Introduction to Scientific
Programming in Matlab

Prof Guy-Bart Stan
g.stan@imperial.ac.uk
www.bg.ic.ac.uk/research/qg.stan

MATLAB

Imperial College °B
Loﬁdon J 33 Centre for Synthetic Biology

mailto:g.stan@imperial.ac.uk
http://www.bg.ic.ac.uk/research/g.stan

Content

Part A Part B

1. Overview of Matlab 8. Basic input/output

2. Getting started 9. Scripts and functions

3. Documentation and help 10, Reading and writing data
4. Variables 11. Fitting a model to data

5. Matrix operations 12. Solving differential

6. Built-in functions equations

7. Controlling work flow 13. Plotting in 2d and 3d

www. http://www.stanford.edu/~wfsharpe/mia/mat/mia_mat3.htm
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html

The labs are interactive, computer-based tutorials that offer us the
opportunity to go over your exercises, as well as look into some
related mathematics. Another good reference is the primer by
Kermit Sigmon (pdf) as well as the official Matlab documentation.

http://www.math.toronto.edu/mpugh/primer.pdf
http://www.math.toronto.edu/mpugh/primer.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

1. Overview of Matlab

Intuitive, easy-to-learn, high performance language integrating:
computation, visualization, and programming.

» Math and computation

* Algorithm development

» Data acquisition

* Modeling, simulations, and prototyping

« Data analysis, exploration, and visualization

« Scientific and engineering graphics

* Application development, incl. graphical user interfaces

MATLAB stands for matrix laboratory. Its basic variables are arrays, i.e.
vectors and matrices. Matlab also has many build-in functions
(LAPACK and BLAST libs), as well as specialised add-on tool boxes.
Features allow fast implementation of programs to solve computational
problems.

The Matlab system consists of 5 main parts:

1.

Desktop tools and development environment
Mainly graphical user interfaces, editor, debugger, and workspace

Mathematical function library

Basic math functions such as sums, cosine, complex numbers
Advanced math functions such as matrix inversion, matrix eigenvalues,
differential equations

The language
High-level language based on arrays, functions, input/output, and
flow statements (for, if, while)

Graphics

Data plotting in 2d and 3d, as well as image analysis and animation tools

External interfaces

Interaction between C and Fortran programs with Matlab, either for linking
convenient routines from Matlab in C/Fortran, or for Matlab to call fast C/Fortran
programs

2. Getting started

Menus change, Enter MATLAB View or change
depending on statements at the current

the tool you the prompt directory

are using

MATLAB R2014a

L‘iJ_SJ E (O} Preferences q (4 Community
"~ Run and Time ﬁsu?a!h ‘fv’RequestSupport
lew New Open || Compare Import e Simulink Layout Help —
ript v v Data Workspace L')Clurw‘ulupau v [’ Clear Commands v Library v WPauIlel v v ;lJAdd-Ons v
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES
s (5 % [/ » Users » guy-bartstan » Documents » MATLXB » - p
Current Folder ® Commard Window Workspace ®
& :‘"’"“ B @ New th MATLAB? Watch this Video, see Examples, or read Getting Started. Name 4 Value Min Max
pps
fg>> |
ite Matlab commands
here for interactive
Detail v
Select a file to view details
+ Ready

Go here to open new or existing Matlab files (M-file) and editor

Opening new and existing M-files (scripts or M-file functions):
new

. Iﬂ] u @Flnd Files & @ @AnalyuCode E {0} Preferences @ (¢ Community

&mnmmm _ ﬁsum 3mmsumn
eXlStlng ["‘-'-’.::.;.:2-""" E‘;“' SIMULINK | ENVIRONMENT | RESOURCES

L P 7P (] « guy-bartstan » My_Universe » Teaching_and_Courses_by_Others » MRes_course_SB_Guy_Stan » Lecture_Matlab_Intro v R
Current Folder ® | Command Window [C Workspace ®
B Nacnach ey @ New to MATLAB? Watch this Video, see Examples, or read Getting Start | Name & Value
#) data_fitting.m
) fitcurvedemo.m fx >>
< Intro2Matlab_...
« Intro2Matlab_...
< Intro2Matlab_...
« Intro2Matlab_...

