
Introduction to Scientific
Programming in Matlab

Prof Guy-Bart Stan
g.stan@imperial.ac.uk
www.bg.ic.ac.uk/research/g.stan

Introduction to Scientific
Programming in Matlab

Dr Guy-Bart Stan
g.stan@imperial.ac.uk
www.bg.ic.ac.uk/research/g.stan

mailto:g.stan@imperial.ac.uk
http://www.bg.ic.ac.uk/research/g.stan

Content
Part A Part B
1. Overview of Matlab
2. Getting started
3. Documentation and help
4. Variables
5. Matrix operations
6. Built-in functions
7. Controlling work flow

8. Basic input/output
9. Scripts and functions
10. Reading and writing data
11. Fitting a model to data
12. Solving differential

equations
13. Plotting in 2d and 3d

http://www.mathworks.com/academia/student_center/tutorials/launchpad.html
www. http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat3.htm

The labs are interactive, computer-based tutorials that offer us the
opportunity to go over your exercises, as well as look into some
related mathematics. Another good reference is the primer by
Kermit Sigmon (pdf) as well as the official Matlab documentation.

http://www.math.toronto.edu/mpugh/primer.pdf
http://www.math.toronto.edu/mpugh/primer.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

1. Overview of Matlab

Intuitive, easy-to-learn, high performance language integrating:
computation, visualization, and programming.

• Math and computation
• Algorithm development
• Data acquisition
• Modeling, simulations, and prototyping
• Data analysis, exploration, and visualization
• Scientific and engineering graphics
• Application development, incl. graphical user interfaces

MATLAB stands for matrix laboratory. Its basic variables are arrays, i.e.
vectors and matrices. Matlab also has many build-in functions
(LAPACK and BLAST libs), as well as specialised add-on tool boxes.
Features allow fast implementation of programs to solve computational
problems.

The Matlab system consists of 5 main parts:

1. Desktop tools and development environment
 Mainly graphical user interfaces, editor, debugger, and workspace

2. Mathematical function library
 Basic math functions such as sums, cosine, complex numbers
 Advanced math functions such as matrix inversion, matrix eigenvalues,
 differential equations

3. The language
 High-level language based on arrays, functions, input/output, and
 flow statements (for, if, while)

4. Graphics
 Data plotting in 2d and 3d, as well as image analysis and animation tools

5. External interfaces
 Interaction between C and Fortran programs with Matlab, either for linking
 convenient routines from Matlab in C/Fortran, or for Matlab to call fast C/Fortran
 programs

 2. Getting started

Go here to open new or existing Matlab files (M-file) and editor

write Matlab commands
here for interactive
mode (work space)

Menus change,
depending on
the tool you
are using

Enter MATLAB
statements at
the prompt

View or change
the current
directory

new

existing

Opening new and existing M-files (scripts or M-file functions):

Different ways to use Matlab:

(1) Interactive mode: just type commands and define variables, empty work
 space with command clear

(2) Simple scripts:
 M-file (name.m) with list of commands
 Operate on existing data in work space, or create new data to work on
 Variables remain in workspace (until emptied)
 Re-useable

(3) Versatile M-file functions:
 M-file
 May return values
 Re-usable
 Easy to call from other functions
 (make sure file is in Matlab search path, set by > File > Set Path)

Matlab provides large amounts of documentation and tutorials:
3. Documentation and help

Matrix assignment:

4. Variables are represented as matrices

C= A + B assigns matrix C as the sum of matrices A and B

If A and B are matrices of same dimension, e.g. [3x4] with 3 rows and
4 columns, C is [3x4] matrix with element-wise addition.

Example with [2x2] matrices:

 A= B= C=

If C existed before e.g. was a scalar C=[1] (i.e. a [1x1] matrix), then C is
overwritten by this new assignment.

If dimensions of A and B don’t match, you will get an error:

 ??? Error using ==> +
 Matrix dimensions must agree

Matrix variables don’t need to be declared. They are just assigned to values and
know about their dimension.

