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Abstract : In this paper, we consider the problem of optimal exogenous control of gene regulatory
networks. Our approach consists in adapting an established reinforcement learning algorithm called
the fitted Q iteration. This algorithm infers the control law directly from the measurements of the
system’s response to external control inputs without the use of a mathematical model of the system.
The measurement data set can either be collected from wet-lab experiments or artificially created by
computer simulations of dynamical models of the system. The algorithm is applicable to a wide range
of biological systems due to its ability to deal with nonlinear and stochastic system dynamics. To
illustrate the application of the algorithm to a gene regulatory network, the regulation of the toggle
switch system is considered. The control objective of this problem is to drive the concentrations of two
specific proteins to a target region in the state space.

1 Introduction
Synthetic biology aims at the (re-)design of biological functions in living organisms for their use in various
applications such as bioengineering, bioremediation and energy (Purnick & Weiss (2009)). This is typically
realised via the insertion of foreign genes inside a host cell (e.g., a bacterium E. coli). The expression of
the foreign genes inside the host cells imposes de facto a burden on the native processes of the host cells.
A high burden induces severe intracellular perturbations and can decrease cellular growth rate. This in turn
disrupts the intended behaviour of synthetic biology gene networks (Tan et al. (2009)). Hence, it is highly
desirable to develop means for controlling gene networks so as to efficiently enable the designed behaviour
while simultaneously minimising the burden induced by this behaviour on the host cells.

The current biotechnology state-of-the-art allows us to quantitatively measure and interact with gene
regulatory networks. Quantitative in vivo estimates of gene networks’ states (outputs) can be obtained via
fluorescent markers (Cai et al. (2006); Bennett & Hasty (2009)) (e.g., green fluorescent protein, GFP or
red fluorescent protein, mCherry). A typical input is a targeted induction of the gene expression, which
can be achieved by, e.g., conditional gene knock outs (Ivanova et al. (2006); Liu et al. (2007)), heat shocks
(Mettetal et al. (2008)) or monochromatic light pulses (Shimizu-Sato et al. (2002); Levskaya et al. (2009)).
This means that feedback control is technologically feasible in vivo. The objective of the control method
can be minimal time control (i.e., driving the system as fast as possible to a target region in the state-space),
minimal burden control (minimal expression of heterologous proteins), or a trade-off between the two, as
considered in this paper. The control method must reach the objective, while maintaining the designed
functions of a synthetic gene regulatory network.

Some control problems in gene regulatory networks were successfully addressed (Menolascina et al.

(2011); Uhlendorf et al. (2012); Milias-Argeitis et al. (2011)). In all those papers, the authors used classical
control methods, which infer the control law (or the control policy) based on a mathematical model of the
system. One of the bottlenecks of these approaches is the modelling part, which for large gene regulatory
networks is an extremely hard and lengthy process. Moreover, there are other challenges such as stochas-
ticity. Stochasticity is expressed in the form of the intrinsic and extrinsic noise during gene expression
(Swain et al. (2002)). Transcription and translation processes typically involve a few randomly interacting
molecules, thus adding thermodynamic stochasticity to biochemical interactions.
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Figure 1: A schematic depiction of the exogenously controlled genetic toggle switch. The green circle
represents the lacI gene and the red circle represents the tetR gene. The arrows with flat ends represent
repression of one gene by another. In the steady-state only one of the genes can be upregulated (or switched
on). The goal is to toggle one of the genes, i.e., drive this gene from its downregulated mode to its upregu-
lated one.

The problems with modelling and stochasticity point towards the use of reinforcement learning methods
(Sutton & Barto (1998); Buşoniu et al. (2010)), which infer the control policy based solely on interactions
with the real system. These methods do not require a physical model. Moreover, very few assumptions on
the structure of the controlled system are made. However, the major advantage of the reinforcement learning
methods is to some extent their drawback. Indeed, these methods require interactions with the real system,
which implies numerous costly and lengthy wet-lab experiments. A solution would be a reinforcement
learning method, which learns the policy using a single experiment. For systems relevant to this paper,
however, such a method will not be efficient. Indeed, a control policy, which tries to learn and control
such systems in a single experiment, is generally not better than a random control policy (Castronovo et al.