Min

I

® O O Editor - /Users/guy-bartstan/My_Universe/Teaching_and_Courses_by_Others/MRes_course_SB_Guy_Stan/Lecture...

=] IR

PUBLISH VIEW Al (5 3 =g © =

,i‘E u E L] Find Files

L) Compare ¥

xdata = (0:.1:10)";
ydata = 40 * exp(-.5 * xdata) + randn(size(xdata));

[estimates,model] = fitcurvedemo(xdata,ydata)
plot(xdata,ydata, '=')

hold on
[sse,FittedCurve] = model(estimates);

plot(xdata,FittedCurve,'r');

xlabel('xdata")

ylabel('f(estimates,xdata)")

title(['Fitting to function ',func2str(model)])
legend('data’', ['fit using ', func2str(model)])
hold off

Different ways to use Matlab:

(1) Interactive mode: just type commands and define variables, empty work
space with command clear

(2) Simple scripts:
M-file (name.m) with list of commands
Operate on existing data in work space, or create new data to work on
Variables remain in workspace (until emptied)
Re-useable

(3) Versatile M-file functions:
M-file
May return values
Re-usable
Easy to call from other functions
(make sure file is in Matlab search path, set by > File > Set Path)

3. Documentation and help

Matlab provides large amounts of documentation and tutorials:

6

00 MATLAB R2014a

Lz, New Variable
Open Variable v

| Analyze Code
(i Run and Time

J,

Current Folder ®

Command Window

I Name a

#) data_fitting.m
] fitcurvedemo.m fx >>
< Intro2Matlab_...

« Intro2Matlab_...

< Intro2Matlab_...

« Intro2Matlab_...

@ New to MATLAB? Watch this Video, see Examples, or read Getting Start

Bioinformatics Toolbox

Communications System
Toolbox

Computer Vision System
Toolbox

Control System Toolbox

Curve Fitting Toolbox

Refine by Category
MuPAD
Graphics

Mathematics

and Matching
Linearization
Simulation

Stati

ics and Linear Algebra

Feature Detection, Extraction,

- o N & ’ Search Results ‘ +’ @ o
Refine by Product plot
MATLAB PN
Simulink

Results 1 through 10 of 200

fx plot-2-Dline plot
This MATLAB function creates a 2-D line plot of the data in Y versus the corresponding values in X.If X and Y are both
vectors, then they must have equal length and MATLAB plots Y versus X.If X and Y are both matrices, then they must
have equal size...
MATLAB > Graphics > 2-D and 3-D Plots > Plotting Basics

fx plot- Plot time series
plot(ts) plots the timeseries data ts against time and interpolates values between samples by using either zero-order-
hold ('zoh') or linear interpolation (the default).
MATLAB > Language Fundamentals > Data Types > Time Series > Time Series Basics

fx plot- Plot data series
plot(tsobj) plots the data series contained in the object tsobj.
Financial Toolbox > Financial Data Analytics > Chart Financial Data

fx plot- Plot tree GUI
This MATLAB function plots the tree T.
Wavelet Toolbox > Wavelet Packet Analysis

fx plot- Create linear 2-D plot
Refer to the MATLAB plot reference page for more information.
Fixed-Point Designer > Fixed-Point Design for MATLAB Code > Fixed-Point Basics > Fixed-Point Functions > Graphics
> Basic Plots and Graphs

fx plot- Plot iddata or model objects

plot
fx 2-D line plot

plot
Plot time series

fx lot
Plot data series
fx plot
Plot tree GUI

fx plot
Plot cfit or sfit object

more...

