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h i g h l i g h t s

" We develop a nonlinear model for a two-phase heat-powered thermofluidic engine.
" We compare the results with an existing linear model and experimental observations.
" The two models predict a similar oscillation frequency for the fluid pumping device.
" The predicted efficiencies are dissimilar and in some cases have different trends.
" The nonlinear model gives more realistic predictions of actual engine performance.
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a b s t r a c t

A two-phase thermofluidic oscillator was recently reported as being capable of undergoing sustained oper-
ation when a constant and low temperature difference is applied to the device, which consists of a network
of tubes, compartments and two heat exchanger blocks. Within this arrangement a working fluid undergoes
thermodynamic property oscillations that describe a heat engine cycle. Previous attempts to model the
dynamic behaviour of this thermofluidic engine for performance predictions have been based on linear
analyses. These have provided us with useful knowledge of the necessary minimum temperature difference
for operation, and the resulting oscillation frequency and efficiency. However, experimental observations
suggest a limit cycle operation associated exclusively with nonlinear systems. The present paper presents
an effort to devise a nonlinear model for the device. Indicative results from this model are discussed, and the
predictions are compared to those from the linear equivalents and experimental observations. The results
reveal that although both linear and nonlinear models predict similar oscillation frequencies, the nonlinear
model predicts lower exergetic efficiencies. This probably arises from the inability of the linear representa-
tion in the thermal domain to capture the saturation in the rate of heat exchange between the working fluid
and the heat exchangers. The present effort aims to provide a better understanding of this device and to sug-
gest improved design guidelines for increased efficiency and power density.

Crown Copyright ! 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The overwhelming use of fossil fuel combustion for the provi-
sion of heat and power, and consequently, the release of the prod-
uct gases into the atmosphere are issues of growing concern. On
one hand these primary energy sources are finite, while the global
demand for heat (and/or cooling) and power is increasing. Sustain-
able and secure energy solutions require a more diverse source
base that can be relied on in the longer term. At the same time
the potential consequences of the release of combustion gases into
the atmosphere to human health and the environment are of cru-
cial interest. In lieu of this, there is an urgent need to seek and to
develop alternative sources of energy for heating and power,

including renewable energy sources such as geothermal and solar
heat. In addition, there is an important and increasing drive to
maximise the overall efficiency of plants and processes in the
industrial, transport, residential and public sectors that consume
fossil fuels for their operation, via the recovery and re-utilisation
of waste heat [1].

Low-grade (that is, low temperature) heat is a classification for
sources of heat that are, typically, at 250 "C and below [2]. This
class of heat sources includes waste heat from industrial processes,
heat from non-concentrated solar thermal collectors and low tem-
perature geothermal water and steam. Low-grade heat is abun-
dantly available, however, its use can often be unfavourable as a
consequence of the inherently low thermal efficiencies that can
be achieved from its use; a thermodynamic limitation imposed
by the second law, and indicated by the low associated Carnot
efficiencies.
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Nomenclature

Ad area of displacer cylinder, m2

Af area of feedback valve, m2

Al area of load, m2

Ap area of power cylinder, m2

As surface area available for heat transfer, m2

c ¼ dThx
dz heat exchanger wall temperature gradient, K/m

C capacitance, m4 s2/kg
Cad capacitance due to adiabatic compressibility, m4 s2/kg
Cd capacitance in the displacer cylinder, m4 s2/kg
Cp capacitance in the power cylinder, m4 s2/kg
dd diameter of displacer cylinder, m
df diameter of feedback tube, m
dl diameter of load, m
dp diameter of power cylinder, m
E analogous voltage or potential, V
fo frequency, Hz
g acceleration due to gravity, m/s2

h surface convective heat transfer coefficient, W/m2 K
I analogous current, A
ld length of power cylinder, m
lf length of feedback valve, m
ll length of load, m
lp length of power cylinder, m
L length of the heat exchanger block, m
Ld inductance in the displacer cylinder, kg/m4

Lf inductance in the feedback tube, kg/m4

Ll inductance in the load, kg/m4

Lp inductance in the power, kg/m4

m mass, kg
_m mass flow-rate, kg/s

P pressure, Pa
Pad pressure in the adiabatic region relative to atmospheric

pressure, Pa
Pd hydrostatic pressure in the displacer cylinder, Pa
Pf pressure in the feedback valve relative to atmospheric

pressure, Pa
Pl pressure in load relative to atmospheric pressure, Pa
Po equilibrium pressure, Pa
Pth equivalent (referred) thermal pressure, Pa
R resistance, kg/m4 s
Rf resistance in the feedback tube, kg/m4 s
Rl resistance in the load tube, kg/m4 s
Rth thermal resistance, kg/m4 s
s laplace domain variable, or pole/eigenvalue
sfg specific entropy of the vapour, J/kg K
_s rate of specific entropy generation, W/kg K
_S rate of entropy generation, W/K
_Q heat flow-rate, W
t time, s

dT
dP

! "
sat change of temperature per unit change of pressure in

the saturation region, K/Pa
To equilibrium temperature of the working fluid, K
Tw heat exchanger wall temperature in contact with the

working fluid at the position of the active phase-change
region, i.e., the vapour–liquid interface level y(t), K

Thx heat exchanger wall temperature, K
Uad volumetric flow-rate in the adiabatic region, m3/s
Ud volumetric flow-rate in the displacer, m3/s
Uf volumetric flow-rate in the feedback tube, m3/s
Ul volumetric flow-rate in the load, m3/s
Uo scaling parameter for the volumetric flow-rate, m3/s
Up volumetric flow-rate in the power cylinder, m3/s
Uth volumetric flow-rate generation due to evaporation,

m3/s
V volume, m3

Vf volume of fluid in the feedback tube, m3

Vl volume of the load, m3

Vo equilibrium volume in the adiabatic space, m3

Vth fluid volume generation (displacement) due to evapora-
tion, m3

!x; x0 time-average (equilibrium value) of a time-varying
variable x(t)

x0ðtÞ ¼ xðtÞ $ !x time-varying fluctuation of a time-varying vari-
able x(t)

y vapour–liquid interface level in the displacer cylinder
relative to the equilibrium position, m

z vertical coordinate in a direction along the heat
exchangers, m

ZTOT total resistance of the NIFTE model network circuit,
kg/m4 s

Abbreviations
CLTF closed loop transfer function
CHX cold heat exchanger
HHX hot heat exchanger
LTP linear temperature profile
NTP nonlinear temperature profile

Dimensionless
b constant of proportionality
C+ normalised capacitance with respect to the nominal va-

lue
GTF transfer function relating the input thermal pressure Pth

to the output hydrostatic pressure in the displacer Pd

K dimensionless nonlinear gain (bifurcation parameter) in
the NTP model

K% critical value of the nonlinear gain (bifurcation parame-
ter) in the NTP model

K1 feedback constant in the LTP model
L+ normalised inductance with respect to the nominal value
bP dimensionless pressure
R+ normalised resistance with respect to the nominal value
Re Reynolds number
bT dimensionless temperature
bU dimensionless volumetric flow-rate

Operators
J imaginary part of eigenvalue
R real part of eigenvalue

Greek
a saturation temperature (maximum temperature fluctu-

ation amplitude) in the heat exchangers, K
b parameter that depends on the spatial gradient of the

heat exchanger wall temperature at equilibrium, 1/m
c dimensionless ratio of specific heat capacities of the

working fluid in the vapour phase
DThx maximum available temperature difference between

the hot and cold heat exchangers, K
gex,dev device exergetic efficiency
gex,sys system exergetic efficiency
k eigenvalue/pole
K dimensionless parameter that depends on the spatial

gradient of the heat exchanger wall temperature at
equilibrium

ll dynamic viscosity of liquid pentane, kg/m s
lw dynamic viscosity of water, kg/m s
qg density of pentane vapour, kg/m3

ql density of liquid pentane, kg/m3

qw density water, kg/m3
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Thermofluidic oscillators are a class of unsteady heat engines
that are capable of utilising low-grade heat to produce an oscilla-
tory motion, and therefore a useful work output. The Non-Iner-
tive-Feedback Thermofluidic Engine (NIFTE), whose output is
hydraulic work (i.e., fluid pumping, circulation or pressurisation),
is an example of such devices [3–5]. An experimental prototype
of the NIFTE has been reported as being capable of operating when
placed in-between a hot source and a cold sink with a temperature
difference of as low as 30 "C [6]. This prototype, whose key advan-
tages are its simple construction and small number of moving
parts, is currently being used as a basis for the development of a
low-cost pulsating fluid pump that would convert low-grade heat

(such as solar heat from collectors, or waste heat) to hydraulic
work. If the development of this pumping device is successful, it
will constitute the first example of a two-phase thermofluidic
oscillator ever to be applied practically for energy/carbon savings,
and also humanitarian applications for clean water provision.