2 4
3 7

5 1
6 2

7 5
9 9

Showing values:

 To see content of a variable, just type its name:

 C = A + B provides

 To assign a variable without showing its content, use semicolon:

 C = A + B; (nothing)

C =
 7 5
 9 9

Initializing matrices:

Provide initial values, e.g.

 a=3; (scalar)
 b=[1 2 3]; ([1x3] row vector)
 c=[4 ; 5 ; 6]; ([3x1] column vector)
 d=[1 2 3 ; 4 5 6]; ([2x3] matrix)

d =
 1 2 3
 4 5 6

typing d gives

Values separated by spaces are put in the same row, e.g., b=[1 2 3]
Semicolon (or carriage return) separates rows, e.g., c=[4 ; 5 ; 6]

Making matrices from matrices:

 a=[1 2 3];
 b=[4 5 6]; gives
 c=[a b];

 while

 a=[1 2 3];
 b=[4 5 6]; gives
 c=[a ; b];

c =
 1 2 3 4 5 6

c =
 1 2 3
 4 5 6

Using portions of matrices:

d(1,2) returns 2
d(2,1) returns 4

d=[1 2 3 ; 4 5 6]; typing

 and d(1, :) returns
d(: , 2) returns

1 2 3
2
5

d =
 1 2 3
 4 5 6

Using more portions of matrices:

d(2,[2 3]) returns 5 6
d(2,[3 2]) returns 6 5

d=[1 2 3 ; 4 5 6]; typing

Variables may also be used as indices of matrices

if you type
 z = [2 3]
then you will see that
 d(2, z) returns 5 6

Use colon to produce string of consecutive integers

x = 3 : 5 produces vector x = 3 4 5

and
 d(1, 1:2) returns 1 2

Text strings:

A variable in Matlab is either numeric or a string.

However, the elements of a string matrix are represented by ASCII
numbers, e.g. space is number 32, and captial A is 65 etc.

Strings are enclosed in single quotation marks (apostrophes)

 s = ‘This is a string’; (a row vector of numbers)

Can create any matrix as long as rows have same length

x = [‘ab’ ; ‘cd’] produces

x = [‘ab’ ‘cd’] produces

x =
 ab
 cd

x =
 ab cd

Matrix transposition is obtained by adding a prime (apostrophe)

if
 x =
 1 2 3 (row vector)

then
 x’ = (column vector)
 1
 2
 3

Matrix addition is obtaind by + sign, and
Matrix subtraction is obtained by - sign

If A is a [3x4] matrix and B is a [4x3] matrix, then

C = A + B produces while C = A + B’ works fine

??? Error using ==> +
 Matrix dimensions must agree

5. Matrix operations

Matrix multiplication is obtained by * symbol

 C = A * B

 Note that inner dimensions of the two operands must be the same,
 e.g. A=[3x4] and B=[4x2] works.

Element by element operations are given by

 C = A .* B (multiplication)

 C = A ./ B (division)

 C = A .^ 2 (exponentiation)

 but for first two, matrix dimensions have to agree!

Exceptions: For addition and subtraction, as well as element-by-element
multiplication and division, matrix dimensions can be different if one of the
operand is a scalar. In this case, the scalar is applied to each element in the matrix.

Some provide one, others more than one answer.

Examples: sum, max, and plot functions

if x =
 1
 2
 3

then statement
 y = sum(x) + 10

produces
 y =
 16

if x =
 1 4 3

then statement
 [y n]= max(x)

produces
 y =
 4
 n =
 2

if x =
 1 4 3

then statement
 z = 10 + max(x)

produces
 z =
 14

multiple
assignments
possible as
well

position where found

6. Built-in functions value=sum(arg_1,arg_2)

if x =
 1 2 3
 4 5 6
then
 sum(x)

 = 5 7 9 (column-wise addition)

For more complicated cases, functions often have natural interpretation

Plotting function plot

 plot(x , y)

 produces a plot of y against x

 but plot(x)

 is also allowed and plots x against 1,2,3,…

Other built-in functions are: mean, cov, min, max, ones, zeros, size, rand, randn ….