SEARCH SUGGESTIONS

plot
plots
plotting
plotted

plotfcns

MATLAB

MATLAB

Financial Toolbox

Wavelet Toolbox

Curve Fitting Toolbox

4. Variables are represented as matrices

Matrix variables don’t need to be declared. They are just assigned to values and
know about their dimension.

Matrix assignment:
C=A+B assigns matrix C as the sum of matrices A and B

If A and B are matrices of same dimension, e.g. [3x4] with 3 rows and
4 columns, C is [3x4] matrix with element-wise addition.

Example with [2x2] matrices:
- 2 4 - 5 1 - |7 5
i) s = e[
If C existed before e.g. was a scalar C=[1] (i.e. a [1x1] matrix), then C is
overwritten by this new assignment.

If dimensions of A and B don’t match, you will get an error:

?9? Error using ==> +
Matrix dimensions must agree

Showing values:

To see content of a variable, just type its name:
C=A+B provides C-=

i 5]
9 9

To assign a variable without showing its content, use semicolon:

C=A+8B; (nothing)

Initializing matrices:

Provide initial values, e.g.

a=3; (scalar) typing d gives
b=[1 2 3]; ([1x3] row vector) q-
c=[4,;5;6] ([3x1] column vector) 1 2 3
d=[123;456];, ([2x3] matrix)

4 5 6

Values separated by spaces are put in the same row, e.g., b=[1 2 3]
Semicolon (or carriage return) separates rows, e.g., c=[4, 5, 6]

Making matrices from matrices:

a=[1 2 3];
b=[4 5 6], gives c=
c=[a b]; 1 2 3 4 5 6
while
a=[1 2 3];
b=[4 5 6], gives
C=[a ’. b]’. C =
1l 23 3
4 5 6
Using portions of matrices:
d=[123;456]; typing d(1,2) returns 2
R d(2,1) returns 4
and d(1,:) returns
d= . 2
5 = d(:, 2) returns 5

Using more portions of matrices:

d=[123;456]; typing d(2,[23]) returns 5 6
d(2,[32]) returns 6 5

Variables may also be used as indices of matrices

if you type
z =2 3]
then you will see that
d(2, z) returns 5 6

Use colon to produce string of consecutive integers

x =3 :95 produces vector x=3 4 5

and
d(1, 1:2) returns 1 2

Text strings:
A variable in Matlab is either numeric or a string.

However, the elements of a string matrix are represented by ASCII
numbers, e.g. space is number 32, and captial A is 65 etc.

Strings are enclosed in single quotation marks (apostrophes)

s = ‘Thisis a string’; (a row vector of numbers)

Can create any matrix as long as rows have same length

x=[‘ab’; ‘cd’] produces X =
ab
cd

x=[‘ab’ ‘cd’] produces

ab cd

5. Matrix operations
Matrix transposition is obtained by adding a prime (apostrophe)
if
1 2 3 (row vector)

then
X = (column vector)

WN -

Matrix addition is obtaind by + sign, and
Matrix subtraction is obtained by - sign

If Ais a [3x4] matrix and B is a [4x3] matrix, then

C=A+ B produces while C=A + B’ works fine

??%? Error using ==> +
Matrix dimensions must agree

Matrix multiplication is obtained by * symbol
C=A"B

Note that inner dimensions of the two operands must be the same,
e.g. A=[3x4] and B=[4x2] works.

Element by element operations are given by
C=A."B (multiplication)
C=A. B (division)
C=AAN2 (exponentiation)
but for first two, matrix dimensions have to agree!
Exceptions: For addition and subtraction, as well as element-by-element

multiplication and division, matrix dimensions can be different if one of the
operand is a scalar. In this case, the scalar is applied to each element in the matrix.

6. Built-in functions value=sum(arg_1,arg_2)

Some provide one, others more than one answer.

