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Abstract Model reduction techniques often prove indispensable in the analysis of
physical and biological phenomena. A succesful reduction technique can substan-
tially simplify a model while retaining all of its pertinent features. In metabolic net-
works, metabolites evolve on much shorter time scales than the catalytic enzymes.
In this chapter, we exploit this discrepancy to justify the reduction via time scale
separation of a class of models of metabolic networks under genetic regulation. We
formalise the concept of a metabolic network and employ Tikhonov’s Theorem for
singularly perturbed systems. We demonstrate the applicability of our result by us-
ing it to address a problem in metabolic engineering: the genetic control of branched
metabolic pathways. We conclude by providing guidelines on how to generalise our
result to larger classes of networks.

1 Introduction

Biological systems often display large discrepancies in the speed at which differ-
ent processes occur. In such cases, time scale separation is frequently employed to
reduce ordinary differential equation (ODE) models of biological phenomena. A
classical example is found in enzyme kinetics (Segel and Slemrod, 1989), whereby
the difference between the speed of substrate-enzyme binding and product forma-
tion is explicitly used to derive the classic Michaelis-Menten equation.

Another discrepancy is found in genetic-metabolic systems prominent in the field
of Metabolic Engineering. These systems describe networks of enzymatic reactions
where the concentrations of the catalytic enzymes are dynamically regulated by gene
expression. Metabolic reactions occur at rates in the order of seconds or less, while
gene expression usually takes between minutes and hours to complete (Madigan
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et al, 2011). For this reason, the reduction of models of metabolic networks un-
der genetic control by time scale separation is sometimes used as a stepping stone
in the analysis of such models (e.g., (Oyarzún et al, 2012; Baldazzi et al, 2012)).
However, the justification behind these reductions is typically limited to qualitative
arguments discussing the discrepancy in speed between metabolic and genetic pro-
cesses. Unfortunately, these arguments sometimes are not sufficient and the reduced
model generated does not behave at all like the original (e.g., see (Flach and Schnell,
2006) for a discussion regarding several models of metabolic networks for which the
reduction fails).

In this chapter, we provide sufficient conditions under which reduction via time
scale separation of models of metabolic networks under genetic control can confi-
dently be carried out. In Section 2 we introduce some notation to describe a general
class of ODE models of metabolic networks under genetic regulation. In addition,
we make certain assumptions on the shape of the dynamics of the metabolites. In
Section 3 we, first, introduce the main ideas behind time scale separation and we
consider networks in which the enzyme concentrations are fixed. Then, we present
our results regarding the validity of time scale separation as a model reduction tool
for metabolic networks. In Section 4 we conclude the chapter by a discussing the
plausibility of the assumptions we made throughout the text and the applicability of
our results. We illustrate the concepts discussed in the chapter by applying them to
the Metabolic Engineering problem presented in Box 1.

Box 1: Genetic control of a branched metabolic network

The control of metabolic activity of microbes is a long standing prob-
lem of the field of Metabolic Engineering. It encompasses the genetic
modification of a host organism and its metabolism to optimise or even
artificially induce the organism’s production of a chemical compound that is
of commercial value, e.g., pharmaceuticals, fuels, commodity chemicals, etc.,
see (Zhang and Keasling, 2011) and references therein. Often, this consists of
two steps. First, the selection of a well studied microbial organism as a host
(e.g., E. coli and S. cerevisae) with some native metabolite that is a precursor
to the chemical of interest. Second, the genetic modification of the microbe
so that it expresses the enzymes that catalyse the reactions which convert the
precursor into the desired molecule (Nielsen and Keasling, 2011).

We study a simple instance of the above scenario. Consider the native
metabolic pathway in Fig. 1A, which converts metabolite 1 into metabolite 3.
Suppose that metabolite 2 is a precursor to a chemical of interest, metabolite
4. Suppose that we can design a plasmid that contains the gene coding
for enzyme e, which catalyses the reaction that converts metabolite 2 into
metabolite 4 which diffuses across the cell membrane. Since the host requires
metabolite 3 to live and grow, we would like to maximise the production of
metabolite 4, without greatly disrupting that of metabolite 3. The question
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now becomes when and how should e be expressed so that these goals are met.
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Figure 1: Control of a branched metabolic pathway. (A) The native pathway (black)
converts metabolite 1 into metabolite 3. The synthetic ‘branch’ (green) converts the native
intermediate, metabolite 2, into a valuable chemical, metabolite 4, and exports it outside
the cell. (B) It is possible to implement positive feedback from metabolite 3 to the reaction
that converts metabolite 2 into 4 by designing a plasmid coding for the enzyme e, who’s
expression is activated by high concentrations of metabolite 3.

Consider implementing the controller architecture in Fig. 1B. Roughly, if
there is an excess of 3, indicating that it is safe to divert resources to the
production of 4, then the controller activates the expression of e, which leads
to an increase in the rate of the branch reaction. The branch reaction consumes
2 and, by lowering the concentration of 2, causes a decrease in the production
of 3. This drop in production contributes to driving the concentration of 3
back to normal levels. If, on the contrary, the concentration of 3 is initially
low, then expression of e drops and the branch shuts off. In this fashion, 2 is
exclusively converted into 3, which hopefully restores the concentration of 3
to normal levels.

One could describe the above scenario using a model consisting of five
ODEs, one of them describing the dynamics of the enzyme concentration
and the other four describing the dynamics of the metabolite concentrations.
Coarsely, model reductions employing time scale separation consist of group-
ing model variables into ‘slow’ variables and ‘fast’ variables and then neglect-
ing the dynamics of the fast ones. In our case this grouping would naturally be
the four metabolites as the ‘fast’ variables and the enzyme as the ‘slow’ vari-
ables. Thus, if applicable, the reduction would permit us to draw conclusions
on the behaviour of the network by studying a 1 dimensional model instead of
a 5 dimensional model. This would be highly desirable given that the analysis
of a 1 dimensional model is straightforward while that 5 dimensional model
can be exceedingly complicated (Khalil, 2002).

2 Models for metabolic reactions under genetic control

Suppose we have a network of n metabolites and m irreversible enzymatic reactions
each of which converts a single metabolite into another. Consider the model for the
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network under genetic regulation

ṡ(t) = f (s(t),e(t)), s(0) = s0, (1a)
ė(t) = g(s(t),e(t)), e(0) = e0, (1b)

where s denotes the vector of concentrations of the metabolites and e denotes the
vector of concentrations of the enzymes catalysing the m reactions in the network.
The metabolite dynamics, f (·), are defined by the rate at which the reactions con-
sume and produce the different metabolites. The enzyme dynamics, g(·), model all
the processes involved in enzyme synthesis and degradation.

In this section, we discuss what model (1) represents and make certain assump-
tions about it. We begin by discussing the kinetics of individual enzymatic reactions.
Next, we construct the metabolite dynamics (1a) from first principles. We conclude
by briefly discussing the enzyme dynamics (1b).

2.1 Enzyme kinetics

We consider irreversible enzymatic reactions like the one shown in Fig. 2. The re-
action converts a single reactant A into a single product B. The rate at which the
reaction occurs, v(sA,e), depends exclusively on the concentration of the reactant,
sA, and the concentration of the catalysing enzyme, e.

Figure 2: An irreversible, enzymatic reaction. The reaction converts metabolite A into metabolite
B at a rate v(sA,e) which depends exclusively on the concentration of the reactant, sA, and that of
the catalysing enzyme, e.

Assumption 1. The reaction rate, v(sA,e), is smooth and globally Lipschitz contin-
uous. For any given constant enzyme concentration e > 0, we assume that v(·,e) is
bounded, that

∂v(sA,e)
∂ sA

> 0, ∀sA 6= 0,

and that v(·,e) is positive definite, that is,

v(0,e) = 0, v(sA,e)> 0, ∀sA > 0.

We denote its least upper bound with

lim
sA→+∞

v(sA,e) = v̂(e).
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At a network level we need to distinguish between different reactions. To do this,
we write vA→B and eA→B to refer to the rate and the concentration of the catalysing
enzyme of the reaction with reactant A and product B.

