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Abstract: This paper is concerned with the global analysis of synchrone oscillations
in special networks of oscillators. In previous work, we defined a class of high-
dimensional, parameter-dependent nonlinear systems exhibiting almost globally
asymptotically stable limit cycle oscillations. In this paper, we show how (incre-
mental) dissipativity may be used to extend the global analysis of limit cycle
oscillations to networks of coupled identical systems.
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1. INTRODUCTION

Nonlinear oscillations are ubiquitous in nature. A
complex system made up of coupled oscillatory
systems can be considered as a large-scale network
of coupled oscillators. In this paper, we show how
global synchrone oscillations may be obtained by
the interconnection of identical systems exhibiting
globally attractive limit cycles when isolated.

We first recall previous results presented in
[10] and [8]. These results characterize classes
of parameter-dependent high-dimensional systems
exhibiting almost globally attractive limit cycle
oscillations. These classes of systems constitute
generalizations of the well known Van der Pol and
FitzHugh-Nagumo oscillators.

In the present paper, we show how the global sta-
bility analysis for one oscillator of type (3) extends
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to the global stability analysis of a synchrone
oscillation in a network of N identical oscillators
linearly coupled through their outputs.

Our approach consists in showing that, for strong
enough coupling, all solutions of these particular
networks exponentially converge to the invariant
subspace

{X ∈ R
nN : x1 = · · · = xN} (1)

where X = (x1, . . . , xN )T denotes the state vector
of the network.

In our approach, the synchronization property (1)
derives from an incremental dissipativity property
of the network. This approach is closely related
to the contraction approach of [9] and [5]. The
incremental dissipativity property together with
an observability assumption may be seen as an
incremental stability property of the particular
network [1].
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Fig. 1. Block diagram representing the class of
SISO nonlinear systems.

Because the dynamics of the network decouple in
the invariant subspace (1), the result implies that
all oscillators synchronize asymptotically and that
all bounded solutions converge to the ω-limit sets
of the decoupled system.

Using the results of [2], we prove that all solutions
of the coupled system are bounded.

Combining boundedness of the solutions and syn-
chronization, almost global asymptotic stability
of the limit cycle for an isolated system is then
generalized to the situation when such identical
systems are coupled into a network.

Simulations of networks of identical oscillators
coupled according to different topologies are pro-
vided to illustrate the results of the paper.

2. THE DISSIPATIVE OSCILLATOR

In [8], we consider the feedback system shown
in Figure 1 where the SISO passive system G is
described by a linear and detectable state space
model (A,B,C) whereas φk(·) is the static non-
linearity

φk(y) = −ky + φ(y) (2)

where φ(·) is a smooth sector nonlinearity in the
sector (0,∞), which satisfies φ′(0) = φ′′(0) = 0,

φ′′′(0) > 0 and lim|y|→∞
φ(y)

y
= ∞ (“stiffening

nonlinearity”).

The resulting feedback dynamical equations write
{

ẋ = Ax − Bφk(y) + Bu

y = Cx
(3)

where x ∈ R
n, u ∈ R and y ∈ R represents

respectively the state, the input and the output
of the feedback system.

We note Gk the (positive) feedback interconnec-
tion of G with the feedback gain k. The feed-
back system is equally described as the feedback
interconnection of Gk and the (strictly passive)
nonlinearity φ(·).

We define a dissipative oscillator as a system that
admits the feedback representation in Figure 1
and which satisfies two conditions

(1) the feedback system satisfies the dissipation
inequality Ṡ ≤ (k − k∗

passive)y
2 − yφ(y) +

uy where S(x) represents the storage func-
tion associated to the feedback system and
k∗

passive is the critical value of k above which
the system Gk looses passivity.

(2) when unforced (u = 0), the feedback system
possesses a global limit cycle, i.e. a stable
limit cycle which attracts all solutions except
those belonging to the stable manifold of the
origin.