(2012)). In order to address these concerns, a hybrid approach is proposed. First, an initial control policy
is computed using past experimental data and/or a mathematical model. After that the control policy is
updated during the experiment using reinforcement learning methods. This approach will be applied to the
regulation of the toggle switch system schematically depicted in Figure 1. The control objective of this
problem is to drive the concentrations of two specific proteins to a target set in the state space and remain
in this set.

The initial policy is obtained by the Fitted Q Iteration algorithm (Ernst et al. (2005)). The algorithm
requires only one-step system transitions to infer the control policy. A one-step system transition is a
triplet {n,a,n+}, where n+ denotes a successor state of the system in state n subjected to input a.
Fitted Q Iteration can also handle nonlinear and stochastic systems and it is sample efficient. One-step
transitions can be obtained by simulating the mathematical model of the system or using past experimental
data. Afterwards the policy is updated by mixing the online measurements with past observations. The
Exploration/Exploitation trade-off is addressed using an "-greedy policy.

This paper is organised as follows. Mathematical preliminaries are described in Section 2. In order
to make the paper self contained, the fitted Q algorithm is sketched and different aspects of modelling
in gene regulatory networks are discussed. The problem of controlling the toggle switch is formulated
and discussed in detail in Section 3. Finally, the simulation results are presented in Section 4. Reference
trajectory tracking for the generalised repressilator system is the subject of our previous publication (Sootla
et al. (2013)).

2 Preliminaries

2.1 Modelling in Biology
The following approach to chemical reaction modelling is described in detail in (Gillespie (1977)). Consider
a well-stirred system of k species in a constant volume ⌦ and a thermal equilibrium. Assume the species
are interacting through m reactions. Let N i

(t) be the number of molecules of species i and ⌫ij(t) be the
change in the molecular concentration of species i at time t if the reaction j occurs. The bold symbols



will be used to denote vectors, e.g., n stands for the vector with elements N i. Finally, let aj(n)dt be the
probability of reaction j occurring in the next infinitesimal interval [t, t + dt], if the number of molecules
at time t, N(t), is equal to n. The functions aj(·) are called propensity functions. At the cellular level
chemical reactions depend on thermodynamical principles, since molecules must collide before a reaction
can start. Therefore chemical reactions inside living organisms are modelled using stochastic calculus. The
time evolution of the concentration of species can be modelled by a Markov stochastic process, for which:

@ Pr(n, t|n0, t0)

@t
=

mX

j=1

aj(n� ⌫j) Pr(n� ⌫j , t|n0, t0)� aj(n) Pr(n, t|n0, t0) (1)

where the probability Pr(n, t|n0, t0) stands for Pr(N(t) = n|N(t0) = n0). This equation is called the
Chemical Master Equation. The propensity functions aj depend also on the volume ⌦. It can be shown that
for large volumes ⌦ the CME (1) becomes a deterministic equation

dn(t)

dt
=

mX

j=1

⌫j ãj(n(t)), (2)

where the propensities ãj are independent of the volume ⌦. For small volumes ⌦, the stochastic model (1)
describes better the behaviour of the cells than the deterministic model (2). Hence, in synthetic biology
setting using a stochastic model is preferable. Nevertheless the deterministic model can be still useful for
small volumes in order to provide some idea of the system behaviour, since stochastic models are harder to
simulate and analyse.

2.2 Formulation of the Optimal Control Problem
Consider a deterministic discrete-time dynamical system

nt+1 = f(nt,at) (3)

where at is the control input at time t, which belongs to a compact set A for every t. In the stochastic case,
Markov decision processes (MDPs) are typically employed, for which

Pr

⇣
nt+1 2N t+1

���{nk}tk=0, {ak}tk=0

⌘
= Pr

⇣
nt+1 2N t+1

���nt,at

⌘
.

The above relationship means that the probability of the state nt+1 belonging to the set N t+1 does not
depend on the entire history of the realisation of the states {nk}tk=0 and control signals {ak}tk=0, but de-
pends only on the current values nt and at. Under the above Markovian assumption, dynamical stochastic
systems can be modelled as

Pr

⇣
nt+1 2N t+1

���nt,at

⌘
=

Z

Nt+1

f(nt,at, x) dx,

or in a compact form
nt+1 ⇠ f(nt,at, ·).

Here, we slightly abuse the notation by using again the symbol f as in the deterministic system (3). This is
done, in order to signify that these functions describe the dynamics of the system whether it is stochastic or
deterministic.

