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A Sparse Bayesian Approach to the Identification
of Nonlinear State-Space Systems

Wei Pan, Ye Yuan, Jorge Gonçalves, and Guy-Bart Stan

Abstract—This technical note considers the identification of
nonlinear discrete-time systems with additive process noise but
without measurement noise. In particular, we propose a method
and its associated algorithm to identify the system nonlinear func-
tional forms and their associated parameters from a limited num-
ber of time-series data points. For this, we cast this identification
problem as a sparse linear regression problem and take a Bayesian
viewpoint to solve it. As such, this approach typically leads to
nonconvex optimizations. We propose a convexification procedure
relying on an efficient iterative re-weighted �1-minimization algo-
rithm that uses general sparsity inducing priors on the parameters
of the system and marginal likelihood maximisation. Using this
approach, we also show how convex constraints on the param-
eters can be easily added to the proposed iterative re-weighted
�1-minimization algorithm. In the supplementary material avail-
able online (arXiv:1408.3549), we illustrate the effectiveness of the
proposed identification method on two classical systems in biology
and physics, namely, a genetic repressilator network and a large
scale network of interconnected Kuramoto oscillators.

Index Terms—Nonlinear system identification, re-weighted
�1-minimization, sparse Bayesian learning.

I. INTRODUCTION

Identification from time-series data of nonlinear discrete-time state-
space systems with additive process noise is relevant to many differ-
ent fields such as systems/synthetic biology, econometrics, finance,
chemical engineering, social networks, etc. Yet, the development of
general identification techniques remains challenging, especially due
to the difficulty of adequately identifying nonlinear systems [2], [3].
Nonlinear dynamical system identification aims at recovering the set of
nonlinear equations associated with the system from time-series obser-
vations. The importance of nonlinear dynamical system identification
and its associated difficulties have been widely recognised [3], [4].

Since, typically, nonlinear functional forms can be expanded as
sums of terms belonging to a family of parameterised functions (see
[2, Sec. 5.4] and [3]), an usual approach to identify nonlinear state-
space models is to search amongst a set of possible nonlinear terms
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(e.g., basis functions) for a parsimonious description coherent with the
available data [5]. A few choices of basis functions are provided by
classical functional decomposition methods such as Volterra expan-
sion, Taylor polynomial expansion or Fourier series [2], [3], [6]. This is
typically used to model systems such as those described by Wiener and
Volterra series [6], [7], neural networks [8], nonlinear auto-regressive
with exogenous inputs (NARX) models [9], and Hammerstein-Wiener
[10] structures, to name just a few examples.

Recently, graphical models have been proposed to capture the
structure of nonlinear dynamical networks. In the standard graphical
models where each state variable represents a node in the graph and
is treated as a random variable, the nonlinear relations among nodes
can be characterised by factorising the joint probability distribution
according to a certain directed graph [11]–[13]. However, standard
graphical models are often not adequate for dealing with times series
directly. This is mainly due to two aspects inherent to the construction
of graphical models. The first aspect pertains to the efficiency of
graphical models built using time series data. In this case, the building
of graphical models requires the estimation of conditional distributions
with a large number of random variables [14] (each time series is
modelled as a finite sequence of random variables), which is typically
not efficient. The second aspect pertains to the estimation of the
moments of conditional distribution, which is very hard to do with
a limited amount of data especially when the system to reconstruct
is nonlinear. In the case of linear dynamical systems, the first two
moments can sometimes be estimated from limited amount of data
[15], [16]. However, higher moments typically need to be estimated
if the system under consideration is nonlinear.

In this technical note, we propose a method to alleviate the problems
mentioned above. This method relies on the assumption that there exits
a finite set of candidate dictionary functions whose linear combination
allows to describe the dynamics of the system of interest. In particular,
we focus on discrete-time nonlinear systems with additive noise rep-
resented in a general state-space form. Based on this, we develop an
identification framework that uses time series data and a priori knowl-
edge of the type of system from which these time series data have
been collected, e.g., biological, biochemical, mechanical or electrical
systems. For example in Genetic Regulatory Network (GRN), only
polynomial or rational nonlinear functional forms typically need to be
considered in the identification process.

