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Abstract— For an unknown discrete-time linear time-
invariant (DTLTI) autonomous system, this paper characterises
the minimal number of steps necessary to compute the asymp-
totic final value of an output observed with uncertainty. We
show that this minimal number of steps can also be obtained
directly from a graphical representation of the DTLTI system
using Mason’s rule. Moreover, we provide heuristic algorithms
to compute the final value in a minimal amount of time
with uncertain observations. The general structure of these
algorithms is as follows. Step one, by introducing a one-step
prediction error metric, we characterise the minimal length
of recursion for the outputs of the considered DTLTI system.
Step two, by constructing a new data set “close” to the original
uncertain output data set satisfying certain conditions, we
estimate the final value of the original output set by computing
the final value associated with this new data set. Step three, we
characterise the difference between the estimated final values
obtained from different estimated data sets. Furthermore, we
also consider systems with time-delays and investigate how the
delays affect the minimal number of steps required to compute
the final value. These results find applications in minimal-time
network consensus problems with minimal and uncertain (e.g.,
noisy) information.

I. INTRODUCTION

Linear systems theory has played a key role in many
technology advancements in various areas like aerospace,
communications, networks and computer engineering. Pre-
vious study [6] has shown that without noise or uncertainty
in such a system, the final value of the observed output can
be computed in minimal time, solely using a finite, minimal
number of past values of the observed output.

The algorithm proposed in [6] finds application in vari-
ous current open problems, one of which is the minimal-
time decentralised consensus problem [2]. In the context of
decentralised consensus [7], [10], the problem is to ensure
that each agent’s state reaches consensus asymptotically and
to compute this consensus value. However, from a practical
point of view, requiring infinite (or arbitrarily long) time
to obtain the consensus value is unsatisfactory. In [2], an
algorithm for computing the consensus value in finite time
is proposed. This algorithm is based on the accumulation of
several trajectories of the output, each one corresponding to
different initial conditions of the considered system.
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Using our results we improve the previous results pre-
sented in [6] by providing an algorithm which is able to
compute in minimal time the final consensus value of an
arbitrarily chosen state, solely using successive observations
of the past values of this state. This, in other words, means
that we can use the past information of an arbitrarily chosen
state in the considered network to predict the future consen-
sus value shared asymptotically by the whole network.

In this paper, we furthermore propose the following ex-
tensions to this minimal time consensus value computation
result:

Firstly, using Mason’s rule for linear networks [17], we
relate the degree of the minimal polynomial of the matrix pair
[A,C] to the information flow in the graphical representation
of such a system. Tight upper and lower bounds on the
minimum time required to compute the consensus value are
computed by using some results stemming from structural
controllability/observability theory for LTI systems [19] (see
Sections II and III).

Secondly, standing on the practical side, we consider
the case of imperfect output observations, i.e., observations
containing additive measurement noise and/or quantisation
errors. Algorithms are proposed to estimate the minimal
number of steps needed to compute an estimated final value
in presence of these imperfect observations (see Section IV).

Thirdly, we consider the case of imperfect communication
channels including time delays and provide an extension
of the proposed results to discrete-time LTI systems with
multiple time delays (see Section V).

A. Notation

For a matrix A ∈ RM×N , A[i, j] ∈ R denotes the
element in the ith row and jth column, A[i, :] ∈ R1×N

denotes its ith row, A[:, j] ∈ RM×1 denotes its jth column
and A[i1 : i2, j1 : j2] ∈ R(i2−i1+1)×(j2−j1+1) denotes the
submatrix of A defined by the rows i1 to i2 and the columns
j1 to j2. For a column vector α ∈ RN×1, α[i] denotes its ith

element. Similarly for a row vector β ∈ R1×N , β[i] denotes
its ith element. Let eTr = [0, . . . , 0, 1rth , 0, . . . , 0] ∈ R1×N .
1 denotes the vector [1, . . . , 1]T vector with appropriate
dimension.

B. Definitions

Definition 1 (Polynomial of a matrix): If p(t) = βkt
k +

βk−1t
k−1 + · · ·+ β1t+ β0 is a given polynomial, then one

can define p(A) = βkA
k + βk−1A

k−1 + · · ·+ β1A+ β0IN
for any A ∈ RN×N . The polynomial is monic if βk = 1.



Definition 2 (Minimal polynomial of a matrix): The min-
imal polynomial associated with a matrix A ∈ RN×N is
denoted by q(t) and is defined as the minimal degree monic
polynomial which satisfies q(A) = 0.

The Cayley-Hamilton theorem [4] guarantees that for any
matrix A ∈ RN×N , there is a degree N matrix polynomial
with value 0 at A. We may find another polynomial with
smaller degree and value zero at A and will discuss this in
detail later. It is easy to show that the minimal polynomial
of a given matrix is unique [1]. Based on Definition 2, we
define the minimal polynomial of a matrix pair [A,C] as
follows:

Definition 3 (Minimal polynomial of a matrix pair): The
minimal polynomial associated with a matrix pair [A,C]
where A ∈ RN×N , C ∈ Rp×N is denoted by qc(t) and
is defined as the minimal degree monic polynomial qc(·)
which satisfies Cqc(A) = 0.