Examples: sum, max, and plot functions

ifx=1 £y = ifx=143
2 143
3 then statement then statement

then statement z =10 + max(x) ' nl= max(x)

y =sum(x)+ 10 oroduces produces
_ y=

produces z= 14 4
y = n=

16 / 2

oy

position where found assignments
possible as

well

For more complicated cases, functions often have natural interpretation

if x =
123
4 56
then
sum(x)

=57 9 (column-wise addition)

Plotting function plot
plot(x, y)
produces a plot of y against x
but plot(x)

is also allowed and plots x against 71,2,3,...

Example: sorting function sort

if x =
15 _
3 2 To obtain a record of the
2 8 rows from which the
then sorted elements came:
= sort(x
g LX) [y r] = sort(x)
produces
y= produces y as before and
1 2 r=
2 5 1 2
3 8 3 1
i.e., each column is 2 3
sorted separately

Other built-in functions are: mean, cov, min, max, ones, zeros, size, rand, randn

M-file functions: provided in \matlab\oolbox or written by yourself
filename.m

What do built-in or M-file functions do? To obtain description: | help mean
To see code: type mean

Relational and logical operations:

Matlab knows six relational operations

< less than Note:

<= less than or equal to _

> greater than A=B assigns to A the values of B
>= greater than or equal to

== equal (A==B) tests whether A and B are
~= not equal equal

and the following logical operators

& and
| or
~ not

Whenever Matlab encounters a relational operator, it produces a 1 if the expression
is true and a O if the expression is false:

x =(1<3) produces x=1, while
x=(1>3) produces x=0

Relational operators can also be applied to matrices as long as they have the
same dimension (as relational operators then work on an element-by-element basis):

if A =
3 4 1 2
and B = 3 4
3 1 then
2 2 C=(A>2)
then \\
C=(A>B) produces scalar
C=
produces 00
C= 1 1
0 1
1 1

/. Controlling work flow

To change to a non-sequential order, use for and while loops, as well as
if statements

for loops:
forj=1:n
end
while loops:
while (x > 0.5) Note: avoid infinite loops by including
...... termination condition
end

For clarity, introduce TRUE and FALSE variables

true = (1==1);
false = (1==0);
done = false;
while not done

if statement:

if (x > 0.5) if (x> 0.5)
or ...
end else
end
Nesting:
for j=1:n
for k=1:n (indentations are for clarity only)
if (x(j,k)>0.5)
X(J,k)=1.5;
end
end
end

Nesting should be avoided for matrix operations, since very slow:

instead of use port val = holdings * prices ;
port _val =0;
for j=1:n
port_val = port_val + (holdings(j) * prices(j));
end

8. Basic input/output

Basic data input:
1. Type instructions in interactive mode or in script mode.

Examples: radius =[12.50 37.875 12.25]
molecules = [‘sugars’ ; ‘amino acids’ ; ‘proteins’]
data=[100 200
300 400] (line breaks for increased clarity)

2. Read text file and put in matrix test: load test.ixt

Basic data output:
Display data: disp (‘test’);
Dump stuff from display into file: diary filename to start and diary off to stop

Save data from a matrix, use save newdata.txt test -ascii

B nh -~

Save variables etc. from interactive Matlab session in .mat file, use
save temp (saves complete session in temp.mat file)

save temp radius molecules data (saves only certain variables in temp.mat)

load temp (restores session later)

9. Scripts and functions

Example script:
An M-file called magicrank.m may contain following code

Typing magicrank executes script, and computes rank of first 30 magic
squares and plots bar chart of results = '

Example function:

Functions have the advantage that they can be re-used in different programs.
A function starts with a line declaring the function, its arguments and its outputs.

Examples: must be saved in port_val.m

/

function y = po?t_va/(holdings, prices) returns
y = holdings * prices; one value
|
This function is called by local variables

— : variables can be named differently

v =port_val(h, p), in calling statement

function [total_val , avg_vall = port_val(holdings, prices) returns
total_val = holdings * prices; two values
avg_val = total_val/size(holdings , 2);

This function is called by

[tval aval | = port_val(h, p),

Functions:

Name of M-file and function should be the same. Variables only defined in
function, not common workspace.