To identify the network efficiently given the available time se-
ries data, we cast this nonlinear system identification problem as a
sparse linear regression problem [17]–[19]. Although such problems
have been widely applied in the context of sparse coding, dictionary
learning or image processing [20], [21], they have received little
attention in nonlinear dynamical system identification. Besides the
work presented here, one of the rare example of sparse estimation
technique used for dynamical system identification is the multiple
kernel-based regularisation method, which has been used to estimate
finite impulse response models [22].

Furthermore, very few contributions are available in the literature
that address the identification problem with a priori information or
constraints on the parameters of the system [23], [24]. In contrast, our
proposed framework allows us to incorporate convex constraints on the
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associated model parameters, e.g., equality or inequality constraints
imposed among parameters, or a priori required stability conditions.

In sparse linear regression problems, finding the sparsest so-
lution is desirable but typically NP-hard. The classic “Lasso” or
�1-minimization algorithm are typically used as a relaxation to alle-
viate this numerical difficulty [25]. However, these algorithms usually
only work well or have performance guarantees when the considered
dictionary matrix has certain properties such as the restricted isometry
property (RIP) [18], [26] or the incoherence property [27]. Loosely
speaking, these properties require that the columns of the dictionary
matrix are orthogonal, or nearly so. Unfortunately, such properties
are hardly guaranteed for nonlinear identification problems and, as
a consequence, �1-relaxation based algorithms typically do not work
well when these conditions are not satisfied.

In this technical note, we shall explain, from a probabilistic view-
point, how a Bayesian approach can attenuate problems arising in the
case of high correlations between columns of the dictionary matrix. In
particular, the main contributions of this technical note are:

• To formulate the problem of reconstructing discrete-time nonlin-
ear systems with additive noise into a sparse linear regression
problem. The model class in this technical note covers a large
range of systems, e.g., systems with multiple inputs and multiple
outputs, systems with memory in their states and inputs, and
autoregressive models.

• To derive a sparse Bayesian formulation of the nonlinear system
identification problem, which is casted into a nonconvex opti-
mization problem.

• To develop an iterative re-weighted �1-minimization algorithm
to convexify the nonconvex optimization problem and solve it
efficiently. This formulation can also take into account additional
convex constraints on the parameters of the model.

The generality of our framework allows it to be applied on a broad
class of nonlinear system identification problems. In particular, to
illustrate our results, we applied our approach to two examples: (1) the
Genetic Repressilator Network, where we identify nonlinear regulation
relationships between genes, transcriptional and translational strengths
and degradation rates, and (2) a network of Kuramoto Oscillators,
where we identify the network topology and nonlinear coupling func-
tions. Details about these examples can be found in the supplementary
material [1].

This technical note is organized as follows. Section II-A introduces
the class of nonlinear models considered. Section II-B formulates
the nonlinear identification problem into a sparse linear regression
problem. Section III re-interprets the sparse problem from a Bayesian
point of view, while Section IV shows how the resulting nonconvex op-
timization problem can be convexified and solved efficiently using an
iterative re-weighted �1-minimization algorithm. Finally, we conclude
and discuss several future open questions.

II. FORMULATION OF THE NONLINEAR

IDENTIFICATION PROBLEM

A. Considered Nonlinear Dynamical Model Class

We consider dynamical systems described by discrete-time non-
linear state-space equations driven by additive Gaussian noise. The
discrete-time dynamics of the i-th state variable xi, i = 1, . . . , nx is
assumed to be described by

xi(tk+1) = Fi (x(tk),u(tk)) + ξi(tk)

=

Ni∑
s=1

visfis (x(tk),u(tk)) + ξi(tk)

= f�i (x(tk),u(tk))vi + ξi(tk) (1)

where x = [x1, . . . , xnx ]
� ∈ R

nx denotes the state vector, u = [u1,
. . . , unu ]

� ∈ R
nu denotes the input vector, and Fi(·) : Rnx+nu → R

is a smooth nonlinear function which is assumed to be represented as a
linear combination of several dictionary functions fis(x(tk),u(tk)) :
R

nx+nu → R (see [2, Sec. 5.4]). These constituent dictionary func-
tions can be monomial, polynomial, constant or any other functional
form such as rational, exponential, trigonometric etc. fi(x(tk),u(tk))
is the vector of considered dictionary functions (which does not
contain unknown parameters) while vi ∈ R