Remark 1: The minimal polynomial of [A,C], qc(t), is
not necessarily the same as that of A, q(t). Moreover, it can
be shown that qc(t) divides q(t) for the same A [2]. We
denote the degree of the minimal polynomial of [A,C] by
Dc + 1. It is easy to see that this degree Dc + 1 is varying
with respect to the observation matrix C [6].

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the discrete-time LTI system

xk+1 = Axk

yk = Cxk
(1)

where xk =
[
xk[1] xk[2] . . . xk[N ]

]T ∈ RN , A ∈
RN×N , C ∈ Rp×N (p < N ). In particular, in the case
of the network consensus problem, we adopt the following
assumption:

Assumption 1: In order to guarantee asymptotic consen-
sus, the matrix A in system (1) is assumed to be nonnegative
(see [1]) and A has one and only one eigenvalue at 1 and all
the other eigenvalues nonzero, real and distinct. Furthermore,
A is also assumed to be row-stochastic, i.e., A1 = 1. In this
paper, we assume that the elements and dimension of A and
the initial state x0 are unknown.

In terms of decentralised network consensus problem, it is
natural to define the minimal information available to each
agent. In this paper, we assume that the only information
available to an agent is its own value at different time
steps. In particular, we do not assume availability of output
measurements from the neighbours of a given agent [9].
Therefore, we consider the most difficult case corresponding
to C = eTr for arbitrary r ∈ {1, 2, · · · , N}. In that situation,
Dc and qc(·) defined in Section I-B are changed to Dr and
qr(·) respectively for the sake of notational simplicity and
coherence.

The main purpose of this paper is to compute, in a minimal
amount of time, the final value, φ = limk→∞ xk[r], based
on noisy information. An algorithm to obtain the final value
of system (1) based on the accumulation of successive non-
noisy observations is proposed in [6] and will be illustrated

on an example in Section III. The minimal number of succes-
sive observations needed can be characterised in terms of the
coefficients of the minimal polynomial of [A, eTr ]. We will
review these results for perfect observation in this section
and take into account uncertainties in the observations in the
later Sections.

Proposition 1: Given a linear system (1) and an initial
state x0, there exist a d ∈ N and scalars α0, ..., αd such
that the following linear regression equation must be satisfied
∀k ∈ N ≥ 0,

xk+d+1[r]+αdxk+d[r]+. . .+α1xk+1[r]+α0xk[r] = 0. (2)
Remark 2: An algebraic characterisation of d is given

in [6] based on the Jordan block decomposition. If we can
compute the unknown coefficients in eq. (2) from data, then
we can compute future outputs recursively using eq. (2) and
past outputs.

Definition 4 (Minimal length of recursion (see [8])): We
define

Dr + 1 = max
x0∈RN

min
d∈N
{d: eq. (2) holds for all k}

and call it the minimal length of recursion.
Remark 3: The minimal length of recursion is the same

as the degree of the minimal polynomial of [A, eTr ] (see [6]).
Therefore Proposition 1 also indicates that for an arbitrary
initial state x0 and some scalars α0, ..., αDr

, the following
equation always holds:

xk+Dr+1[r]+αDrxk+Dr [r]+. . .+α1xk+1[r]+α0xk[r] = 0.
(3)

As shown in [2], under the assumption that the minimal
polynomial in (3) does not possess any unstable root [5],
except for one single root located at 1, we can take the
Z-transform of (3) and apply the final value theorem to
compute the final value of xk[r] based on the coefficient
of the minimal polynomial qr(·):

φ = lim
k→∞

xk[r] = lim
z→1

(z − 1)X[r](z)

=

[
xDr [r] xDr−1[r] . . . x0[r]

]
S[

1 1 . . . 1
]
S

,

(4)

in which

S =


1

1 + αDr

1 + αDr−1 + αDr

...
1 +

∑Dr

j=1 αj

 .
In order to compute the final value, we need to know S. To

identify the unknown coefficients in S, we resort to Hankel-
type matrices

Xr(k, k) ,


x0[r] x1[r] . . . xk[r]
x1[r] x2[r] . . . xk+1[r]

...
...

. . .
...

xk[r] xk+1[r] . . . x2k[r]

 . (5)
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Fig. 1. Graph with constant edge weights of 1/N .

From Proposition 1, we can see that, when increasing the
dimension k + 1 of this Hankel matrix Xr(k, k), it will
eventually lose rank. When it does, at discrete-time step
2Dr + 2, where Dr is defined in eq. (3), one can compute
its normalised kernel:

Xr(k, k)
[
α0 α1 . . . αk 1

]T
= 0. (6)

Furthermore, it can be shown (see [6]) that the normalised
kernel obtained from eq. (6) corresponds to the coefficients
in eq. (3).