Our assumptions on the kinetics are satisfied by a wide range enzyme kinetics
proposed in the literature (Cornish-Bowden, 2004) (e.g., Michaelis-Menten and Hill
type kinetics). Essentially, they state that:

• (Positive definite) If there are no reactant molecules present, the reaction rate is
zero. If there are some reactant and some enzyme molecules present, the reaction
rate is non-zero.

• (Strictly increasing) If there are some enzyme molecules present, then the more
reactant molecules present, the faster the reaction rate.

• (Bounded) Enzymes have a limited number of active sites to which the reactants
attach to react. Thus, given a fixed number of enzyme molecules, the reaction rate
cannot exceed the maximum rate achieved when all the enzymes’ active sites are
bound by the reactants.

Implicit in our definition of the reaction rates is the assumption that they are time
invariant. It is well known that the rate of a reaction depends on the temperature and
pressure of the medium in which the reaction is taking place. Hence, assuming time
invariance of the reaction kinetics is equivalent to assuming that the cytoplasm can
be approximated to be isobaric and isothermal. This is a common assumption in the
literature on ODE models of biochemical reactions (Heinrich and Schuster, 1996;
Cornish-Bowden, 2004).

2.2 Metabolic model

Assuming that the cytoplasm may be approximated to be an isovolumetric and spa-
tially homogeneous medium (Heinrich and Schuster, 1996), the law of mass balance
applied to the concentration of metabolite number i yields

ṡi(t) = Pi(t)−Ci(t)+ Ii(t)−Ei(t), (2)

where Pi denotes the rate at which si is produced by the considered genetic-
metabolic network, Ci the rate at which si is consumed by the network, Ii the rate
at which si enters the network from outside and Ei the rate at which si leaves the
network. From now on, we use the convention vi→ j ≡ 0 if there is no reaction that
converts metabolite i into j.

A metabolite is produced (consumed) by the reactions of which it is the product
(reactant). We limit our attention to networks whose metabolites can be ordered in
such a way that the following condition is satisfied.

Condition 1. For any i, if j > i then v j→i ≡ 0. In other words, metabolite i is not the
product of any reaction whose reactant is metabolite i+1, i+2, . . . ,n.
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Condition 1 has a simple graphical interpretation. Consider the directed graph
whose vertices represent the metabolites and whose edges represent the transfer of
mass (via reactions) from one metabolite to another. Condition 1 is equivalent to the
graph being acyclic, that is, starting at any given vertex one cannot return to that
same vertex by following the edges, see Fig. 3. Examples of such networks can be
found in the amino-acid biosynthesis pathways of E. coli (Zaslaver et al, 2004).

A B

Figure 3: Acyclicity in networks. (A) The network is acyclic. (B) The network is not acyclic;
A,B,D,F form a cycle.

Let Ni,i→ j denote the stoichiometric coefficient of i in reaction i→ j, that is, the
number of molecules of i involved in reaction i→ j. If Condition 1 holds, we can
write the rates of production as

P1(t) := 0, Pi(t) :=
i−1

∑
j=1

Ni, j→iv j→i(s j,e j→i), i = 2,3, . . . ,n, (3)

and the rates of consumption as

Cn(t) := 0, Ci(t) :=
n

∑
j=i+1

Ni,i→ jvi→ j(si,ei→ j), i = 1,2, . . . ,n−1. (4)

Consider the import and export rates Ii and Ei, respectively, in (2).

Assumption 2. The import rates are constant, Ii(t) := Ii ≥ 0 ∀ i. The export rate of a
metabolite i, if it exists, is a smooth, globally Lipschitz continuous, positive definite,
bounded function of its concentration such that

∂Ei(si)

∂ si
> 0.

We denote its least upper bound with

lim
si→+∞

Ei(si) = Êi.

One can use the import and export rates to model a variety of phenomena. For
instance, they may represent the rates at which the metabolites flow in and out of
the cell. Or the rates at which the metabolites are consumed/produced by other
metabolic pathways inside the cell. Additionally, one may use the export rates to
circumvent the isovolumetric assumption and model dilution. Regardless, in any of
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these cases the physical interpretations of Assumption 2 are similar to those we
made regarding the assumptions on the enzyme kinetics (Assumption 1). In addi-
tion, assumptions of the type of Assumption 2 are common in the systems biology
literature (for example, see (Craciun et al, 2011; Radde et al, 2010)) and for this
reason we shall not discuss them any further.

We can now rewrite the metabolite dynamics, f (s,e), in the model (1) as

ṡ1 = I1−E1(s1)−
n

∑
j=2

N1,1→ jv1 j(s1,e1→ j),

ṡi = Ii +
i−1

∑
j=1

Ni, j→iv j→i(s j,e j→i)−Ei(si)−
n

∑
j=i+1

Ni,i→ jvi→ j(si,ei→ j), i = 2,3, . . . ,n−1,

(5)

ṡn = In +
n−1

∑
j=1

Nn, j→nv j→n(s j,e j→n)−En(sn).

Box 2: Metabolic model

In our example network we assume that all reactions follow Michaelis
Menten kinetics

v1→2 :=
kcat1s1

KM1 + s1
e1→2, v2→3 :=

kcat2s2

KM2 + s2
e2→3, v2→4 :=

kcat3s2

KM3 + s2
e2→4.

It is straightforward to verify that Michaelis-Menten kinetics satisfy Assump-
tion 1, see Fig. 4.

Figure 4: Michaelis Menten kinetics. The kinetics are strictly increasing, positive definite
and bounded.

The network in Fig. 1 has a single import rate, I1 and two export rates, E3
and E4. We assume that the export rates may also be described by Michaelis-
Menten functions

E3 :=
Ê3s3

KO3 + s3
, E4 :=

Ê4s4

KO4 + s4
.
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Hence, we get the metabolite dynamics

ṡ1 = I1−
kcat1s1

KM1 + s1
e1→2, (6a)

ṡ2 =
kcat1s1

KM1 + s1
e1→2−

kcat2s2

KM2 + s2
e2→3−

kcat3s2

KM3 + s2
e2→4, (6b)

ṡ3 =
kcat2s2

KM2 + s2
e2→3−

Ê3s3

KO3 + s3
, (6c)

ṡ4 =
kcat3s2

KM3 + s2
e2→4−

Ê4s4

KO4 + s4
. (6d)

From Fig. 1A it is easy to see that our network satisfies Condition 1, i.e., it
is acyclic. To simplify future computations, we choose kcati = kcat = 32s−1,
KMi = KM = 4.7µMs−1 ∀i and e1→2 = e2→3 = eN = 200nM. These values
are representative of reactions in the tryptophan pathway (extracted from the
BRENDA database (Scheer et al, 2011), EC number 5.3.1.24). We also as-
sume that Ê3 = Ê4 = kcateN , KO3 =KO4 =KM and use the shorthand e := e2→4.

2.3 Enzymatic model

The enzyme dynamics, g(·), are a lumped representation of all the processes in-
volved in enzyme synthesis and destruction. Synthesis encompasses the transcrip-
tion of genes encoding the enzymes by RNA polymerases into mRNA strands and
the translation of these by ribosomes into polypeptides that later fold into the actual
enzyme proteins. Most enzyme-enzyme and metabolite-enzyme interactions occur
in synthesis, specifically in transcription. In particular, metabolites often act as, or
bind to, transcription factors (TFs) that inhibit or activate the transcription of genes
coding for other enzymes. Destruction, typically, includes enzyme degradation by
the cell and dilution due to cell growth.

To keep this exposition general, we shall not define the function g(·) explicitly.
We will only make the following minimal assumptions.

Assumption 3. The enzymes dynamics g(·) are smooth and globally Lipschitz con-
tinuous.

