

k
i

)
.

(21)
The optimal γ components are obtained as: γi = ‖wi‖2√

Cαk
i

. If

γ is fixed, we have wk+1 by solving optimisation problem

min
w

(y −Aw)
>

Sk (y −Aw) + 2

N∑
i=1

‖θki ·wi‖2,

(22)
where θki = Cαki . We can then inject this into the expression
of γi, which yields

γk+1
i =

‖wk+1
i ‖2√
Cαki

. (23)

After we get wk+1 and γk+1, we can proceed with the
optimisation iteration in (19):

Λk = −∇Sv(γk,Sk)

= ∇S

(
log det

(
Γ−k + A>SkA

))
= A(Γ−k + A>SkA)−1A>.

(24)

Letting Yk+1 = (Awk+1−y) · (Awk+1−y)>, we can get
an estimate of the inverse of covariance matrix S as:

Sk+1 = argmin
S�0

Tr
(
SYk+1

)
− log det S + Tr

(
ΛkS

)
.

(25)
Given γk+1 in (23) and Sk+1 in (25), we can then go back
to (20) to update α for the next iteration.

This above described iterative procedure for identification
is summarised in Algorithm 1 below. Some further discus-
sion can be found in SI Section S6.

D. ADMM Implementation
Essentially, Algorithm (1) consists of a reweighted Group

Lasso algorithm (26) and a reweighted inverse covariance
estimation algorithm (27). Algorithm (1) can be imple-
mented using the Alternating Direction Method of Multi-
pliers (ADMM) [19]. This ADMM parallelisation allows to

Algorithm 1 Nonlinear Identification Algorithm using Het-
erogeneous Datasets

1: Collect C heterogeneous groups of time series data from
the system of interest (assuming the system can be
described by (1));

2: Select the candidate basis functions that will be used to
construct the dictionary matrix described in Section III;

3: Initialise θ0i = 1, ∀i, α0
i =

θ0i
C , S0 = I, Λ0 = I;

4: for k = 0, . . . , kmax do
5: wk+1 can be obtained by solving the following

weighted minimisation problem over w, subject to the
convex constraints in Assumption 1

min
w

1

2
(y −Aw)> Sk (y −Aw) +

N∑
i=1

‖θki ·wi‖2;

(26)

6: Update γk+1
i using (23);

7: Let Yk+1 = (Awk+1 − y) · (Awk+1 − y)>;
8: Sk+1 can be obtained by solving the following

weighted minimisation problem over the inverse of
the covariace matrix:

min
S�0

Tr
(
Yk+1 + Λk

)
S− log det S; (27)

9: Update αk+1 using (20);
10: Update θk+1

i = Cαk+1
i ;

11: Update Λk+1 using (24);
12: if a stopping criterion is satisfied then
13: Break;
14: end if
15: end for

distribute the algorithmic complexity to different threads and
to build a platform for scalable distributed optimisation. This
is key to be able to deal with problems of large dimensions.
More details can be found in SI Section S7.

E. Connection to SDP formulations and the sparse multiple
kernel method

The iteration in (21) can be rewritten in the following
compact form[

wk+1,γk+1
]

= argmin
γ�0,w

(y −Aw)
>

Sk (y −Aw)

+ w>Γ−1w −∇γv(γk,Sk)>γ.
(28)

This is equivalent to the following SDP by using the standard
procedure in [17].

min
z,w,γ

z−∇γv(γk,Sk)>γ

subject to

 z (y −Aw)> w>

y −Aw (Sk)−1 0
w 0 Γ

 � 0

γ � 0

The cost of solving this SDP is at least N3 as well as
M . Therefore, solving this SDP is too costly for all but
problems with a small number of variables. This means that

the number of samples, the dimension of the system, etc.,
can not be too large simultaneously. In this SDP formulation,
Γ is closely related to the sparse multiple kernel presented
in [18]. Certain choice of kernels may introduce some good
properties or help reduce algorithmic complexity. In our case,
we choose Γ to have a diagonal or a DC kernel structure.