Ni appearing in (1) is the
weight vector associated with the dictionary functions vector. The ad-
ditive noise ξi(tk) is assumed to be i.i.d. Gaussian distributed with zero
mean: ξi(tk) ∼ N (0, λi), with E(ξi(tp)) = 0, E(ξi(tp)ξi(tq)) =

λiδpq , where δpq =
{
1, p = q,
0, p �= q

. ξi(·) and ξj(·) are assumed inde-

pendent ∀i �= j.
Remark 1: The class of systems considered in (1) can be ex-

tended to the more general dynamics class xi(tk+1) = Fi(x(tk),
. . . ,x(tk−mx),u(tk), . . . ,u(tk−mu)) + xi(tk), where the “orders”
mx and mu are assumed to be known a priori, and Fi(·) :
R

(mx+1)nx+(mu+1)nu → R. An example of such system can be
found in the supplementary material [1] (see Example 1). In particular,
MIMO nonlinear autoregressive models belong to such descriptions.

B. Identification Problem Statement

If M data samples satisfying (1) can be obtained from the sys-
tem of interest, the system in (1) can be written as yi = Ψivi +

ξi, i = 1, . . . , nx, where yi
Δ
= [xi(t1), . . . , xi(tM )]� ∈ R

M×1, vi
Δ
=

[vi1, . . . , viNi
]� ∈ R

Ni×1, ξi

Δ
= [ξi(t0), . . . , ξi(tM−1)]

� ∈ R
M×1,

and Ψi ∈ R
M×Ni represents the dictionary matrix with its j-th col-

umn being [fij(x(t0),u(t0)), . . . , fij(x(tM−1),u(tM−1))]
�.

In this framework, the identification problem amounts to finding
vi ∈ R

Ni×1 given the measured data stored in yi. This, in turn,
amounts to solving a linear regression problem, which can be done
using standard least square approaches, provided that the structure of
the nonlinearities in the model are known, i.e., provided that Ψi is
known. In what follows, we make the following assumption on the
measurements contained in yi.

Assumption 1: The system (1) is fully measurable, i.e., time series
data of all the state variables xi can be obtained.

Depending on the field for which the dynamical model needs to be
built, only a few typical nonlinearities specific to this field need to be
considered. In what follows, we gather in a matrix Φi similar to Ψi

the set of all candidate/possible dictionary functions that we want to
consider for identification

yi = Φiwi + ξi, i = 1, . . . , nx. (2)

The solution wi to (2) is typically going to be sparse, which is
mainly due to the potential introduction of non-relevant and/or non-
independent dictionary functions in Φi.

Since the nx linear regression problems in (2) are independent, for
simplicity of notation, we omit the subscript i used to index the state
variable and simply write:

y = Φw+ ξ. (3)

It should be noted that N , the number of dictionary functions or
number of columns of the dictionary matrix Φ ∈ R

M×N , can be very
large, at least larger than the number of observations M . Moreover,
since y is constructed from time series data, typically two or more of
the columns of the Φ matrix are highly correlated. In this case standard
methods, which involve some form of �1-regularised minimization,
often yield poor performance on system identification [28].
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III. BAYESIAN VIEWPOINT ON THE RECONSTRUCTION PROBLEM

A. Sparsity Inducing Priors

Bayesian modelling treats all unknowns as stochastic variables with
certain probability distributions [29]. For y = Φw+ ξ, it is assumed
that the stochastic variables in the vector ξ are Gaussian i.i.d. with
ξ ∼ N (0, λI). In such case, the likelihood of the data given w
is P(y|w) = N (y|Φw, λI) ∝ exp[−(1/2λ)‖y −Φw‖22]. We de-
fine a prior distribution P(w) as P(w) ∝ exp[−(1/2)

∑
j
g(wj)] =∏

j
exp[−(1/2)g(wj)] =

∏
j
P(wj), where g(wj) is a given func-

tion of wj . To enforce sparsity on w, the function g(·) is usually
chosen as a concave, non-decreasing function of |wj |. Examples of
such functions g(·) include Generalised Gaussian priors and Student’s
t priors (see [30] for details).