The first condition necessarily holds since we
assume that the forward block G is passive. Our
previous papers [10,8] provide sufficient conditions
for the second condition to be satisfied as well.
In particular, denoting k∗ the bifurcation value at
which Gk looses stability, we showed that absolute
stability of (3) at k = k∗ implies (generically) one
of the two conditions :

• a supercritical Hopf bifurcation at k = k∗

and a global limit cycle for k & k∗ 2

• a supercritical pitchfork bifurcation at k =
k∗ and a global bistability for k & k∗

The Hopf scenario provides a dissipative oscillator
in the vicinity of the bifurcation, i.e. for k & k∗.
The pitchfork scenario provides a bistable system
in the vicinity of the bifurcation. This bistable
system is turned into a relaxation oscillation by
first-order dynamic extension. The resulting sys-
tem is a dissipative oscillator as well.

A sufficient condition for absolute stability at
k = k∗ is that the system Gk looses passivity and
stability for the same value of the parameter k,
i.e. when k∗ = k∗

passive. Multipliers can be used
to extend the result to the more general situation
when k∗ > k∗

passive (see [8]).

In [11], we restrict ourselves to a piecewise linear
version of system (3) and adapt numerical tools
recently proposed in the literature [3] to prove the
global asymptotic stability of the limit cycle for a
large range of parameter values above k∗.

In the present paper, we show how the stability
analysis for one dissipative oscillator extends to
the stability analysis of a synchrone oscillation
in a network of N identical dissipative oscillators
linearly coupled through their outputs.

3. INTERCONNECTIONS

In this section, we define a particular class of
interconnections and identify the main property
required for the incremental dissipativity property
of Section 4. In Section 4, we will prove that global
synchronization of the interconnected dissipative

2 k & k∗ means k “slightly” greater than k∗, i.e. k ∈

(k∗, k∗ + ε) where ε > 0 is small



oscillators is a consequence of the incremental
dissipativity property of the network.

We consider a network of N identical oscillators,
linearly coupled through their outputs. Let Γ ∈
R

N×N be the interconnection matrix. We assume
that 1 (the vector (1, . . . , 1)T ∈ R

N ) belongs to
the kernel of Γ. This is equivalent to the assump-
tion that all rows of Γ sum to zero. Moreover, we
assume that the rank of Γ is equal to N − 1. This
is equivalent to the assumption that the network
is connected.

Note that our assumptions do not require that Γ
is symmetric.

The assumptions on Γ imply

R̄Γ =

(

0 0T

0 Γ̃

)

R̄ (4)

where R̄ = (IN − (1, 0N×N−1)) is a projection
matrix.

The class of interconnection matrices Γ is further
assumed to be such that Γ̃ is positive definite (i.e.
xT Γ̃sx = xT 1

2 (Γ̃ + Γ̃T )x > 0,∀x ∈ R
N\{0}). In

the rest of the paper, we denote by λmin(Γ̃s) the
smallest eigenvalue of the symmetric part of Γ̃.

This is easily seen by noting that

R̄Γ =

(

0 0T

−1 IN−1

)

Γ

=

(

0 0T

0 IN−1

)(

−1 0T

−1 IN−1

)

Γ

=

(

0 0T

0 IN−1

)(

0 ∗

0 Γ̃

)(

−1 0T

−1 IN−1

)

=

(

0 0T

0 Γ̃

)

R̄

The third equality comes from the properties of
Γ. More precisely, we have
(

−1 0T

−1 IN−1

)−1

Γ

(

−1 0T

−1 IN−1

)

=

(

0 ∗

0 Γ̃

)

since, by assumption, 1 ∈ R
N belongs to the

kernel of Γ. The third equality is then deduced

from

(

−1 0T

−1 IN−1

)−1

=

(

−1 0T

−1 IN−1

)

.

Property (4) constitutes the main characteristic
of the class of interconnections we consider.

4. INCREMENTAL DISSIPATIVITY AND
SYNCHRONIZATION

In this section, we prove global synchronization
of oscillators of type (3) interconnected according
to a topology satisfying (4). In our approach,
synchronization results from an incremental dis-
sipativity property of the network.

Consider a network of N identical dissipative os-
cillators. The dynamics for oscillator i = 1, . . . , N
write

{

ẋi = Axi − Bφk(yi) + Bui

yi = Cxi
(5)

where ui represents the external input to oscilla-
tor i.

Each system i is characterized by the dissipation
inequality

Ṡi ≤ (k − k∗
passive)y

2
i + uiyi (6)

where Si = 1
2 (xT Px), with P = P T > 0, PA +

AT P ≤ 0 and PB = CT . Si is the storage function
associated with system i.