Enzyme degradation and dilution are typically modelled as linear functions of the
enzyme concentration (Alon, 2006). Synthesis is usually modelled as the sum of
a constant (or basal) expression rate a set of sigmoids (e.g., Hill functions) rep-
resenting the activating or repressing effects of the TF on the enzyme expression
(Oyarzún and Stan, 2013; Baldazzi et al, 2012; Oyarzún and Stan, 2012). These
are all smooth and globally Lipschitz continuous functions. The enzyme dynamics,
g(·), are a linear combination of these and, thus, are also a smooth and globally Lip-
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schitz continuous. For this reason, Assumption 3 holds for a significant portion of
the models presented in the literature.

Box 3: Enzymatic model

Consider the controller for the branched metabolic pathway previously
discussed in Box 1. Implementing such a controller can be achieved, for
example, by designing the promoter of the gene coding for e such that 3 binds
to some TFs that activates the transcription of e, see Fig. 5A. We model the
expression of the branch enzyme e as

ė = k0 + k1σ(s3)− γe, σ(x) :=
xh

θ h + xh . (7)

This model comes from the balance between protein synthesis and degrada-
tion. We consider a first order destruction process with kinetic constant γ ,
which accounts for the aggregate effect of degradation and dilution by cell
growth (Alon, 2006). The synthesis term, k0 + k1σ(s3), describes both tran-
scription and translation of e. The parameter k0 represents the leaky, or con-
stitutive, expression of the enzyme that occurs regardless whether the gene is
activated or repressed, while k1 represents the compound effect of transcrip-
tion and translation when the gene is fully expressed. The function σ(·) takes
values in [0,1) and depends on the specific molecular mechanisms underly-
ing the interactions both between metabolite 3 and the TF and those between
the TF and the promoter of the gene coding for the enzyme. Typically, these
types of interactions are modelled as sigmoidal (or Hill) functions (Oyarzún
and Stan, 2013; Baldazzi et al, 2012), see Fig. 5B.

RBS

TF mRNA

DNA

EnzymeMetabolite

Promoter

A B

Figure 5: The implementation of feedback via promoter design. (A) Metabolite 3 in-
duces a conformation change on the transcription factor, which then binds to the promoter
of the gene coding for e and activates its expression. (B) Hill functions with different Hill
coefficients, note that their range is [0,1), hence k0 +k1 represent the maximum expression
of e.
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We chose the parameter values k0 = 0.03nM, k1 = 100k0, γ = 2× 10−4s−1,
θ = 0.2µM and h = 2 which are representative of enzyme expression in the
Tryptophan Pathway (Oyarzún and Stan, 2013).

3 Model reduction via time scale separation

In this section we present our results regarding time scale separation in genetic-
metabolic systems. We first consider the behaviour of metabolic networks when the
enzyme concentrations are kept fixed in time. There are two reasons behind this.
First, it is a prerequisite to the time scale separation results regarding networks with
varying enzyme concentrations. Second, the study itself is instructive with regards
to understanding the behaviour of the networks. After this, we introduce abstractly
the main ideas of time scale separation and give our results justifying the time scale
separation based reduction of the networks.

3.1 Metabolic networks with constant enzyme concentrations

Suppose that the enzyme concentrations are positive constants, i.e., e(t)≡ e ∈Rm
>0.

We find it convenient to rewrite (5) as

ṡi = gi(s1, . . . ,si−1,e)−hi(si,e), i = 1,2, . . . ,n, (8)

where g1 := I1,

gi(s1, . . . ,si−1,e) := Ii +
i−1

∑
j=1

Ni, j→iv j→i(s j,e j→i), i = 2,3, . . . ,n,

and hn(sn) := En(sn),

hi(si,e) := Ei(si)+
n

∑
j=i+1

Ni,i→ jvi→ j(si,ei→ j), i = 1,2, . . . ,n−1.

The function gi(·) ≥ 0 represents the total rate of increase (via both import and
production) of the concentration of metabolite i. Similarly, the function hi(·) ≥ 0
represents the total rate of decrease (via both export and consumption) of the con-
centration of metabolite i. To avoid pathological scenarios in which the concentra-
tion of a given metabolite keeps on rising because there is no process that removes
the metabolite, we impose the following condition.
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Condition 2. Every metabolite has at least one reaction that consumes it, or it has
a non-trivial export term. In other words, for all i, Ei 6≡ 0 or there exists a j such
that vi→ j 6≡ 0. Thus, hi 6≡ 0 for all i.

The non-zero Ei and vi→ j functions (if they exist, and Condition 2 ensures at
least one does exists for all i = 1,2, . . . ,n) are bounded, strictly increasing, positive
definite functions of si. Hence, hi, which is a sum of these functions, is also positive
definite and strictly increasing with si and it maps from R≥0 to [0, ĥi(e)), where

ĥi(e) := Êi +
n

∑
j=i+1

Ni,i→ j v̂i→ j(ei→ j).

We now examine the conditions under which system (8) has an equilibrium. By
definition, g1 ≡ I1 ≥ 0, thus ṡ1 = 0 implies

h1(s̄1,e) = I1.

This algebraic or transcendental equation has a solution if and only if the I1 is in the
range of the function h1(s̄1,e). In other words, we require ĥ1(e) > I1. In addition,
h1(s̄1,e) is a strictly increasing function of s̄1, thus if a solution exists it is unique.
Now, if we assume that s̄1, . . . , s̄i−1 exist, then ṡi = 0 implies

hi(s̄i,e) = gi(s̄1, . . . , s̄i−1,e).

Similarly as before, the equation has a solution if and only if the constant gi(s̄1, . . . , s̄i−1,e)
is in the range of the function hi(s̄i,e), i.e., if ĥi(e) > gi(s̄1, s̄2, . . . , s̄i−1,e). In addi-
tion, hi(s̄i,e) is a strictly increasing function of s̄i, Hence if a solution exists it is
unique.

Thus, by induction, an equilibrium exists if and only if the following condition
is satisfied.

Condition 3. The vector of constant enzymes e is such that ĥi(e)> gi(s̄1, . . . , s̄i−1,e)
∀i = 1,2, . . . ,n.

Furthermore, by monotonicity, if the equilibrium exists it is unique.
Condition 3 is important and has an intuitive interpretation. Regard the metabo-

lites in the network as large water tanks, their concentrations as the water level in
the tanks, the reactions as pipes connecting the tanks and the reaction rates as the
rate of flow of water through the pipes. In this context, the enzymes may be regarded
as valves whose concentrations modulate the resistance to flow through them. Then
gi(·) may be interpreted as the rate at which water enters the ith tank through the in-
coming pipes and hi(·) as the rate at which it leaves through the outgoing pipes. The
monotonicity of hi can be interpreted as ‘the more volume of water in the tank, the
greater the water pressure and thus the bigger the rate at which the water is pushed
out of the tank through the outgoing pipes’. Condition 3 simply ensures that the
outgoing pipes are ‘sufficiently large’ in the sense that the maximum rate at which
water can escape the tank is higher than the equilibrium rate at which water enters.
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Condition 1, that the network is acyclic, implies that there is no chain of re-
actions that convert metabolite i into metabolites 1,2, . . . , i− 1. Thus, if metabo-
lites 1,2, . . . , i− 1 are at their equilibrium concentrations, they will remain there
forever irrespective of what is happening to the concentrations of metabolites
i, i+1, . . . ,n. So, if Condition 3 does not hold for a given metabolite i and metabo-
lites 1,2, . . . , i−1 are at their equilibrium concentrations, then metabolite i will sim-
ply accumulate and its concentration will tend to infinity.

Box 4: Network fluxes

Consider Condition 3 applied to the network in Fig. 1A

v̂1→2(eN)> I1, v̂2→3(eN)+ v̂2→4(e)> v1→2(s̄1,eN),

Ê3 > v2→3(s̄2,eN), Ê4 > v2→4(s̄2,e).

By definition, all the reaction rates are non-negative, so v̂2→3(eN)+ v̂2→4(e)≥
v̂2→3(eN). Also note that because s̄ is an equilibrium

I1 = v1→2(s̄1,eN) = v2→3(s̄2,eN)+ v2→4(s̄1,e).