Computing the posterior mean E(w|y) is typically intractable be-
cause the posterior P(w|y) is highly coupled and non-Gaussian. To al-
leviate this problem, ideally one would like to approximate P(w|y) as
a Gaussian distribution for which efficient algorithms to compute the
posterior exist [29]. Another approach consists in considering super-
Gaussian priors, which yield a lower bound for the priors P(wj) [30].
The sparsity inducing priors mentioned above are super-Gaussian.

More specifically, if we define γ
Δ
= [γ1, . . . , γN ]� ∈ R

N
+ , we can rep-

resent the priors in the following relaxed (variational) form: P(w) =∏n

j=1
P(wj), P(wj) = maxγj>0 N (wj |0, γj)ϕ(γj), where ϕ(γj)

is a nonnegative function which is treated as a hyperprior with γj
being its associated hyperparameters. Throughout, we call ϕ(γj) the
“potential function.” This Gaussian relaxation is possible if and only if
logP(

√
wj) is concave on (0,∞). The following proposition provides

a justification for the above:
Proposition 1 [30]: A probability density P(wj) ≡ exp(−g(w2

j ))
can be represented in the convex variational form: P(wj) =
maxγj>0 N (wj |0, γj)ϕ(γj) if and only if − logP(

√
wj) = g(wj)

is concave on (0,∞). In this case the potential function takes the
following expression: ϕ(γj) =

√
2π/γj exp(g

∗(γj/2)) where g∗(·)
is the concave conjugate of g(·). A symmetric probability den-
sity P(wj) is said to be super-Gaussian if P(

√
wj) is log-convex

on (0,∞).

B. Marginal Likelihood Maximisation

For a fixed γ = [γ1, . . . , γN ], we define a relaxed prior, which
is a joint probability distribution over w and γ, as P(w;γ) =∏

j
N (wj |0, γj)ϕ(γj) = P(w|γ)P(γ) ≤ P(w), where P(w|γ) Δ

=∏
j
N (wj |0, γj),P(γ)

Δ
=
∏

j
ϕ(γj). Since the likelihood is P(y|w)

is Gaussian, we can get a relaxed posterior which is also Gaussian
P(w|y,γ)=((P(y|w)P(w;γ))/(

∫
P(y|w)P(w;γ)dw))=N (mw,

Σw). Defining Γ
Δ
= diag[γ], the posterior mean and covariance are

given by

mw = ΓΦ�(λI+ΦΓΦ�)
−1

y (4)

Σw = Γ− ΓΦ�(λI+ΦΓΦ�)
−1

Φ. (5)

Now the key question is how to choose the most appropriate γ =
γ̂ = [γ̂1, . . . , γ̂N ] to maximise

∏
j
N (wj |0, γj)ϕ(γj) such that

P(w|y, γ̂) can be a “good” relaxation to P(w|y). Using the product
rule for probabilities, we can write the full posterior as: P(w,γ|y) ∝
P(w|y,γ)P(γ|y)=N (mw,Σw)×P(y|γ)P(γ)/P(y). Since P(y)
is independent of γ, the quantity P(y|γ)P(γ) =

∫
P(y|w)P(w|γ)

P(γ)dw is the prime target for variational methods [31]. This quantity
is known as evidence or marginal likelihood. A good way of selecting

γ̂ is to choose it as the minimizer of the sum of the misaligned
probability mass, e.g.,

γ̂ = argmin
γ≥0

∫
P(y|w) |P(w)− P(w;γ)| dw

= argmax
γ≥0

∫
P(y|w)

n∏
j=1

N (wj |0, γj)ϕ(γj)dw. (6)

The second equality is a consequence of P(w;γ) ≤ P(w). The
procedure in (6) is referred to as evidence maximization or type-II
maximum likelihood [32]. It means that the marginal likelihood can
be maximized by selecting the most probable hyperparameters able
to explain the observed data. Once γ̂ is computed, an estimate of
the unknown weights can be obtained by setting ŵ to the posterior

mean (4) as ŵ = E(w|y; γ̂) = Γ̂Φ�(λI+ΦΓ̂Φ�)
−1

y, with Γ̂
Δ
=

diag[γ̂]. If an algorithm can be proposed to compute γ̂ in (6), we can,
based on it, obtain an estimation of the posterior mean ŵ.