III. AN ILLUSTRATIVE NETWORK-INSPIRED EXAMPLE
AND ITS ASSOCIATED GRAPHICAL INTERPRETATION

In this section, we use a network-inspired example (ini-
tially proposed in [2]) to illustrate the results stated in last
section.

The network topology we are considering is represented
in Fig. 1. Because the topology is undirected and
connected, the final value of each node is the average
of the initial state values (average consensus value).
For the randomly chosen the initial state x(0) =[
1.3389 2.0227 1.9872 6.0379 2.7219 1.9881

]T
,

the final consensus value is thus 2.6828. We illustrate the
results in Section II by focusing on node 1.
Step 1: We increase the dimension of X1(k, k) until
it loses rank. In particular, we have rank(X1(3, 3)) =
rank(X1(4, 4)) = 4.
Step 2: The coefficients of the minimal polynomial (3)
involving x[1] can be obtained by computing the normalised
kernel of X1(4, 4).
Step 3: The final consensus value can thus be computed
using eq. (4) and proven to be equal to 2.6828.

If we repeat these steps for all nodes, we observe that
node 1, 2, and 3 only need 9 successive values of their own
state to compute the final value while node 4 needs 11 such
values and node 5, and 6 need 13. It is not surprising that
some nodes need less steps to compute the final consensus
value of the network. We call such nodes, dominant nodes.

In the rest of this section, we establish a connection
between the graphical representation of a network and the
algebraic description of system (1) in Section II.

Consider the system in eq. (1), and a corresponding graph
[13] G = (V,E, A/z), where V,E denotes the vertex/edge
set, A is the state-space matrix of the considered DTLTI
system in eq. (1) and z is the Z-Transform operator. In
the following, we show that the degree of the minimal

polynomial of [A, eTr ] can be determined using Mason’s rule
[17].

Let Φ = (I−A/z)−1. If we build the signal-flow network
for A/z , then from Mason’s rule we can obtain the gain from
node i to node j directly from the graph as follows:

Φ[i, j] =
1

∆

∑
path p∈G

Tp∆p, (7)

where ∆ is the determinant of the graph, which can be
computed by

∆ = 1−
∑

Li +
∑

LiLj + · · ·+ (−1)m
∑
· · ·

Tp is the gain of the pth forward path from node i to node
j, Li is the loop gain of each closed loop in the graph,
and LiLj is the product of the loop gains of any two non-
touching loops (i.e., loops with no common nodes). ∆p is the
cofactor value of ∆ for the pth forward path, with the loops
touching the pth forward path removed (i.e., the remaining
graph when you have removed those parts of the graph that
form loops while retaining the parts on the forward path).

The McMillan degree of eTr Φ can be directly computed
from the network using Mason’s rule in eq. (7). Furthermore,
it can be seen that the McMillan degree of eTr Φ [4], i.e.,
the number of poles, is the same as degree of the minimal
polynomial of [A, eTr ] obtained from method in Section II .

Sometimes, the graph is rather complicated and therefore
it is hard to compute the formula (7) from Mason’s rule.
In this case, one might resort to some basic graphical
information [13], e.g., the diameter of the graph, the number
of nodes in the graph, etc., to obtain a rough estimate of the
minimal number of steps. Based on this idea, we propose
the following upper and lower bounds.

Proposition 2: Consider the system in eq. (1). The degree
of the minimal polynomial of [A, eTr ], namely Dr + 1, is
lower bounded by dr + 1, where dr is the longest path from
node r to all other nodes, and upper bounded by N .

Proof: The upper bound can be obtained directly using
the Cayley-Hamilton theorem, i.e., Dr + 1 ≤ N . Therefore,
we only need to show the lower bound.

Suppose the minimal polynomial for [A, eTr ] is qr(t) =
tDr+1 + αDr

tDr + . . .+ α1t+ α0. Since eTr qr(A) = 0, we
have:

[
α0 α1 · · · αDr

1
]


eTr
eTr A

...
eTr A

Dr+1

 = 0. (8)

From the graphical perspective, the element Ak[i, j] being
0 means there is no path from i to j with length k [13].
Meanwhile, note that the consensus is guaranteed if and
only if the digraph is strongly connected (see [10]). Strong
connectedness implies that there always exists an edge-
following path from node r to any other node in the graph.
Therefore, we can pick the longest path, say from node r to
node s with length dr. Based on these two facts, if Adr [r, s]
is nonzero, then eq. (8) implies that Dr + 1 ≥ dr + 1.
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Remark 4: Proposition 2 proposes a fundamental limita-
tion on the minimal number of steps (successive values of
a node) needed to compute the final value based on the
graphical definition of a network.