As shown in Fig. 1a, the NIFTE is also a two-phase engine, whose
working fluid exists simultaneously in both the vapour and the li-
quid phases. The cyclic (periodic) evaporation and condensation of
the working fluid contained in the device induces a sustained oscil-
latory fluid motion from stationary (steady) heat sources and sinks,
via a hot heat exchanger that interfaces with the heat source and a
cold heat exchanger that interfaces with the heat sink.

r real part of a pole
s scaling parameter for time, s
v parameter that depends on spatial gradient of the heat

exchanger wall temperature at equilibrium, 1/Pa

w saturation pressure (maximum pressure fluctuation
amplitude), Pa

x angular frequency, rad/s

Fig. 1. (a) NIFTE fluid pump schematic. Points 1–9 denote the liquid level in the power cylinder (1), the point of attachment of the load (2), the liquid level in the displacer
cylinder (3), the hot heat exchanger (4), the cold heat exchanger (5), the feedback valve in the feedback line (connection) (6), the power cylinder (7), the displacer cylinder (8)
and the adiabatic vapour region (9), respectively. (b) Profile of the heat exchanger wall temperature according to the Linear Temperature Profile (LTP) model, superimposed
over the heat exchanger blocks within the displacer cylinder walls. The origin corresponds to the state in which the system is at equilibrium, that is when z = 0 and Thx = To.
The half-line defined by the LTP model for z > 0 corresponds to the HHX temperature profile as a function of displacement from the equilibrium (z = 0), whereas that defined
for z < 0 corresponds to the CHX temperature profile; where HHX denotes the hot heat exchanger and CHX the cold heat exchanger. (c) Nonlinear static relationship between
the temperature of the heat exchanger wall Thx and the height of the liquid level in the displacer cylinder z. Here, a is the temperature amplitude and b is a parameter that
depends on the slope of around the origin. At the equilibrium position, z = 0, the wall temperature is the same as the saturation temperature of the working fluid, which is the
equilibrium temperature To. Inset shows the equivalent linear (LTP) profile, with the same gradient at the origin.
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In common with other thermofluidic oscillators, the NIFTE de-
pends by design on the establishment of persistent dynamic oscil-
lations to operate. In order to understand the dynamics of the
NIFTE, various linear system models have been proposed [3–9].
These models were developed using methods similar to those
adopted in earlier studies, such as by Backhaus and Swift [10] for
the analysis and development of thermoacoustic engines, but also
by Ceperley [11] and Huang and Chuang [12], which exploit the dy-
namic similarities between the linearised first-order thermal, fluid
and thermodynamic processes occurring in the systems under
investigation and analogue electronic components. This realisation
leads to the development of equivalent electronic oscillator circuits
that allow the relatively straightforward prediction of approximate
stability/instability1 criteria and the estimation of heat and work
flows, and efficiencies. The knowledge gained by these methods is
crucial in the early-stage design of these technologies, when rapid
progress is required at short time-scales and with little effort, by
concentrating on the dominant underlying processes and effects.

Specifically, the aforementioned approach establishes suitable
electrical analogies to the linear first-order spatially lumped ther-
mal-fluid processes in a physical device, which are then repre-
sented by passive electrical components. Viscous and pressure
fluid flow drag, as well as heat transfer (thermal resistance) are
modelled by resistors, hydrostatic pressure and vapour compress-
ibility are modelled by capacitors, and the inertia of the fluid flows
(in the liquid state only) in various components is modelled by
inductors. The various electrical components are then connected
according to the interactions of the thermal-fluid processes in
the device, thus giving rise to an electrical oscillator circuit. In or-
der to model the NIFTE, the above mentioned modelling approach
was extended by including a description of exergy (or availability)
flows, and by allowing for the exergy losses that occur due to the
irreversible heat transfer across the finite temperature difference
between the external heat source/sink and the working fluid [3–
5]. Further information on how the linear network NIFTE models
were developed can be found in Refs. [3–9], where the above pro-
cedure is described in detail.

The first linear model developed for the NIFTE [3–5] did not in-
clude fluid flow inertia, as it was claimed that the NIFTE does not rely
on this effect for its operation [2]. However, some degree of inertia
will be present inevitably in any physical manifestation of this
two-phase engine, owing to the presence of liquid in certain compo-
nents (the pressure and displacer cylinders, feedback connection
and load; see Fig. 1a). The revised ‘inertive’ linear model of the NIFTE
proposed in Refs. [6,7] demonstrated that the inclusion of this effect
gives more realistic engine predictions than the original ‘non-iner-
tive’ model. As a result of this finding, subsequent models [8,9] have
included liquid inertia in their formulation, however, all previous
NIFTE models are based on linearised descriptions.

Furthermore, by employing the revised non-inertive linear NIF-
TE model and performing a sensitivity analysis, Markides and
Smith [6] proceeded to identify the four most important compo-
nents that determine the performance of the NIFTE, namely: (i)
the feedback connection; (ii) the power cylinder; (iii) the adiabatic
volume; and (iv) the thermal resistance associated with the two-
phase heat transfer in the heat exchangers. The authors suggested
that these components must be designed carefully in order to im-
prove the NIFTE’s performance.

Nevertheless, one key feature of the NIFTE pumping device is
that it exhibits sustained, robust periodic oscillations, with a spe-
cific characteristic amplitude and frequency that neither grow

nor decay during steady-state2 operation, when a constant and low
temperature difference is applied to the heat exchangers of the de-
vice. This behaviour persists despite recognised (though unintended)
fluctuations in the temperatures of the hot and cold heat exchangers,
and other inevitable natural disturbances to the operation of the de-
vice. This can be readily described as an ‘asymptotically stable limit
cycle’ behaviour, a characteristic specific to nonlinear dynamical sys-
tems. As mentioned previously, all models for the NIFTE that have
been developed thus far are linear. Although extremely useful in pro-
viding some local stability information and some insight into the ac-
tual operation and performance of the device, the linear models have
noteworthy limitations with regards to their ability to predict reli-
ably the behaviour of what is, actually, a nonlinear system.

The dynamical effects of nonlinearities on the mechanical and
thermodynamical characteristics of engines (e.g., efficiency, tran-
sient and steady-state behaviours, robustness to physical parame-
ter uncertainties and to external perturbations) have been
investigated in previous work (e.g., [13–16]). These studies have
shown how simple differential equation models that acknowledge
the presence of core nonlinear physical elements inherent to these
engines can help in understanding their observed nonlinear behav-
iour, in performing in-depth analyses of their predicted efficien-
cies, robustness and performance, and in suggesting design
solutions that improve their operational characteristics (e.g., en-
gine efficiency and power density). Such models enable the effi-
cient use of the engineering design cycle by allowing in silico
prediction, analysis and testing of various modifications before ac-
tual prototype-testing and implementation. Following the same
line of thought, in this paper, we propose, for the first time, a non-
linear Ordinary Differential Equation (ODE) model that takes into
account one of the core nonlinear element in a two-phase thermo-
fluidic oscillator, i.e., the inherent physical saturation in the rate of
heat exchange between the working fluid and the heat exchangers.

In summary, a more realistic representation of the NIFTE must in-
volve the development of a nonlinear inertive model. In the present
paper we include a nonlinear element in the description of the de-
vice; specifically, we impose a nonlinear description of the two
phase heat exchange process that occurs between the working fluid
and the engine’s heat exchangers. This model comprises a modified
static temperature profile imposed on heat exchanger walls, based
on an extension of the ‘Linear Temperature Profile’ (LTP) models
presented by Markides and Smith [6] and Solanki et al. [7,8]. The
resulting ‘Nonlinear Temperature Profile’ (NTP) model is then
probed to reveal information about the NIFTE technology.