In Box 2 we assumed that

v̂1→2(eN) = v̂2→3(eN) = Ê3 = Ê4 = kcateN .

So, Condition 3 is satisfied for any postive enzyme concentration, that is e ∈
(0,+∞), if and only if kcateN > I1.

It can be shown that the fulfilment of Condition 3 does not just imply that the
network has a unique equilibrium, it also implies that the equilibrium is stable.

Lemma 1. Assume that the metabolic network is such that Conditions 1 and 2 are
satisfied and Assumptions 1 and 2 hold. If the enzyme concentrations are fixed in
time at some value such that Condition 3 is satisfied, then (8) has a unique equilib-
rium which is globally asymptotically stable.

The proof of the above lemma can be found in Appendix 2.

3.2 Time scale separation

Time scale separation is applicable to systems that may be written as

ε ż = f (x,z), z(0) = z0 (9a)
ẋ = g(x,z), x(0) = x0 (9b)
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where the components of f : Rn×Rm → Rn, g : Rn×Rm → Rm are in the same
order of magnitude for all (x,z) ∈Rn+m and 0 < ε� 1 is a small positive real num-
ber. The characterising feature of these systems is that the dynamics of some of the
state variables (z) are multiple orders of magnitude faster than those the other state
variables (x), i.e., ż = f (x,z)/ε � g(x,z) = ẋ. Suppose that during a small inter-
val of time within which the value of the slow variables (x) remain approximately
constant, the fast variables (z), which are evolving hundreds/thousands times faster,
reach some steady state or quasi-steady state. If we assume that the dynamics of the
variables z reach this steady-state very quickly (almost instantaneously at the time
scale of the slow variables x), then we can assume that, at the time scale of the slow
variables x, ż = 0 or, equivalently, that

f (x,z) = 0.

Suppose that the above has a unique root z = φ(x), i.e., f (x,φ(x)) = 0 for all x.
Then, at the time scale of the slow variables x, one can focus on studying the reduced
dynamical system

˙̄x = g(x̄,φ(x̄)), x̄(0) = x0 (10a)
z̄ = φ(x̄), (10b)

instead of the original system (9).
Notice that in contrast with the fast variable z of the original system (9), which

starts at time 0 from a given z0, the fast variable z̄ of the reduced system (10) is not
free to start from z0 and there may be a large discrepancy between its initial value,
φ(x0), and z0. Thus, there must at least be a short period of time where the behaviour
of reduced system does not approximate well that of the complete system.

Before carrying out the above reduction, we need to address a number of out-
standing issues. For instance, does a quasi-steady state even exist? Is it unique? If
it is not, which quasi-steady state should be used in the reduction? Do the fast vari-
ables of the complete system always tend to their quasi-steady state?

Theorem 2, known as Tikhonov’s Theorem, partly answers these questions by
providing sufficiency conditions under which the behaviour of the original system
(9) is well approximated by that of the reduced system (10). More specifically, if
its assumptions are satisfied, Tikhonov’s Theorem ensures that after some period
of time of order ε ln(1/ε), i.e., O(ε ln(1/ε)), during which the initial discrepancy
between z and z̄ dies out, the norm difference between the trajectory of the complete
system (9) and that of the reduced system (10) remains of order ε and no more.

3.3 Sufficiency conditions for time scale separation

To be able to state our results regarding time scale separation in genetic-metabolic
systems, we must first re-write the network model (1) in the same form as (9). Usu-
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ally, this involves some, possibly complicated, change of variables. However, in the
case of genetic-metabolic networks this is not necessary; the ‘fast’ variables are the
metabolite concentrations while the ‘slow’ variables are the enzyme concentrations.
Thus all that must be done is to scale the variables so that the new metabolite dy-
namics, f (·), and the enzyme dynamics, g(·), are of the same order of magnitude
and all the normalising constants are grouped into a parameter ε multiplying ṡ. A
systematic way to do this is to non-dimensionalise the network model (1), which
consists of performing a set of variable substitutions such that the new variables
have no physical dimensions associated with them (Lin and Segel, 1988).

Box 5: Non-dimensionlisation

Consider substituting the variables of our network model (equations (6)
in Box 2 and (7) in Box 3) with

z :=
s

KM
, x :=

e
ê
, τ := γt, ê :=

k0 + k1

γ
. (11)

Notice that the new variables (x,z) have no physical units associated with
them. After re-arranging we get

ε
dz1

dτ
= Ĩ− z1

1+ z1
(12a)

ε
dz2

dτ
=

z1

1+ z1
− z2

1+ z2
− ê

eN

z2x
1+ z2

(12b)

ε
dz3

dτ
=

z2

1+ z2
− z3

1+ z3
(12c)

ε
dz4

dτ
=

ê
eN

z2x
1+ z2

− z4

1+ z4
(12d)

dx
dτ

=
k0

k0 + k1
+

k1

k0 + k1
σ
∗(z3)− x (12e)

where Ĩ = I1
kcat eN

, σ∗(z3) := σ(KMz3) and ε = KMγ

kcat eN
≈ 1.5×10−4.

We can now state our results regarding time scale separation in metabolic net-
works under genetic regulation. The proofs for the following lemma and theorem
may be found in Appendix 2.

Lemma 2. Suppose that (1) is such that Conditions 1, 2 and Assumptions 1 to 3
hold. Consider a non-dimensionalised version of (1)

ε ṡ(t) = f (s(t),e(t)), s(0) = s0 (13a)
ė(t) = g(s(t),e(t)), e(0) = e0 (13b)
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Then, the unique solution of (13),
[
s(t) e(t)

]T , exists for all t ≥ 0. In addition, let
A denote the subset of Rm

>0 whose elements are such that Condition 3 holds. There
exists a unique function φ : A→Rn such that f (φ(e),e)= 0 for all e∈A. In addition,
φ(·) is continuously differentiable. Consider the reduced system

˙̄e(t) = g(φ(ē(t)), ē(t)), ē(0) = e0. (14)

Suppose that there exists a compact set B⊆ A that is forward invariant with respect
to (14). Then, if e0 ∈ B, (14) has a unique solution ē(t) ∈ B for all t ≥ 0.

Theorem 1. Suppose that the assumptions of Lemma 2 are satisfied and that e0 ∈ B.
Then, for any finite time T ≥ 0

e(t) = ē(t)+O(ε) (15)

holds for all t ∈ [0,T ] and there exists a time t1 ≥ 0, O(ε ln(1/ε)), such that

s(t) = s̄(t)+O(ε), (16)

where s̄(t) := φ(ē(t)), holds for all t ∈ [t1,T ].

Box 6: Model Reduction

As discussed in Box 4, Condition 3 is satisfied for all values of e ∈ (0,+∞),
or equivalently x ∈ (0,+∞), if and only if Ĩ < 1. Suppose that this is so and
define A := (0,+∞). Then, for any x ∈ A, the non-dimensionalised model
(12) has the unique root

φ1(x) =
Ĩ

1− Ĩ
, φ2(x) = φ3(x) =

Ĩ
ê

eN
x+1− Ĩ

, φ4(x) =
Ĩ

eN
ê

1
x +1− Ĩ

.

Thus, the reduced model is given by

˙̄x =
k0

k0 + k1
+

k1

k0 + k1
σ
∗(φ3(x̄))− x̄, z̄ = φ(x̄). (17)

To satisfy the premise of Theorem 1, and thus justify the reduction, all that
remains to be done is to find a compact subset of A that is forward invariant
with respect to (17). Given that σ(x)∗ ∈ [0,1) for all x ∈ [0,+∞) we have that

k0

k0 + k1
− x̄≤ ˙̄x≤ 1− x̄. (18)

From the above it is straightforward to see that [ k0
k0+k1

,1] is a compact subset of

A that is forward invariant with respect to (17). Suppose that x0 ∈ [ k0
k0+k1

,1], or,

equivalently, e0 ∈ [ k0
γ
, k0+k1

γ
]. Then, using the substitutions in (11), Theorem 1
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implies that the norm of the difference between the enzyme trajectory of the
our original model (6), (7) and that of the reduced model (17) will be of order
0.037nM and that, after a short period of time (of order 1.3ms), the norm of
the difference between metabolite trajectory of both models will be of order
0.69nM, see Fig. 6.