V. SIMULATIONS

In this section, we use numerical simulations to show
the effectiveness of the proposed algorithm. To compare the
identification accuracy of the various algorithms considered,
we use the root of normalised mean square error (RN-
MSE) as a performance index, i.e. RNMSE = ‖westimate −
wtrue‖2/‖wtrue‖2. Several factors affect the RNMSE, e.g.
number of experiments C, measurement noise intensity,
dynamic noise intensity, length of single time series data
M , number of candidate basis functions N . For brevity of
exposition, we only show results pertaining to change of
RNMSE over number of experiment C and length of single
time series for one experiment, all in the noiseless case. More
results related to other factors that may affect RNMSE will
be shown in a future journal publication presenting these
results in more details.

As an illustrative example, we consider a model of an
eight species generalised repressilator [20], which is a system
where each of the species represses another species in a
ring topology. The corresponding dynamic equations are as
follows:

ẋ1t =
p11

pp1312 + xp138t

+ p14 − p15x1t,

ẋit =
pi1

ppi3i2 + xpi3i−1,t
+ pi4 − pi5xit, ∀i = 2, . . . 8,

(29)

where pij , i = 1, . . . , 8, j = 1, . . . , 5. We assume the
mean value for these parameters across different species and
experiments are p̄i1 = 40, p̄i2 = 1, p̄i3 = 3, p̄i4 = 0.5,
p̄i5 = 1, ∀i. We simulate the ODEs in (29) to generate
the time series data. In each “experiment” or simulation
of (29), the initial conditions are randomly drawn from a
standard uniform distribution on the open interval (0, 1). The
parameters in each experiment vary no more than 20% of
the mean values. In MATLAB, one can use p̄ij*(0.8 +
0.4*rand(1)) to generate the corresponding parameters
for each experiment.

The numerical simulation procedure can be summarised
as follows:

1) The deterministic system of ODEs (29) is solved
numerically with an adaptive fourth-order Runge-Kutta
method;

2) As explained in (6), Gaussian measurement noise with
variance σ2 is added to the corresponding time-series
data obtained in the previous step3;

3) The data is re-sampled with uniform intervals4;
4) The local polynomial regression framework in [21] is

applied to estimate the first derivative;

3In the example presented here, we consider the noiseless case corre-
sponding to σ = 0.

4In this example, interval length is set to 1.

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.95

0.8

0.9

1

0.75

0.85

0

R
N

M
S

E

(a) Group Lasso (first iteration of
Algorithm 1). The minimal RN-
MSE is around 0.75

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.3

0

0.1

0.2

1

0.9

0.5

0.4

0.8

0.7

0.6

0

R
N

M
S

E

(b) Algorithm 1 with maximal it-
eration number kmax = 5. The
minimal RNMSE is almost 0.

Fig. 1. Algorithm comparison in terms of RNMSE averaged over
50 independent experiments. An enlarged version can be found in SI
Section S8.

5) A dictionary matrix is constructed as explained in
Section III;

6) Algorithm 1 is used to identify the model.
Following the procedure described in Section II, the can-

didate dictionary matrix A in step 5) above is constructed
by selecting as candidate nonlinear basis functions typi-
cally used to represent terms appearing in ODE models
of Gene Regulatory Networks. As a proof of concept, we
only consider Hill functions as potential nonlinear candidate
functions. The set of Hill functions with Hill coefficient
h, both in activating and repressing form, for the ith state
variables at time instant tk are:

hill(xit,K, hnum, hden) ,
xhnum
it

Khden + xhden
it

(30)

where hnum and hden represent the Hill coefficients. When
hnum = 0, the Hill function has a repression form, whereas
an activation form is obtained for hnum = hden 6= 0.

In our identification experiment, we assume hnum, hden
and K to be known. We are interested in identifying the
regulation type (linear or Hill type, repression or activation)
and the corresponding parameters pi1, the degradation rate
constant pi4 and the basal expression rate pi5, ∀i. Since there
are 8 state variables, we can construct the dictionary matrix
A with 8 (basis functions for linear terms) +(2 ∗ 8) (basis
functions for Hill functions, both repression and activation
form) +1 (constant unit vector) = 25 columns. The cor-
responding matrix A is given in Eq. (S8.1) in Supporting
Information Section S8.

For a fixed number of experiments C and length of
single time series M , we compute the RNMSE over 50
simulations by varying initial conditions and parameters pij .
The RNMSE over C and M are shown in Fig. 2(a) and
Fig. 2(b), using both group Lasso and Algorithm 1 with
the maximal iteration number kmax = 5 (see line 4 in
Algorithm 1). Inspection of the results presented in Fig. 2(a)
and Fig. 2(b) clearly show that Algorithm 1 outperforms
significantly group Lasso in terms of RNMSE.