To this end we perform a dynamical systems analysis3 of the
proposed nonlinear inertive model of the NIFTE. This leads to the
identification of a key parameter (termed the ‘nonlinear gain’ of
the system) through which the emergence of asymptotically stable
limit cycle oscillations can be explained and tuned. The approach al-
lows a systematic understanding of the effects of various important
parameters on the behaviour and performance (such as the oscilla-
tion frequency and amplitude, and the resulting exergetic efficiency)
of the model. In a wider context, this nonlinear extension to the lin-
ear NIFTE models is expected to allow for much improved predict-
ability, which is crucial for the employment of these models as
useful tools in the early-stage engineering design and development
of this, and also of other similar technologies.

Proceeding further, we use the results of the present analysis to
show how the main characteristics (frequency and amplitude) of
the sustained oscillations in the NIFTE, can be adjusted by modify-
ing the physical parameters of the device. This provides us with
rigorous information for the design or modification of the NIFTE

1 Note that the NIFTE operation requires a lack of stability in order to sustain the
oscillations.

2 By ‘steady-state’ we mean at long times from start-up, after any initial transients
have decayed.

3 Specifically, a local stability analysis combined with a bifurcation analysis, and a
time behaviour analysis through the numerical integration of the model equations
(these are explained in Section 4).

C.N. Markides et al. / Applied Energy 104 (2013) 958–977 961



with a priori defined engineering specifications such as output
flow-rate amplitude and frequency, and efficiency. Finally, the pre-
dictions of the nonlinear inertive model are also compared to sim-
ilar indications that arose from the equivalent inertive LTP models
[6–8].

2. Methodology

2.1. NIFTE configuration and operation

Fig. 1a shows a schematic diagram of the NIFTE when it is em-
ployed as a fluid (liquid) pump. A full description of the NIFTE
pump along with details concerning its operation can be found in
any of the Refs. [3–9]. Briefly and referring to Fig. 1a, the vertical
tubes denoted by Points 7 and 8 are the power cylinder and the
displacer cylinder, respectively. The two cylinders are connected
at the top by the vapour tube (9), and at the bottom by the feed-
back tube and valve (6). Inside the displacer cylinder are the hot
(4) and cold (5) heat exchanger blocks, which are the driving com-
ponents of the device. The NIFTE is filled with a working fluid that
exists (simultaneously) both in the liquid (grey region in Fig. 1a)
and vapour phases (white region). The hot heat exchanger (HHX)
is where heat is taken from an external heat source and supplied
to the working fluid causing it to evaporate. Conversely, the cold
heat exchanger (CHX) is where heat is rejected from the working
fluid causing it to condense. Finally, Point 2 is the NIFTE’s connec-
tion point with the load. When the NIFTE is used as a pump, this is
the point where the device is connected to the liquid medium that
is being pumped.

Sustained oscillations are achieved in the NIFTE by the periodic
evaporation and condensation of the working fluid (n-pentane [5])
in the displacer cylinder (Point 8), which occurs as the vapour–li-
quid interface level (3) oscillates vertically between the (alumin-
ium [3,5]) HHX and CHX blocks. During the heat addition
(evaporation) stage, the working fluid in the liquid phase comes
into contact with the HHX in the vertical displacer cylinder (8),
which causes it to evaporate. This leads to the generation of vapour
in the displacer cylinder, and hence in the combined vapour vol-
ume at the top of the device (white region in Fig. 1a). The increase
in pressure within the vapour volume as a result of the vapour gen-
eration leads to the downward displacement stroke of the vapour–
liquid interface level (liquid piston) in the power cylinder (1). As
this process takes place the hydrostatic pressure difference be-
tween the displacer and power cylinders (which are connected
by the feedback line) first decelerates and then reverses the liquid
piston flow in the power cylinder, while also causing the liquid le-
vel height in the displacer cylinder (3) to drop. Eventually the va-
pour–liquid interface level in the displacer cylinder comes into
contact with the CHX, leading to condensation of the working fluid
in the vapour phase over the cold, uncovered CHX surfaces. During
the ensuing heat rejection (condensation) process, the reduced
pressure in the vapour volume at the top of the device leads to
an upward displacement stroke of the vapour–liquid interface in
the power cylinder and a rise in the liquid level height in the dis-
placer cylinder (3), until eventually the vapour–liquid interface le-
vel in the displacer cylinder comes into contact with the HHX. This
completes a cycle of oscillation.

2.2. NIFTE model development

As can be seen in Fig. 1a, two regions can be identified in the
NIFTE: (i) a fluid domain where pressure differences (analogous
to voltage/potential differences) drive volumetric flow-rates (anal-
ogous to currents); and (ii) a thermal domain where the tempera-
ture difference (analogous to a voltage/potential difference)

between the heat exchangers and the working fluid drives a heat
flow (analogous to current). The following two sections address
the modelling of each of these domains.

2.2.1. Fluid domain
The methods adopted by Backhaus and Swift [10], Ceperley

[11], Huang and Chuang [12], and later Smith [3–5], are used in
the modelling of the fluid domain. The drag experienced by the li-
quid flows in the load (2) and in the feedback connection (6) are
modelled by the inclusion of resistors R (Eq. (1)), while the inertia
of the liquid flows in the load, the feedback line, the power cylinder
and the displacer cylinder are modelled by inductors L (Eq. (2)). In
addition, the hydrostatic pressures in the power (7) and displacer
(8) cylinders, as well as the expansion/compression of the vapour
volume at the top of the engine (9) are modelled by capacitors C
(Eq. (3)). It is assumed that the vapour expansion and compression
is adiabatic and reversible, and thus isentropic.

An extensive presentation of the modelling approach that al-
lows the aforementioned electrical analogies to be made can be
found in Refs. [6–9]. In summary, for each dominant fluid flow or
thermodynamic process or effect described above (i.e., drag, iner-
tia, gravity or compressibility) within each major component of
the physical device (i.e., load, feedback connection, power cylinder,
displacer cylinder, vapour volume), a linearised and spatially
lumped first-order governing equation is written in the Laplace do-
main in the form Ui = DPi/Zi, where Ui is the (Laplace transform of
the) volumetric fluid flow-rate through a particular physical com-
ponent ‘i’ and DPi is the (Laplace transform of the) pressure differ-
ence across that component. These equations are analogous to the
governing equations of passive electrical components, where Zi is
the impedance of each component.

Now, since the equations describing each process or effect
Ui = DPi/Zi are linear, the principle of superposition can be applied
to account for more than one process or effect within a particular
component in the physical device. Thus, working in the Laplace do-
main, whereby s is the Laplace variable that arises from differenti-
ation in the time domain, the five major NIFTE fluid components
can be described in terms of the three types of impedances (R, L
or C), as: Zad = 1/sCad for the adiabatic vapour volume, Zd = sLd + 1/sCd

for the displacer cylinder, Zf = Rf + sLf for the feedback connection,
Zl = Rl + sLl for the load, and Zp = sLp + 1/sCp for the power cylinder.
The definitions of the fluid domain electrical parameters Ri, Li

and Ci that result from the analogies and that appear in each
impedance Zi are given below, with respect to physical and
geometrical NIFTE variables [6–9]:

Rf ¼
lllf

pd4
f

; Rl ¼
lwll

pd4
l

ð1Þ

Ld ¼
qlld
Ad

; Lf ¼
qllf

Af
; Ll ¼

qwll

Al
; Lp ¼

qllp

Ap
ð2Þ

Cad ¼
Vo

cPo
; Cd ¼

Ad

qlg
; Cp ¼

Ap

qlg
ð3Þ

These parameters are then connected to form the fluid part of
the electrical network circuit for the NIFTE [6–9], and are also used
in the present work to model the same domain (Fig. 2).

Note that, in common with all previous models of the NIFTE, the
time-varying fluid flow, heat transfer and thermodynamic property
variables are purely oscillatory around their equilibrium values
(which coincides with their time-averages) and by convention
we are interested only in the magnitude of the fluctuating part of
these signals, i.e., x0ðtÞ ¼ xðtÞ $ !x, where !x ¼ xo is the time-average
(equilibrium) of variable x(t). By definition, the fluctuating parts of
all resulting variables x0(t) have a zero mean, and so for simplicity
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the primes (&)0 are dropped from the notation employed through-
out this paper. Thus, for example, Pad is the instantaneous difference
of the adiabatic vapour-space pressure from its equilibrium (time-
averaged) value. In addition, all variables are assumed to oscillate
with only small fluctuations around their time-averaged values.