IV. FINAL VALUE FOR DATA WITH UNCERTAINTY

This section is motivated by the following scenario. As-
sume that all the agents are “smart” in the sense that they
have enough memory to store their own past observations and
enough computational ability. Assuming that the topological
structure of the network guarantees consensus, an agent
observes its own state with uncertainty and tries, based on
successive uncertain observation of its state, to compute the
final consensus value of the network. At each time step, an
agent may either propose an estimated final value computed
from its own algorithm, or wait to get more data from the
next time-step.

Generally, when uncertainties, i.e., unmodelled dynamics,
noise or quantisation errors on observations, are taken into
account, the minimal number of steps cannot be found with
certainty. This is due to the output measurements being
corrupted by uncertainties. As a consequence, the properties
given above will not in general hold. From a network
consensus perspective, this raises important questions: are
the dominant nodes still dominant?, i.e., do they still need
less steps to compute the final value? If so, what is their
optimal strategy to compute it?

The currently dominant approach to modelling uncertainty
is based on the idea of averaging. However, it requires a large
number of data to study the distribution of the noise [16].
In this scenario, there are no advantages for these dominant
nodes in knowing the final value in advance. Uncertainty
might also lead to instability of the identified model in
Section II, and, therefore, the estimated final value based on
this identified model might be infinite. In this latter case,
no information about the final value can be inferred. In
this section, we propose an efficient heuristic algorithm to
compute the final value using the same minimal number of
successive values of observed state x[r] with uncertainties as
the number of successive values of perfect observations, i.e.,
2Dr + 3.

Consider a discrete-time LTI system (1) with uncertainty

xk+1 = Axk,

yk = eTr xk(1 + δ′k).
(9)

Here, yk represents the observation with uncertainty at time
k of an arbitrarily chosen particular state xk[r] ∈ R and
δ′k denotes the signal to noise ratio (SNR) for the randomly

chosen state xk[r]. We assume |δ′k| ≤ δ for all k. We nor-
malise this quantity by letting δk =

δ′k
δ for all k and, in this

case, |δk| ≤ 1. This multiplicative uncertainty is widely used
to model not only noise but also quantisation/transmission
errors (see [11]).

Problem 1: Consider system (9) satisfying Assumption 1.
At each discrete-time step, the only information available is
the output y which is the sum of the observed state xk[r]
and of a statistically unknown uncertainty (we formed them
as multiplicative uncertainty here). We are interested in the
following two problems:

1. How can one obtain the true length of recursion in
eq. (3), i.e., Dr + 1? Furthermore how can one obtain
the minimal number of steps 2Dr + 3?

2. How can one quantify the error on the final value based
on the data set with uncertainty and the data set without
uncertainty.

In the rest of this Section, heuristic algorithms will be
proposed to tackle this problem step by step. Considering
uncertain data in Problem 1, we first introduce an easy-to-
compute quantity to test whether the current step corresponds
to the true minimal number of steps, namely the one-step
prediction error defined in Section IV-A. We then compute
the final value from outputs that are “close” to the original
ones in Section IV-B and Section IV-C. For simplicity
and clarity of exposition, we make the following additional
Assumption:

Assumption 2: We assume that all the initial states x0 are
nonnegative, i.e., x0[i] ≥ 0 for all i.

Remark 5: This assumption is physically reasonable
since, typically, the states in the network usually represents
physical quantity like temperature, velocity, humidity, etc.
Since A is nonnegative, this constraint on the initial state
guarantees that all xk[i] are nonnegative for all k, i.

A. Identifying the length of recursion
In this section, we will propose a practical method to

identify the minimal length of recursion. Before presenting
the algorithm, a definition and an important theorem are
introduced first.

Definition 5: Define a data set Y = {y0, y1, . . .} com-
posed of successive scalar outputs (yi ∈ R) and its associated
normalised kernel α =

[
α0 α1 · · · αk 1

]
(or equiva-

lently, its associated minimal polynomial tk+1 +αkt
k+ · · ·+

α1t+ α0) satisfying the iteration in eq. (3). The final value
φ can be directly computed from eq. (4).

Remark 6: Once the cardinality of the data set Y is greater
or equal to k + 1 (the degree of its associated minimal
polynomial), then all the elements in Y are fixed by recursion
and therefore φ is fixed.

Definition 6: The Hankel matrix associated with the data
set Y = {y0, y1, . . . , y2k} is defined as follows:

Y (k, k) ,


y0 y1 y2 · · ·
y1 y2 y3 · · ·
y2 y3

. . .
...

... y2k

 . (10)
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Fig. 3. If an algorithm can obtain the true length of recursion in eq. (2),
then it can be shown that it can also obtain the length of recursion from
shifted output data as stated in Theorem 1.

Theorem 1: Consider the system (9) satisfying Assump-
tion 1 and Assumption 2, if an algorithm can solve the first
problem of Problem 1 with 2Dr + 3 uncertain observations
Y = {y0, . . . , y2Dr+2}, then it can also solve the first
problem of Problem 1 with Ỹ = {y0 + γ, . . . , y2Dr+2 + γ}
for γ ∈ Γr ⊂ R+ (characterised later).