VI. DISCUSSIONS

There are several issues that we plan to further explore
in the future. First, we are working on establishing the
minimal sampling rate necessary to yield adequate numerical

estimates of the first derivative matrix (see Eq. (2)). Second,
further results not shown in this paper indicate that RNMSE
is high when dynamic noise and measurement noise are high.
We are currently working on finer characterisation of the
“quality” of the identification in terms of the Signal-to-Noise
ratio.

REFERENCES

[1] http://arxiv.org/abs/1509.05153
[2] L. Ljung, System Identification: Theory for the User. Prentice Hall,

1999.
[3] H.-M. Kaltenbach, S. Dimopoulos, and J. Stelling, “Systems analysis

of cellular networks under uncertainty,” FEBS letters, vol. 583, no. 24,
pp. 3923–3930, 2009.

[4] J. Vanlier, C. Tiemann, P. Hilbers, and N. van Riel, “Parameter
uncertainty in biochemical models described by ordinary differential
equations,” Mathematical biosciences, vol. 246, no. 2, pp. 305–314,
2013.

[5] M. Tipping, “Sparse bayesian learning and the relevance vector
machine,” The Journal of Machine Learning Research, vol. 1, pp.
211–244, 2001.

[6] D. Wipf, B. Rao, and S. Nagarajan, “Latent variable bayesian models
for promoting sparsity,” Information Theory, IEEE Transactions on,
vol. 57, no. 9, pp. 6236–6255, 2011.

[7] N. T. Ingolia and J. S. Weissman, “Systems biology: reverse engineer-
ing the cell,” Nature, vol. 454, no. 7208, pp. 1059–1062, 2008.

[8] S. Boyd, L. El Ghaoul, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. Society for Industrial
Mathematics, 1987, vol. 15.

[9] R. Horn and C. Johnson, Matrix analysis. Cambridge university press,
1990.

[10] V. Cerone, D. Piga, and D. Regruto, “Enforcing stability constraints in
set-membership identification of linear dynamic systems,” Automatica,
vol. 47, no. 11, pp. 2488–2494, 2011.

[11] M. Zavlanos, A. Julius, S. Boyd, and G. Pappas, “Inferring stable
genetic networks from steady-state data,” Automatica, vol. 47, no. 6,
pp. 1113–1122, 2011.

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial
Mathematics, 1994.

[13] C. Bishop, Pattern Recognition and Machine Learning. Springer New
York, 2006, vol. 4.

[14] J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao, “Variational
EM algorithms for non-Gaussian latent variable models,” Advances
in neural information processing systems, vol. 18, p. 1059, 2006.

[15] B. K. Sriperumbudur and G. R. Lanckriet, “On the convergence of the
concave-convex procedure.” in NIPS, vol. 9, 2009, pp. 1759–1767.

[16] A. Aravkin, J. V. Burke, A. Chiuso, and G. Pillonetto, “Convex vs
non-convex estimators for regression and sparse estimation: the mean
squared error properties of ard and glasso,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 217–252, 2014.

[17] S. Boyd and L. Vandenberghe, Convex optimisation. Cambridge
university press, 2004.

[18] T. Chen, M. Andersen, L. Ljung, A. Chiuso, and G. Pillonetto, “System
identification via sparse multiple kernel-based regularization using
sequential convex optimization techniques,” Automatic Control, IEEE
Transactions on, vol. 59, no. 11, pp. 2933–2945, 2014.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[20] N. Strelkowa and M. Barahona, “Switchable genetic oscillator operat-
ing in quasi-stable mode,” Journal of The Royal Society Interface, p.
rsif20090487, 2010.

[21] K. De Brabanter, J. De Brabanter, B. De Moor, and I. Gijbels,
“Derivative estimation with local polynomial fitting,” The Journal of
Machine Learning Research, vol. 14, no. 1, pp. 281–301, 2013.