2.2.2. Thermal domain – Linear Temperature Profile (LTP)
The thermal domain, which includes the complex time-varying

two-phase heat transfer in heat exchangers, is the most critical part
of the NIFTE, but it is also the least understood. In this domain, heat is
converted into pressurisation and fluid flow, which acts as the driv-
ing process for the device. A number of linear models have been pro-
posed for the two-phase heat transfer process that takes place
between the heat exchangers and working fluid. One such model
is the Linear Temperature Profile (LTP) model proposed originally
in Refs. [3–5] without the inclusion of fluid inertia, and extended
to include inertial effects by Markides and Smith [6] and Solanki
et al. [7].

More recently, Solanki et al. [8] proposed two further models for
the NIFTE, namely the Constant Temperature Difference (CTD) and
Dynamic Heat Exchanger (DHX) models, by focussing specifically
on two revised, but still linear, descriptions of the thermal domain.
In a follow-up study [9] the same authors extended the linear LTP
and DHX models to account for the exergetic losses that arise due
to the irreversible fluctuating (zero-mean) heat transfer in the de-
vice, as reported in Ref. [5]. In the present study we use as our start-
ing point the LTP model for the thermal domain with inertial effects
included in the NIFTE fluid domain as presented in Refs. [6,7].

It is assumed in this model that the spatial temperature profile
along the vertical walls of the heat exchangers Thx(z) is externally
imposed as a boundary condition to the device and that it is static
(or steady, i.e., it does not time-vary), as shown in Fig. 1b. It is also
assumed that the convective heat transfer coefficient associated
with phase change is considerably greater than that for the forced
convection taking place away from an ‘active’ region near the va-
pour–liquid interface of the working fluid within which phase-
change heat transfer occurs (see Fig. 2.14 on p. 67 in Ref. [5]).
Denoting the instantaneous vapour–liquid interface level position

in the displacer cylinder by y(t), the temperature on the heat ex-
changer wall that is experienced locally and instantaneously by
the working fluid at the location of the active phase-change region
is then Tw(t) = Thx(y(t)). Under these conditions, the equation gov-
erning the exchange of heat between the working fluid and the
heat exchangers is,

_Q ¼ To
_S ¼ hAs½TwðtÞ $ Tad( ð4Þ

where _Q is the heat transferred per unit time and _S the associated
rate of change of entropy, To is the equilibrium (time-averaged)
temperature, h is the phase-change convective heat transfer coeffi-
cient (which is assumed to be constant), As is the surface area over
which the heat transfer takes place, Tw(t) = Thx(y(t)) is the heat ex-
changer wall temperature experienced by the working fluid at the
position of the vapour–liquid interface z = y(t), and Tad is the tem-
perature of the working fluid. It is further assumed that As is con-
stant and equal to the multiple of the circumference of the heat
exchanger blocks and the constant height of the active phase-
change region, and that Tw(y) is directly proportional to the va-
pour–liquid interface height in the displacer cylinder y(t) [3–9].

Now, a connection is required between the thermal equation
(Eq. (4)) and the fluid domain equations. This is done by ‘referring’
the thermal domain variables to the fluid domain: (i) the heat flow
rate is converted to an equivalent volumetric flow-rate of vapour
(due to phase change) via _S ¼ qgsfgUth, where qg is the density of
the vapour and sfg is the specific entropy of vaporisation; and (ii)
the temperatures are converted to pressures via Tw = (dT/dP)satPth

and Tad = (dT/dP)satPad, where (dT/dP)sat is the rate of change of
working fluid temperature with pressure in the saturation region.
Thus, and under the assumptions made above with respect to Eq.
(4), this can then be re-written as,

Uth ¼
Pth $ Pad

Rth
; Rth ¼

qgsfgTo

hAsðdT=dPÞsat
ð5Þ

where Rth is the thermal resistance between the working fluid and
the walls of the heat exchangers. On applying electrical analogies
between: (i) volumetric flow-rate (i.e., ‘referred’ entropy change

Fig. 2. The complete inertive NIFTE-LTP circuit, as per Refs. [6–8], and the electrical circuit representation of the inertive NIFTE-NTP. Here, w is the maximum deviation of the
referred pressure from its equilibrium value and v is a parameter that depends on the slope of the sigmoidal function tanh(&) around the origin. Further, Ri denotes a resistance,
Ci a capacitance, Li an inductance, Pi a pressure and Ui a volumetric flow-rate. The subscript ‘th’ denotes the thermal domain, ‘ad’ the adiabatic domain, ‘l’ the load, ‘p’ the
power cylinder, ‘d’ the displacer (heat exchanger) cylinder, and ‘f’ the combined effect of the feedback line (pipe) and valve.
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due to heat flow rate) and current; and (ii) pressure (i.e., ‘referred’
temperature) and voltage, the thermal equation governing heat ex-
change (Eq. (5)) becomes equivalent to Ohm’s law, I = DE/Rth.

This completes the modelling of the inertive LTP model for the
NIFTE (NIFTE-LTP) and allows the circuit in Fig. 2a to be closed.
Referring to Fig. 2a, which shows the LTP model employed in Refs.
[6–8], and working in the Laplace domain, we can obtain two
important functions:

Uth ¼
Pth

ZTOT
;

ZTOT ) Rth þ ½sCad þ ðZl þ ZpfdÞ$1($1 ð6aÞ

Pd ¼ GTFPth;

GTF ) $ðsCdRthÞ$1ZatðZf þ ZdÞ$1½1þ Z$1
pfdðZat þ ZlÞ($1 ð6bÞ

Z$1
at ¼ sCad þ R$1

th ; Z$1
pfd ¼ Z$1

p þ ðZf þ ZdÞ$1

Here, Zd = sLd + 1/sCd is the impedance of the displacer cylinder
(representing flow inertia and hydrostatic pressure, respectively),
Zf = Rf + sLf is the impedance of the feedback connection (with the
two terms representing flow drag and inertia, respectively), Zl = -
Rl + sLl is the impedance of the load (representing flow drag and
inertia, respectively), and Zp = sLp + 1/sCp is the impedance of the
power cylinder (representing flow inertia and hydrostatic pressure,
respectively). These expressions contain the fluid domain electrical
analogy parameters defined previously in (1)–(3). In addition, we
have used the thermal resistance Rth, as defined in Eq. (5).

The first function (Eq. (6a)) is the total impedance ZTOT that re-
lates the referred ‘thermal’ pressure Pth (which is proportional to
the temperature on the heat exchanger walls at the location of the
active heat transfer region Tw) and the flow-rate as a result of the
heat input (and hence, the mass input due to phase change) into
the system Uth. The second function (Eq. (6b)) is the forward transfer
function that relates the thermal pressure Pth to the hydrostatic
pressure in the displacer cylinder Pd = qgy (and hence, the liquid le-
vel height in the displacer cylinder y). Both expressions are obtained
by combining the effects of the electrical components contained in
the NIFTE-LTP circuit in Fig. 2a [6–8]. Once known, all necessary
information about the system, such as efficiencies (defined in
Section 2.5), etc., can be evaluated from these two functions.

In addition to the transfer function between Pth and Pd stated in
Eq. (6b), there is an internal feedback loop in the NIFTE-LTP model
that arises from the imposed temperature profile on the walls of
the heat exchangers, specifically through a linear relationship
(Tw / y) between the heat exchanger wall temperature at the loca-
tion of the active heat transfer region Tw(t) = Thx(z) and the height
of the vapour–liquid interface in the displacer cylinder z = y(t)
[3–9]. The constant of proportionality is equal to the temperature
gradient along the heat exchanger walls (c = dThx/dz), which in
turns scales with the ratio of the temperature difference between
the heat exchangers to their respective vertical spatial separation.
By extension, the internal feedback equation for the NIFTE-LTP

model as formulated in Fig. 2a (on the left-hand side of the circuit)
in terms of pressures is,

Pth ¼ K1Pd ð7Þ

Eq. (7) linearly relates the thermal pressure Pth (i.e., the temperature
of the heat exchanger walls at the active heat transfer region) to the
hydrostatic pressure Pd = qgy (i.e., liquid level height) in the displac-
er cylinder via the use of a constant of proportionality K1, also
known as the ‘feedback gain’.

At this point the set of equations that govern the operation of
the NIFTE-LTP can be solved. Details of how this was done can be
found in Section 2.3, and also in Refs. [6–9].

