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Fast Consensus Via Predictive Pinning Control
Hai-Tao Zhang, Member, IEEE, Michael Z. Q. Chen, Member, IEEE, and Guy-Bart Stan, Member, IEEE

Abstract—By incorporating some predictive mechanism into a
few pinning nodes, we show that convergence procedure to con-
sensus can be substantially accelerated in networks of intercon-
nected dynamic agents while physically maintaining the network
topology. Such an acceleration stems from the compression mech-
anism of the eigenspectrum of the state matrix conferred by the
predictive mechanism. This study provides a technical basis for
the roles of some predictive mechanisms in widely-spread biolog-
ical swarms, flocks, and consensus networks. From the engineering
application point of view, inclusion of an efficient predictive mech-
anism allows for a significant increase in the convergence speed to-
wards consensus.

Index Terms—Consensus, multi-agent system (MAS), pinning
control, predictive control, synchronization.

I. INTRODUCTION

O VER the last decade, the collective motion of a group
of autonomous agents (or particles) has been a subject

of intensive research with potential applications in biology,
physics, and engineering. One of the most remarkable charac-
teristics of complex dynamical systems such as flocks of birds,
schools of fish, or swarms of locusts, is the emergence of a
state of collective order in which the agents reach a particular
ordered state [1]–[3]. This distributed ordered state seeking
problem can be further generalized to a consensus problem
[4]–[7], where a group of self-propelled agents agree upon cer-
tain quantities of interest such as attitude, position, and so on.
Solving consensus problems using distributed computational
methods has direct implications on sensor network data fusion,
load balancing, swarms/flocks, unmanned air vehicles (UAVs),
attitude alignment of satellite clusters, congestion control of
communication networks, multi-agent system (MAS) forma-
tion control, etc. [8]–[10].
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Convergence rate or speed is an important performance index
in the analysis of consensus problems. Among the early works
on consensus problems, Tsitsiklis [11] proposed a decentral-
ized method to eliminate the disagreement within the group
and hence derived the conditions for asymptotic convergence of
each agent’s decision sequence. In [4], Olfati-Saber and Murray
found the relationship between the eigenvalue distribution of
the Laplacian matrix and its consensus performance. By this
means, they have established the theoretical foundation of gen-
eral consensus problems. To improve the speed of convergence
towards consensus, they further proposed a method based on the
addition of a few long links to a regular lattice, thus transforming
it into a small-world network [12]. In [13], Xiao and Boyd trans-
formed the fastest distributed linear averaging problem into a
convex optimization problem by considering a particular per-
step convergence optimization index, and designed an ultrafast
consensus communication-weight assignment method for sym-
metric networks. In [14], Jadbabaie et al. derived consensus re-
sults for several direction alignment models including the well-
known Vicsek model [1]. Specifically, the weak condition re-
quiring linkage of the agents on some time intervals is proved
to be sufficient for direction consensus. In Ren et al. [5], [6],
the strongly connected condition guaranteeing consensus [4] is
further relaxed into the existence of a rooted directed spanning
tree over time. The most recent research includes the follower
representative works: the existence of consensus behavior for a
class of MASs was systematically addressed in [15], some nec-
essary and sufficient conditions are provided in [16] for second-
order consensus in multi-agent dynamic systems, a class of con-
strained consensus and optimization problems was studied in
[17], a finite-time consensus protocol based on the Lyapunov
method was given in [18], a linear quadratic regular (LQR)-
based method is proposed in [19] and the outdated information
is reused in [20], [21][34] to increase the convergence speed to-
wards consensus.