[22] Y. Chang, R. Dobbe, P. Bhushan, J. W. Gray, C. J. Tomlin, “Retrieving
common dynamics of gene regulatory networks under various pertur-
bations,” in Proceeding of Conference on Decision and Control, 2015.

http://arxiv.org/abs/1509.05153

Supporting Information
A. Notation

Notation: The notation in this paper is standard. Bold symbols are used to denote vectors and matrices. For a matrix
A ∈ RM×N , Ai,j ∈ R denotes the element in the ith row and jth column, Ai,: ∈ R1×N denotes its ith row, A:,j ∈ RM×1
denotes its jth column. For a column vector α ∈ RN×1, αi denotes its ith element. In particular, IL denotes the identity
matrix of size L × L. We simply use I when the dimension is obvious from context. ‖w‖1 and ‖w‖2 denote the `1 and
`2 norm of the vector w, respectively. ‖w‖0 denotes the `0 norm of the vector w, which counts the number of nonzero
elements in the vector w. diag [γ1, . . . , γN] denotes a diagonal matrix with principal diagonal elements being γ1, . . . , γN .
E(α) stands for the expectation of the stochastic variable α. ∝ means “proportional to”. blkdiag[A[1], . . . ,A[C]] denotes a
block diagonal matrix with principal diagonal blocks being A[1], . . . ,A[C] in turn. Tr(A) denotes the trace of A. A matrix
A � 0 means A is positive semidefinite. A vector γ � 0 means each element in γ is nonnegative.

B. Discussion on Selection of Basis Fucntions

Some a priori knowledge of the field for which the models are developed can be helpful. Indeed, depending on the field
for which the dynamical model needs to be built, only a few typical nonlinearities specific to this field need to be considered.
For example, the class of models that arise from biochemical reaction network typically involves nonlinearities that capture
fundamental biochemical kinetic laws, e.g. first-order functions f([S]) = [S], mass action functions f([S1] , [S2]) = [S1]·[S2],
Michaelis-Menten functions f([S]) = Vmax [S] /(K + [S]), or Hill functions f([S]) = Vmax [S]

h
/(Kh + [S]h).

C. Estimation of the First Derivative

Estimating time derivatives from noisy data in continuous-time systems can either be achieved using a measurement
equipment with a sufficiently high sampling rate, or by using state-of-the-art mathematical approaches [21]. Estimation of
derivatives is key to the identification procedure [21]. As pointed out in [1], the identification problem is generally solved
through discretisation of the proposed model. Assuming that samples are taken at sufficiently short time intervals, various
discretisation methods can be applied. Typically, a forward Euler discretisation is used to approximate first derivatives, i.e.
yi can be defined as

yi ,

[
xi2 − xi1

∆t
, . . . ,

xi,M+1 − xiM
∆t

]>
∈ RM×1.

In this paper, the local polynomial regression framework in [21] is applied to estimate ẋ(t). Forward Euler discretisation
and central difference discretisation are special cases of the local polynomial regression framework.

Proposition 2 (Proposition 1 in [21]): Consider the bivariate data (t1, Y1), . . . , (tM , YM). Assume data are equispace-
sampled and let

∑k
j=1 wj = 1. For k + 1 ≤ i ≤ n− k, the weights wj are chosen as:

wj =
6j2

k(k + 1)(k + 2)
, j = 1, . . . , k. (S3.1)

Based on these weights, the first derivative can be approximated as:

Ẏi =

k∑
j=1

wj ·
(
Yi+j − Yi−j
ti+j − ti−j

)
. (S3.2)

D. Derivation of Correlated Noise

Without loss of generality and to ease notation, we consider the scalar case. In the scalar case, the system equation is
written:

ẋt = g(xt) + ηxt
, (S4.1)

while the measurement equation is given as:
yt = xt + εt, (S4.2)

where εt is the measurement noise, which is assumed to be Gaussian i.i.d. We can simply use Taylor series expansion to
expand g(xt) from yt:

g(xt) = g(yt − εt)
=g(yt)− g′(y)|y=ytεt +O(ε2(t))︸ ︷︷ ︸

Correlated Gaussian noise

=g(yt) + ηyt .

(S4.3)

Therefore, if we can estimate ẋ from y properly, we can write the following

ẋestimate(t) = g(y(t)) + ηx(t) + ηy(t)︸ ︷︷ ︸
new noise

= g(y(t)) + η(t).

(S4.4)

Clearly, η(t) is not independent and identically distributed anymore.