2.2.3. Thermal domain – Nonlinear Temperature Profile (NTP)
The NIFTE-NTP model introduces a nonlinearity in the two-

phase heat transfer process between the heat exchanger and the
working fluid. Specifically, based on the fact that the temperature
on the heat exchanger walls Thx cannot increase or decrease indef-
initely with the vertical height in the heat exchanger blocks z (as
allowed by the LTP model; see Fig. 1b), it assumes that Thx (and
consequently also, Tw) saturates when the liquid level in the dis-
placer cylinder moves away from the equilibrium position (which
lies halfway between the HHX and CHX), at some distance towards
the ends of the heat exchangers. Fig. 1c shows a graphical repre-
sentation of the specific NTP model used in this work for the ver-
tical distribution profile of the heat exchanger wall temperature
Thx(z) = atanh(bz). As indicated, the (maximum) saturation ampli-
tude in Thx is denoted by a, while the slope at the origin is equal
to ab. Fig. 2b shows the electrical circuit representation of the NIF-
TE-NTP with the nonlinear heat exchanger temperature model. It
can be seen that this is similar to the NIFTE-LTP (Fig. 2a), with
the exception of the thermal domain on the left-hand side.

The thermodynamic state of this system can be specified by the
minimum number of independent thermodynamic variables re-
quired to fully describe the system. The five thermodynamic vari-
ables that were chosen to describe the state of the circuit diagram
in Fig. 2b are Pad, Pd, Pp, Uf and Up. These are the pressure in the va-
pour volume, the hydrostatic pressure in the displacer and pres-
sure cylinders (due to the liquid heights), and the volumetric
flow-rates in the feedback connection and pressure cylinder. A
mathematical model of the circuit can be obtained in a similar
way to the derivations relating to the linear equivalent in Sec-
tion 2.2.2, by applying Kirchhoff’s voltage and current laws to
Fig. 2b [17]. Furthermore, here we non-dimensionalise the result-
ing set of ODEs, which yields the following set of five governing
ODEs, one for each of the selected thermodynamic variables:

dbPad

dt̂
¼ s½K tanhðKbPdÞ $ bPad(

RthCad
þ

sUoðbUf þ bUpÞ
PoCad

ð8aÞ

dbPd

dt̂
¼

sUo
bUf

PoCd
ð8bÞ

dbPp

dt̂
¼ sUo

bUp

PoCp
ð8cÞ

The scaling parameters that were used to non-dimensionalise
all thermodynamic variables (plus time) in these equations were
chosen so as to allow the comparison of these variables with

dbUf

dt̂
¼
ðsPo=UoÞ½Ll

bPp $ Lp
bPad $ ðLp þ LlÞbPd( $ s½LlRf þ LpðRf þ RlÞ(bUf $ sLpRl

bUp

LlðLd þ Lf Þ þ LpðLd þ Lf þ LlÞ
ð8dÞ

dbUp

dt̂
¼
ðsPo=UoÞ½Ll

bPd $ ðLd þ Lf ÞbPad $ ðLd þ Lf þ LlÞbPp( þ s½LlRf $ ðLd þ Lf ÞRl(bUf $ sðLd þ Lf ÞRl
bUp

LlðLd þ Lf Þ þ LpðLd þ Lf þ LlÞ
ð8eÞ
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physically relevant reference values. For instance, Po = 1.013 bar
was chosen as the scaling parameter for all pressure fluctuations,
such that the pressure fluctuations in the system are referred to
atmospheric pressure. The full set of scaling parameters and phys-
ical variables used can be found in Table 1, while Table 2 contains
the relations used for the evaluation of the electrical parameters in
Eqs. (8a)–(8e).

In addition, Table 3 summarises the nominal values (along
with the corresponding investigated ranges used for the para-
metric study in Section 3.3) used for each electrical R, L and C
parameter. The nominal values indicated in this table as ‘‘Set-I’’

parameters are calculated based on the values of the physical
properties and variables in Table 1. The values of the physical
variables stated in Table 1, and hence also the Set-I nominal
parameters stated in Table 3, correspond to the configuration
of a working prototype of the NIFTE as presented in Refs. [6–
8], while the investigated ranges give the values of the parame-
ters when they are perturbed within a reasonable range from the
NIFTE prototype, again consistent with the efforts in Refs. [6,7].
In particular, the Set-I nominal load corresponds to a delivery
pipe 1 m long and with a diameter of 0.01 m that would in prac-
tice be connecting a supply tank of water to the destination
tank. The Set-II nominal parameters, which are also contained
in Table 3, are only used for the model validation effort pre-
sented in Section 3.2.

At this stage the set of five ODEs (Eqs. (8a)–(8e)) that govern the
operation of the NIFTE can be solved for the five thermodynamic
variables, given values for the parameters K and K in Eq. (8a). De-
tails of how this was done are included in Section 2.4. Based on the
results, it is then possible to investigate the performance of the
NIFTE-NTP model as a function of K and K. The dimensionless
parameter K is the ‘nonlinear gain’ and is defined with respect to
the other known parameters through,

K ¼ a
PoðdT=dPÞsat

¼ a
ToðdbT=dbPÞsat

;a ¼ DThx

2
ð9Þ

Recall, from Fig. 1c, that a is the maximum (saturation) temper-
ature amplitude on the heat exchanger walls. In addition, (dT/dP)sat

is the change of dimensionless temperature per unit of dimension-
less pressure in the two-phase saturation region, and To is the tem-
perature of the working fluid at equilibrium (time-mean)
conditions. The expression in Eq. (9) indicates that the nonlinear
gain K is proportional to a, and thus, it implies that K is propor-
tional to the maximum available fluctuation in (or, amplitude of)
the working fluid temperature in contact with the heat exchangers,
which in turn scales with the temperature difference between the
two heat exchangers.

Likewise, the dimensionless parameter K in Eq. (8a) is a func-
tion of parameter b that in turn depends on the slope at the origin
in the plot of Thx against z (see Fig. 1c), and can be expressed as,

Table 1
Nominal values (in accordance with Markides and Smith [6] and Solanki et al. [7,8]) of
the physical properties and variables that were employed in the present study, along
with the scaling variables Po,To, Uo and s that were used in the non-dimensionali-
sation of the NIFTE-NTP system of ODEs (Eq. (8)), and the value of the nonlinear
parameter A (normalised NTP parameter b). Also showing the corresponding
investigated ranges (in accordance with Solanki et al. [7]) of the physical variables
that were perturbed in the parametric study (Section 3.3).

Variable Nominal value Investigated range Units

Ad 4.48 + 10-4 9.71 + 105–7.34 + 10$3 m
Af 1.96 + 105 7.85 + 107–1.96 + l03 m
Al 7.85 + 10$5 7.07 + 10$6–7.85 + 10$3 m
Ap 4.52 + 10$4 1.96 + 105–7.85 + 10$3 m
As 1.60 + 103 1.07 + l0$4–1.22 + 10$1 m2

df 0.005 0.001–0.05 m
dl 0.01 0.003–0.1 m
g 9.81 – m2/s
h 4.61 + 103 1.00 + 103–2.00 + 104 W/m2K
ld 0.26 0.2–2 m
lf 0.15 0.05–0.5 m
ll 1 0.01–30 m
lP 0.55 0.2–2 m
sfg 1.16 + 103 – J/kg K

dT
dP

! "
sat

28.9 + 10$5 – K/Pa

Vo 1.94 + 10$4 2.37 + 10$5–2.25 + 10$2 m3

c 1.09 – –
ll 2.18 + 10$4 – kg/ms
lw 1.00 + 10$3 – kg/ms
qg 2.98 – kg/m3

qi 621 – kg/m3

qw 998 – kg/m3

Po 1.013 + 105 – Pa
To 309 – K
Uo 8.00 + l04 – m3/s
s 5 – s
K ¼ bPo

qlg
330 – –

Table 2
Electrical analogy component definitions, in accordance with Markides and Smith [6]
and Solanki et al. [7,8].