Proof: First, recall that A is row-stochastic, therefore
γA1 = γ1 and furthermore xk+1 + γ1 = A(xk + γ1). The
final value computed when the shift is applied is thus equal
to φ + γ. For any known γ, we can subtract γ from the
computed final value and recover the original final value.
This means that the obtained final values are the same.

We then show that the minimal number of steps is
unchanged when this shift is applied. To show this latter
property we equivalently show that the following equality
holds for all k and t

rank(Xr(k, k)) = rank(Xr(k, k) + γ11T ). (11)

By the assumptions made on A in Assumption 1 and
Assumption 2, it is easy to show that the expression for
xk[r] is

xk[r] =

Dr+1∑
i=1

λki µi, (12)

where λi are distinct roots of the minimal polynomial qr(·)
(which is of degree Dr + 1), and µi are parameters deter-
mined by the initial conditions of xk[r]. Using the results
in [3], it can directly be shown that the following equation
holds

Xr(k, k) = V (0, k)TrV
T (0, k), (13)

in which ∀k ∈ N, V (0, k) =


1 1 · · · 1
1 λ2 · · · λDr+1

...
. . . . . .

...
1 λk2 · · · λkDr+1


is a Vandermonde matrix containing the distinct roots
of the minimal polynomial of [A, eTr ] and Tr =
diag{µ1, · · · , µDr+1} ∈ R(Dr+1)×(Dr+1) is a diagonal ma-
trix with µi on its diagonal. Without loss of generality, let
λ1 = 1, then

Xr(k, k) + γ11T = V (0, k)(Tr + γe1e
T
1 )V (0, k)T . (14)

Observe that since the final consensus value is nonnegative
(from Assumption 2), then µ1 ≥ 0. Therefore eq. (11) holds.

Thirdly, we show that the associated minimal polynomial
is unchanged. This can be directly inferred from eq. (14).

Finally, since yk = eTr xk(1 + δkδ) and xk ≥ 0, we have

yk + γ = (xk[r] + γ)

(
1 + δk(δ

xk[r]

xk[r] + γ
)

)
. (15)

Let ε , maxk{δ xk[r]
xk[r]+γ }. Then eq. (15) writes yk + γ =

(xk[r] + γ) (1 + εkε) , where εk = δk( xk[r]
(xk[r]+γ)ε ) and |εk| ≤

1 for all k. From eq. (15), we see that the effect of the shift
in the output set is equivalent to enhance the signal xk[r]
while reducing the level of uncertainty (since ε ≤ δ) under
the Assumption 1 and Assumption 2.

Next, we will propose a heuristic algorithm following
the ideas used in the algorithm described in Section II and
Theorem 1.

Algorithm 1: Algorithm to obtain the minimal length
of recursion in eq. (2):

Step 1: Initialise k = 0, γ = 0. At each time step 2k,
we compute an a priori defined quantity called the one step
prediction error e2k(t) (a function of t) to test whether
the true minimal length of recursion has been reached or
not. Generally speaking, the smaller the prediction error, the
higher probability that k = Dr + 1.

Step 2: For i = 1, · · · , n, let γ = γi ∈ Γr. Then, compute
the values of e2k evaluated at different γi and use these to
compute Ê2k =

∑n
i=1 f(e2k(γi)), where n ∈ N is an a

priori determined natural number and f is a prior determined
function will be discussed later.

Step 3: Compute Ê2k−2

Ê2k
(when k ≥ 1). If there exists a

sudden drop in this quantity, i.e., Ê2k−2

Ê2k
≥ a, this indicates

that k = Dr+1 with a high probability based on the analysis
above, (where a is an a priori determined constant, e.g., 10,
which defines the level of confidence). When such a sudden
drop occurs, the algorithm stops. Otherwise we update k :=
k + 1.

Remark 7: The overall one step prediction error is de-
fined as

E2k =

∫
γ∈Γr

f(e2k(γ)), (16)

where f is a function which can be chosen, e.g., f(x) = x2.
In particular, E2k can be approximated by a summation
of the function values at different points {γ1, . . . , γn},
i.e., Ê2k =

∑n
i=1 f(e2k(γi)) where Ê2k represents the

approximation of E2k. We can use Ê2k as a criterion to test
if the minimal number of successive observations, 2Dr + 3,
has been reached. The choice of e2k, Γr, n, f , a and γi
plays a key role in this method [18]. How to choose them
cooperatively in order to get the best estimation goes beyond
the scope of this paper.