BA

M
et

ab
ol

ite
 C

on
ce

nt
ra

tio
n 

( 
  M

)

2

4

6

8

10

12

0 3 6 9 12 15 18
Simulation Time (s)

Metabolite 1

Metabolite 2

Metabolite 3

Metabolite 4

E
nz

ym
e 

C
on

ce
nt

ra
tio

n 
(n

M
)

Simulation Time (s)
3 6 9 12 15 18

Reduced Model

Complete Model

439.5

440

440.5

441

0

Figure 6: Model reduction. The plots were generated using Matlab and show the first few
seconds of a simulation of a single trajectory of both the original and reduced models, (17)
and (12), respectively. These were generated using I1 =

1
2 kcat eN (thus Ĩ1 =

I
kcat eN

= 1/2< 1).
(A) The trajectory of the metabolites of the complete model (solid lines) converges rapidly
to that of the reduced model (dashed lines). (B) The trajectory of enzyme of the complete
model remains a fraction of a nano molar away from that of the reduced model.

The main benefit of carrying out this reduction, is that it can often be consider-
ably easier to extract analytical results from the lower dimensional reduced model
than from the higher dimensional original model. This is particularly obvious in our
example given that in Box 6 we reduced a 5 dimensional model to a 1 dimensional
model.

Box 7: Global stability of the reduced model

The dynamics of the reduced system (17), g(x̄,φ(x̄)), is a strictly de-
creasing function of x̄. This follows from the fact that φ3 is a decreasing
function of its argument while σ∗ is an increasing function of its argument.
So σ∗(φ3(x)) is a decreasing function of x. In addition, due to inequality (18),
g(0,φ(0)) ≥ k0

k0+k1
> 0 and g(1,φ(1)) ≤ 0. This, together with the fact that

g(φ(x),x) is a continuous function of x implies that the reduced model has a
unique equilibrium x̄eq ∈ [0,1]. Lastly, the reduced model is a 1 dimensional
system, hence, the fact that g(x̄,φ(x̄)) is strictly decreasing in x̄, implies that
the unique equilibrium is globally asymptotically stable, see Fig. 7.
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Figure 7: Global stability. (A) Concentration of metabolite 3 versus time. (A Inset) After
a rapid transient, the initial metabolite concentrations become irrelevant; the metabolites
quickly reach their quasi-steady state that depends exclusively on the value of the enzyme
concentrations. (B) Concentration of the branch enzyme versus time. Four trajectories with
different initial conditions are plotted alongside the equilibrium (black, dashed). All tra-
jectories converge to the equilibrium. If the initial enzyme concentration is higher than its
equilibrium value (as it is the case for the dark blue and green trajectories), the branch drains
resources away from the native pathway depleting the concentration of metabolite 2 and,
as a consequence, that of metabolite 3 too. The drop in concentration of 3 is detected by
the genetic controller and the expression of the branch enzyme is repressed. This causes the
enzyme concentration to return back to its equilibrium level, and that of metabolites 2 and
3 to return back to theirs.

In conclusion, such a controller architecture ensures that the network has
a unique steady state to which the concentrations of the metabolites and of
the enzyme always tend to, regardless of initial their values. In addition, by
modifying the promoter parameters (in particular, the basal expression k0 and
promoter strength k1) one can move the steady state to a more desirable lo-
cation (e.g., maximise the steady state concentrations of metabolite 4 while
keeping that of metabolite 3 above a prescribed minimum value). It is also
worth mentioning, that one can replicate the above analysis to design a con-
troller for branched metabolic networks with arbitrarily long main pathway
and branch.

4 Discussion

In this chapter, we exploited the discrepancy in the speeds at which metabolic re-
actions and gene expression occur to justify the reduction of genetic-metabolic net-
works via time scale separation. If applicable, time scale separation reduces a model
with n ‘fast’ variables and m ‘slow’ variables to one with just the m ‘slow’ variables.
Such a model reduction can have strong benefits with regards to obtaining analytical
results on the model (e.g., see (Oyarzún et al, 2012; Baldazzi et al, 2012)).
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The framework we use to describe genetic-metabolic systems is flexible. The as-
sumptions made on the enzyme kinetics are minimal and are satisfied by a wide
collection of kinetics models employed in the literature (Cornish-Bowden, 2004).
Furthermore, we make few assumptions regarding the ODEs describing the enzyme
dynamics. Thus, we allow for just about any model of enzyme dynamics presented
in the literature, with the notable exception of switch like models occasionally em-
ployed, e.g., (Oyarzún et al, 2012). However, our framework has some important
drawbacks that can seriously limit the applicability of Theorem 1.

First, we deal only with enzymatic reactions, i.e., reactions catalysed by an en-
zyme. Although many reactions involved in cellular metabolism are enzymatic re-
actions (Cornish-Bowden, 2004), there are also some that are not. This is a not a
serious issue, one may simply not define an enzyme for the non-enzymatic reac-
tions. Once this is done, one can follow the same approach as the one presented in
this chapter, to obtain similar results regarding the validity of time scale separation
for the metabolic networks with both enzymatic and non-enzymatic reactions.

Implicit in our framework is the assumption that each reaction has a single re-
actant. One could potentially include reactions with multiple reactants by following
the example set by Jackson, Horn and Feinberg and in their work on chemical reac-
tion network theory (CNRT) (Feinberg, 1987). They introduce the idea of chemical
complexes, separate from chemical species (what we refer to as ‘metabolites’). For
example, if one has the reaction A+ 2B→C, A, B and C are the chemical species
involved in the reaction and A+2B and C are the chemical complexes.

Another subtle but important issue is that the enzyme kinetics our framework
is aimed for (e.g., Michaelis Menten, Hill type functions, etc.) are, themselves, the
outcome of a previous reduction involving a quasi-steady state approximation. Key
to these reductions is the assumption that the enzyme concentrations are constant.
Although this is not the case in the type of models we are examining, where the
enzyme concentrations are modelled as dynamic variables, there has recently been
some headway in showing that these reductions are also valid if the enzyme concen-
trations vary, see (Kumar and Josić, 2011).

The applicability of our results to the class of genetic-metabolic systems we con-
sider has two main limitations. The first is that to carry out the reduction, one must
show that the premise of Theorem 1 is satisfied. The second is that our results are
only applicable to acyclic networks, i.e., networks that satisfy Condition 1. The for-
mer is not as much of a hindrance as one expects it to be; the enzyme dynamics,
often, are such that the premise of Theorem 1 is not hard to satisfy. The later is
more serious, in particular because it rules out networks with reversible reactions.
However, one can build on our current result to construct a more general one for the
case of certain non-acyclic networks, e.g., ones that include reversible reactions.

To apply our result, one must first be able to find a compact subset of the set of all
enzyme concentrations such that Condition 3 is satisfied, that is forward invariant
with respect to the reduced model (14). Often, in models for enzyme dynamics, the
differential equation describing the evolution of an individual enzyme is coupled to
the metabolites and other enzymes via saturable functions (Oyarzún and Stan, 2013,
2012; Baldazzi et al, 2012). Hence, one can often extract certain differential inequal-
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ities regarding the time evolution of individual enzymes that are decoupled from the
other metabolites and enzymes. These can then be used to find the desired forward
invariant regions. Indeed, this is exactly what we did in our example network, see
Box 6.

The requirement that the network must be acyclic, i.e., that it satisfies Condi-
tion (1), is a limitation. This is especially true because it rules out networks with
reversible reactions. However, if one is willing to impose some more conservative
inequalities than those in Condition 3, it is straightforward to extend the result to a
significantly more general class of networks.