M-file rank.m is available in directory =~ toolbox/matlab/matfun

To see file, write type rank, which produces

function r = rank(A,tol)
RANK Matrix rank.

RANK(A) provides an estimate of the number of linearly

independent rows or columns of a matrix A.

RANK(A,tol) is the number of singular values of A
that are larger than tol.

RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

o° o 0P o of o°

s = svd(A);
if nargin==

tol = max(size(A)') * max(s) * eps;
end
r = sum(s > tol);

Function can be called as
To get info, i.e., first lines of comments rank(A)
(starting with %), write help rank r = rank(A)
r = rank(A,1.e-6)

Primary and subfunctions:

Each M-file has a required primary function that appears first in file, which
can be invoked from outside the M-file. Additionally, the M-file can contain
any number of subfunctions that follow it, which are only visible to the
primary and other subfunctions

Anonymous functions: | f = @(arglist)expression
Don’t require an M-file. Are defined in one line. | sqr = @(x) X."2;
Then, if you type: a = sqr(b)
You get: a =
Function handles: 25

Create a handle to any Matlab function and then use it to reference the function.
Often used to pass function as an argument list to other functions.

Create: fhandle = @sin;
Use: fhandle(argi, arg2, ...);

Orcreate: function x = plot fhandle(fhandle, data)
plot(data, fhandle(data))

And,use: plot fhandle(@sin, -pi:0.01:pi)

Function of functions:

Functions, which operate on functions, e.q.,
Zero finding
Optimization
Quadrature (integration)
Ordinary differential equations

Example:

function y = humps(x)
y =1./((x-.3).72 + .01) + 1./((x-.9).72 + .04) - 6;

evaluate X = 0:.002:1;

y = humps(X);

and plot plot(x,y)

5| I O T
0 0.1 0.2 032 Q; 05 0.

local minimum near 0.6

i i I
] 07 08 09 1

find minimum near 0.5

p = fminsearch(@humps, .5)
p —]
Using @humps
0.6370 we pass the function
“‘humps” as an argument
of the function “fminsearch”
value at minimum humps (p)
ans = % Ofl ofz ofa of4 055 o:s of7 ols 019 1
11.2528
integrate from O to 1
Q = quadl(@humps,0,1) Q =
29.8583
find zero near 0.5
z = fzero(@humps, .5) Z =

-0.1316

10. Reading and writing data

MATLAB Function Reference

File Formats

Readable file formats

Description

Provide feedback about this page

This table shows the file formats that the MATLAB® software is capable of reading.

File Format

Text

Scientific Data

Spreadsheet

Image

Extension File Content

MAT

Csv

DAT
DLM
TAB

CDF

FITS

HDF4

HDF5

XLS

WK1

BMP

CUR
GIF
HDF4

Saved MATLAB
workspace

Comma-separated
numbers

Formatted text
Delimited text
Tab-separated text

Data in Common Data
Format

Flexible Image
Transport System data

Data in Hierarchical
Data Format, version 4

Data in Hierarchical
Data Format, version 5

Microsoft® Excel®
worksheet

Lotus 123 worksheet

BMP image

Cursor image
GIF image
HDF4 image

Read
Command

csvread

importdata

dlmread
dlmread

cdfread

fitsread

hdfread

hdf5read

wklread

imread

imread
imread

imread

Returns

Variables in file

Double array

Double array
Double array
Double array

Cell array of CDF
records

Primary or
extension table
data

HDF 4 or
HDF-EOS 2 data
set

HDFS5 or
HDF-EOS 5 data
set

Double or cell
array

Double or cell
array

True color or
indexed image

Indexed image
Indexed image

True color,
grayscale, or
indexed image(s)