M-file functions: provided in \matlab\toolbox or written by yourself
 filename.m

What do built-in or M-file functions do? To obtain description: help mean
 To see code: type mean

if x =
 1 5
 3 2
 2 8
then
 y = sort(x)

produces
 y =
 1 2
 2 5
 3 8
i.e., each column is
sorted separately

Example: sorting function sort

To obtain a record of the
rows from which the
sorted elements came:

 [y r] = sort(x)

produces y as before and
 r =
 1 2
 3 1
 2 3

Relational and logical operations:

Matlab knows six relational operations

 < less than
 <= less than or equal to
 > greater than
 >= greater than or equal to
 == equal
 ~= not equal

and the following logical operators

 & and
 | or
 ~ not

Note:

A=B assigns to A the values of B

(A==B) tests whether A and B are
equal

Whenever Matlab encounters a relational operator, it produces a 1 if the expression
is true and a 0 if the expression is false:

x = (1 < 3) produces x=1, while
x = (1 > 3) produces x=0

Relational operators can also be applied to matrices as long as they have the
same dimension (as relational operators then work on an element-by-element basis):

if A =
 1 2
 3 4
and B =
 3 1
 2 2
then
 C = (A > B)

produces
 C =
 0 1
 1 1

if A =
 1 2
 3 4
then
 C = (A > 2)

produces
 C =
 0 0
 1 1

scalar

To change to a non-sequential order, use for and while loops, as well as
if statements

for loops:
 for j = 1 : n
 …..
 end
while loops:
 while (x > 0.5)
 ……
 end

For clarity, introduce TRUE and FALSE variables

 true = (1==1);
 false = (1==0);
 …..
 done = false;
 while not done
 …..
 end

Note: avoid infinite loops by including
 termination condition

7. Controlling work flow

if statement:
 if (x > 0.5) if (x > 0.5)
 ….. or …..
 end else
 ….
 end
Nesting:
 for j = 1 : n
 for k = 1 : n (indentations are for clarity only)
 if (x(j , k) > 0.5)
 x(j , k) = 1.5;
 end
 end
 end

Nesting should be avoided for matrix operations, since very slow:

 instead of use port_val = holdings * prices ;
 port_val = 0;
 for j = 1 : n
 port_val = port_val + (holdings(j) * prices(j));
 end

Basic data input:
1. Type instructions in interactive mode or in script mode.

 Examples: radius = [12.50 37.875 12.25]

 molecules = [‘sugars’ ; ‘amino acids’ ; ‘proteins’]

 data = [100 200

 300 400] (line breaks for increased clarity)

2. Read text file and put in matrix test: load test.txt

Basic data output:
1. Display data: disp (‘test’);

2. Dump stuff from display into file: diary filename to start and diary off to stop

3. Save data from a matrix, use save newdata.txt test -ascii

4. Save variables etc. from interactive Matlab session in .mat file, use

 save temp (saves complete session in temp.mat file)

 save temp radius molecules data (saves only certain variables in temp.mat)

 load temp (restores session later)

8. Basic input/output

9. Scripts and functions
Example script:
An M-file called magicrank.m may contain following code

Typing magicrank executes script, and computes rank of first 30 magic
squares and plots bar chart of results

Functions have the advantage that they can be re-used in different programs.
A function starts with a line declaring the function, its arguments and its outputs.

Examples:

 function y = port_val(holdings, prices)
 y = holdings * prices;

This function is called by

 v = port_val(h, p);

local variables

variables can be named differently
in calling statement

function [total_val , avg_val] = port_val(holdings, prices)
 total_val = holdings * prices;
 avg_val = total_val/size(holdings , 2);

This function is called by

 [tval aval] = port_val(h, p);

returns
one value

returns
two values

Example function:

must be saved in port_val.m

Functions:

Name of M-file and function should be the same. Variables only defined in
function, not common workspace.

M-file rank.m is available in directory

To see file, write , which produces

To get info, i.e., first lines of comments
(starting with %), write

Function can be called as

Anonymous functions:

Primary and subfunctions:

Function handles:

Each M-file has a required primary function that appears first in file, which
can be invoked from outside the M-file. Additionally, the M-file can contain
any number of subfunctions that follow it, which are only visible to the
primary and other subfunctions

Don’t require an M-file. Are defined in one line.