C. Enforcing Additional Constraints on w

It is often important to be able to impose constraints on ŵ when
formulating the optimization problem (6) used to compute ŵ from
γ̂. In physical and biological systems, positivity of the parameters w
of the system is an example of such constraints. Another example of
constrained optimization comes from stability considerations, which
emerge naturally when the underlying system is known a priori to
be stable.1 Yet, only a few contributions in the literature address the
problem of how to take into account a priori information on system
stability in the context of system identification [23], [24]. To be able to
integrate constraints on w into the problem formulation, we consider
the following assumption on w.

Assumption 2: Constraints on the weights w can be described by a
set of convex functions:

H
[I]
i (w) ≤ 0, i = 1, . . . ,mI

H
[E]
j (w) = 0, j = 1, . . . ,mE (7)

where the convex functions H [I]
i : RN → R are used to define inequal-

ity constraints, whereas the convex functions H [E]
j : RN → R are used

to define equality constraints.

IV. NONCONVEX OPTIMIZATION FOR

IDENTIFICATION PROBLEMS

In this section, we derive a sparse Bayesian formulation of the prob-
lem of system identification with convex constraints, which is casted
into a nonconvex optimization problem. The nonconvex optimization
problem can be dealt by an iterative re-weighted �1-minimization
algorithm.

A. Nonconvex Objective Function in Hyperparameter

Theorem 1: The optimal hyperparameters γ̂ in (6) can be obtained
by minimizing the following objective function:

Lγ(γ) = log |λI+ΦΓΦ�|+ y�(λI+ΦΓΦ�)
−1

y+

N∑
j=1

p(γj)

(8)

where p(γj) = −2 logϕ(γj) and |A| denotes the determinant of
matrix A. The posterior mean is then given by ŵ = Γ̂Φ�(λI+
ΦΓ̂Φ�)−1y, where Γ̂ = diag[γ̂].

1Many stability conditions can be formulated as convex optimization prob-
lems (see for example [33], [34]).
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Proof 1: See Section A in the Appendix of [1].
Lemma 1: The objective function in the hyperparameter γ-space,

Lγ(γ) in (8), is nonconvex.
Proof 2: See Section B in the Appendix of [1].

B. Nonconvex Objective Function in w With Convex Constraints

Based on the analysis in Section IV-A, we first derive a dual objec-
tive function in the w-space with convex constraints by considering
the equivalent objective function of (8) in the γ-space. We then show
that this equivalent objective function is also nonconvex.

Theorem 2: The estimate for w with constraints can be obtained by
solving the optimization problem

min
w

‖y −Φw‖22 + λgSB(w), subject to (7) (9)

where gSB(w) = minγ≥0{w�Γ−1w + log |λI+ΦΓΦ�|+∑N

j=1
p(γj)}

and the estimate of the stochastic variable w is given by the
poseterior mean mw defined in (4).

Proof 3: See Section C in the Appendix of [1].
Although all the constraint functions are convex in Theorem 2, we

show in the following Lemma that the objective function in (9) is
nonconvex since it is the sum of convex and concave functions.

Lemma 2: The penalty function gSB(w) in Theorem 2 is a non-
decreasing, concave function of |w|, which promotes sparsity on the
weights w.2

Proof 4: The proof uses the duality lemma (see [35, Sec. 4.2]).
See Section D in the Appendix of [1].