In both cases, consider an optimal control problem, which is defined through the minimisation of an
infinite sum of discounted costs c(n,a). In the deterministic case the problem is defined as

V (nt) = min

⇡(·): ⇡(ni)=ai

1X

i=t

�i�tc(ni,ai)

and in the stochastic case as

V (nt) = min

⇡(·): ⇡(ni)=ai

lim

K!1
Ent+1⇠f(nt,at,·)

KX

i=t

�i�tc(nt,at)
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Algorithm 1 Fitted Q iteration algorithm

Inputs: Set of triplets F = {nl,al,n
+
l }

#F
l=1 , stopping criterion, cost function c(·, ·)

Outputs: Policy ⇡̂⇤
(n)

k  0

ˆQ0(·, ·) c(·, ·)
repeat
k  k + 1

In order to obtain the values of ˆQk(·, ·) for all {nl,al} in F compute:

ˆQk(nl,al) = c(nl,al) + � min

a2A
ˆQk�1(n

+
l ,a) (5)

Estimate the function ˆQk(n,a) using a regression algorithm with input pairs (nl,al) and function
values ˆQk(nl,al).

until the stopping criterion is satisfied
Compute ⇡̂⇤

(n) = argmin
a2A

ˆQk(n,a)

where V (nt) is called the value function and ⇡(·) is a mapping from n to a, which is called the control
policy. The cost function c specifies the objective of the control problem, which in our case is driving the
system to a specific region in the state-space. In our setting, the control policy should be inferred based only
on realisations of one-step system transitions {nl,al,n

+
l }, where n+

l is a successor state of the system in
the state nl and subjected to the input al (in the deterministic case, if the function f(·, ·) is known n+

l is
equal to f(nl,al)). For the purpose of this paper, the function c(·, ·) is assumed to be known in advance.

2.3 Fitted Q Iteration

A central object of the fitted Q algorithm is the Q function, which is introduced as follows:

Q(nt,at) = c(nt,at) + min

⇡(·)

1X

i=t

�i�tc(ni,⇡(ni))

Once a Q function is computed, the optimal feedback control policy is given as:

⇡⇤
(n) = argmin

a2A
Q(n,a)

Under certain conditions, the Q function can be obtained as the unique solution of the following iterative
procedure:

Qk(n,a) = c(n,a) + � min

a02A
Qk�1(f(n,a),a

0
) (4)

where Q0 is equal to c. However, (4) is hard to solve in general, especially if only the triplets F are given.
Therefore an approximation ˆQ of the Q function is computed using an iterative procedure. Let ˆQ0 = c and
for every (nl,al,n

+
l ) in F compute:

ˆQ1(nl,al) = c(nl,al) + � min

a2A
ˆQ0(n

+
l ,a)

This expression gives ˆQ1 only for nl, al in F , while the entire function ˆQ1(·, ·) is estimated by a regression
algorithm (e.g., EXTRA Trees by Geurts et al. (2006)). This can be generalised to an iterative procedure,
which can be used to obtain a near-optimal control policy as outlined in Algorithm 1. The stopping criterion
can be simply the maximum number of iterations Nit, which is chosen such that the number �Nit is suffi-
ciently small and the values ˆQk(nl,al) are not modified significantly for k larger than Nit. Other criteria
are described in (Ernst et al. (2005)). Note that Algorithm 1 can be extended to handle the stochastic case
as well (Ernst et al. (2005)).



3 System Description and Problem Setting

3.1 Models
First, we briefly describe our benchmark problem - regulation of the toggle switch system (Gardner et al.

(2000)). The original genetic toggle switch system consists of the lacI and tetR genes mutually repressing
each other (see Figure 1). We consider a generic toggle switch model; therefore, we will use numeric
references for genes and proteins, that is, gene 1 and 2 instead of lacI and tetR genes. We will refer to
the protein products of genes 1 and 2 as proteins 1 and 2, respectively. We assume that for both genes the
protein concentrations are given as readouts via fluorescent markers. We also assume that the control inputs
are implemented as light pulses activating a photo-sensitive promoter controlling the expression of gene
1 (Shimizu-Sato et al. (2002)). When this photo-sensitive promoter is activated through a light pulse the
concentration of protein 1 is increased by a small amount through the expression of gene 1.