The dynamics of the network are easily repre-
sented with the help of the Kronecker product [4].
{

Ẋ = (IN ⊗ A)X − (IN ⊗ B)Φk(Y ) + (IN ⊗ B)U

Y = (IN ⊗ C) X

(7)
where X = (x1, . . . , xN )T , Y = (y1, . . . , yN )T ,
Φk(Y ) = (φk(y1), . . . , φk(yN ))T and IN represents
the N by N identity matrix.

Assuming linear output coupling between the os-
cillators of the network, the MIMO external input
of system (7) is

U = −ΓY (8)

where Γ ∈ R
N×N represents the interconnection

matrix defining the topology of the network.

The main result of this section is the following
Theorem.

Theorem 1. Consider the MIMO system (7)-(8)
representing a network of N identical oscillators
of type (5) where (A,C) is observable and φ(·) is
monotone. Assume that each unforced oscillator
(ui ≡ 0) possesses a globally asymptotically stable
limit cycle in R

n\Es(0) where Es(0) denotes the
stable manifold of the origin. If the interconnec-
tion matrix Γ satisfies (4) with Γ̃ > 0 then, for
λmin(Γ̃s) > k−k∗

passive (strong coupling), the net-
work has a limit cycle which attracts all solutions
except those belonging to the stable manifold of
the origin.

2

PROOF. Consider the difference system
{

∆Ẋ = (IN ⊗ A)∆X − (IN ⊗ B)∆Φk(Y ) + (IN ⊗ B)∆U

∆Y = (IN ⊗ C) ∆X

(9)
where ∆X = (R̄ ⊗ In)X = (0, x2 − x1, . . . , xN −
x1)

T , ∆Φk(Y ) = R̄Φk(Y ) = (0, φk(y2)−φk(y1), . . . , φk(yN )−
φk(y1))

T and ∆U = R̄U = −R̄ΓY .

Property (4) implies

−∆Y T ∆U = ∆Y T R̄ΓY = Ȳ T Γ̃Ȳ > 0, ∀Ȳ 6= 0
(10)



where Ȳ = (y2 − y1, · · · , yN − y1)
T .

Consider the storage function

S∆ =
1

2

(

∆XT (IN ⊗ P ) ∆X
)

(11)

Using the properties of the Kronecker product, we
obtain, successively, for its time derivative along
the solutions of (9)

Ṡ∆ =
1

2

(

∆XT ((IN ⊗ P ) (IN ⊗ A)

+
(

IN ⊗ AT
)

(IN ⊗ P )
)

∆X
)

−∆XT (IN ⊗ P ) (IN ⊗ B)∆Φk(Y )

+∆XT (IN ⊗ P ) (IN ⊗ B)∆U

−k∗
passive∆Y T ∆Y

=
1

2
∆XT

(

IN ⊗
(

PA + AT P
))

∆X

−∆XT
(

IN ⊗ CT
)

∆Φk(Y )

+∆XT
(

IN ⊗ CT
)

∆U − k∗
passive∆Y T ∆Y

≤ (k − k∗
passive)∆Y T ∆Y + ∆Y T ∆U − ∆Y T ∆Φ(Y )

≤ k̄∆Y T ∆Y + ∆Y T ∆U (12)

where k̄ = k − k∗
passive.

The second equality and the first inequality are
simply a consequence of the passivity of each
oscillator in the network. The second inequality
comes from the monotone increasing property of
φ(·).

Inequality (12) expresses that the network sat-
isfies a dissipativity inequality in terms of the
∆-variables, a property that we call incremental
dissipativity.

Using (10) and (12) we deduce,

Ṡ∆ ≤ k̄∆Y T ∆Y + ∆Y T ∆U

=
(

k̄ − λmin(Γ̃s)
)

∆Y T ∆Y (13)

where λmin(Γ̃s) is the smallest eigenvalue of the
symmetric part of Γ̃.

