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Abstract This study is based on the hypothesis that the

pressure within the arterial network can be usefully

decomposed as the sum of a reservoir pressure and an

excess pressure. The reservoir pressure waveform is

defined to be the same in each vessel but delayed by the

wave travel time from the root of the aorta. Using cal-

culus of variations and mass conservation, which relates

the flow and rates of change of pressure in the vessels,

we show that the reservoir pressure waveform minimises

the ventricular hydraulic work for any physiologically or

clinically reasonable ejection waveform and arterial

properties, i.e. vessel compliances and terminal resis-

tances. We conclude that the excess pressure determines

the excess work done by the ventricle, which may have

clinically important implications.

Keywords Blood flow in cardiovascular system �
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of biological physics � Calculus of variations �
Time-delay ordinary differential equation

1 Introduction

The intermittent pumping of the heart and the anatomical

complexity of the arterial system results in very complex

haemodynamics. The unsteady, three-dimensional (3-D)

flow in individual bifurcations and complexly curved arteries

has been partially explored using computational fluid

dynamics [8, 10, 11, 16, 20] but full unsteady, 3-D modelling

of the complete arterial system is not currently feasible. One-

dimensional (1-D) modelling, in which the arteries are

treated as 1-D compliant vessels, provides an alternative

method for studying arterial blood flow [2, 3, 8, 13, 15].

These 1-D models require detailed knowledge about the

connectivity and properties of the individual arteries; infor-

mation that is not available clinically. Thus, there is a need

for more approximate models that can be used to interpret

available clinical measurements. Recently, the reservoir-

wave hypothesis was proposed which provides such a model

[1, 6, 17, 18, 19]. This hypothesis asserts that the measured

arterial pressure is the sum of a reservoir pressure, which

accounts for the dynamic storage and release of blood by the

compliant arteries (the Windkessel effect), and an excess

pressure, which is responsible for local changes in the pulse

waveform. This paper provides a new, slightly modified

definition of the reservoir pressure and explores the rela-

tionship between the reservoir pressure and the hydraulic

work done by the left ventricle to provide a given volume

flow rate. The results may provide a physical explanation for

the results of a recent epidemiological study [7].

Additional details of our analysis are given in the

supplementary material accompanying this paper.
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2 Basic model

We assume that the arterial network is made up of

N uniform vessels with a single inlet from the ventricle,

denoted as 0, and K terminal vessels through which blood

is conducted from the arterial system into the microcircu-

lation. The 1-D conservation equations for each vessel

coupled with an elastic tube law relating local pressure to

local area are hyperbolic equations that describe the local

flow. These equations can be solved exactly by the method

of characteristics [4, 12].

A general solution for the instantaneous blood pressure

and velocity throughout the network of vessels can be

obtained for any conditions applied at the boundaries of the

network by applying matching conditions of flow and

pressure at the junctions of the vessels. This solution,

however, depends upon complete knowledge of the prop-

erties of the arterial network that is unavailable clinically.

To simplify the problem, we define a spatially averaged

pressure Pn for each vessel n 2 N

PnðtÞ ¼
1

Ln

ZLn

0

Pðx; tÞdx n 2 N; ð1Þ

where P(x, t) is the detailed pressure distribution in the

vessel, t is time, 0 B x B Ln is the axial distance along the

vessel and Ln is the length of the considered vessel n.

We also assume that the area An and distensibility Dn of

vessel n are constant so that its volume compliance

Cn = Dn An Ln. We note that the assumption of uniform

properties is not as limiting as it seems since our linear

analysis allows us to divide a non-uniform vessel into

segments which are effectively uniform. These assumptions

are simplistic but are consistent with our goal of developing

a model based on clinically accessible measurements.

Overall conservation of mass in the arterial system

requires that the instantaneous rate of change of the total

volume of the arteries, V(t), is equal to the volume flow

rate into the arteries from the ventricle, Qin(t), minus the

net flow out of the arteries through the terminal vessels into

the microcirculation, Qout(t),

dVðtÞ
dt
¼ QinðtÞ � QoutðtÞ; ð2Þ

where VðtÞ ¼
P

n2N VnðtÞ and Vn(t) = An(t)Ln is the vol-

ume of vessel n. We denote Q0(t) as the flow rate at the

aortic root, so that Qin(t) = Q0(t). We assume that the flow

through the microcirculation at the end of a terminal vessel

is resistive so that the flow is linearly related to the pressure

QnðtÞ ¼ PnðtÞ�P1
Rn

; n 2 K: Here Rn is the resistance for the

nth terminal vessel, assumed to be constant in time, and P1
is the pressure at which flow through the microcirculation

ceases, which is assumed to be uniform throughout the

body. In general this pressure will be larger than the venous

pressure due to waterfall effects [5].