Our proof for the acyclic case consists of showing that the metabolite dynamics,
ṡ = f (s,e), are such that the premise of Tikhonov’s Theorem (Theorem 2) is sat-
isfied. In particular, we show that for any fixed enzyme vector e ∈ Rm

>0 the system
ṡ = f (s,e) has globally asymptotically stable equilibrium. To do this, we use the
fact that the network is acyclic to decompose the system ṡ = f (s,e) into a series of
interconnected 1 dimensional subsystems, or blocks, such that the input the ith sub-
system comes only from the previous i−1 systems. We then prove certain properties
about these subsystems (essentially that they are converging input converging state
(CICS)) and use these to establish properties about the complete system required to
satisfy the theorem’s premise. However, there is no reason why to only use 1 dimen-
sional subsystems other than that it is easier to show that they are CICS. If one can
show that larger blocks, e.g., a 2 dimensional block representing a reversible reac-
tion, are also CICS then the result would be almost immediate for ‘block-acyclic’
networks containing a mixture of 1 dimensional irreversible reaction blocks and
larger blocks. Indeed, by imposing stronger inequalities than those in Condition 3,
it is straightforward to show that much more general blocks are CICS, e.g., chains
of reversible reactions and loops of irreversible reactions. However, to simplify this
exposition we limit ourselves to the acyclic case. Strictly speaking, to satisfy the
premise of Tikhonov’s Theorem, one must also show that the eigenvalues of the Ja-
cobian of ṡ = f (s,e) all have negative real parts. This can be done easily because
the network being acyclic implies that the Jacobian is triangular. If one considers a
block acyclic network then the Jacobian will be block triangular. All that one needs
to show in this case is that the eigenvalues of the Jacobian of each of the blocks have
negative real parts.

An interesting alternative would be to attempt to use the existing CNRT machin-
ery, specifically the Deficiency Zero Theorem (Feinberg, 1987), to re-derive and
potentially extend our results, at least to networks with mass-action kinetics.

Acknowledgements We thank Aivar Sootla for very useful discussions about various topics de-
scribed in this chapter and Alexandros Houssein and Keshava Murthy for their valuable advice
regarding how to improve this script.
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Appendices

In the appendices we assume that the reader has some familiarity with non-linear
systems theory. Specifically, we assume that the reader is comfortable with the var-
ious notions of stability of equilibria, Lyapunov functions and the existence and
uniqueness results. If not, we refer the reader to the excellent text (Khalil, 2002).

We begin by presenting Tikhonov’s Theorem over finite time intervals and some
related results. Next, we discuss the notion of converging input converging state sys-
tems. Lastly, we employ the previous two to prove Lemmas 1 and 2 and Theorem 1.

Throughout the appendices we use || · || to denote any vector norm.

A: Tikhonov’s Theorem

As discussed in the main text, a method for dimensionality reduction of non-linear
systems is time scale separation. This is applicable in systems whose state variables
exhibit large differences in the ‘speed’ of their time responses. Core to time scale
separation is the following result first proved by Tikhonov 60 years ago (Tikhonov,
1948), (Tikhonov, 1952). The version of it presented here is not the original version
by Tikhonov, but instead the version published by Vasil’eva in 1963, which we find
easier to work with.

Theorem 2 ((Vasil’eva, 1963; Kokotovic et al, 1986)). Let f : Rn×Rm× → Rn

and g : Rn×Rm→ Rm both be smooth functions. Consider the system

ε ż(t) = f (x(t),z(t)), z(0) = z0, z ∈ Rn, (19a)
ẋ(t) = g(x(t),z(t)), x(0) = x0, x ∈ Rm, (19b)

where ε > 0. Assume for all t ∈ [0,T ] where T ∈ R≥0 that (19) has the unique
solutions x(t),z(t). Consider the following conditions:

1. There exists a unique function φ(·) such that g(x̄(t),φ(x̄(t)) = 0 for all t ∈ [0,T ]
where x̄(t) denotes the unique solution over [0,T ] of the reduced system ˙̄x =
g(x̄,φ(x̄)), x(0) = x0.

2. Consider the ‘boundary layer’ system

dẑ
dτ

(τ) = f (x0, ẑ(τ)+φ(x0)). (20)

Assume that the equilibrium ẑ = 0 of (20) is globally asymptotically stable, uni-
formly in x0.

3. The eigenvalues of
[

∂ f
∂ z (·)

]
evaluated along x̄(t), z̄(t), have real parts smaller

than a fixed negative number, i.e.,

Re
(

λi

([
∂ f
∂ z

]
(x̄(t), z̄(t))

))
≤−c, c ∈ R>0, ∀i, ∀t ≥ 0.
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where Re(a) denotes the real part of a ∈ C and λi(A) denotes the ith eigenvalue
of A ∈ Rn×n.

If the three conditions above are satisfied, then relations (21) and (22) hold for
all t ∈ [0,T ] and there exists a time t1 ≥ 0, O(ε ln(1/ε)), such that (23) holds for all
t ∈ [t1,T ].

x(t) = x̄(t)+O(ε). (21)

z(t) = z̄(t)+ ẑ(t)+O(ε). (22)

z(t) = z̄(t)+O(ε). (23)

The Theorem’s first condition ensures that there exists a well defined reduced
model. The second condition verifies that, initially, the trajectory of the complete
system rapidly converges to the one of the reduced system. The third condition
guarantees that after the initial transient dies out the trajectory of the complete sys-
tem remains close to the that of the reduced system. It is worth mentioning, that
the above is Tikhonov’s theorem restricted to the special case when the systems are
time invariant and (19a) has a unique root. For an excellent treatment of Tikhonov’s
theorem (including its most general form) and its applications in control theory see
(Kokotovic et al, 1986).

In verifying the theorem’s last two conditions the following two lemmas will be
useful.

Lemma 3 ((Tikhonov, 1952)). Consider the boundary system (20). Assume that f
and the root φ are continuous functions and that x0 ∈P where P is a compact
subset of Rm. Suppose that for all x0 ∈P , the origin of (20) is globally asymptot-
ically stable. Then the origin of (20) is globally asymptotically stable, uniformly in
x0.

Lemma 4. Consider f (·) in (19). Let A be a compact subset of Rn+m and suppose
that

Re
(

λi

([
∂ f
∂ z

]
(x,z)

))
< 0, ∀i, ∀

[
x,z
]T ∈ A.

Then, there exists a c ∈ R>0 such that

Re
(

λi

([
∂ f
∂ z

]
(x,z)

))
≤−c, ∀

[
x
z

]T

∈ A.

Proof. First, we show that

λ
∗(x,z) := max

i

(
λi

([
∂ f
∂ z

]
(x,z)

))
, (24)

that is, the maximum real part of the eigenvalues of the Jacobian, is a continuous
function of x and z.
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The eigenvalues are the roots of the characteristic polynomial of the Jacobian
(i.e., the solutions to det

(
λ I−

[
∂ f
∂ z

]
(x,z)

)
= 0 where λ ∈ C). The roots of a poly-

nomial depend continuously on the coefficients of a polynomial. The coefficients
of the characteristic polynomial of the Jacobian above depend continuously of the
entries of the Jacobian. The entries of the Jacobian are continuous functions of x and
z. The composition of two continuous functions is also a continuous function. Thus,
the eigenvalues of the Jacobian are continuous functions of x and z. Thus, (24) is a
continuous function of x and z.

The supremum of a continuous function over a compact set is achieved by an ele-
ment in the set. This fact and the lemma’s premise imply that sup[x,z]T∈A λ ∗(x,z)< 0
which completes the proof. ut

B: Converging input converging state systems

In Appendix C, we need to prove that the unique equilibrium of the network with
the enzyme concentrations fixed in time (system (8)) is globally asymptotically sta-
ble (GAS). To accomplish this we exploit the acyclycity of the network to break
system (8) down into n one dimensional subsystems and study how they interact.
To this end, we introduce the notions of converging input bounded state (CIBS) and
converging input converging state (CICS) systems. These were original presented in
(Sontag, 1989) and relate to other more well known concepts such as input to state
stable (ISS) systems.

Definition 1. We say that u(·) is an input if it is a continuous function that maps
from R≥0 to Rm.