ICO
JPEG

PBM
PCX
PGM
PNG

PPM
RAS

TIFF

XWD

Icon image

JPEG image

PBM image
PCX image
PGM image
PNG image

PPM image

SUN raster image

TIFF image

XWD image

imread

imread

imread
imread
imread

imread

imread

imread

imread

imread

Indexed image

True color or
grayscale image

Grayscale image
Indexed image
Grayscale image

True color,
grayscale, or
indexed image

True color image

True color or
indexed

True color,
grayscale, or
indexed image(s)

Indexed image

Reading an Excel file:

(1) Reading file ‘testdata2.xls’ A = xlsread('testdata2.xls')
with numbers and text 1 6 A=
1 6
2 7 5 ;
3 8 3 8
4 9 1 9
5 text 5
(2) Reading rows 4 and 5 A = xlsread('testdata2.x1s', 1, 'A4:B5'")
- /
4 9 spreadsheet 1 of file
5 NaN

(3) Reading numbers only
= xlsread('tempdata.xls', 'Temperatures')

Time Temp
12 98 ndata = /
13 99 ii Zg spreadsheet labelled

14 97 14 o7 ‘Temperatures’ of file

(4) Reading numbers and header text

[ndata, headertext] Xxlsread('tempdata.xls', 'Temperatures')

ndata =
12 98
13 99
14 97

headertext =

'Time" 'Temp ' Convert row to column vectors and
concatenate (cat) arrays along specified
dimension (here dim “17, i.e., row dimension)

Writing to a text file:

data=cat(1 ,time',measurements');
fprintf(fid, '%10.6f %10.6f \n', data);
fclose(fid); \ T line break (return)

10 places, 6 precision floating-point variable

—— Produces file in table format with two numbers per line

11. Fitting a model to data (code avail. on BB)

In this example, we fit an exponential function of the form Ae= to some data. The
M-file is given by:

data needs to be provided

\

function [estimates, model] = fitcurvedemo(xdata, ydata)
% Call fminsearch with a random starting point.

start point = rand(1l, 2);
model = @expfun; —
estimates = fminsearch(model, start point);

fitting fcn is hard-wired

% expfun accepts curve parameters as inputs, and outputs sse,
% the sum of squares error for A*exp(-lambda*xdata)-ydata,
% and the FittedCurve. FMINSEARCH only needs sse, but we want
% to plot the FittedCurve at the end.
function [sse, FittedCurve] = expfun(params)
2 fitting {A = params(1);
parameters | lambda = params(2);
FittedCurve = A .* exp(-lambda * xdata);
ErrorVector = FittedCurve - ydataj;

function handle

sse = sum(ErrorVector .~ 2);
end
end

additive noise in the data:
normal distributed random
numbers between 0 and 1

(0:.1:10)'; /

ydata = 40 * exp(-.5 * xdata) + randn(size(xdata));

To use, create some random data first:

xdata

and then call fitting function:

[estimates, model] = fitcurvedemo(xdata,ydata)

This returns the optimal parameters:

estimates =

40.1334 0.5025

and a function handle model to the best model.

To plot data and fitted model, enter the following commands:

plot(xdata, ydata, '*')

hold on

[sse, FittedCurve] = model(estimates);
plot(xdata, FittedCurve, 'r')

p
labels xlabel ('xdata’')
axis and ylabel('f(estimates,xdata)"')
makesa < title(['Fitting to function ', func2str(model)]);
legend legend('data', ['fit using ', func2str(model)])
hold off . -
\ Fittina to function fitcurvedemo/expfun
45 -
data

. 40 fit using fitcurvede ma/expfun| -

This produces plot: f

35+ .

0 -

no
(5]
45

flestimates xdata)
—_ no
w o
1 1

10} + .