With these relationships, the overall mass conservation

equation can be written

X
n2N

Cn
dPnðtÞ

dt
þ
X
n2K

PnðtÞ � P1
Rn

¼ Q0ðtÞ: ð3Þ

In the rest of this paper, we assume that the input flow

waveform Q0(t) is given and look at different solutions of

Eq. 3.

3 Windkessel pressure

The classical Windkessel pressure PW(t) is obtained by

assuming that the pressure in the arterial network is uni-

form and that it satisfies the mass conservation equa-

tion, Eq. 3. With this assumption, Pn(t) = PW(t) for all

n, and the pressures can be taken outside of the summa-

tions giving the usual first-order differential equation for

the Windkessel pressure

C
dPWðtÞ

dt
þ PWðtÞ � P1

R
¼ Q0ðtÞ; ð4Þ

where we define the net compliance of the network C ¼P
n2N Cn and the net resistance out of the terminal vessels,

R, using the formula for resistances in parallel, 1
R ¼

P
n2K

1
Rn
:

This first-order ordinary linear differential equation

(ODE) can be solved to give the classical solution for PW

for any given inflow Q0(t) given the system parameters

R, C and P1;

PWðtÞ ¼
e�t=RC

C

Z t

0

Q0ðcÞec=RCdcþ PWð0Þ � P1ð Þe�t=RC

þ P1; ð5Þ

where PW (0) is the pressure at t = 0, taken to be the start

of systole. During diastole Q0 (t) = 0 and the solution

takes the simple form of an exponentially decreasing

pressure with the time constant RC. If we require that the

cardiac cycle is periodic with period T, i.e. PW (0) = PW

(T), we find

PWð0Þ ¼ PWðTÞ ¼
1

CðeT=RC � 1Þ

ZT

0

Q0ðcÞec=RCdcþ P1:

ð6Þ

4 Reservoir pressure

The Windkessel pressure suffers from the limitation that it

is assumed to be uniform throughout the arterial system,

although the wave nature of flow in the arteries means that
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pressure and velocity changes propagate through the

arteries at a finite rate. There is, in fact, a basic contra-

diction in the application of the classical Windkessel theory

to real arterial systems: A uniform, time-varying pressure

can only be achieved if the wave speed in the arteries is

infinite. An infinite wave speed is physically achievable

only if the arteries are rigid. But, if the arteries are rigid,

there is no compliance to support the Windkessel effect.

We can resolve this problem while maintaining the

convenient physical properties and appealing simplicity of

the Windkessel model by assuming that the local reservoir

pressure varies temporally in the same way throughout the

arterial system, but with a time lag that depends on the

location and the wave properties of the arteries. Formally,

we assume that the reservoir pressure in vessel n is �PnðtÞ ¼
�Pðt � snÞ; where �PðtÞ is the reservoir pressure at the aortic

root and sn is the time it takes for a wave to travel from the

root to vessel n, which is assumed to be constant. As a

consequence of these definitions, s0 ¼ 0 and �P0ðtÞ ¼ �PðtÞ:
Requiring that the reservoir pressure satisfies the mass

conservation equation, Eq. 3, we obtain an equation for the

reservoir pressure in vessel n

X
n2N

Cn
d �Pðt � snÞ

dt
þ
X
n2K

�Pðt � snÞ � P1
Rn

¼ Q0ðtÞ: ð7Þ

This is a time-delay ODE for a single variable �P with

coefficients that do not vary in time. This class of ODEs

has been studied extensively in the context of control

theory and, although there is no straightforward method for

obtaining the solution, the existence and uniqueness of a

solution is guaranteed [9, 14]. The existence of a unique

solution is sufficient for the theory that follows. We chose

the integration constant so that �Pð0Þ ¼ Pð0Þ: That is, we

require that the reservoir pressure be equal to the averaged

pressure at t = 0, the start of systole.

The excess pressure in vessel n is defined as the difference

between the averaged pressure and the reservoir pressure,

pnðtÞ ¼ PnðtÞ � �Pðt � snÞ: ð8Þ

We now explore the properties of the reservoir and excess

pressures; particularly with respect to the hydraulic work

done by the left ventricle.