In particular, at time step k, we form the Hankel matrix of
successively observed outputs, i.e., Y (k, k) in eq. (10), and
predict the estimated value at time 2k+1 using the following
equations

Y (k, k)α̂ =
[
yk+1 yk+2 · · · y2k+1

]T
x̂2k+2[r] =

[
yk+1 yk+2 · · · y2k+1

]
α̂T , (17)



where [α̂T , 1]T is an estimated normalised kernel in eq. (8).
At time 2k + 1, we can compute the error between the true
one and the estimated one in eq. (17):

e2k+2 = y2k+2 − x̂2k+2[r] =
detY (k + 1, k + 1)

detY (k, k)
. (18)

The second equality in (18) holds because e2k+2 is the Schur
complement of Y (k, k) with respect to Y (k+ 1, k+ 1). We
can also define this quantity data sets shifted by γ:

e2k+2(γ) =
det(Y (k + 1, k + 1) + γ11T )

det(Y (k, k) + γ11T )
. (19)

Remark 8: To define Γr in this particular case, we can
not apply too large a shift as this will lead to computational
errors in eq. (19). A practical way to select Γr is to take
Γr = [0, x0[r]δ] to keep it at a level similar to that of the
uncertainty.

Remark 9: Indeed, there are numerous ways to define
this one step prediction error. We here chose an easy-to-
compute one. The computational complexity of our chosen
one step prediction error method is O(N2) which is much
lower than the computational complexity associated with
other definitions such as, e.g., a least square definition which
has a complexity O(N3) [18]. Therefore, with the same
computational resources, using our one step prediction error
method we can compute more values Ê2k in Step 2 of
Algorithm 1. This allows us to obtain a better approximation
of E2k given the same computational resources.

B. Estimating data sets

After having successfully obtained the true minimal num-
ber of steps in the previous section, the final objective is
to propose a method to estimate the difference between the
estimated final value φ̂ and the exact final value φ. We
showed that 2Dr + 3 successive values of the output y were
needed to compute the coefficients of qr(t) or equivalently
to compute the coefficients of the minimal polynomial of
[A, eTr ].

The objective pursued here is to obtain a second data set
“close” (in terms of some norm) to the original one and to
compute the final value corresponding to this data set to see
how “close” the corresponding final value is with respect to
the original one. First, we propose a possible stable data set
“close” to the original data set, compute the corresponding
final value, and characterise how this estimated data set
differs from other possible data sets and how the estimated
final value differs from the one computed from these other
possible data sets. In the rest of this section, we will focus
on the first step, while the second step will be considered in
the next section. Recall that Assumption 1 requires that the
estimated data set has the following properties:

1) It is “close” to the original data set Y =
{y0, y1, · · · , y2Dr+2};

2) The length of recursion is fixed as Dr + 1 in eq. (3);
3) The estimated associate minimal polynomial qr(t)

defined in Definition 5 should have one and only one root
at 1 and all other roots within the unit circle.

Algorithm 2: Algorithm to obtain a close and stable
output data set:

The first step is to change the output data set to {y0 +
γ′, y1 + γ′, · · · , y2Dr+1 + γ′, y2Dr+2 + γ′− e2Dr+2(γ′)}
where γ′ = argminγ∈Γr

{e2Dr+2(γ)}. This data set sat-
isfies the recursion in eq. (2) with a length of recursion
Dr + 1. In this case, we observe that the corresponding
Hankel matrix to this data set (defined in eq. (10)), i.e.,
Y (Dr+1, Dr+1), is not full rank and thus we can compute
the normalised kernel of this defective Hankel matrix α =[
α0 α1 . . . αDr

1
]T

, i.e.,

Y (Dr + 1, Dr + 1)α = 0.

The second step is to compute the roots of tDr+1 +
αDr

tDr + . . . + α0 = 0, namely, λ1, . . . , λDr+1 (for sim-
plicity, we assume that there are no repeated roots and
no root at 1 since generally these happen with probability
0). Assume the ordering of the eigenvalues has been made
such that λ1 ∈ R satisfies |λ1 − 1| ≤ |λi − 1| for all
i ∈ {1, 2, · · · , Dr+1}. We then we construct a Vandermonde
matrix

V (0, Dr) =


1 1 · · · 1
1 λ2 · · · λDr+1

...
. . . . . .

...
1 λDr

2 · · · λDr

Dr+1


and, without loss of generality, rearrange the columns of V
such that λ1 = 1, {|λi| ≤ 1 : i = 2, · · · , k} and {|λi| > 1 :
i = k + 1, · · · , Dr + 1}. This step guarantees that qr(t) has
only one root processing at 1.

The third step is to compute the diagonal matrix T

T , diag{(V (0, Dr)
T )−1Y (Dr, Dr)(V (0, Dr))

−1}

,

[
T1 0
0 T2

]
,

where T1 ∈ Rk×k and T2 ∈ R(Dr+1−k)×(Dr+1−k). We
denote H = V (0, Dr)TV (0, Dr)

T . This step approximates
Y (Dr + 1, Dr + 1) to H by imposing the constraint that H
should be Hankel.

The fourth step is to find a stable approximation of H ,
i.e., another Hankel matrix H ′ = V ′(0, Dr)T

′V ′(0, Dr)
T

such that ‖H −H ′‖ is minimal, where ‖ · ‖ is some norm,
e.g., the Frobenius norm and

V ′(0, Dr) =


1 1 · · · 1
1 λ′2 · · · λ′Dr+1
...