In summary, most of the previous works focused on perfor-
mance improvements, such as increasing the convergence speed
towards consensus, improving the robustness to node and edge
failures, or choosing proper interaction graphs possessing suf-
ficiently strong algebraic connectivity to guarantee consensus,
solely based on the information available at a given time in-
stant in the network. It is noted that, in most of the former
works, the prediction intelligence of each individual has been
ignored. Each agent is only allowed to observe the current be-
havior of its neighbors and take a current movement decision
based on this instantaneous observation. However, it is well ac-
cepted in the biology literature that living creatures typically
possess some predictive intelligence allowing them to predict
the future movements of their neighbors using their past obser-
vations. For example, as early as 1959, Woods [22] designed
some bee swarm experiments and provided evidences for the
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existence of certain predictive mechanisms in bee swarm for-
mation. In 1995, Montague et al. [23] proposed simple hebbian
learning rules to explain the predictive mechanisms used by bees
when foraging in uncertain environments. Apart from the in-
vestigation of the predictive mechanisms used during swarming
and foraging, some researchers focused on the predictive func-
tions of the optical and acoustical apparatuses of individuals in-
side bio-groups, especially the retina and the cortex [24]–[26].
Based on intensive experiments on the bio-eyesight systems,
it was found that, when an individual observer’s eyes prepare
to follow a displacement of a visual stimulus, the visual form
of adaptation was transferred from the current fixation to some
future gaze position. These reported investigations support the
conjecture of the existence of some predictive mechanisms in-
side many bio-groups. Promisingly, as an frontier engineering
work, Farrai-Trecate et al. [27] have proposed a decentralized
predictive mechanism to achieve consensus under some mild as-
sumption, which provides a quite suitable starting point for ap-
plying predictive pinning control (PPC) to improve consensus
performance. However, it focuses on addressing the input sat-
urations and has not optimized the eigen-spectrum of the state
matrix so as to accelerate the convergence procedure towards
consensus, which is the essential technical point this paper ad-
dresses.

It is quite challenging to design an effective collective predic-
tive mechanism to improve the synchronization/consensus per-
formance of MASs. Let us explain the reason as follows: To
gain an accurate prediction for each node, an agent must know
the prediction strategy of its neighbors, and hence global infor-
mation is required for the node. Thus, the controller becomes
a centralized one, which contradicts the decentralized require-
ments of MASs. Fortunately, in recent years, more and more
scholars have used pinning control to address the synchroniza-
tion or consensus problems [28], [29]. In this methodology, just
a small proportion of the nodes are selected as the pinning nodes
as shown in Fig. 1, who know the global target of the entire MAS
or can achieve the states of all the other nodes. By regulating
these few pinning nodes, the synchronization or consensus pro-
cedure will be substantially accelerated at a low communica-
tion cost [28], [29]. In this paper, we propose some innovative
solutions based on model predictive control (MPC), which is a
widely used approach for its capability of handing the inter-in-
dividual coupling and the input/output constraints [30]–[32].
Fortunately, this pinning control framework can nicely act as a
niche platform for predictive control of MASs, since the pinning
nodes can be used to provide an accurate future state trajectory
prediction due to the availability of the global MASs informa-
tion at these nodes. In detail, we will show in this paper that, by
incorporating one kind of predictive mechanism to these pin-
ning nodes, the convergence speed towards consensus will be
substantially increased. This observation allows us to reveal the
roles of predictive mechanisms, which universally exist in nat-
ural bio-groups. It is also useful for engineering communica-
tion-limited MASs which converge much faster towards con-
sensus.

The rest of this paper is organized as follows. In Section II,
the two main problems addressed in this paper are formulated.
In Section III, a predictive pinning control (PPC) protocol is

Fig. 1. (a) A network before pinning; (b) after pinning. Here, the pinning nodes
� � � .

presented together with its convergence analysis for networks
with single-integrator dynamics. In Section IV, a PPC protocol
for double-integrator networks is designed, which takes into ac-
count the states and their derivatives. Numerical simulation re-
sults showing PPC protocols’ main characteristics and advan-
tages are presented in Section V. Finally, conclusions are drawn
in Section VI.

II. PROBLEM DESCRIPTION

A digraph is denoted by , where
is the set of nodes, is the set of

edges. A weighted edge from node to node indicates
the existence of a communication link, and is the associated
weighted adjacency matrix, i.e.,
with nonnegative elements , which is zero when there is no
communication link from to . Furthermore, we assume that
there is no self-cycle, i.e., .