C. Lasso Type Algorithm

We define the terms excluding h∗(γ∗) as

Lγ∗(γ,w)
Δ
=

1

λ
‖y −Φw‖22 +

∑
j

(
w2

j

γj
+ γ∗

j γj

)
. (10)

For a fixed γ∗, we notice that Lγ∗(γ,w) is jointly convex in w and
γ and can be globally minimized by solving over γ and then w. Since
w2

j/γj + γ∗
j γj ≥ 2wj

√
γ∗

j , for any w, γj = |wj |/
√

γ∗
j minimizes

Lγ∗(γ,w). When γj = |wj |/
√

γ∗
j is substituted into Lγ∗(γ,w),

ŵ can be obtained by solving the following weighted convex
�1-minimization procedure:

ŵ = argmin
w

{
‖y −Φw‖22 + 2λ

N∑
j=1

√
γ∗

j |wj |

}
. (11)

We can then set γj = |ŵj |/
√

γ∗
j , ∀j. As a consequence, Lγ∗(γ,w)

will be minimized for any fixed γ∗. Due to the concavity of
gSB(w), the objective function in (9) can be optimised using a re-
weighted �1-minimization in a similar way as was considered in (11).

The updated weight at the kth iteration is then given by u
(k)
j

Δ
=

((∂gSB(w))/(2∂|wj |))|w=w(k) =

√
γ

∗(k)
j .

We can now explain how the update of the parameters can be
performed based on the above. We start by setting the iteration count
k to zero and u

(0)
j = 1, ∀j. At this stage, the solution is a typical

2|w| denotes the vector whose elements are |wj |, ∀ j.

�1-minimization solution. Then at the kth iteration, we initialise

u
(k)
j =

√
γ

∗(k)
j , ∀j and then minimize over γ using γj = |wj |/√

γ∗
j , ∀j. Consider again Lγ,w(γ,w). For any fixed γ and w,

the tightest bound can be obtained by minimizing over γ∗. The

tightest value of γ∗ = γ̂∗ equals the gradient of the function h(γ)
Δ
=

log |λI+ΦΓΦ�|+
∑N

j=1
p(γj) defined in Lemma 1 at the current γ.

γ∗ has the following analytical expression: γ̂∗ = ∇γ(log |λI+
ΦΓΦ�|+

∑N

j=1
p(γj)) = diag[Φ�(λI+ ΦΓΦ�)

−1
Φ] + p′(γ),

where p′(γ) = [p′(γ1), . . . , p
′(γN )′]�. The optimal γ∗(k+1) can then

be obtained as γ∗(k+1)=diag[Φ�(λI+ΦΓ(k)Φ�)
−1

Φ]+p′(γ(k)),

where Γ(k) Δ
= diag[γ(k)]. After computing the estimation of γ(k)

j =

|w(k)
j |/

√
γ
∗(k)
j , we can compute γ∗(k+1), which gives γ∗(k+1)

j = Φ�
j

(λI+ΦU(k)W(k)Φ�)−1Φj+p′(γ
(k)
j ), U(k) Δ

= diag[u(k)]
−1

=

diag[
√

γ∗(k)]−1, W(k) Δ
= diag[|w(k)|]. We can then define u(k+1)

j

Δ
=√

γ
∗(k+1)
j for the next iteration of the weighted �1-minimization. The

above described procedure is summarized in Algorithm 1.

Algorithm 1 Nonlinear Identification Algorithm

1: Collect time series data from the system of interest (assuming
the system can be described by (1));

2: Select the candidate dictionary functions that will be used to
construct the dictionary matrix described in Section II-B;

3: Initialise u0
j = 1, ∀j

4: for k = 0, . . . , kmax do
5: Solve the weighted �1-minimization problem with convex

constraints on w

min
w

‖y −Φw‖22 + 2λ
∑
j

u
(k)
j |wj |, subject to (7)

6: Set U(k) Δ
= diag[u(k)]

−1
, W(k) Δ

= diag[|w(k)|];
7: Update weights u

(k+1)
j for the next iteration u

(k+1)
j =

[Φ�
j (λI+ΦU(k)W(k)Φ�)

−1
Φj + p′(γ

(k)
j )]

1/2
;

8: if a stopping criterion is satisfied then
9: Break;