Electrical element Thermal-fluid effect Component expression

Resistance (R) Feedback valve flow resistance
(drag)

Rf ¼ 128ll lf =pd4
f

Load flow resistance
(pressure/viscous drag)

Rl ¼ 128lwll=pd4
l

Thermal resistance Rth ¼ qg sfgTo=hAs
dT
dP

! "
sat

Displacer cylinder inertia Ld = qlld/Ad

Inductance (L) Feedback tube inertia Lf = qllf/Af

Load inertia (fluid mass) Ll = qwlf/Af

Power cylinder inertia Lp = qllp/Ap

Vapour compressibility Cad = Vo/cPo

Capacitance (C) Displacer cylinder hydrostatic
capacitance

Cd = Ad/qlg

Power cylinder hydrostatic
capacitance

Cp = Ap/qlg

Table 3
Employed nominal values (‘‘Set-I’’ in accordance with Markides and Smith [6] and
Solanki et al. [7,8]; ‘‘Set-II’’ in accordance with Smith [3-5]) of the electrical
components of the NIFTE-LTP and NIFTE-NTP models, and corresponding investigated
ranges (in accordance with Solanki et al. [7]) used in the parametric study
(Section 3.3). Based on the values of the physical properties and variables provided
in Table 1 and the parameter definitions in Table 2.

Electrical Nominal values Investigated Units

parameter Set-I [6–8] Set-II [3–5] range

Rf 2.13 + 106 2.17 + l07 7.10 + 101–4.44 + 109 kg/m4 s
Rl 4.08 + 106 1.55 + l09 4.08 + 100–1.51 + 1010 kg/m4 s
Rth 5.02 + 108 8.00 + 108 3.13 + 107–7.20 + 109 kg/m4 s
Ld 1.80 + 105 1.58 + l05a 8.50 + 103–7.01 + 106 kg/m4

Lf 4.74 + l06 4.74 + l06a 1.57 + 104–3.95 + 108 kg/m4

Ll 1.27 + l07 1.51 + l07a 1.27 + 103–4.24 + 109 kg/m4

Lp 3.77 + l05 3.77 + l05a 7.90 + 103–3.16 + 107 kg/m4

Cad 1.76 + 109 3.70 + 10$9 9.84 + 1011–1.40 + 107 m4 s2/kg
Cd 7.35 + l08 2.15 + l07b 1.44 + l0$8–1.20 + 106 m4 s2/kg
Cp 7.43 + l0$8 7.38 + l0$8 3.22 + l0$9–1.29 + 106 m4 s2/kg

a No inductance (i.e., inertia) parameter values are provided in Refs. [3–5]. The
inductance values used in the present study were calculated from the definitions in
Table 2, and the description of the experiments on the NIFTE prototype in Refs. [3–
5].

b A value for the nominal hydrostatic capacitance in the displacer cylinder Cd was
not stated in Refs. [3–5], other than to state that this parameter should be within
the range from 7.59 + 10$8 to 2.15 + 10$7 m4 s2/kg. The value of Cd used in the
present study was chosen for consistency with our definition of Cp.
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K ¼ bPo

qlg
ð10Þ

The chosen value of b (=20 m$1) that was employed throughout
this study can be found in Appendix A. This value of b corresponds
from Eq. (10) to a value for K = 330 (as stated in Table 1).

2.3. NIFTE-LTP model solution

The stability of a linear system can be investigated by studying
its closed loop transfer function (CLTF) [18]. The performance of
the system is then evaluated at marginal stability conditions [6–
9]. The marginal stability condition of the NIFTE-LTP model in-
volves the solution of the system of equations that relate Pth and
Pd (i.e., Eqs. (6) and (7)) such that the output is purely oscillatory
with a constant amplitude. The CLTF C(s) corresponding to the NIF-
TE-LTP model in Fig. 2a is given by,

CðsÞ ¼
GTFðsÞ

1$ K1GTFðsÞ
ð11Þ

where GTF(s) is the forward transfer function relating the input pres-
sure Pth to the output pressure Pd defined in Eq. (6b), and K1 is the
feedback gain that relates Pd back to Pth (Eq. (7)).

The stability of the NIFTE-LTP model at a given value of feed-
back gain K1 is found by observing the (complex) poles of the CLTF
of this system, that is, the (complex) solutions of the polynomial
equation in s that results from setting the denominator of C(s) to
zero. The poles si = ri ± ixi are either purely real (xi = 0) or appear
in complex conjugate pairs. Each purely real pole (or, system
eigenvalue) represents a growing or decaying exponential, while
each complex eigenvalue pole (or, eigenvalue) pair represents a
single-frequency periodic oscillation (i.e., pure sinusoid with fre-
quency xi) whose amplitude can either grow (ri > 0) or decay
(ri < 0) exponentially, in the time response of the system. As in
any linear system with multiple eigenvalues, the overall system re-
sponse of the NIFTE-LTP model is a linear superposition of the re-
sponses represented by each eigenvalue. The response obtained in
this way is the same as that obtained by solving directly (without
the use of electrical analogies leading to circuit diagrams) the lin-
ear ODEs that model the system.

The solution of the NIFTE-LTP model results in a total of five
eigenvalues, including two complex conjugate eigenvalue pairs
and one real eigenvalue. Marginal stability occurs when one com-
plex eigenvalue pair lies on the imaginary axis and all other eigen-
values have negative real parts. In these conditions all stable
(decaying) responses of the eigenvalues with negative real parts
die away and the long-term behaviour of the system becomes
dominated by the marginal eigenvalue pair whose associated re-
sponse is oscillatory with a constant amplitude. The primary per-
formance indicators, such as the engine’s oscillation frequency
and associated exergetic efficiency, are then evaluated at marginal
stability, as is the value of the feedback gain K1 and associated tem-
perature gradient dTw/dy in the HHX and CHX that ensures that the
marginal stability condition is met.

In previous studies it was found that liquid flow inertia is
important to leading order in the modelling of the NIFTE [7] and
that the operation of the engine is sensitive to certain parameters,
such as the resistance (representing the flow drag) in the feedback
connection and the capacitance (representing the cross-sectional
area) in the power cylinder [8]. In fact, a systematic sensitivity
analysis in Ref. [6] identified the feedback connection, the power
cylinder, the adiabatic volume and the thermal resistance in the
heat exchangers as the components that need the most attention
in order to optimise the operation of the NIFTE in terms of effi-
ciency [6]. The findings of the linear NIFTE model studies form
an important basis for comparison with the present effort.

2.4. NIFTE-NTP model solution

All of the NIFTE-LTP equations are linear and, as such, the
resulting system can only exhibit one of three behaviours, depend-
ing on the value of the feedback gain K1: asymptotic stability,
instability and marginal stability. At low values of K1 the system
is asymptotically stable and the amplitude of the corresponding
solution (or, output) decreases exponentially, even if this exponen-
tial decay is oscillatory. Increasing the value of K1 leads to a critical
threshold value at which the system becomes marginally stable
and non-robust oscillations can be observed. By non-robust, we
mean that, at this condition, any slight disturbance or infinitesi-
mally small change in K1 will cause the system to either become
stable or unstable. For values of K1 above this threshold limit the
system is unstable and the amplitude of the corresponding solu-
tion grows exponentially. From experimental observations it was
confirmed that the NIFTE prototype undergoes robust sustained
oscillations, even when the gain is increased further [3–5]. This is
known as limit cycle behaviour and can only be explained by tak-
ing into account explicitly the nonlinear nature of the device. This
is the main aim of the present effort.

2.4.1. Critical gain and Hopf bifurcation point: numerical bifurcation
analysis

We return to Eqs. (8) to (10), which describe fully the nonlinear
NIFTE-NTP model. When the value of the nonlinear gain K in Eq.
(8a) (which scales with the temperature difference between the
heat exchangers as discussed below Eq. (9)) is small, the system
reaches an equilibrium that can be shown to be locally asymptoti-
cally stable, since the values of the real parts of all five eigenvalues
are negative. As K increases beyond a critical value K% (which cor-
responds to the critical parameter value at which a Hopf bifurca-
tion4 occurs, see next section), a pair of complex conjugate
eigenvalues cross the imaginary axis with non-zero speed and, as a
consequence, the system becomes locally unstable. Performing a
numerical bifurcation analysis and numerical time simulations (see
Section 3.1), the solution can be shown to converge to an emergent
(locally) attractive limit cycle [19].

MatCont, a numerical continuation toolbox for bifurcation anal-
ysis in MATLAB, was used to calculate the critical value K% of the
nonlinear gain K at the Hopf bifurcation point where limit cycle
behaviour is achieved with the minimum gain, and hence also,
the minimum temperature difference between the two heat
exchangers. In addition, the behaviour of the system was investi-
gated for values of K ‘slightly’ greater than the critical bifurcation
value K%. The frequency of oscillation of the system and its exerget-
ic efficiency were also evaluated for values of K = K% and ‘slightly’
above.