Basic mass-action kinetics of the toggle switch result in a high-order model, which is typically reduced
to a two state model using quasi steady state approximation (Guantes & Poyatos (2006)). This can be done
because most of the reactions (including the mRNA dynamics and the light-induction of the promoter)
occur on a fast time scale (order of seconds) in comparison with the gene expression time scale (order of
minutes or even hours). The reduced order model of the toggle switch system has two states, which are the
two protein concentrations:

n1
t+1 = �1 +

c1
1 + (n2

t )
↵2
� c2n

1
t + but

n2
t+1 = �2 +

c3
1 + (n1

t )
↵1
� c4n

2
t

(6)

where ni
t is the concentration of protein i at time t, c1 and c2 are the effective rate of synthesis of the

repressors, ↵i is the cooperativity coefficient of the repressor i, c2 and c4 are the degradation rates of
proteins, �i models leaky transcription during the gene expression of the gene i, and b is the increase in
protein concentration produced per unit of time as a result of one light pulse. We approximate the action of
light induction ut as a discrete variable in the set U = {0, 1}. A more realistic model would also have a
time-delayed control action. Such an extension requires simple modifications of our control algorithm, but
makes the results less transparent and harder to analyse. In our simulations we use a training model and a
validation model.

Training model

n1
t+1 = 0.1 +

30

1 + (n2
t )

2
� n1

t + 20ut

n2
t+1 = 0.1 +

60

1 + (n1
t )

2
� n2

t

Validation model

n1
t+1 = 0.1 +

60

1 + (n2
t )

2
� n1

t + 20ut

n2
t+1 = 0.1 +

30

1 + (n1
t )

2
� n2

t

(7)

Both models are bi-stable toggle switches with quantitatively different behaviours. Moreover, the steady
states of the validation model are relatively far from the steady states of the training model. The stable
steady states of the training model are approximately at se1 =

�
0.11 29.26

�
and se2 =

�
59.4 0.17

�

concentration units, while the stable steady states of the validation model are at se1 =

�
59.4 0.17

�
and

se2 =

�
0.11 29.26

�
. Such a situation is possible in biological applications, for example, due to different

cell behaviours within a population of cells. Moreover, even for a single cell, different experiments may
produce values of parameters with a large variation.

3.2 Control Algorithm
Our goal is to develop a control algorithm, which learns how to near-optimally control the toggle switch
system in a single experiment. Toggling the switch can be done experimentally in a couple of hours and
the fastest measurement sampling is in the order of one minute. This gives at most 200 samples in a single
trajectory. Learning a near-optimal control policy for toggling the switch with such limited amount of data
is an extremely hard problem to solve. To tackle this issue, we propose to first learn a “rough approxima-
tion” of the control policy obtained by applying Algorithm 1 to one-step system transitions F artificially
generated from simulations of a mathematical model of a genetic toggle switch. Afterwards the policy
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Algorithm 2 Online learning algorithm

Inputs: Set F = {nl,al,n
+
l }

#F
l=1 , cost function c(·, ·), function ˆQAlg 1(·, ·), number of iterations N ,

function h(·, ·)
˜Qcur(·, ·) ˆQAlg 1(·, ·)
Fcur  F
while new data is received do
⇡(n) = min

a02A
˜Qcur(n,a0

)

k  1 , i 1

while i  Tupdate do
compute ai = ⇡(ni)

observe the successor state ni+1 for the state-action pair (ni,ai).
i i+ 1

end while
Collect a set of new samples Fnew = {nm,am,n+

m}Tupdate

m=1

Fcur  h(Fcur,Fnew)

while k  N do
In order to obtain the values of ˜Qk+1(·, ·) for all {nl,al} in Fcur compute:

˜Qk+1(n,a) = c(n,a) + � min

a02A
˜Qk(n

+,a0
) (8)

Estimate the function ˜Qk+1(n,a) using a regression algorithm with input pairs (nl,al) and func-
tion values ˜Qk+1(nl,al).
k  k + 1

end while
˜Qcur(·, ·) ˜Qk(·, ·)

end while

is fine-tuned by mixing the online measurements with past observations F . The Exploration/Exploitation
trade-off is addressed using an "-greedy policy.

Our approach is outlined in Algorithm 2. Let ˆQAlg 1(·, ·) be the approximation of the Q function obtained
by Algorithm 1. This will be the initial Q function denoted as ˜Qcur. Then we assume that Tupdate direct
interactions with the real system are performed by computing actions using ˜Qcur and new input-output
samples are collected in Fnew. Given the set Fnew, the approximation ˜Qcur of the Q function is updated as
prescribed in Algorithm 2. After that the new set Fnew is formed and new samples are collected.