Hereafter, we will focus on the digraphs with pinning
nodes as shown in Fig. 1. (Note that, the other common
nodes do not necessarily have the capability to obtain the state
information from the pinning nodes.) Here, we define pinning
nodes as the ones who are always connected to all the other
nodes (including the other pinning nodes), i.e., for

and . Here, is set of the pinning
nodes. Therefore, pinning nodes in this paper are defined to be
the ones who can always obtain the state information from
all the other nodes. In the remainder of the paper, without loss
of generality, we set . Of course, the pin-
ning nodes can also be deemed as “leaders” who always have
connections to all the other nodes.

Let denote the state of node . Generally, we say
that the nodes of a network have reached consensus if and only
if for all [4]. We will address
the consensus speeding up problems concerning networks with
single- and double-integrator dynamics, where .

1) Single-integrator networks The dynamics of a network of
discrete-time integrator agents is defined by [4]:

(1)

with de-
noting the graph Laplacian matrix induced by the topology

and being defined as and
. Here, denotes the sampling period

or step-size, and is the identity matrix of di-
mension .
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2) Double-integrator networks The discrete-time closed-loop
dynamics is provided as [5]

(2)

with

(see [5]), and

.
The consensus protocols (1) and (2) ensure global asymptotic

convergence to consensus as given in the following two lemmas
respectively.

Lemma 1: [6] For system (1), the consensus situation

(3)

where is the left eigvenvector of corresponding to eigen-
value 0 who satisfies and (in
particular, for balanced networks, where

and ), can be reached if and only if the sam-
pling period and the following assumption is
fulfilled.

A1: has one eigenvalue at 1 (or the network has a rooted
directed spanning tree over time), and all the other eigenvalues
inside the unit circle.

Lemma 2: [16] For system (2), the consensus

(4)

(5)

where is the left eigvenvector of corresponding to eigen-
value 0 who satisfies and
(in particular, for balanced networks, where

), the velocity or state derivative vector
and are the

eigenvalues not equaling 1, can be reached if and only if the
sampling period , and

(6)

and the following assumption is fulfilled.
A2: (see (2)) has two eigenvalues at 1 (or the network

has a rooted directed spanning tree over time), and all the other
eigenvalues inside the unit circle.

In the remainder of the paper, for digraph with pin-
ning nodes as shown in Fig. 1(b), we seek to design a suitable

predictive mechanism represented by an additional state matrix
(resp. ), which will be added to in (1) (resp.

in (2)), so as to increase the convergence speed towards con-
sensus. Here, the subscript “PPC” represents “predictive pin-
ning control”. Of course, and only have influence
on the dynamics of the pinning nodes of the network, which cor-
respond to the first rows of and the
rows of , respectively. Apparently, because of the existence
of the pinning nodes, the network considered in the rest of the
paper always has a rooted directed spanning tree over time [5],
and hence the consensus is naturally guaranteed.

III. PPC OF SINGLE-INTEGRATOR NETWORKS

In order to improve the consensus performances, we replace
the classical control protocol [4]
by the following PPC consensus protocol:

(7)

(8)

where is an additional term representing the PPC
action, and . Recall that

are the pinning nodes, and
that we seek to accelerate the consensus procedure by incorpo-
rating a predictive mechanism into , which always know the
states of all the other nodes.

With this PPC protocol, the network dynamics are given by

(9)

with representing the PPC decision
values for the pinning nodes and .
The PPC element will be calculated by solving a specific
receding-horizon optimization problem as described below.

Using the consensus protocol (9), the future network state can
be predicted based on the current state value as shown in
the matrix at the bottom of the page. Here, the integers and

represent the prediction and control horizons, respectively.
In this way, the future evolution of the network can be pre-

dicted steps ahead, as

(10)

...