E. Derivation of the Cost Function

To derive the cost function in Section IV-B, we first introduce the posterior mean and variance

mw = ΣwA>Sy, (S5.1)

Σw = (A>SA + Γ−1)−1. (S5.2)

Since the data likelihood P(y|w) is Gaussian,

N (y|Aw,S−1)

=
1

(2π)
M/2 |S|−1/2

exp

[
−1

2
(y −Aw)

>
S (y −Aw)

]
,

(S5.3)

we can write the marginal likelihood as∫
N (y|Aw,Π)N (w|0,Γ)

N∏
j=1

ϕ(γj)dw

=
1

(2π)
M/2 |S|−1/2

1

(2π)
N

∫
exp{−E(w)}dw

N∏
j=1

ϕ(γj),

(S5.4)

where
E(w) =

1

2
(y −Aw)

>
S (y −Aw) +

1

2
w>Γ−1w. (S5.5)

Equivalently, we get

E(w) =
1

2
(w −mw)>Σ−1w (w −mw) + E(y), (S5.6)

where mw and Σw are given by (S5.1) and (S5.2).
We first show the data-dependent term is convex in w and γ. From (S5.1), (S5.2), the data-dependent term can be

re-expressed as

E(y) =
1

2

(
y>Sy − y>SAΣwA>Sy

)
=

1

2

(
y>Sy − y>SAΣwΣ−1w ΣwA>Sy

)
=

1

2
(y −Amw)

>
S (y −Amw) +

1

2
m>wΓ−1mw

= min
w

[
1

2
(y −Aw)

>
S (y −Aw) +

1

2
w>Γ−1w

]
.

(S5.7)

Using (S5.6), we can evaluate the integral in (S5.4) to obtain∫
exp{−E(w)}dw = exp{−E(y)}(2π)N |Σw|1/2. (S5.8)

Applying a −2 log(·) transformation to (S5.4), we have

− 2 log

 1

(2π)
M/2 |S|−1/2

1

(2π)
N

∫
exp{−E(w)}dw

N∏
j=1

ϕ(γj)

=(M +N) log 2π − log |S|+ log |Γ|+ log |Γ−1 + A>SA|

+

N∑
j=1

p(γj) + (y −Aw)
>

S (y −Aw) + w>Γ−1w.

(S5.9)

Therefore we get the following cost function to be minimised in (15) over w,γ,S

L(w,γ,S)

=− log |S|+ log |Γ|+ log |Γ−1 + A>SA|

+ (y −Aw)
>

S (y −Aw) + w>Γ−1w +

N∑
j=1

p(γj).

F. Some Discussion on Algorithm
Remark 3: It should be noted that when noise is Gaussian i.i.d. with known variance, sparse Bayesian learning algorithms

are provably better than classic Group Lasso algorithms in terms of mean square error [16].
Remark 4: The initialisation step is important (line 3 of in Algorithm 1). In special cases where the process noise in (1)

is Gaussian i.i.d and there is no measurement noise, S can be fixed to λ−1I for all k, where λ is a positive real number, i.e.
no update through (27) is carried out. In such situations, λ can be treated as the equivalent of the regularisation/trade-off
parameter in a Group Lasso algorithm (27). In such cases, cross validation can be implemented through variations of the
initialisation values.

Remark 5: When the model obtained is used for prediction purposes, the inverse covariance estimation procedure in (27)
can be used for quantification of the prediction uncertainty or risk.

G. ADMM Implementation
Essentially, Algorithm (1) consists of a reweighted Group Lasso algorithm (26) and a reweighted inverse covariance

estimation algorithm (27). Algorithm (1) can be implemented using the Alternating Direction Method of Multipliers (ADMM)
[19]. This ADMM parallelisation allows to distribute the algorithmic complexity to different threads and to build a platform
for scalable distributed optimisation. This is key to be able to deal with problems of large dimensions. ADMM can be used
to obtain solutions to problems of the following form:

min
w

f(w) + g(z),

subject to Pw +Qz = c,
(S7.1)

where w ∈ Rn and z ∈ Rm, P ∈ Rp×n, Q ∈ Rp×m, and c ∈ Rp. The functions f(·) and g(·) are convex, but can be
nonsmooth, e.g. weighted `1 norm. The first step of the method consists in forming the augmented Lagrangian

Lρ =f(w) + g(z) + u>(Pw +Qz− c)+
ρ/2‖Pw +Qz− c‖22.