Numerical continuation algorithms such as MatCont are based
on the following working principle: given a first-order, but nonlin-
ear dynamical system _x ¼ f ðx; hÞ, where f ð&; &Þ : Rn + Rp ! Rn is a
continuous function of both x and h, and given initial parameter
values h0 and an associated equilibrium point x0 that is the solution
of the equation f(x0,h0) = 0, MatCont calculates the evolution of the
equilibrium values as the value of the bifurcation parameter is
modified by small increments [20]. This is known as an equilibrium
continuation process. In performing the numerical continuation
MatCont employs standard ODE solvers in MATLAB, which use var-
iable sampling step sizes for the numerical integration to obtain
the best error/speed of convergence compromise.

The values of the electrical parameters presented in Table 3, to-

4 At the Hopf bifurcation point (e.g., Fig. 3a) the real part of a pair of complex
conjugate eigenvalues is zero, and the angular frequency of oscillation x of the
solution at the Hopf bifurcation point is given by the imaginary part of the pair of
purely imaginary eigenvalues, i.e., x ¼ Iðk1Þ ¼ $Iðk2Þ; where k1 = ix, k2 = -ix.
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gether with equilibrium values for all five independent thermody-
namic variables (Pad, Pd, Pp, Uf and Up) set to zero and the nonlinear
parameter K (see Eq. (10)) set to 330, were used to initialise the
equilibrium continuation process in MatCont. With these initial val-
ues, the numerical continuation method reveals the existence of a
Hopf bifurcation point and the subsequent emergence of an asymp-
totically stable limit cycle for values of K > K%. The expression for the
critical K% in terms of other known physical parameters is,

K% ¼ a%
PoðdT=dPÞsat

¼ a%

ToðdbT=dbPÞsat

; ð12Þ

where a% is the critical saturation amplitude on the heat exchanger
walls at the Hopf bifurcation point. The value of K% associated with
the Set-I nominal parameter values (see Tables 3 and 4) is 0.098 and
this corresponds to a temperature difference of about 5.7 K between
the two heat exchangers.

2.4.2. System time-response: solution of ODEs via numerical
integration

The numerical integration of the NIFTE-NTP model described by
the nonlinear ODEs in Eq. (8) was performed using the variable
step size Runge–Kutta numerical solver ode45 available by default
in MATLAB. The ode45 solver is based on an explicit Runge–Kutta
(4,5) formula, also known as the Dormand–Prince pair [21]. It is a
one-step solver, that is, in computing the value of the thermody-
namic state variable xi at time-step n, xi(tn), it requires only the
solution of the independent thermodynamic state variables at
the immediately preceding time instant, xðtn$1Þ. Having solved
the NIFTE-NTP system of ODEs and recovered the dynamic re-
sponse of the NTP model, a single oscillation cycle is extracted
and from it a number of key metrics characterising their numerical
solutions are evaluated, namely the oscillation frequency and the
exergetic efficiency.

2.5. Exergetic efficiency evaluation

Thermal efficiency is a primary measure of the thermodynamic
performance of heat engines. It is a strong function of the temper-
ature at which heat is available to the heat engine. An improved
performance indicator involves a comparison of the thermal effi-
ciency of a heat engine with the efficiency of an equivalent Carnot
engine operating between the same hot source and cold sink tem-
peratures. This quantity is known as the exergetic efficiency and it
is defined as the ratio of the thermal efficiency of the heat engine to
that of the equivalent Carnot cycle [1,22]. Unlike the thermal effi-
ciency, the exergetic efficiency of heat engines operating across dif-
ferent temperature differences can be compared meaningfully.
Given that the heat source for the NIFTE is low-grade heat (heat
available at low temperature, and also typically, at little cost),
the Carnot efficiency will be inherently low. The exergetic effi-
ciency is used herein as the preferred performance indicator.

Two exergetic efficiencies can be defined for the NIFTE: the de-
vice exergetic efficiency, and the system exergetic efficiency [6].
The exergetic efficiency of the device is the work done in the load
(in the form of liquid pumping) relative to the exergy input into
the system, which is a measure of the total work potential of the
cycle undergone by the NIFTE. On the other hand, the exergetic
efficiency of the system is the work done in the load and dissipated
parasitically in the engine’s feedback tube (#6 in Fig. 1a) relative to
the exergy input into the system. Mathematically, the two exerget-
ic efficiencies are defined as:

gex;dev ¼
PlðtÞUlðtÞ

PthðtÞUthðtÞ
¼
H

PldVlH
PthdVth

ð13aÞ

gex;sys ¼
PlðtÞUlðtÞ þ Pf ðtÞUf ðtÞ

PthðtÞUthðtÞ
¼
H

PldVl þ
H

Pf dVfH
PthdVth

ð13bÞ

where Pf, Pl and Pth are the feedback, load and input thermal pres-
sures respectively, while Vf, Vl and Vth are the volume of the working
fluid in the feedback tube, the volume in the load, and the volume
associated with phase change. Recall that Uf, Ul and Uth are the vol-
umetric flow-rate through the feedback tube, the volumetric flow-
rate of the load, and the volumetric flow-rate due to phase change.

The device exergetic efficiency gex,dev is the time-averaged
power dissipated at the load relative to the total time-averaged
power into the electrical circuit, according to Eq. (13a). This can
be found by integrating PldVl and PthdVth numerically over one en-
gine cycle period. A similar procedure is followed to obtain the sys-
tem exergetic efficiency gex,sys, i.e., by integrating numerically PldVl,
PfdVf and PthdVth over one engine cycle period and using Eq. (13b).

3. Results and discussion

3.1. Operation with nominal parameters

The LTP and NTP models were presented in Sections 2.2.2 and
2.2.3, respectively. This section focuses on the operation of the
NTP model when using the nominal values of the electrical R, L
and C parameters. When referring to nominal values throughout this
section, unless otherwise stated, we refer specifically to those values
identified as ‘‘Set-I’’ in Table 3, in accordance with Markides and
Smith [6] and Solanki et al. [7,8]. As mentioned earlier, the Set-I
nominal values are based on a physical manifestation of the NIFTE
represented by values of the physical variables in a working proto-
type of the NIFTE described in Refs. [6–8] and summarised in Table 1.

3.1.1. Bifurcation analysis through numerical continuation
The bifurcation diagram for the NIFTE operating with all param-

eters at their nominal values is shown in Fig. 3a. A bifurcation dia-
gram is a plot that shows the qualitative change in the equilibrium
of a dynamical system when the value of a control parameter (also
known as a bifurcation parameter) is varied [19]. For the NIFTE, it is
a plot of a thermodynamic variable (here the displacer pressure Pd)

Table 4
Validation of NIFTE-NTP model with parameters set to the nominal value sets contained in Table 3 (‘‘Set-I’’ in accordance with Markides and Smith [6] and
Solanki et al. [7,8]; ‘‘Set-II’’ in accordance with Smith [3–5]) and with the NTP parameter K = 330.

Model prediction Oscillation frequency, fo (Hz) Exergetic efficiency Marginal/critical gain

Device efficiency, gex,dev (%) System efficiency, gex,dev (%) dThx
dz (K/cm) DThx (K)

NTP/Set-I 0.36 0.95 3.9 0.57 5.7
NTP/Set-II 0.098 12.4 12.5 13.7 137
LTP/Set-I 0.36 0.95 3.9 0.57 0.2–4.5a

LTP/Set-II 0.098 12.4 12.5 13.6 4.8–107a

a The minimum value is based on the gap between the two heat exchanger blocks of 3–4 mm [5]. The maximum value is based on the same gap
between the two heat exchanger blocks, plus a half-height of the heat exchanger blocks of 75 mm (90 mm for the HHX and 60 mm for the CHX) [5].
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against the nonlinear gain K and it shows how the stable equilib-
rium of the NIFTE becomes locally unstable when a critical value
K% of the nonlinear gain K is reached. The equilibrium point is sta-
ble for values of the gain K lower than K% = 0.098, but becomes lo-
cally unstable at values of K larger than K%. In other words, and
referring specifically to Fig. 3a, for K < K% the NIFTE is at a stable
equilibrium and does not operate (i.e., it does not oscillate). On
the other hand, for K > K% the NIFTE undergoes limit cycle oscilla-
tions with an amplitude that increases monotonically as K
increases.