...
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with

, and the matrix
has the following structure shown in (11) at the

bottom of the page, with and
given in (9).
Bearing in mind the goal of consensus, i.e., eliminating the

disagreement of all the individuals of the network, we first cal-
culate the state derivative of agents and in the network,

steps ahead, using the operator

(12)

with and
where only the th element is non-zero. Based on (12), the net-
work state derivative vector steps ahead can be defined by

Consequently, the future evolution of the network’s state deriva-
tive can be predicted steps ahead as follows:

... (13)

with

(14)

It then follows from (13) that

(15)

with
and .

To solve the consensus problem, we first set the receding-
horizon optimization index as

(16)

where and are compatible real, symmetric, positive definite
weighting matrices, and . For simplicity, the
weighting matrices can be set as

and (17)

In the optimization index (16), the first term penalizes the state
derivative between each pair of states over the future predic-
tion steps, while the second term penalizes the PPC control en-
ergy over the future control steps. In order to minimize (16),
we compute the values of that yield to
obtain the optimal PPC action by

thus , and the
first entries of are extracted as the optimal PPC action

(18)

where
. The associated closed-loop dynamics can

then be written as

(19)

with . We hereby give the necessary and suf-
ficient conditions guaranteeing asymptotic convergence to con-
sensus for the above proposed consensus PPC.

Recall the two essential Lemmas 1 and 2, which have estab-
lished the foundation of consensus for single- and double-in-
tegrator networks, respectively. To guarantee Assumptions A1
and A2, we will propose a lemma to “peel” (or remove) the
eigenvalues at 1 from the state matrix spectrum as follows. Note
that the eigenvector(s) corresponding of the eigenvalue(s) at 1

...
. . .

...
...

...

(11)
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merely determines the consensus value, while the remaining
eigenvalues regulate the convergence speed towards consensus.

Lemma 3: If a matrix is such that
and has eigenvalues at 1 with a geometric multi-

plicity of 1, then the matrix has the same eigen-
values as except for eigenvalues which are located at 0
instead of 1. Here, .

Proof: Consider with
, where

denotes the matrix formed by the orthonormal column
vectors of dimension that span the null space of the matrix

. Since by construction is an orthonromal matrix, the
similarity transformation preserves
the eigenvalues of . We therefore obtain

which implies that has the same eigenvalues as
plus eigenvalues at 0. Finally, using a similar argu-

ment, we can easily show that has the same eigenvalues
as minus eigenvalues at 1.

Thereby, for the single-integrator case (resp. the double-inte-
grator case) as shown in Lemmas 1 (resp. Lemma 2), one can
set (resp. ) in Lemma 3 to “peel” the eigenvalues
at 1, so as to focus on the investigation of the distribution of the
remaining eigenvalues, which dictate the convergence speed to-
wards consensus.

For conciseness, we hereafter give a new definition on matrix
spectrum.

Definition 1:

(20)

where denote the matrix spectrum radius [33].
Then is the -th largest 2-norm [33] of the

eigenvalues of provided that has eigenvalues at 1 with
geometric multiplicity of 1 and all the other eigenvalues in the
unit circle.

Now, we will show that determines the convergence
speed towards consensus. Consider the Jordan normal form of
the matrix , there exists a matrix such that

. Here, is a block diagonal
matrix with each block being Jordan block corresponding to the

eigenvalues inside the unit circle. Thus, one can find
a suitable nonsingular matrix with having linear
independent columns, such that

and hence

(21)

where denotes the upper rows of . From the above
calculation (21), one has that is the spectral radius of

, which characterizes the convergence speed of as
and that of towards the consensus value, in the

sense that the smaller the , the faster the convergence
speed.

On the other hand, regarding the eigenvalues of the matrix
in (18), we will demonstrate the fact that the eigenvalue

of corresponding to the trivial eigenvector is 0, which
will be summarized in the following lemma.

Lemma 4: Consider an -node network whose dynamics are
described by (19), and with the associated weighting matrices
given by (17), then one has .