5 Ventricular hydraulic work

The hydraulic work done by the ventricle over a cardiac cycle

depends on the volume flow rate from the ventricle Q0(t) and

the averaged pressure measured in the aortic root P0(t)

W ¼
ZT

0

P0ðtÞQ0ðtÞdt; ð9Þ

where T = Ts ? Td is the cardiac period with Ts the time of

systole and Td the time of diastole. In the aortic root the

time lag is zero so that p0ðtÞ ¼ P0ðtÞ � �PðtÞ: Substituting,

the ventricular hydraulic work can be written

W ¼
ZT

0

�PðtÞQ0ðtÞdt þ
ZT

0

p0ðtÞQ0ðtÞdt � �W þ w; ð10Þ

where we define the reservoir work �W as the hydraulic

work done by the ventricle against the reservoir pressure

and the excess work w as the work done against the excess

pressure at the aortic root. Recall that the volume flow rate

from the ventricle, Q0(t), is assumed to be known in this

analysis.

We now seek to minimise the excess work w for a given

Q0(t) subject to the constraint that the excess pressure is

integrable and periodic. This follows from the assumption

that both the averaged pressure, P0(t), and the reservoir

pressure, �PðtÞ; are integrable and periodic with period T. In

order to minimise the excess work with the given con-

straints, we use the calculus of variations to minimise the

function

v ¼
Z T

0

p0ðtÞQ0ðtÞ þ kp0ðtÞð Þdt; ð11Þ

where k is a Lagrange multiplier. We will use the degree of

freedom given by k to impose the periodicity of p0(t).

Following the standard methods of the calculus of varia-

tions, we assume that v attains its non-trivial minimum

when p0ðtÞ ¼ p̂0ðtÞ; and find this minimising function by

considering all functions close to p̂0ðtÞ: In particular, we

consider the functions p0ðtÞ ¼ p̂0ðtÞ þ �gðtÞ where � is a

small constant and gðtÞ is an arbitrary function with gð0Þ ¼
gðTÞ ¼ 0 in order to satisfy the boundary conditions on p0,

i.e. p̂0ð0Þ ¼ p0ð0Þ ¼ 0 and p̂0ðTÞ ¼ p0ðTÞ ¼ 0: Similarly,

we define pnðtÞ ¼ p̂nðtÞ þ �gðtÞ for n 2 N:

The minimising function p̂0ðtÞ is found by setting the

derivative of v with respect to � equal to zero,

0 ¼ ov
o�
¼
ZT

0

"
Q0ðtÞgðtÞ þ p̂0ðtÞ

X
n2N

Cn
dgðtÞ

dt

 

þ
X
n2K

gðtÞ
Rn

!
þ kgðtÞ

#
dt; ð12Þ

where we have used the relationship between Q0 and Pn

from Eq. 3, the definition in Eq. 8 and neglected terms of

Oð�Þ:
The term involving dg

dt can be rewritten using integration

by parts with g(0) = g(T) = 0 to obtain the variational

equation
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0 ¼
ZT

0

Q0ðtÞ �
dp̂0ðtÞ

dt

X
n2N

Cn þ p̂0ðtÞ
X
n2K

1

Rn
þ k

" #
gðtÞdt:

ð13Þ

Since g(t) is an arbitrary function, the terms within the

brackets must be equal to zero, so that the minimising p̂0ðtÞ
satisfies the equation

C
dp̂0ðtÞ

dt
� p̂0ðtÞ

R
¼ Q0ðtÞ þ k: ð14Þ

This equation can be solved by quadrature using the

integration factor e-t/RC. Using the initial condition

p0(0) = 0, the solution can be written as

p̂0ðtÞ ¼
et=RC

C

Z t

0

Q0ðcÞe�c=RCdcþ kR et=RC � 1
� �

: ð15Þ

The Lagrange multiplier k can be evaluated using the

periodicity condition p̂0ðTÞ ¼ p̂0ð0Þ ¼ 0: Substituting, we

find the excess pressure that minimizes the excess work

p̂0ðtÞ ¼
et=RC

C

Z t

0

Q0ðcÞe�c=RCdc

�
eT=RC et=RC � 1

� �
C eT=RC � 1ð Þ

ZT

0

Q0ðrÞe�r=RCdr: ð16Þ

We see that the minimising pressure p̂0ðtÞ ¼ f ðt; Q0

ðtÞ; T;R;CÞ:
We are now able to evaluate the minimum excess work

that the ventricle can do against the excess pressure in the

aortic root, ŵ ¼
R T

0
p̂0ðtÞQ0ðtÞdt;

ŵ ¼ 1

C

ZT

0

Q0ðtÞet=RC

Z t

0

Q0ðcÞe�c=RCdc

0
@

1
Adt

� eT=RC

C eT=RC � 1ð Þ

ZT

0

Q0ðcÞe�c=RCdc
ZT

0

Q0ðrÞ er=RC � 1
� �

dr:

ð17Þ

For a given flow rate Q0(t), this expression can be evalu-

ated, analytically or numerically, to find the minimum

excess work.