The major challenge of Algorithm 2 is appropriately choosing the function h(·, ·), which combines the
sets Fcur and Fnew. As an example, we consider h(Fcur,Fnew) = Fcur [ Fnew. Such a choice has some
drawbacks. If the initial set F contains many samples, then the updates in (8) will not result in significant
changes in the policy. This happens because the algorithm appreciates equally the samples in F and the
new sets Fnew, even though the samples in F are artificially generated using a mathematical model and the
samples in Fnew are obtained from the real system.

An important task of such a learning algorithm is a trade-off between exploration and exploitation during
the generation of the set Fnew. Exploration is required, since the real system is essentially unknown to
the algorithm and the exploratory actions will provide new information. The trade-off policy between
exploration and exploitation is defined as follows:

at =

(
argmina02A

˜Qk(nt,a0
) with probability 1� "t

random action with probability "t

where nt is the state measured at time t and ˜Qk(·, ·) is a current approximation of the Q function. In our
experiment "t is a decreasing function of t between zero and one. During the first time samples, the need
for new information is typically higher, and thus a high value of "t should be chosen.



3.3 Parameters of the Algorithm
The structure of the instantaneous cost c(n,a) is chosen as follows:

c(n1, n2, u) = max

�
n1/↵1, n

2/↵2

�
�min

�
n1/↵1, n

2/↵2

�
+ ↵uu

where ↵1, ↵2, ↵u are non-negative constants. The function

max

�
n1/↵1, n

2/↵2

�
�min

�
n1/↵1, n

2/↵2

�

appears in studies on consensus theory as a Tsitsiklis Lyapunov function. The vector
�
↵1 ↵2

�
can be

seen as the target point of the control algorithm and the function itself can be viewed as a metric. Since
only the ratio between the protein concentrations and the constants ↵i appears in the cost, the algorithm
is robust towards changes in ↵i, which are within one order of magnitude of ↵i. The major requirement
is that ↵1 is much larger than ↵2, which forces the protein concentration n1 to be much larger than the
protein concentration n2. Note that instead of a Tsitsiklis Lyapunov function other functions can be used,
for example, a distance in lp, a linear Lyapunov function n1/↵1 + n2/↵2 etc. However, the main concern
of this work is evaluating the performance of the online algorithm; therefore, the choice of the cost function
will be addressed in future work. The term ↵uu penalises the control signal and therefore attempts to
minimise the burden associated with light-induced gene expression. The choice of ↵u dictates the trade-off
that exists between toggling the switch fast and toggling the switch with a reduced gene expression burden.
We choose parameters ↵u and � by tuning. The parameter ↵u is equal to one in the simulations, and the
discount factor � is set to 0.75.

Computing the control actions is a cheap procedure; however, performing the updates of the Q function
is a computationally harder problem. Therefore, the online algorithm performs 10 iterations of the fitted Q
algorithm every 10 time samples, in order to emulate computationally constrained controllers. The number
of input-output samples used for computing the initial policy for the online algorithm is small in comparison
with the purely offline algorithm. There are two reasons for such an assumption: (a) it is more realistic
to assume sparse input data, if we consider input-output data from previous experiments; (b) fewer input-
output samples imply computationally cheaper updates of the Q function; (c) a large amount of samples
can limit the ability of the online algorithm to update the policy and the Q function efficiently.

For the results in Figures 2 and 3(a), we generated 1000 trajectories with 100 one-step transitions in
each trajectory. For the simulation of the online update algorithm we generated 100 trajectories with 100

one-step transitions in each trajectories. The policy is updated every 10 time samples. The stochastic
simulation is performed using the direct Gillespie stochastic simulation algorithm. At every time instance
t, one hundred trajectories starting at nt are computed until the next time instance t+1, and the value nt+1

is then averaged over these trajectories. The average over these trajectories represents the average value of
protein concentrations in a population of cells, which is much easier to measure .

Finally, the trade-off between exploration and exploitation is decided by choosing the "t function as
follows:

"t = " · 1

Nupdate + 1

where Nupdate is the number of times the policy was updated online. We update the policy after 10 time
samples; therefore, Nupdate is equal to O(t) for large t.