From the strong coupling assumption,

γ = λmin(Γ̃s) − k̄ > 0 (14)

Integrating (13) over [t0, t0 + δ], we obtain

∫ t0+δ

t0

Ṡ∆dτ ≤−γ

∫ t0+δ

t0

|∆Y |2dτ

≤−αγ|∆X(t0)|
2, α > 0 (15)

for all ∆X(t0) ∈ R
nN , t0 ≥ 0. The last inequality

comes from the observability of (A,C). GES of
∆X(t) is then deduced from classical exponential
stability theorems (see, for example, [6, Theorem
1.5.2]).

GES of the solution ∆X = 0 for the difference
system (9) implies that all solutions of the net-
work (7) exponentially converge to the invariant
subspace

{X ∈ R
nN : x1 = · · · = xN} (16)

where the dynamics are decoupled. Because the
dynamics of the network decouple in the invariant
subspace (16), GES of the solution ∆X = 0 for
the difference system (9) implies that all bounded
solutions converge to the ω-limit sets of the decou-
pled system and that all oscillators synchronize
asymptotically.

Finally, using the results of [2], we prove that all
solutions of the coupled system are bounded. In
fact, each oscillator (5) is input-to-state stable
(ISS) with respect to ui (see [2, Theorem 1])
and |ui| ≤ K |∆Y |. Since (9) is GES, |∆Y | is
bounded by a decreasing exponential function
and we conclude from [2, Theorem 2] that for
oscillator i the state xi(t) ∈ R

n is bounded for
all i = 1, . . . , N .

Combining GES of the difference system (9) and
boundedness of the solutions, we conclude that,
for strong coupling, all solutions of the network
(7) converge to the ω-limit sets of the uncoupled
dynamics, i.e. all solutions except those belonging
to the stable manifold of the origin of the network
converge towards a unique limit cycle.

4

Remark 2. The result still holds if the observabil-
ity assumption on the pair (A,C) is relaxed to a
detectability assumption.

Remark 3. The GES result of ∆X = 0 may be
viewed as an incremental input-to-state stability
(δ-ISS) property of the network with S being the
corresponding δ-ISS Lyapunov function [1].

Remark 4. Our approach is also strongly linked
with Slotine’s contraction theory to prove syn-
chronization [9] and to Pogromsky’s synchroniza-
tion results [5]. This may easily be noticed from
the normal form of passive systems.

The normal form for oscillator i of the network
is [7]

(

żi

ẏi

)

=

(

Q e

fT g

)(

zi

yi

)

+

(

0
CB

)

(kyi − φ(yi))

−
N
∑

j=1

γij

(

0 0
0 CB

)((

zj

yj

)

−

(

zi

yi

))

(17)

where CB is positive definite from the passivity
assumption. Assume that γij ≤ 0 for i 6= j,

then the couplings −γij

(

0 0
0 CB

)

are positive



semidefinite. The symmetric part of the jacobian
of the uncoupled dynamics, divided according the
coupling structure, is given by

Jis =

(

Qs
1
2 (e + f)

1
2 (e + f)T g + CBk − CB

dφ(yi)
dyi

)

(18)

It is then easily seen that the sufficient conditions
given by Slotine [9, Remark 3 of Theorem 2] are
satisfied, i.e.

(1) Qs is contracting since it is Hurwitz from the
passivity and detectability assumptions

(2) λmax(g + CBk−CB
dφ(yi)

dyi
) < g + CBk < ∞

from the monotone increasing assumption of

(3) σmax

(

1
2 (e + f)

)

=
∣

∣

∣

e+f
2

∣

∣

∣

2

< ∞

Note that the results in [9] or [5] require gener-
ically that γij = γji ≤ 0 for i 6= j, an assump-
tion that we do not make. Exploiting the special
structure of dissipative oscillators, we additionally
show that the limit cycle stability analysis carried
for an isolated oscillator extends to the network.

5. EXAMPLES

In [8], we consider a nontrivial instance of dissi-
pative oscillator of order 3 possessing a globally
asymptotically stable limit cycle in R

3\Es(0) for
k & k∗. The corresponding transfer function is

G(s) =
s(τs+ω2

n)
s3+2ζωns2+(τ+ω2

n)s+ω2
n

with 2ζτ ≥ ωn > 0.

The critical values k∗ and k∗
passive are given in

(19) and (20).