Create a handle to any Matlab function and then use it to reference the function.
Often used to pass function as an argument list to other functions.

Create:

Use:

Or create:

Then, if you type:
You get:

And, use:

Function of functions:
Functions, which operate on functions, e.g.,
 Zero finding
 Optimization
 Quadrature (integration)
 Ordinary differential equations

Example:

evaluate

and plot

local minimum near 0.6

find minimum near 0.5

value at minimum

integrate from 0 to 1

find zero near 0.5

Using @humps
we pass the function
“humps” as an argument
of the function “fminsearch”

10. Reading and writing data

Reading an Excel file:

(1) Reading file ‘testdata2.xls’
 with numbers and text

(2) Reading rows 4 and 5

(3) Reading numbers only

spreadsheet 1 of file

spreadsheet labelled
‘Temperatures’ of file

data=cat(1,time',measurements');
fprintf(fid, '%10.6f %10.6f \n', data);
fclose(fid);

Writing to a text file:

(4) Reading numbers and header text

Convert row to column vectors and
concatenate (cat) arrays along specified
dimension (here dim “1”, i.e., row dimension)

Produces file in table format with two numbers per line

line break (return)
10 places, 6 precision floating-point variable

11. Fitting a model to data (code avail. on BB)
In this example, we fit an exponential function of the form Ae–λt to some data. The
M-file is given by:

fu
nc

tio
n

ha
nd

le

 2 fitting
parameters

data needs to be provided

fitting fcn is hard-wired

To use, create some random data first:
additive noise in the data:
normal distributed random
numbers between 0 and 1

and then call fitting function:

This returns the optimal parameters:

and a function handle model to the best model.

To plot data and fitted model, enter the following commands:

This produces plot:

labels
axis and
makes a
legend

ẏ = f(t, y)

12. Solving ordinary differential equations

Matlab ODE solvers only accept first-order differential equation

Solvers provided are:

ẏ1 = y2

ẏ2 = y3
...

ẏn = f (t, y1, y2, . . . , yn)

To solve n-th order ODE

write it as a set of n coupled first-order ODEs:

For that: make substitutions

and obtain

y(n) = f
�
t, y, ẏ, ÿ, . . . , y(n�1)

�

y1 = y, y2 = ẏ, y3 = ÿ, . . . , yn = y(n�1)

ẏ = f(t, y)

y (t0) = y0

Initial value problem: since there are many potential solutions for an ODE,
you need to specify initial values:

Example: Solve two coupled ODEs with solver ode45

time interval initial values

In file
vdp1.m

Script
myscript.m

Plot result:
LaTex symbols

Script
myscript.m

13. Plotting in 2d & 3d
To plot x versus y (2d plot), use command plot(x,y,’color_style_marker’)

a string, containing between 1 to four
characters enclosed by ‘…’, indicating
color, line style, and marker type.

Examples:

(1) plot(x,y,’ks’) for black squares
 at each point and no
 line

(2) plot(x,y,’r:+’) for red-dotted line and
 plus-sign markers at
 each data point

(3) plot(x,y,’r:+’,
 ’LineWidth’,2, ’MarkerSize’,10)

 same as (2), but thicker line and larger
 markers

Multiple panels: To arrange plots in Example: four 3d plots
a m x n matrix use

draws wireframe mesh
with color determined by
height Z as a function of X
and Y

plots X versus
1:n and 1:m with
[m,n]=size(X)

Additional 2d plots are: loglog, semilogx, and semilogy

Other 3d plots are: plot3, contour, and surf

• To download the files log on Blackboard:
https://bb.imperial.ac.uk

• The files are also on:
http://www.bg.ic.ac.uk/research/g.stan/#Lecture_Notes

https://bb.imperial.ac.uk
https://bb.imperial.ac.uk
http://www.bg.ic.ac.uk/research/g.stan/MRes_Matlab_Practicals_Guy_Stan.zip
http://www.bg.ic.ac.uk/research/g.stan/MRes_Matlab_Practicals_Guy_Stan.zip