4 Results and Discussion
As an illustration of the benefits of the proposed approach, we investigate how it handles model uncertainty.
In order to do so, we specify a training model and a validation model as in (7). Both models are bi-stable
toggle switches with quantitatively different behaviours. Moreover, the steady states of the validation model
are relatively far from the steady states of the training model. The stable steady states of the training model
are approximately at se1 =

�
0.11 29.26

�
and se2 =

�
59.4 0.17

�
concentration units, while the stable

steady states of the validation model are at se1 =

�
59.4 0.17

�
and se2 =

�
0.11 29.26

�
. The goal is

to compute a control policy (control law), which will steer the model from the stable steady state se1 to
the stable steady state se2. A control policy is a binary function of a current measurement computing the
current action, which is the presence or the absence of a light pulse. Due to the systems’ dynamics, a larger
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Figure 2: “Ideal” control of the toggle switch system. The policy is computed from the input-output data
of a system and then applied to control the same system. This setting is unrealistic; however, it illustrates
the robustness of our control objective towards errors in the choice of the expected target point. Differently
coloured trajectories correspond to the different input target points for the steady state concentration of
protein 1. We choose the target points with 15, 30, 45, 60, 90 units, while the real upregulated steady state
is approximately 60 units (the cyan dashed line). These simulations show, that a considerable error can
be made in the specification of the input target point without significant effect on the performance of the
control algorithm. The schedule of light pulses is not shown due to overlapping trajectories, but all the
pulses occur when the concentration of protein 1 is smaller than 10 units.

amount of light pulses is typically required to switch from se1 to se2 in the validation model in comparison
with the training model. We are going to test our online control algorithm by computing the initial control
policy from the data generated by the training model and apply this policy to the validation model. One of
the challenges for an efficient control algorithm is that not only the dynamics change, but also the target
steady state. This setting mimics the experimental setup, when the trajectories of the model used for the
policy computation (or the training model) do no match exactly the trajectories of the real system (or the
validation model).

We first consider the deterministic case and study the robustness of our algorithm towards errors in the
choice of the target steady state, that is, the presumed and a priori specified value of the upregulated steady
state concentration of protein 1. Therefore, we evaluate the proximity of five trajectories obtained with
different target points, while the control policies are learned from and applied to the training model. In this
case, we use the control algorithm without online updates. Figure 2 depicts the obtained trajectories of the
concentration of protein 1 associated with the gene being upregulated. The red curve corresponds to the
protein concentration obtained with the input target point equal to 15 units, the green curve corresponds to
the input target point of 30 units, the blue curve to the input target point 45, the orange curve to 60, and the
purple curve to 90. The upregulated steady state concentration of protein 1 is approximately equal to 60

units (the cyan dashed line). All the curves are very close to each other and hardly distinguishable, which
indicates that our algorithm is robust to some perturbations in the choice of the target point. Note that all the
light pulses occur when the protein concentration is smaller than 10 concentration units. Hence, the policy
essentially defines a threshold in the concentration of protein 1, below which light pulses are applied and
above which light pulses are not necessary since the trajectories will eventually converge to the upregulated
state due to the unforced system dynamics1. This threshold can be adjusted by modifying the parameters of
the algorithm according to the control goal: faster control or smaller burden.

However, the setting when the policy is learned from a system and then used to control the same system is
not entirely realistic. Typically, some model parameter variations are present. Here we model the case when
the validation system has a considerable difference in parameter values in comparison with the training
system. In Figure 3(a), we depict the simulated trajectories in such a situation. We run the algorithm with
three different target points: 15 (the red curve), 30 (the green curve), and 45 (the blue curve). The actual

1The optimal policy is more complicated than a simple threshold; however, the approximation of the policy by a threshold provides
a general idea about the shape of the control policy
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(a) Simulation results without online updates. The red curve
corresponds to the protein concentration obtained with the
input target point 15, the green curve corresponds to the in-
put target point 30, the blue curve to the input target point
45.
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(b) Simulation results with online updates. The red curve
corresponds to the simulation of our algorithm with online
updates with " equal to 0.5, the blue curve corresponds to
the trajectory with " equal to 0.25, and the green curve to "
equal to 0.1.