0 2 4 6 8 10

12. Solving ordinary differential equations

Matlab ODE solvers only accept first-order differential equation

Solvers provided are:

Solver

ode45

ode23

odell3

odel5s

ode23s

ode23t

ode23tb

odel5i

Solves These Kinds of Method
Problems

Nonstiff differential Runge-Kutta
equations

Nonstiff differential Runge-Kutta
equations

Nonstiff differential Adams
equations

Stiff differential equations | NDFs (BDFs)
and DAEs

Stiff differential equations |Rosenbrock

Moderately stiff Trapezoidal rule
differential equations and
DAEs

Stiff differential equations | TR-BDF2

Fully implicit differential BDFs
equations

y:f(tay)

To solve n-th order ODE y(”) = f (t’ IR 7y(n—1))

write it as a set of n coupled first-order ODEs:

For that: make substitutions Y1 = VY, Yo = y, Yz = jj, vy Yp = y(n 1)
and obtain U1 = Yo
Y2 = Y3

yn :f(t7y17y27“'7yn)

Initial value problem: since there are many potential solutions for an ODE,
you need to specify initial values:

y = f(t,y)
y (to) = Yo

Example: Solve two coupled ODEs with solver ode45

function dydt = vdpl(t,y) In file
dydt = [y(2); (1-y(1)"2)*y(2)-y(1)];| vdpim

Script

v
time interval initial values

Plot result:
LaTex symbols

plot(t,y(:,1),'-",t,¥(:,2),"'—=") ///
title('Solution of van der Pol Equation, \mu = 1'); Script
xlabel('time t'); myscript.m

ylabel('solution y');
legend('y 1','y 2")

Solution of van der Fol Equation, L= 1

o
N
.
o
w
o
]
=
o
7
=

13. Plotting in 2d & 3d

To plot x versus y (2d plot), use command plot(x,y, color_style marker’)

— _/
~

a string, containing between 1 to four
characters enclosed by “...", indicating
color, line style, and marker type.

|Type |Va|ues |Meanings

Color ek cyan
magenta
yellow
red
green
blue Examples:
white

black

sold (1) plot(x,y,’ks’) for black squares

T dashed

tet dotted .
C |deshdot at each point and no

no no line I|ne

character

| rivan<s

Line style

Marker
type

plus mark

unfilled circle (2) plot(x,y,r:+") for red-dotted line and

asterisk

letter x plus-Slgn markerS at

filled square
filled diamond each data p0|nt
filled upward triangle

filled downward triangle
filled right-pointing triangle

filled left-pointing triangle (3) plot(X,y’ ’ r: +’,

filled pentagram

filled hexagram 'LineWidth’,2, 'MarkerSize’,10)

no marker

> ow M %0 +

50 AV <

no
character
or none

same as (2), but thicker line and larger
markers

Multiple panels: To arrange plots in Example: four 3d plots

a m x n matrix use , ,
t = 0:pi/10:2*pi;

subplot(m,n,p) [X,Y,Z] = cylinder(4*cos(t));
subplot(2,2,1); mesh(X)
subplot(2,2,2); mesh(Y)
subplot(2,2,3); mesh(Z)
subplot(2,2,4); mesh(X,Y,Z)

_nix]
File Edit View Insert Tools Deskiop Window Help ~ pIOtS X Versus
DEESG K RAM®|(E 08 0O 1:n and 1:m with

[m,n]=size(X)

draws wireframe mesh
with color determined by
height Z as a function of X
and Y

Additional 2d plots are: loglog, semilogx, and semilogy :

Other 3d plots are: plot3, contour, and surf ’

* To download the files log on Blackboard:
https://bb.imperial.ac.uk

* The files are also on:
http://www.bg.ic.ac.uk/research/g.stan/#L.ecture Notes

https://bb.imperial.ac.uk
https://bb.imperial.ac.uk
http://www.bg.ic.ac.uk/research/g.stan/MRes_Matlab_Practicals_Guy_Stan.zip
http://www.bg.ic.ac.uk/research/g.stan/MRes_Matlab_Practicals_Guy_Stan.zip