Proof: It is clear that , which directly leads to

, and hence one has . In other
words, the eigenvalue of associated with the trivial eigen-
vector is 0.

Based on Lemmas 3 and 4, we are ready to propose the main
theorem for single-integrator networks in (19) as follows so as to
demonstrate the merits of the proposed PPC consensus protocol.

Theorem 1 (Spectrum Strict Compression Theorem-Single):
Consider an -node network whose dynamics
are described by (19), and with the associated weighting ma-
trices given by (17). One then has

(22)

Proof: See Appendix A.
Now, it is safe to conclude from Theorem 1 that, except for

the simple eigenvalue at 1, the spectrum of is effectively
compressed by , and hence the convergence speed towards
consensus is effectively increased [4], [5].

IV. PPC OF DOUBLE-INTEGRATOR NETWORKS

We now consider a set of agents with double integrator
dynamics (2), and replace this classical control protocol by the
following PPC consensus protocol:

(23)

(24)

where is an additional term representing the PPC action,
and .
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Recall that are the pinning nodes, and
.

With this PPC protocol, the network dynamics are given by

(25)

(26)

with
and representing

the PPC decision values of . The PPC element will
be calculated by solving the receding-horizon optimization
problem as described below.

Using the consensus protocol (25), the future state evolution
of the network can be predicted based on the current state value

as shown in the matrix at the bottom of the page.
In this way, the future evolution of the network can be pre-

dicted steps ahead as

(27)

with

, and given by
(45) in Appendix B.

Bearing in mind the goal of consensus, i.e., eliminating the
disagreement of all the individuals of the network, we calcu-
late the network state derivative vector steps
ahead by

Therefore, the future evolution of the network’s state deriva-
tive can be predicted steps ahead as follows:

... (28)

with
and

. It then follows from (28) that

(29)

with

and .
To solve the consensus problem, we first set the re-

ceding-horizon optimization index that defines the PPC
consensus problem as follows:

(30)

where and are the same as (17). In order to minimize (30),
we calculate to obtain the optimal PPC ac-
tion as below

and the first entries of are extracted to yield the optimal
PPC action

(31)

where
. Then, the associated closed-loop dynamics

can then be written as

(32)

with . Next, we will give necessary and suf-
ficient conditions guaranteeing asymptotic convergence to con-
sensus for the above proposed PPC consensus protocol. Anal-
ogous to the single-integrator scenario, it is necessary to intro-
duce two lemmas in advance.

Lemma 5: Consider an -node network whose dynamics are
described by (32), and with the compatible weighting matrices
given by (17), then one has .

Proof: First, we have by definition of in (2) that

(33)

...

...
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Combining (33) and the definition of in (27), we
immediately obtain

,
which leads to . In other words, the eigenvalue of

associated with the trivial eigenvector is 0.
Based on Lemma 5, we are ready to study the eigenvalues of

the state matrix of the proposed PPC protocol (32)
as below.

Lemma 6: Both the state matrix in (2) and the PPC state
matrix in (32) have two eigenvalues at 1 with a
geometric multiplicity of 1, respectively.

Proof: First, we look at the eigenvalues at 1 of

where is the th eigenvalue of . Therefore, it follows that
. Since has one

simple eigenvalue at 0, it follows that has two eigenvalues at
1 with a geometric simplicity of 1.

Regarding the eigenvalues of , it follows from (2)
that , and hence it comes from the
definition of in (29) that , which
immediately leads to

with . Taking into consideration that

in Lemma 5, one has that is a Jordan eigen-

vector block associated with the eigenvalue of
, and hence has two eigenvalues at 1 with a

geometric simplicity of 1.
Based on Lemmas 3, 5 and 6, we are now ready to provide

a necessary and sufficient condition for consensus convergence
of the proposed PPC protocol (32).