10: end if
11: end for

Remark 2: There are two important aspects of the re-weighted
�1-minimization algorithm presented in Algorithm 1. First, for convex
optimization, there will be no exact zeros during the iterations and
strictly speaking, we will always get a solution without any zero entry
even when the RIP condition holds. However, some of the estimated
weights will have very small magnitudes compared to those of other
weights, e.g., ±10−5 compared to 1, or the “energy” some of the
estimated weights will be several orders of magnitude lower than the
average “energy,” e.g., ‖wj‖22 � ‖w‖22. Thus a threshold needs to be
defined a priori to prune “small” weights at each iteration. The second
aspect concerns the computational complexity of this approach. The
repeated execution of Algorithm 1 is very cheap computationally since
it scales as O(MN‖w(k)‖0) (see [36], [37]). Since at each iteration
certain weights are estimated to be zero, certain dictionary functions
spanning the corresponding columns of Φ can be pruned out for the
next iteration.
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D. Convergence

It is natural to investigate the convergence properties of this iterative
re-weighted �1-minimization procedure. Let A(·) denote a mapping
that assigns to every point in R

N
+ the subset of R

N
+ which satisfies

Steps 5 and 6 in Algorithm 1. Then the convergence property can be
established as follows.

Theorem 3: Given the initial point γ(0)∈R
n
+ a sequence {γ(k)}∞k=0

is generated such that γ(k+1) ∈ A(γ(k)), ∀k. This sequence is guar-
anteed to converge to a local minimum (or saddle point) of Lγ in (8).

Proof 5: The proof is in one-to-one correspondence with that
of the Global Convergence Theorem [38]. See Section E in the
Appendix of [1].

V. ILLUSTRATIVE NUMERICAL EXAMPLES

To implement Algorithm 1, we use CVX, a popular package for
specifying and solving convex programs [39]. To illustrate our results,
the approach is applied to two classic examples: 1) the Genetic
Repressilator Network, where we identify nonlinear regulation rela-
tionships between genes, transcriptional and translational strengths
and degradation rates and 2) a network of Kuramoto Oscillators, where
we identify the network topology and nonlinear coupling functions.
More details about these two examples and algorithmic comparisons
with other algorithms described in [40] in terms of the Root of the
Normalised Mean Square Error (RNMSE) and computational running
time for different Signal-to-Noise Ratios (SNR) can be found in the
supplementary material [1]. Importantly, this comparison shows that
Algorithm 1 outperforms other classical algorithms [40] in terms of
RNMSE, when used to identify the nonlinear systems associated with
these illustrative examples. The corresponding code is available at
https://github.com/panweihit/BSID.

VI. CONCLUSION AND DISCUSSION

This technical note proposed a new method for the identification
of nonlinear discrete-time state-space systems with additive process
noise. This method only required time-series data and some prior
knowledge about the type of system from which these data have been
acquired (e.g., biochemical, mechanical or electrical). Based on this
prior knowledge, candidate nonlinear functions (dictionary functions)
can be selected for the particular type of system to be identified.

Due to the typical sparsity in terms of number of dictionary func-
tions used to describe the dynamics of nonlinear systems and the fact
that the number of measurements is typically small (at least smaller
than the number of candidate nonlinear functions), the corresponding
identification problem falls into the class of sparse linear regression
problems. We considered this problem in a Bayesian framework and
solved it efficiently using an iterative re-weighted �1-minimization
algorithm. This approach also allowed us to easily add convex con-
straints from prior knowledge of some properties of the system (e.g.,
positivity of certain variables, stability of the system, etc.). Finally,
we illustrated how this approach can be efficiently used to accurately
reconstruct discrete-time nonlinear models of the genetic repressilator
and of Kuramoto networks.

Several important questions remain currently open for further re-
search. Possibly, the most important is the assumption that the system
is fully measurable. Typically, only part of the state is measured [41],
[42], and, in particular, the number of hidden/unobservable nodes and
their position in the network are usually unknown. We are currently
investigating partial-measurement extensions of the method presented
in this technical note. Meanwhile, our algorithm is relatively more
computationally expensive than other algorithms such as those in [40]
but outperforms them all in terms of the accuracy of the identification

as measured by the RNMSE. In future work, we plan to improve
our proposed algorithm by exploiting further the structure of the
optimization problem at hand and reducing the associated algorithmic
complexity. Another issue is that we assume that only process noise is
present, and thus do not directly take into account measurement noise.
We are currently working on an extension of the method allowing the
incorporation of measurement noise into the presented framework.
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