6 Conditions for which the minimum excess work

is positive

Conditions for which ŵ is positive are of particular interest

because, for these conditions, it follows that the trivial

solution p0(t) = 0 is, in fact, the minimising excess

pressure. Thus, for these cases the reservoir pressure is the

pressure waveform that results in the minimum hydraulic

work that the ventricle must do to provide a given flow

waveform at given conditions of arterial compliance and

resistance. We therefore analyse Eq. 17 to determine the

conditions for which ŵ [ 0:

For this analysis, it is most convenient to express ŵ in

terms of the instantaneous volume ejected by the ventricle,

vðtÞ ¼
R t

0
Q0ðcÞdc; instead of the volume flow rate Q0(t).

It is also convenient to nondimensionalise the equation

by defining the nondimensional time t0 ¼ t=RC; the

nondimensional ejected volume v0 ¼ v=Vs; where Vs ¼R T

0
Q0ðtÞdt is the stroke volume, and the non-dimensional

volume flow rate qðtÞ ¼ RCQ0ðtÞ
Vs

: We also define S0 ¼ Ts

RC as

the non-dimensional time of systole, and the ratio of the

cardiac period to the time of systole k ¼ T=Ts:

Defining the non-dimensional excess hydraulic work

ŵ0 ¼ ŵC=V2
s ; we obtain (dropping the primes)

ŵ ¼
ZS

0

_vðtÞet

Z t

0

_vðcÞe�cdcdt

� ejS

ejS � 1

ZS

0

_vðcÞe�cdc
ZS

0

_vðrÞerdr� 1

0
@

1
A; ð18Þ

where _vðtÞ � dv
dt ¼ qðtÞ and we have assumed that q(t) = 0

during diastole, i.e. for S \ t \ j S.

In almost all physiological and clinically relevant cases,

the time of systole is significantly shorter than the time

constant of the arterial system. Typically the duration of

systole is Ts� 0:3 s whereas RC� 1:5 s: We therefore

assume that S� 1: Expanding the exponential terms in

Eq. 18 as power series, we find after some analysis (see

supplementary material)

ŵ ¼ 1

2
� 1

j
þ hvi

j

� �

þ S � 1

2
1� 1

j

� 	
þ 3

2
� 2

j

� 	
hvi � hv2i þ hvi

2

j
þ m

j

" #

þOðS2Þ; ð19Þ

where h�i ¼ 1
S

R S
0
�dt is the average over systole and m ¼ hvti

S

is the first moment of v. Note that hvi represents the

average volume ejected from the ventricle over systole and

is always positive in non-surgically assisted conditions.

Neglecting terms of order S1, we see that ŵ [ 0 if

j C 2, which corresponds to the time of diastole Td being

greater than the time of systole Ts, since T = Ts ? Td. As

this is true for almost all physiological and clinical heart

beats, we conclude to OðS1Þ that the excess work is
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positive for all cases where the time of systole is small

compared to the arterial time constant.

Neglecting terms of order S2, we see that the second

bracket in the expression for ŵ depends on a number of

terms describing the shape of the flow rate waveform; hvi;
which depends on the skew of q, hv2i and m, the first

moment of v; as well as the ratio of the cardiac period to

the time of systole j. Although the second term can be

negative, the conditions for which it can dominate the first

term are highly improbable physically (see supplementary

material). We conclude, therefore, that the excess work

will be positive for all physiologically reasonable cases. As

we have already argued, whenever the excess work ŵ is

positive, the reservoir pressure waveform yields the mini-

mum hydraulic work required from the ventricle to gen-

erate the specified flow waveform given the arterial

parameters, R;C;P1; Ts and T.

If S is not small, the sign of ŵ can be determined for any

particular Q0(t) using Eq. 18. It is difficult, however, to

derive the general conditions for which ŵ [ 0 analytically.

We have obtained results for several idealised cases; con-

stant, half-sinusoidal and triangular flow during systole

(see supplementary material).