. . . . . .
...

1 λ′Dr
2 · · · λ′Dr

Dr+1


having all λ′i within the unit circle. After some manipulation,
we have

‖H−H ′‖ = ‖V1T1V
T
1 +V2T2V

T
2 −V ′1T ′1V ′T1 −V ′2T ′2V ′T2 ‖.

For the stable part, we choose V ′1 = V1 and T ′1 = T1, while
for the unstable part, we can use well-established Nehari’s
theorem (see for example Section 8 in [4]) to find the closest
stable approximation in terms of the L∞ norm.



Finally, since H ′ is a Hankel matrix, we can find out the
corresponding data set, namely, Y ′ = {y′0, . . . , y′2Dr

} and the
corresponding estimated normalised kernel α̂. We then shift
all the output back to a data set Ŷ = {y′0−γ′, . . . , y′2Dr

−γ′}.
Therefore, we can compute the final value of this data set
φ̂ from eq. (4) and take this value as an approximation for
φ = limk xk[r].

Definition 7: Given the original data set obtained from
system (9), i.e., Y = {y0, y1, . . . , y2Dr

}, and assuming that
Y1 = {y1

0 , y
1
1 , . . . , y

1
2Dr
} is an estimated stable output data

sets associated with a minimal polynomial q1
r(t) of degree

Dr + 1, we define the data distance between the estimated
output data set and the original data set as

d(Y1, Y ) = ‖H1 −H‖F =

2Dr∑
k=0

(y1
k − yk)2. (20)

Remark 10: Since finding the optimal solution satisfying
the above mentioned conditions is NP hard, we are trying
to meet the requirements step by step under the constraint
that we only make small changes to the data set guided
by the measurement of some norm. It is clear that the
algorithm proposed here is not optimal and might produce
a large data distance according to Definition 7. Using the
approach described in [12] to obtain optimal bounds for the
estimated state so as to minimise d(Ŷ , Y ) in eq. (20) is under
investigation.

C. Characterising the final value error

In terms of how the approximation is affecting the com-
puted final value, we look at the outputs obtained after the
procedure described in Algorithm 2 of Section IV-B has been
applied. Notice that there are many ways to obtain estimated
output data sets. Since our solution is sub-optimal, one may
easily obtain another estimated set of outputs from other
sub-optimal procedures. In this section, we will quantify the
difference in terms of both the estimated outputs and the
computed final values obtained by different methods.

The data distance between two data set Y1 and Y2 (e.g.,
obtained by different methods) can be characterised by the
following triangle inequality

|d(Y1, Y )− d(Y2, Y )| ≤ d(Y1, Y2) ≤ d(Y1, Y ) + d(Y2, Y ).

When it comes to the difference between estimated final
values from different data sets, we are interested in those that
are “close” in terms of data distance but different in terms
of the associated minimal polynomial.

Assumption 3: Consider two data sets obtained by differ-
ent methods, namely Yi = {yi0, . . . , yi2Dr

}, i = 1, 2 with
corresponding minimal polynomials qir(t) and final values
φi. Assume that these data sets are such that d(Y1, Y2) ≤ ε
with ε “small”. Assume that these two minimal polynomials
of degree Dr + 1 are such that q1

r(t) = (t − λj)sr(t) and
q2
r(t) = (t − λ′j)sr(t) for some λj ∈ R, some λ′j ∈ R, and

some polynomial sr(t).
Instead of directly characterising the final value error,

i.e., φ1 − φ2, we use an indirect method as described in
Fig. 4, i.e., we build virtual data sets Ŷi = {yi0, . . . , yiDr−1}

Original data set Y with 
unknown φ

Estimated data set Y1 with 
final value φ1

Close data sets with final 
value 

Estimated data set Y2 with 
final value φ2

Estimated data set Y3 Estimated data set Yn...

φ1
3 ≈ φ2

3

φ1 − φ1
3

φ2 − φ2
3

φ1 − φ2

d(Y1, Y )

d(Y2, Y )

d(Y1, Y2)

Fig. 4. Different output data sets and corresponding final values, and their
associated distances.

which contain the first Dr elements of Yi and for which the
corresponding minimal polynomial is sr(t). The final value
associated with the virtual data sets Ŷi can be computed as

φi3 =

[
yiDr−1 yiDr−2 . . . yi0

]
P

pr(1)
, (21)

in which P =
[
1 βDr−2 . . . β0

]T
and pr(t) = sr(t)

(t−1) ,
tDr−1 + βDr−2t

Dr−2 + . . . + β0. We then characterise the
final value difference between φi and φi3 separately.