Theorem 2: For an -node network whose dynamics are
described by (32), and with the associated weighting matrices
given by (17) and satisfying (6), the system state and
state derivative satisfy

(34)

(35)

if and only if the following assumption holds
A3: ,

noting that is the left eigvenvector of corresponding
to eigenvalue 0 who satisfies , and is given
in Lemma 3. Particularly, for balanced -node networks with

, one has .
Proof: See Appendix C.

Therefore, it can be obtained from Theorem 2 that the state
and the state derivative asymptotically achieves the same

consensus trajectories as the classical method shown in (4) and
(5), once Assumption A3 and (6) are fulfilled. Now, we are at
the point of characterizing the spectrum compression property
of the proposed PPC algorithm (32), and thereby providing an
explanation for its advantages over the classical algorithm (2).

Theorem 3 (Spectrum Strict Compression Theorem-Double):
Consider an -node network whose dynamics
are described by (32), and with the compatible weighting ma-
trices given by (17). One then has

(36)

Proof: See Appendix D.
It is concluded from the Theorem 3 and Lemma 3 that,

except for the two eigenvalues at 1, the spectrum of is
effectively compressed by . Therefore, the convergence
speed towards consensus is effectively increased [5], [6]. By
this means, Theorem 3 provides an explanation as to why this
PPC algorithm works in the case of double-integrator networks.

Remark 1: Since the global information of and is
only available to the pinning nodes, Assumption A3 and (6) are
hard to check in Theorem 2 in advance. Fortunately, they are not
used in our controller design (31) but in verifying the parameter
selections of and after the implementation. The
key point is (36) in Theorem 3, which implies that if the original
control law (2) is convergent (in this case, (6) and Assumption
A2 are fulfilled), then MPC protocol (32) is also convergent.

On the other hand, the technical analyses in Theorems 1, 2
and 3 are independent of the topology or the selection method
of the pinning nodes. Admittedly, the optimal selection method
of the pinning nodes according to the topology could be a chal-
lenging yet promising point deserving further investigation in
our future work.

Remark 2: Note that the control law calculation complexity
(see of (18) and (31)) rises quickly along with increasing
values of and , but it has been verified by numerical
simulations that too small values of and will decrease
the improvement in convergence speeds. Empirically speaking,
selecting moderate values of and (like and

) is a good tradeoff between convergence speeds and
computational complexities.

Remark 3: Although they have some common factors, the
single-integrator case is not atrivial special case of double-in-
tegrator case. As shown in the proofs of Theorems 1–3, we-
have used different techniques in the proofs to achieve the con-
sensus values and to analyzethe spectrum compression mecha-
nism, thus we have used two separated sections to propose them.

V. CASE STUDIES

To illustrate the advantages of the PPC consensus protocol,
we present simulation results comparing the convergence speeds
obtained using the classical protocol given in (1) (resp. (2)) and
the proposed PPC protocol given in (18) (resp. (31)) for single-
integrator networks (resp. double-integrator networks) as below.

Without loss of generality, we consider a class of ring-shaped
digraphs with pinning nodes as shown in Fig. 1. The adjacency
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matrix fulfills: 1) with and ;
2) with ; 3 ; and 4) all
the other entries of are zeros. Since the objective is to reach
consensus, the instantaneous disagreement index is typically set
as .

A. Case 1: Single-Integrator Networks

Due to the similarity of using a linear quadratic regulator
(LQR) to yield an optimal control law (see (16) and (30)), we
also compare PPC with the LQR-based consensus algorithm
(in abbreviation, LQR) proposed in [19] to demonstrate the su-
periority of PPC more vividly. As shown in the left panel of
Fig. 2(a), the addition of the predictive mechanism defined in
(18) yields a drastic increase in convergence speed to-
wards consensus. All the three methods (classical, LQR and
PPC) can achieve the consensus value
as shown in Fig. 2(b), where PPC achieves consensus the most
quickly. The reason lies in the right panel of Fig. 2(a), where all
the eigenvalues distributions of and are ex-
hibited. Obviously, the spectrum is smaller than

and (see Definition 1 for ). Moreover,
consider the networks as shown in Fig. 1 with different pinning
nodes numbers , the spectrum of the corresponding state
matrices of the classical, LQR and PPC laws are demonstrated
in Table I. Hereby, Theorem 1 is verified, and the superiority of
the PPC protocol is thus demonstrated.