Now, consider the non-autonomous system

ẋ(t) = f (x(t),u(t)), (25)

where f (·) is continuous, x ∈Rn and u(·) is an input. In addition, consider the same
system with ‘zero input’

ẋ(t) = f (x(t),0). (26)

Definition 2. System (25) is said to be converging input bounded state (CIBS) if for
any input u(·) such that u(t)→ 0 as t→+∞ and for any initial conditions x0 ∈ Rn,
the solution exists for all t ≥ 0 and is bounded.

Definition 3. System (25) is said to be converging input converging state (CICS)
if for any input u(·) such that u(t)→ 0 as t → +∞ and for any initial conditions
x0 ∈ Rn, the solution exists for all t ≥ 0 and converges to 0.

Lemma 5. Assume that for any input, x(t) exists for all t ≥ 0. Let V : Rn → R be
C 1, bounded from below and radially unbounded (i.e., ||x|| →+∞⇒V (x)→+∞).
If there exists constants α > 0 and β > 0 such that
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V̇ (x) =
∂V
∂x

f (x,u)≤ 0 ∀(x,u) ∈ Rn+m : ||x|| ≥ β , ||u|| ≤ α,

then system (25) is CIBS.

Proof. We prove by contradiction. Assume that the premise of the Lemma is satis-
fied, i.e., that ||u(t)|| → 0 as t → +∞ and that x(t) is unbounded. By our premise,
x(t) is defined for all t ≥ 0. Thus, there does not exist a finite escape time, i.e., there
does not exists a time T ≥ 0 such that ||x(t)|| → +∞ as t → T . Thus, the fact that
x(t) is unbounded implies that ||x(t)|| →+∞ as t→+∞.

Now, ||u(t)|| → 0 as t → +∞ implies that there exists a t1 ≥ 0 such that ∀t ≥ t1,
||u(t)|| ≤ α . In addition, ||x(t)|| →+∞ as t→+∞ implies that there exists a t2 ≥ 0
such that ∀t ≥ t2, ||x(t)|| ≥ β . Let t3 := max{t1, t2}. Thus, ∀t ≥ t3, V̇ (x(t)) ≤ 0
which implies that ∀t ≥ t3, V (x(t)) ≤ V (x(t3)). This implies that ∀t ≥ t3, ||x(t)|| ≤
||x(t3)|| < +∞. Hence, ||x(t)|| does not tend to +∞ as t → +∞. We have reached a
contradiction. ut

Theorem 3 ((Sontag, 1989)). If 0 is a GAS equilibrium of (26) then CIBS and CICS
are equivalent for (25).

Theorem 4 ((Sontag, 1989)). Consider the cascade formed by system (25) and the
autonomous system ẏ = g(y),

ẋ = f (x,y), (27a)
ẏ = g(y), (27b)

where g is continuous, y ∈ Rm. Assume the origin of (27b) is GAS and that (25) is
CICS. Then the origin of (27) is GAS.

C: Proof of the main results

We begin by demonstrating a series of results regarding the metabolic model when
enzymes are kept at a fixed value. In other words, up to and including the proof
of Lemma 1 we neglect the enzyme dynamics (1b) and assume e(t) ≡ e, where
e ∈ Rm

>0 is a constant such that Conditions 1-3 hold. In Section 3.1, we argued that
if Conditions 1-3 are satisfied, the metabolic network (8) has a unique equilibrium
s̄.

We now establish global asymptotic stability of the equilibrium. To do this, in-
stead of studying the behaviour of the whole network in one go, we examine the
behaviour of individual metabolites, or individual subsystems first, and then using
these we establish the stability property for the whole network. We call

ẋ(t) = f1 (x(t),e) , x(0) = x0 ∈ R≥0

the 1st subsystem where f1 is defined as in (8). Similarly, we call
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ẋ(t) = fi (w(t),x(t),e) , x(0) = x0 ∈ R≥0

the ith subsystem1 where w : R≥0→ Ri−1
≥0 plays the role o an input and fi is defined

as in (8) for i = 2, . . . ,n. Note that, given that the domain of fi, with i = 2, . . . ,n,
is Ri−1

≥0 ×R≥0 ×R≥0 (the reaction rates, v j→i are only defined for non-negative
arguments, i.e., the metabolite concentrations must be non-negative), it is important
that the range of w is Ri−1

≥0 instead of Ri−1. For this reason, if we want to employ the
CICS machinery introduced in Appendix 2, we first must alter slightly our definition
of an input u(·) (Definition 1, Appendix B).

Definition 4. We say that u(·) is an input to the system ẋ = f (x,u), f : A×B→ Rn

where A×B⊂ Rn×Rm, if it is a continuous function that maps from R≥0 to B.

It can be shown, in a similar manner as in Appendix B and (Sontag, 1989), that
Lemma 5 and Theorems 3 and 4 hold if one replaces the original definition of an
input (Definition 1) with the one above (Definition 4) and x0 ∈ Rn with x0 ∈ A.

Returning to our original problem, it is convenient to introduce the change of
coordinates z := x− s̄ and u(·) :=w(·)− s̄i where s̄i :=

[
s̄1 . . . s̄i−1

]T for i= 2, . . . ,n.
Then, we can re-write the 1st subsystem as

ż(t) = f1 (z(t)+ s̄1,e) , z(0) = z0 ∈ [−s̄1,+∞).

and the ith subsystem

ż(t) = fi
(
u(t)+ s̄i,z(t)+ s̄i,e

)
, z(0) = z0 ∈ [−s̄i,+∞). (28)

for i = 2, . . . ,n. In addition, from now onwards we will say an input u(·) meaning
an input to the ith subsystem (28) in the sense of Definition 4.

Proposition 1. For any input given u(·), then the ith subsystem has a unique, con-
tinuous solution z(t) ∈ [−si,+∞) for all t ≥ 0.

Proof. Each component of f (·) is a linear combination of globally Lipschitz contin-
uous functions (Assumptions 1 and 2), hence f (·) is globally Lipschitz continuous
as well. This and the definition of u(·) (which implies that it is a continuous function
of t), ensure that the ith subsystem, ż = fi

(
u(t)+ s̄i,z(t)+ s̄i,e

)
, satisfies the usual

conditions for global existence of solutions of time varying systems. Hence the ith

subsystem has a unique, continuous solution z(t) that exists for all t ≥ 0. Then, due
to the positive definiteness of the gis and his

z =−s̄1⇒ ż = f1 (0,e) = I1−h1(0,e) = I1 ≥ 0

which proves that z(t) ∈ [−s1,+∞) for all t ≥ 0 were z(t) is the solution of the 1st

subsystem, and

1 Here we are abusing slightly our notation by writing the first i− 1 scalar arguments of fi as a
single i−1 dimensional vector argument.
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z =−s̄i⇒ ż = fi
(
u(t)+ s̄i,0,e

)
= gi

(
u(t)+ s̄i,e

)
−hi(0,e) = gi

(
u(t)+ s̄i,e

)
≥ 0

which proves that z(t) ∈ [−si,+∞) for all t ≥ 0 were z(t) is the solution of the ith

subsystem, i = 2, . . . ,n. ut

Proposition 1 is important for two reasons. First, it allows us to regard the state
space of ith subsystem, (28), to be [−s̄i,+∞) instead of R. This makes sense, we are
only interested in non-negative concentrations of the metabolites. Second, it shows
that the vector containing the state of the first i− 1 subsystems is input to the ith

subsystem, in the sense of Definition 4.

Proposition 2. The ith subsystem is CIBS, for any i = 2, . . . ,n.

Proof. Let V : R≥0→ R≥0 be defined as

V (z) :=
1
2

z2⇒ V̇ (z) =
∂V
∂ z

ż = zż = z
(
gi
(
u+ s̄i,e

)
−hi (z+ s̄i,e)

)
.