As an illustration of Theorem 1, we consider a SN -
symmetry network of such dissipative oscillators.
For SN -symmetry coupling, we have

Γ =











(N − 1)K −K · · · −K

−K (N − 1)K · · · −K
...

...
. . .

...
−K −K · · · (N − 1)K











(21)
where K is the coupling strength characterizing
the SN symmetry network.

In this particular case, it is easy to show that
Γ̃ = diag(NK, . . . , NK) and thus λmin(Γ̃s) =
NK with an algebraic multiplicity equal to N −1.
From condition (14), synchronization is ensured if

K >
k−k∗

passive

N
.

By Theorem 1, we conclude that for K >
k−k∗

passive

N
, all solutions, except those belonging to

the stable manifold, converge towards the ω-limit
set of the uncoupled system which is a globally
attractive limit cycle for k & k∗.

Simulation results for a network of 5 coupled
oscillators are presented in Figure 2. For the
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Fig. 2. Time evolution of the outputs in a network
of 5 oscillators coupled through S5 symmetry.

−1.5
−1

−0.5
0

0.5
1

1.5
2

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

X
1

State−space of 5 oscillators for k
i
=1, k

p
=3

X
2

ξ

Fig. 3. Superposition of the state spaces of the 5
oscillators coupled through S5 symmetry.

simulation, we chosed the following values of the
parameters: τ = 2, ζ = 2.5 and ωn = 1. This
leads to a critical bifurcation value k∗ = 2 while
the loss of passivity occurs at k∗

passive = 1. The
nonlinearity φ(·) we used in these simulations was
φ(·) = (·)3. The initial conditions are chosen
at random. The results concerning the existence
of an almost globally asymptotically stable limit
cycle in [8] hold only for k & k∗. Nevertheless,
we expect these results to hold valid for a (large)
range of the bifurcation parameter k. To illustrate
this we selected k = 3. For global synchronization,
the common coupling strength K has to be strong
enough (i.e., K > 3−1

5 = 0.4). For this simulation,
the value of K was equal to 1.

On Figure 3, we clearly see that the oscillators
synchronize around a common limit cycle oscil-
lation. This limit cycle is identical to the one
obtained for an isolated oscillator.

To illustrate the results for a non-symmetric cou-
pling matrix Γ we consider a network of 3 identical
dissipative oscillators. The interconnection matrix
is

Γ = K





4 1 −5
2 2 −4
1 2 −3



 (22)

where K > 0.



k∗ =
τ(τ + ω2

n) + 2ζω3
n −

√

τ4 + 2ω2
nτ3 + ω3

n(ωn − 4ζ)τ2 + 4τω4
n(1 − ζωn) + 4ζ2ω6

n

2ω2
nτ

(19)

k∗
passive = min(1,

2ζωnτ − ω2
n

τ2
) (20)
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Fig. 4. Time evolution of the outputs in a network
of 3 oscillators coupled according to (22).

−1.5
−1

−0.5
0

0.5
1

−1.5

−1

−0.5

0

0.5

1

1.5
−4

−2

0

2

4

6

8

X
1

State−space of 3 oscillators for k
i
=1, k

p
=3

X
2

ξ

Fig. 5. Superposition of the state spaces of the 3
oscillators coupled according to (22).

In this case, Γ̃ = K

[

1 1
1 2

]

and λmin(Γ̃s) =

3−
√

5
2 K = 0.38K

Chosing K >
k−k∗

passive

0.38 , we conclude by Theorem
1 that all solutions, except those belonging to
the stable manifold, converge towards the ω-limit
set of the uncoupled system which is a globally
attractive limit cycle for k & k∗.

Simulation results for a network of 3 oscillators
coupled according to (22) are presented in Figure
4. In this simulation, we used the same parameter
values as for the SN -symmetry case except for the
coupling strength K which was chosen equal to 6

since the synchronization threshold is
k−k∗

passive

0.38 =
3−1
0.38 = 5.23. The initial conditions are chosen at
random. The corresponding superposition of the
oscillators state-spaces is represented on Figure 5.

6. CONCLUSIONS

In this paper, we show how incremental dissipa-
tivity may be used to extend the global stability
analysis of a limit cycle existing for an isolated
system to situations when such identical systems
are arranged in particular networks.
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