It is noted that the advantage of PPC over LQR lies in the fact
that PPC makes each node virtually link to the neighbor(s) of
its neighbor(s) in future several steps, which increases the virtue
connections of the network without adding physical links.

B. Case 2: Double-Integrator Networks

Bearing in mind the objective of reaching consensus as shown
in (4) and (5), we set the instantaneous disagreement indexes of

and as

(37)

(38)

and then perform our simulation on the digraph shown in Fig. 1
with double-integrator dynamics.

As shown in the left and middle panels of Fig. 3(a), the addi-
tion of the predictive mechanism defined in (31) yields a drastic
increase in convergence speed towards consensus of both state
derivative (see Fig. 3(b)) and state (see Fig. 3(c)).
The improvement of the convergence speed roots in the eigen-
value distributions of and as shown in the right
panel of Fig. 3(a). In particular, the third largest norm of the
eigenvalues is . Considering the controller (31)
with and , one can find an optimal
such that . By Theorem 2, we have

. By this means, both
Theorems 2 and 3 are exemplified, and the consensus accelera-
tion is demonstrated through Fig. 3.

Remark 4: The time consumptions of 100 running steps in
Fig. 2(b) are: classical-0.1532s and PPC-3.4583s The time con-
sumptions of 200 running steps in Fig. 3(c) are: classical-0.

Fig. 2. (a) Left: consensus index � ���; right: Eigenvalue distribution; (b)
Network states trajectory achieving consensus. The parameters of PPC: � � ��
� � ��� � � ���� � � �� � � �� 	 � �; the parameters of LQR [19]:
optimal scaling factor 
 � ��	�, the weighting matrices � � � and  � � � � ;
the initial states � ���� � � �� 
 
 
 � � are selected randomly in ��� ��.

5645s; PPC-12.1876s. Morever, as shown in Figs. 2(a) and 3(a),
PPC has increase the convergence speed by more than 10 times
in average. Therefore, taking into consideration the speed accel-
eration effect, one can deduce that the increased computational
cost is reasonable and really worthy for systems with reasonable
sizes. From an engineering point of view, even for large-scale
systems, it still makes sense to speed up the consensus proce-
dure at the cost of PPC’s extra calculations, since agents’ CPUs
will become more and more powerful with the tremendous de-
velopment of the IC technology. (Platform: Matlab 6.5, 2.8 G
CPU and 2G RAM. The time consumption values are averages
over 1000 independent runs.)

VI. CONCLUSION

In this paper, we proposed a class of pinning predictive con-
trollers (PPCs) for consensus networks to substantially increase
their convergence speed towards consensus. The controller does
not physically change the network topology or request addi-
tional communication channels. Its effectiveness and superiority
have been demonstrated through theoretical analyses and nu-
merical simulations.
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TABLE I
THE SECOND LARGEST NORM OF THE EIGENVALUES FOR DIFFERENT �

Fig. 3. (a) Left: state consensus index � ���; middle: velocity consensus
index � ���; right: Eigenvalue distribution; (b) Network states trajectory
achieving consensus; (c) Network velocities trajectory achieving consensus.
The parameters: � � �� � � ��� � � ����� � � �� 	 � �� 	 � �� 
 � �,
and the initial states � ���� � � �� 	 	 	 � � are selected randomly in 
�� ��.

APPENDIX

A. Proof of Theorem 1

In order to prove this theorem, we first give a lemma on the
spectra of symmetric positive semi-definite matrices as below.