7 Discussion and conclusions

The reservoir pressure defined in this work is similar in

spirit to that in the reservoir-excess pressure separation

described in the papers introducing the reservoir-wave

hypothesis [17, 18], but is different in detail. The reservoir

pressure is here defined as a waveform that is the same

throughout the arterial system, but which is delayed by the

wave travel time. As the waveform is uniform, it depends

only on the average properties of the system, the total

compliance and resistance of the microcirculation, and the

input from the heart. Since it is delayed in time, it is also

dependent on the wave nature of flow in the arteries. This is

an important distinction between the reservoir pressure and

the Windkessel pressure, which is assumed to be instan-

taneously uniform throughout the system, an assumption

that can only be realised if the wave speed is infinite.

The relative simplicity of this analysis, compared to the

1-D computer simulations, is based upon the averaging of

the pressure within individual vessels. As the wave travel

times are small compared to the rates of change of the

arterial pressure, this average pressure is very similar to the

pressure that would be measured in the vessel in the clinic

and is consistent with our goal of finding results that can be

applied clinically.

The reservoir pressure is defined as the solution to the

time-delay differential equation, Eq. 7. Although the

existence and uniqueness of a solution is established [9,

14], analytical solutions to this type of equation are rare

and restricted to very simple cases. And, even if the solu-

tion was known, it would depend upon the compliances and

resistances of all of the arteries, information that is not

available clinically. Despite the lack of an analytical

solution, we have been able to apply the calculus of vari-

ations (and the existence of a solution for the reservoir

pressure) to minimise the excess hydraulic work by the

ventricle (see supplementary material).

The main result of this work is that for a broad range of

flow waveforms from the ventricle, including most physi-

ologically and clinically relevant cases, the reservoir

pressure is the pressure waveform that results in the min-

imum hydraulic work by the ventricle. The excess pressure,

which is defined as the difference between the averaged

pressure and the reservoir pressure, is therefore linked to

the excess work that the heart is doing over and above this

minimum work.

The arguments leading to this conclusion are subtle. By

definition, the reservoir pressure �PðtÞ satisfies overall mass

conservation for a given ventricular volume flow rate Q0(t).

The calculus of variations is then used to find the non-

trivial excess pressure waveform in the aortic root p̂0ðtÞ
that minimises the excess ventricular hydraulic work ŵ for

the given Q0(t). When ŵ [ 0; it follows that the minimum

hydraulic work occurs when p0(t) = 0, the trivial solution.

That is, when PðtÞ ¼ �PðtÞ:
Equation 17 shows that ŵ ¼ f ðQ0ðtÞ; T;R;CÞ: Since the

time of systole, Ts, is generally small compared to the time

constant of the exponential decay of pressure during dias-

tole, RC, we non-dimensionalise Eq. 17 and expand in

terms of S ¼ Ts=RC: The result, Eq. 19, shows that to

OðS1Þ; ŵ [ 0 for j : T=Ts C 2. Since T = Ts ? Td and

Td is generally greater than Ts (i.e. the time of filling, a

predominantly passive process, is greater than the time of

emptying the ventricle, an active process), j C 2 in almost

all cases. Therefore ŵ [ 0 in almost all cases and we

therefore conclude that PðtÞ ¼ �PðtÞ is the pressure wave-

form that produces the minimum hydraulic ventricular

work for a given Q0(t) and global arterial properties R and

C in almost all physiological and clinical conditions.

These results do not imply that ŵ [ 0 for all conditions.

For example, cardiac assist devices can be programmed to

do work on the ventricle. Nor do they imply that it is

physiologically possible for the arterial pressure P(t) to

equal the reservoir pressure �Pðt � snÞ since this would

require an exquisite matching between local and global

properties throughout the arterial system.

Even if it is not realisable physiologically, the reservoir

pressure and the excess pressure associated with it can be

useful concepts. The reservoir pressure provides a means of
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determining the effects of net arterial compliance and

resistance using clinically measurable parameters. The

reservoir pressure could also provide a yardstick by which

the ‘efficiency’ of measured pressure waveforms could be

calculated. The excess pressure, on the other hand, gives a

better indication of local as opposed to global conditions

and may help resolve some anomalies in the analysis of

wave propagation in the arteries [17]. It could also provide

an explanation for the results of a recent analysis of pres-

sure waveforms measured in a prospective epidemiological

study, which showed that the excess pressure integrated

over a cardiac cycle provided the best indication of the risk

for cardiovascular events (death by myocardial infarction

or stroke) [7].
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donck PR, Parker KH, Peiró J (2011) Pulse wave propagation in a

model human arterial network: assessment of 1-D visco-elastic

simulations against in vitro measurements. J Biomech 44:2250–

2258. ISSN: 0021-9290

3. Alastruey J (2010) On the mechanics underlying the reservoir-

excess separation in systemic arteries and their implications for

pulse wave analysis. Cardiovasc Eng 10:176–189
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