Figure 3: Simulation results of the validation model with an initial control policy computed using the input-
output data generated by the training model. In the left panel no online updates are performed, in the right
panel the policy is updated using the measured input-output data. In all the simulations of the algorithm
without online updates the switch is not toggled (the left panel), while in the simulations of the algorithm
with online updates the switch is successfully toggled (the right panel). In both panels, the upregulated
steady concentration of protein 1 is approximately equal to 30 (the cyan dashed line). The algorithm with
online updates has two phases: exploration and exploitation. The trade-off between these two phases is
decided by the parameter ", larger values of which imply more aggressive exploration and faster learning
of the system.
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Stochastic simulation results of the aglorithm  with online updates applied to the validation model

0 50 100 150 2000

10

20

30

40

50

60

Time (a.u.)

0 50 100 150 2000

10

20

30

40

50

60

P
ro

te
in

 c
o

nc
en

tr
at

io
ns

 (a
.u

.)

Figure 4: Stochastic simulation results of the algorithm with online updates applied to the validation model.
In the simulations in the right panel, the penalty on the amount of light pulses is twice larger than in
the simulations in the left panel. The red lines correspond to the value of " equal to 0.5, the blue lines
corresponds to the value of " equal to 0.25, and the green lines to " equal to 0.1.

upregulated protein concentration is approximately equal to 30. In all the simulations the algorithm without
online updates cannot force the system into the upregulated state (the cyan dashed line). This occurs because
the threshold required to ensure the switch in the validation model is higher than the one computed using
the training model.

In Figure 3(b), we present simulation results of the proposed algorithm with online updates. The algo-
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rithm collects new input-output samples and updates the policy at certain time intervals. The algorithm
alternates between two phases: exploration and exploitation. In the exploitation phase the algorithm steers
the system towards the specified goal using the control policy computed so far. In the exploration phase
the algorithm generates data by randomly choosing “to apply a light pulse” or “do nothing”. Due to these
random choices, data generated during the exploration phase is not correlated with the past samples. A ma-
jor challenge in this algorithm is deciding the trade-off between the exploitation and exploration phases. A
simple heuristic for tackling this trade-off is as follows. At time t, with a probability "t explore the system,
and with a probability 1 � "t exploit the system. There is a bigger need in exploration in the beginning of
the experiment; therefore, "t should be larger for small t and decrease with time. Hence, we choose "t as
" · �(t), where " is a positive constant smaller than one and �(t) is a monotonically decreasing function
of t such that " · �(t) is always larger than zero and smaller than one. Larger values of " indicate more
aggressive exploration and faster learning. In these simulations, the input target point for the concentration
of protein 1 is equal to 15. In Figure 3(b), the red curve corresponds to the simulation of our algorithm with
online updates with " equal to 0.5, the blue curve corresponds to the trajectory with " equal to 0.25, and the
green curve to " equal to 0.1. The cyan dashed line represents the upregulated steady state concentration
of protein 1. In all the simulations the switch is successfully toggled for the validation model, even if the
initial policy is obtained by learning from the training model.

One of the biggest advantages of our approach is the ability to handle stochastic dynamics without any
modifications of the algorithm. Moreover, behaviours of the controlled toggle switches in the stochastic case
are qualitatively similar to the deterministic case. We present the simulation results with online updates for
a similar setting as in the deterministic case in the left panel of Figure 4. Additionally, we present the
simulation results in the setting with a twice as large penalty on the amount of applied light pulses in the
right panel of Figure 4. In both figures, the red curves correspond to the simulation of our online algorithm
with " equal to 0.5, the blue curves correspond to " equal to 0.25, and the green curves to " equal to 0.1.
It is noticeable that toggling the switch takes longer with a larger penalty on the amount of light pulses.
However, the main outcome of these simulations is that our algorithm can be applied to systems with
stochastic dynamics, and as a consequence can potentially handle wet-lab data efficiently.

Our algorithm, however, does not take into account the a priori knowledge that it is being applied to a
different, but structurally similar system. A correct exploitation of structural similarity between the learned
from and applied to systems may significantly improve the performance of the presented algorithm. This
constitutes one of the main directions for future work that is currently under investigation.

As a final remark, we have shown that the presented framework can efficiently control a (stochastic) model
of the genetic toggle switch with a parametric uncertainty. The major feature of our control algorithm is
its learning nature. The algorithm computes an initial control policy using input-output data obtained from
simulations of a training model, and after that updates the policy by using the input-output data obtained
from the validation model (or the real system). In the presented example, despite the fact that the training
and validation models had quite different quantitative behaviours the control objective was always reached
using our online control method. This indicates a potential for a generalisation of this data-based control
method to more complex gene regulatory networks.
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