Lemma 7: Consider an arbitrary symmetric, positive semi-
definite matrix . Let be an eigenvalue of with
associated eigenvector . One then has

1) ;
2) , where

Proof: Property 1): Let and be an arbitrary eigenvalue
of and its corresponding eigenvector, then

.
Since , one has

, which directly leads to

(39)

Repeating the same argument for any proves property 1).
Property 2) is a direct consequence of (39). Using Prop-

erty 1), one has .
Furthermore, since is positive semi-definite, one has

and
, which completes the proof.

Now we are ready to prove Theorem 1. Since and
, one has . Hence

which immediately leads to

(40)

Analogously, it is easily proven that

(41)

Substituting (41) into (40) yields

which implies

(42)

Thus, if , one has
that (36) holds. Accordingly, we start by proving that

. It is easy to see that
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Taking into consideration that
, one thus has

(43)

which yields

Since , and
is symmetric and positive semi-definite, Lemma 7

implies that

(44)

On the other hand, it follows from and
that . Thus, has

a simple eigenvalue at 1, and hence it follows from Lemma 3
that has the same eigenvalues as

except for the eigenvalue at 1 which is now
shifted to 0. Taking into consideration of (44), one has

, which immediately leads to (22)
according to (42).

B. Predictive Matrix for Double-Integrator Networks

First, it is easy to see that the matrix in
(27) has the following structure

(45)

with

...
. . .

...
...

...

and .

C. Proof of Theorem 2

: Since has exactly two eigenvalues
at 1 with geometric multiplicity of 1, it follows from Assump-
tion A3 that the all the other eigenvalues of except
two ones at 1 are inside the unit circle. Letting ,
where , be an eigenvector of associated

with eigenvalue 1, and bearing in mind that , then
we know that

which implies that and . That is, is an
eigenvalue of associate with eigenvalue 0.

Note that can be written in a Jordan canonical
form as

...

where is the Jordan upper diagonal block matrix corre-
spoding to non-one eigenvalues and .

Without loss of generality, we choose and
, where it can be verified that and

are respectively an eigenvector and generalized eigenvector of
associated with eigenvalue 1. Noting that

has exactly two eigenvalues at 1, which in turn implies that there
exists a non-negative vector such that and
as shown in [6]. It can be verified that and

are a generalized left eigenvector and left eigenvector
of associated with eigenvalue 1, respectively, where

and . Noting that all the eigenvalues except
the two eigenvalues at 1 are inside the unit circle, we see that

which converges to for large run-

ning step . Bearing in mind that, for large

one has that (34) and (35) hold. Particularly, for balanced net-
work, .

: Suppose that the sufficient condition of As-
sumption A3 does not hold, in other words, has either
more than two eigenvalues at 1 or it has exactly two eigenvalues
at 1 and at least one eigenvalue outside the unit circle. Without
loss of generality, assume and , where

) denotes the th eigenvalue of .
Letting be the Jordan canonical form of ,
we know that . Then we see that

, which in turn implies that
the first three rows of are linearly inde-
pendent. Therefore, one knows that the rank of is at
least three, which implies that the rank of
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is at least three. Note that the concensus is reached asymptoti-

cally if and only if , where

. As a consequence, the rank of
cannot exceed two. This results in a contradiction.

D. Proof of Theorem 3

Now we prove Theorem 3 as follows based on Lemma
7. Since , one has

, which leads to
. Therefore,

(46)

On the other hand, a suitable matrix can be found such
that

making with

. Therefore,

if

(47)

it follows immediately from (46) that

Accordingly, we will start to prove (47). From in (32), one
has that the first rows of are zeros, which implies that

the first rows of also equal

. Besides, it is easy to see that

Taking into consideration that
, one thus has

(48)

which yields

Since , and note
that is symmetric and positive semi-definite, it fol-
lows from Lemma 7 that

(49)

Meanwhile, it is obtained from and
that . Analogously, one has

. Thus, the right-bottom
block of

has just a simple eigenvalue at 1 and all the other eigenvalues
inside the unit circle. Bearing in mind Theorem 1, one has that
(47) holds. This completes the proof.
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