Theorem 2: Consider an estimated output data set Y1 =
{y1

0 , . . . , y
1
2Dr
} (with associated minimal polynomial q1

r(t)

and final value φ1) and a virtual data set Ŷ1 with final
value φ1

3 computed in eq. (21). The difference between
the computed final values is φ1 − φ1

3 = −µj pr(λj)
pr(1) ,where

pr(t) =
q1r(t)

(t−λj)(t−1) .
Proof: Let cr(t) = tDr + ηDr−1t

Dr−1 + . . . + η0. It
is easy to show that the minimal polynomial q1

r(t) satisfies
q1
r(t) = (t − 1)cr(t) = (t − 1)(t − λj)pr(t), ∀t. We

have φ1 =

[
yDr

yDr−1 . . . y0

]
C

cr(1) , in which C =[
1 ηDr−1 . . . η0

]T
. Noting that pr(t) = cr(t)/(t−λj),

we obtain CT =
[
PT 0

]T
+ λj

[
0 PT

]T
. Therefore, the

difference in the final value is given by

φ1 − φ1
3 =

[
yDr

. . . y0

]
C

cr(1)
−
[
yDr−1 . . . y0

]
P

pr(1)

=

[
yDr

. . . y1

]
P

cr(1)
− λj

[
yDr−1 . . . y0

]
P

cr(1)

− (1− λj)
[
yDr−1 . . . y0

]
P

cr(1)

=

[
yDr . . . y1

]
P

cr(1)
−
[
yDr−1 . . . y0

]
P

cr(1)

= µj
(λj − 1)pr(λj)

pr(1)(1− λj)
= −µj

pr(λj)

pr(1)
. (22)

To show eq. (22) holds, we consider that for all roots of
cr(t) = 0 other than λj , say λi, pr(λi) = 0. Therefore,



from eq. (3) and eq. (12), these roots λi will be elimi-
nated as a result of multiplying

[
yDr yDr−1 . . . y1

]
and[

yDr−1 yDr−2 . . . y0

]
by P . This completes the proof.

Remark 11: Under Assumption 3, the difference between
the final values is φ1 − φ2 ≈ (φ1 − φ1

3) − (φ2 − φ2
3). Both

terms in brackets can be computed using Theorem 2 and
φ1

3 ≈ φ2
3 when d(Y1, Y2) ≤ ε.

Remark 12: Consider “close” output data sets without
many common terms in their minimal polynomials, the
procedure above can be applied several times recursively to
obtain both the data distance (defined in Definition 7) and
the difference between the estimated final values associated
with data sets estimated from different subsets.

V. FINAL VALUE FOR SYSTEMS WITH TIME-DELAYS

Another important aspect that generally needs to be taken
into account is time-delays. This occurs in the communica-
tion channels, and we need to characterise how this affects
the minimal number of steps needed to compute the final
value for a single node. We hereby consider a DTLTI system
with multiple delays, and assume the all these delays take
integer values which are upper-bounded by, say, τ ∈ N. The
corresponding model writes

xk+1[i] =
∑

j∈{1,2,··· ,N}

aij(k)xk−τij [j], (23)

with τij ∈ N and 0 ≤ τij ≤ τ , ∀i, j. The corresponding
system dynamics is given by:

xk+1 = A1xk +A2xk−1 + . . .+Aτxk+1−τ , (24)

in which A1, A2, . . . , Aτ ∈ RN×N are the transition
matrices corresponding to different delays.

Without loss of generality, we take one observation of this
system, i.e., yk = eTr xk. We rewrite the state-space equation
as

ψk+1 = Ξψk, (25)

in which, ψk = [xTk , x
T
k−1, · · · , xTk+1−τ ]T , and

Ξ =


A1 A2 . . . Aτ−1 Aτ
IN

IN
. . .

IN

 ,

where IN is the identity matrix of dimension N . Denote
by g(z) the minimal polynomial of Ξ (see definition 2). As
proven in [2], the minimal polynomial of a matrix divides its
characteristic polynomial. Therefore, by direct calculation,
det(zI − Ξ) = det

(
zτI −A1z

τ−1 − . . .−Aτ−1z −Aτ
)
.

As a consequence, the degree of g(z) is at most τ × N .
Developments similar to those presented previously yield the
following result.

Corollary 1: Consider the system in equation (23). Any
arbitrarily chosen state y can compute its corresponding final
value in finite time using at most 2τN + 1 successive values
of itself.

Proof: Similar to the ones in the preceding section.
The only difference is that here we have a higher dimension
transition matrix Ξ.

VI. DISCUSSION AND CONCLUSION

Motivated by the finite and minimal time consensus prob-
lems [2], [6], we observe that, if every node can observe its
own state perfectly, some nodes in the network require less
steps than others to compute the final consensus value of
the whole network. When imperfect communication and/or
uncertain observation are taken into account, the question
of knowing whether this property still holds is extremely
important in practice. In particular, if such a property holds,
what is the corresponding an optimal strategy to compute the
final value?

In this paper, a first attempt to obtain a sub-optimal
solution to this challenging problem is proposed since finding
an optimal solution is NP hard. These results have important
applications in the analysis of social network, minimal-time
decentralised network consensus problem, prediction of stock
values and many others.
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