By Condition 3, ĥi(e)> gi(s̄i,e) thus ĥi(e)≥ gi(s̄i,e)+δ1, for some δ1 > 0. In addi-
tion, by continuity and monotonicity of gi (monotonicity in each of its arguments),
there exists a sufficiently small α > 0 such that

gi
(
α1+ s̄i,e

)
−gi

(
s̄i,e
)
≤ δ1

2
,

where 1 :=
[
1 . . . 1

]T . In addition,

||u||∞ ≤ α ⇒ gi
(
u+ s̄i,e

)
≤ gi

(
α1+ s̄i,e

)
≤ gi

(
s̄i,e
)
+

δ1

2
≤ ĥi(e)−

δ1

2
.

Hence, we have

||u||∞ ≤ α ⇒ gi
(
u+ s̄i,e

)
−hi (z+ s̄i,e)≤ ĥi(e)−

δ1

2
−hi(z+ s̄i,e).

Because hi(z+ s̄i,e)→ ĥi(e) from below as z→ +∞ we can always find a β1 such
that z ≥ β1 ⇒ ĥi(e)− hi(z+ s̄i,e) ≤ δ2 for any δ2 > 0. In addition, because z ∈
[−s̄i,+∞), ||z|| > s̄i implies ||z|| = z. Hence, choosing δ2 ≤ δ1

2 and defining β :=
max{β1, s̄i + ε}, where ε > 0, we have

u,z : ||u||∞ ≤ α, ||z|| ≥ β ⇒ V̇ (z)≤ z(ĥi(e)−h(ŝi,e)−
δ1

2
)≤ z(δ2−

δ1

2
)≤ 0

Then, applying Lemma 5 completes the proof. ut

Proposition 3. The origin of ith subsystem with zero input (i.e., u(t)≡ 0) is a glob-
ally asymptotically stable equilibrium, for any i = 1, . . . ,n.

Proof. We use the Lyapunov function
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V (z) :=
1
2

z2⇒ V̇ (z)=
∂V
∂ z

ż= z fi(u(t)+ s̄i,z(t)+ s̄i,e)= z(gi(s̄1, . . . , s̄i−1,e)−hi(z+ s̄i,e)).

By the definition of s̄, we have that gi(s̄1, . . . , s̄i−1,e) = hi(s̄i,e). So

V̇ (z) = z(hi(s̄i,e)−hi(z+ s̄i,e)).

Due to the strict monotonicity of hi, z and (hi(s̄i,e)− hi(z+ s̄i,e)) have opposite
signs and are both equal to zero if and only if z = 0. Hence, applying Lyapunov’s
Direct Method completes the proof. ut

Proposition 4. The ith subsystem is CICS, for any i = 1, . . . ,n.

Proof. This follows directly from Propositions 2 and 3 and Theorem 3. ut

With these preliminary results in mind, we are now ready to prove Lemma 1.

Proof (Lemma 1). As previously pointed out, the solution to the first subsystem is
an input to the second subsystem, in the sense of Definition 4. Consider the cascade
obtained by setting the input of the 2nd subsystem to the state of the 1st subsystem,

ż1(t) = f1 (z1(t)+ s̄1,e) ,

ż2(t) = f2 (z1(t)+ s̄1,z2(t)+ s̄2,e) .

Propositions 3 (i.e., the origin of the 1st subsystem is a GAS equilibrium) and 4
(i.e., the 2nd subsystem is CICS) and Theorem 4 (i.e., that the origin of the intercon-
nection of an autonomous system which has a GAS equilibrium at the origin and
a CICS system is a GAS equilibrium) imply that the origin of the above cascade
is GAS. Then, by induction, we see that the origin of the system obtained by iter-
atively cascading the ith subsystem with the cascade formed by the previous i− 1
subsystems is a GAS equilibrium. In other words, the origin of

ż = f (z+ s̄,e)

is a GAS equilibrium, which completes the proof. ut

Proposition 5. Let A denote the subset of Rm
>0 whose elements are such that Con-

dition 3 holds. There exists a unique function φ : A→ Rn
≥0 such that f (φ(e),e) = 0

for all e ∈ A. Furthermore, this function is continuously differentiable and globally
Lipschitz continuous.

Proof. Existence and uniqueness of φ follows from our discussion in Section 3.1
of the main text regarding the existence and uniqueness of an equilibrium if the
enzymes are constant. Each component of f (·) is a linear combination of contin-
uously differentiable and globally Lipschitz continuous functions (Assumptions 1
and 2). Thus, f (·) is continuously differentiable and globally Lipschitz continu-
ous or, equivalently its partial derivatives exist everywhere and are bounded. The
fact that f (φ(e),e) = 0 for all e ∈ A implies that the total derivative of f (·) along
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φ(e) e

]T is also equal to zero, i.e., f ′(φ(e),e) = 0 for all e∈ A. The total derivative
of a function exists and is continuous if and only if the partial derivatives of the
function exist and are continuous. Hence,

∂ f
∂φ

(φ(e),e)
∂φ

∂e
(e)+

∂ f
∂e

(φ(e),e) = 0

which implies that

∂φ

∂e
(e) =−

(
∂ f
∂φ

(φ(e),e)
)−1

∂ f
∂e

(φ(e),e).

By Condition 1, v j→i≡ 0 if i< j. Hence, i< j⇒ ∂ fi
∂φ j

(φ(e),e)= ∂v j→i
∂φ j

(φ j(e),e)=

0. Thus, ∂ f
∂φ

(φ(e),e) is lower triangular. Furthermore, by Condition 2, hi is strictly
increasing, hence

∂ fi

∂φi
(φ(e),e) =−∂hi

∂φi
(φi(e),e)< 0.

Thus,
(

∂ f
∂φ

(φ(e),e)
)−1

exists for all e ∈ A. Hence, ∂φ

∂e (e) exists for all e ∈ A.

Furthermore, ∂φ

∂e (e) is continuous and bounded which shows that φ is continuously
differentiable and globally Lipschitz continuous. ut

We are now in a position to prove Lemma 2 and Theorem 1.

Proof (Lemma 2). The existence and uniqueness of s(t) and e(t) follow from our
assumption that f (·) and g(·) are smooth and globally Lipschitz continuous (As-
sumptions 1 - 3). The existence and uniqueness of φ(·) is proven in Proposition 5.
The domain of φ(·) is A. Thus, (14) is well-defined if and only if ē(t) remains in A.
This is ensured by the premise, B ⊆ A is forward invariant with respect to (14) and
e0 ∈ B. In addition, g(·) and φ(·) are globally Lipschitz continuous (Assumption 3,
Proposition 5, respectively), which implies that (14) satisfies the usual conditions
for global existence and uniqueness solutions. ut

Proof (Theorem 1). The proof is an application of Tikhonov’s Theorem on finite
time intervals (Theorem 2). The existence and uniqueness of φ(·) satisfies the first
condition in the premise of Theorem 2 which requires that the metabolite dynamics,
f (s,e), has a unique root.

The second condition of Tikhonov’s Theorem is that z = φ(e0) is a globally
asymptotically stable equilibrium, uniformly in e0, of the boundary layer system
ż = f (z,e0). Lemma 1 shows that for any given e0 ∈ B ⊆ A, φ(e0) is a globally
asymptotically stable equilibrium of ż = f (z,e0). The fact that B is compact com-
bined with the previous statement form the premise of Lemma 3. Then, Lemma
3 establishes the desired result, i.e., that the equilibrium z = φ(e0) is a globally
asymptotically stable, uniformly in e0.

Proposition 5 shows that φ(e) is continuous with respect to e. Because ē(t) ∈ B
for all time, and B is a compact set, s̄(t) = φ(ē(t)) must also be confined to some
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compact set. In the proof of 5 we established that for any given e ∈ B ⊆ A, the
eigenvalues of the Jacobian of the boundary layer system evaluated at [φ(e),e]T ,
∂ f
∂φ

(φ(e),e), have negative real parts. The previous two statements form the premise
of Lemma 4 which shows that the eigenvalues of the Jacobian of the boundary layer
system, evaluated along

[
φ(ē(t)) ē(t)

]T have real parts smaller than a certain nega-
tive real number, i.e., that the third condition of Tikhonov’s theorem is satisfied. ut
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