(S7.2)

After that optimisation programmes with respect to different variables can be solved separately as follows:

wτ+1 := argmin
w

(
f(w) +

ρ

2
‖Pw +Qzτ − c + uτ‖22

)
zτ+1 := argmin

z

(
g(z) +

ρ

2
‖Pwτ+1 +Qz− c + uτ‖22

)
uτ+1 := uτ + Pwτ+1 +Qzτ+1 − c.

If g(z) is equal to λ‖z‖1, then the update on z is simply

zτ+1 = Sλ/ρ(Pwτ+1 + uτ),

where Sλ/ρ is the soft thresholding operator defined as

Sλ/ρ(x) =

x− λ/ρ if x > λ/ρ

0 if |x| < λ/ρ

x+ λ/ρ if x < −λ/ρ
or

Sλ/ρ(x) = max(0, x− λ/ρ)−max(0,−x− λ/ρ).

Based on the above, we can design a simple algorithm to solve a nonsmooth optimisation problem in a decentralised fashion.
Moreover, this algorithm converges provided the following stopping criterion is satisfied:

‖wτ − zτ‖2 ≤ εprimal, ‖ρ(zτ − zτ−1)‖2 ≤ εdual,

where, the tolerances εprimal > 0 and εdual > 0 can be set via an “absolute plus relative” criterion, e.g.

εprimal =
√
nεabs + εrel max(‖wτ‖2, ‖zτ‖2),

εdual =
√
nεabs + εrelρ‖uτ‖,

A =

 x11 . . . x81 hill(x11, 1, 0, 3) . . . hill(x81, 1, 3, 3) 1
...

...
...

...
...

x1M . . . x8M hill(x1M , 1, 0, 3) . . . hill(x8M , 1, 3, 3) 1

 ∈ RM×25. (S8.1)

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.95

0.8

0.9

1

0.75

0.85

0

R
N

M
S

E

(a) Root of Normalised Mean Square Error averaged over 50 inde-
pendent experiments using group Lasso algorithm (first iteration of
Algorithm 1)

0
2

Number of experiemnt: C

4
6

8
10100Length of single time series: M

80
60

40
20

0.3

0

0.1

0.2

1

0.9

0.5

0.4

0.8

0.7

0.6

0

R
N

M
S

E

(b) Root of Normalised Mean Square Error averaged over 50 indepen-
dent experiments using Algorithm 1 with maximal iteration number
kmax = 5.

Fig. S2. Algorithm comparison in terms of RNMSE.

where εabs and εrel are absolute and relative tolerances. More details can be found in [19].
More specifically, step (27) can be solved using ADMM instead:

min
w

(y −Aw)
>

Sk (y −Aw) + 2

N∑
i=1

‖zi‖2,

subject to θki wi − zi = 0, i = 1, . . . , N,

(S7.3)

The optimisation programmes with respect to different variables can be solved separately as follows:

wτ+1 =
(
A>SkA + ρI

)−1 (
A>Sky + ρ

(
zk − uk

))
,

zτ+1
i = Sλ/ρ

(
θki w

τ+1
i + uτ

)
, i = 1, . . . , N,

uτ+1 = uτ + θwτ+1 − zτ+1.

S is the vector soft thresholding operator Sκ : RC → RC

Sκ(a) = (1− κ/‖a‖)+a, (S7.4)

where Sκ(0) = 0. This formula reduces to the scalar soft thresholding operator when a is a scalar. More details can be
found in [19].

H. Simulation
In this section, we put the constructed dictionary matrix and two enlarged figures.

REFERENCES

[1] A. Papachristodoulou and B. Recht, “Determining interconnections in chemical reaction networks,” in American Control Conference, 2007. ACC’07.
IEEE, 2007, pp. 4872–4877.

	Introduction
	Model
	Identification from multiple datasets
	Methods
	Sparsity Inducing Priors
	Cost Function
	Algorithm
	ADMM Implementation
	Connection to SDP formulations and the sparse multiple kernel method

	Simulations
	Discussions
	References
	Notation
	Discussion on Selection of Basis Fucntions
	Estimation of the First Derivative
	Derivation of Correlated Noise
	Derivation of the Cost Function
	Some Discussion on Algorithm
	ADMM Implementation
	Simulation

	References