As we have shown numerically using MatCont, for values of K
larger than K%, the nonlinear system exhibits asymptotically stable
limit cycle oscillations around the locally unstable equilibrium
point. In energetic terms, the critical bifurcation value K% corre-
sponds to the minimum temperature difference between the hot
and cold heat exchangers required to achieve sustained limit cycle
oscillations. Therefore, as stated in Section 2.4.1 and Table 4, the
value of K% corresponds here to a minimum temperature difference
of DThx = 5.7 K between the two heat exchangers for operation,
from Eq. (9). The amplitude of the oscillations grows as the gain
K is increased. This occurs physically in the actual NIFTE pumping

device by increasing the temperature difference between the heat
exchangers DThx.

3.1.2. Amplitude and frequency of oscillation
The amplitude and frequency of oscillation are two important

properties that define an oscillating system. Fig. 3b shows the rela-
tionship between the period of oscillations and the nonlinear gain
K. Interestingly, it can be seen that for a given model configuration
(that is, for a given set of electrical parameters R, L and C), the per-
iod and therefore the frequency of oscillation fo are independent of
the temperature difference between the heat exchangers DThx.

The effect of the temperature difference between the heat
exchangers DThx on the oscillation amplitudes of the five selected
thermodynamic pressure and flow-rate variables is shown in
Fig. 4. It was found, from Fig. 3a, that when K is increased beyond
the critical value K%, the amplitude of oscillation increases parabol-
ically as the temperature difference increases in the immediate
vicinity of the bifurcation point. This is a standard observation
for a Hopf bifurcation point. However, further away from the bifur-
cation point, Fig. 4 shows that the amplitudes of oscillation vary
linearly with the nonlinear gain K (i.e., the temperature difference

Fig. 3. (a) Bifurcation diagram for the nominal NIFTE. It gives the qualitative asymptotic behaviour of the system when a control parameter (the nonlinear K gain in this case)
is varied. The arrow is pointing to the Hopf bifurcation point which occurs at the critical value of the nonlinear gain, K% = 0.098. To the left of the arrow is a continuous
horizontal line (seen more clearly in the inset) that represents the position of the locally stable equilibrium point. Beyond the critical value K%, the equilibrium point becomes
locally unstable and the continuous horizontal line bifurcates to give the maximum and minimum amplitude of the limit cycle (as seen through the state variable Pd). The
dashed horizontal line represents the position of the locally unstable equilibrium that exists for values of K larger than K%. (b) Period of oscillation for the Set-I nominal NIFTE
against nonlinear gain K.

Fig. 4. Maximum amplitude of: (a) the pressure oscillations, and (b) the flow-rate oscillations in various components against the temperature difference between the heat
exchangers DThx.
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between the HHX and CHX). This linearity is a particular non-triv-
ial characteristic of the NIFTE-NTP model.

Hence, two important conclusions can be drawn at this point:

1. The amplitudes and frequency of the oscillations of the thermo-
dynamic properties and heat and fluid flow (pumping) variables
can be controlled/adjusted independently of each other, and
specifically;

2. The amplitudes grow linearly with K (i.e., the heat exchanger
temperature difference) whereas the frequency is independent
of K, but is a function of other device parameters.

This has the following very powerful consequences in terms of
design:

1. The fluctuating amplitudes of the properties/variables can be
scaled in proportion to the temperature difference that is estab-
lished in the heat exchangers, and;

2. Once these have been set, the frequency of oscillation can be
adjusted by choosing the right set of physical (materials, con-
struction) parameters for the NIFTE pump.

3.1.3. Dynamic system response time-simulation
The NIFTE was reported in Ref. [5] as operating across a temper-

ature difference between its heat exchangers of approximately
80 K. In order to examine the dynamic behaviour of the system
at this condition, a value of K = 1.37, which corresponds to a tem-
perature difference of 80 K, was used to run time simulations for

the NIFTE-NTP model. The results of this simulation are shown in
Fig. 5.

In Fig. 5a it can be seen that the pressures in the displacer cyl-
inder Pd and power cylinder Pp are sinusoidal, whereas the pressure
in the adiabatic region Pad exhibits a ‘beating’ phenomenon. This is
the first instance of a model of the NIFTE pump that has been capa-
ble of predicting this type of behaviour, which is fundamentally
different from what is observable in the response of the linear
models where all the thermodynamic variables vary sinusoidally
with time. The beating phenomenon has been observed experi-
mentally in the same conditions (see Fig. 4.6 on p. 138 in Ref. [5]).

The temporal evolutions of the volumetric flow-rates in the
feedback tube Uf, the load Ul and the power cylinder Up, are shown
in Fig. 5b. Only the volumetric flow-rate of the working fluid
through the feedback tube Uf is a pure sinusoid. This is expected
as the volumetric flow-rate through the feedback tube is equal to
the flow-rate in the displacer cylinder (see Fig. 2b). Since the pres-
sure in the displacer cylinder Pd is a sinusoid (Fig. 5a), the flow-rate
in the displacer cylinder and therefore the feedback tube Uf must
also be sinusoids. The flow-rate into the load Ul is the most impor-
tant flow-rate variable to the user, as it determines the pumping
capability of the NIFTE. Again, this exhibits a ‘beating’ phenome-
non, which is a type of behaviour that is not predicted by any of
the linear models. As a final comment it is pointed out, as demon-
strated by Fig. 5c and also by the thermodynamic cycle diagrams in
Fig. 7, that beating is not always observed by the NIFTE-NTP. In
fact, Set-II nominal values do not give rise to such behaviour,
though clearly the oscillations are still not sinusoidal as would be
predicted by the linear models.

Fig. 5. (a) Pressures and (b) volumetric flow-rates against time, in various components. Both for Set-I nominal parameters. (c) Repeat of (b), but for Set-II nominal parameters.
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3.1.4. Useful flow-rate and exergetic efficiency
It was mentioned above that the average volumetric flow-rate

of the liquid being pumped is a quantity that is of prime impor-
tance to the designer and user of the NIFTE device. The useful
time-average volumetric flow-rate is the total volume of liquid
pumped from the pump into the load during the half-cycle when
liquid is displaced out of the device over the complete cycle period.
The effect of the temperature difference between the heat
exchangers on the useful average volumetric flow-rate is shown

in Fig. 6a, where it is evident that the useful average volumetric
flow-rate through the load is directly proportional to the HHX-
CHX temperature difference. Clearly, there is an incentive to use
as high a temperature difference as possible across the NIFTE,
though this will be limited by the external heat source and heat
sink temperatures with which the NIFTE will interface thermally.

Based on our proposed nonlinear model, Eqs. (13a) and (13b)
were used to evaluate the system and device exergetic efficiencies
of the NIFTE for the nominal pump configuration at varying

Fig. 7. (a) Feedback pressure Pf vs. volume of working fluid Vf for one period of oscillation. (b) Load pressure Pl vs. volume into the load Vl. (c) Input thermal pressure Pth vs.
volume generated as a result of evaporation Vth. Showing results for both sets of nominal parameter values (from Table 3).

Fig. 6. (a) Useful average volumetric flow-rate hUli, and (b) exergetic efficiency measures gex against the temperature difference between the heat exchangers DThx.
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nonlinear gains and hence HHX-CHX temperature differences. The
results are shown in Fig. 6b and where obtained by evaluating the
areas enclosed inside the Lissajous plots in Fig. 7a–c. In particular,
the integrals of these three plots are equal to: the work dissipated
parasitically in the feedback tube; the useful work done in the
load; and the total exergy input (work potential) to the system,
respectively, over a complete cycle of oscillation [6,22]. The exer-
getic system and device efficiencies gex,sys and gex,dev were evalu-
ated using the appropriate quantities according to Eqs. (13a) and
(13b). For instance, the system exergetic efficiency gex,sys is the ra-
tio of the work done in the load to the work input into the NIFTE.

The effect of the HHX-CHX temperature difference DThx on both
exergetic efficiencies is shown in Fig. 6b. This plot indicates that
the device gex,dev and system gex,sys exergetic efficiencies are fairly
constant with an increasing DThx over the temperature range from
30 K and higher, which reflects temperatures of low- to medium-
grade heat sources up to ,300 "C. However, at temperature differ-
ences lower than 30 K, and down to the critical (minimum) DThx of
,6 K, both efficiencies drop quickly and approach their nominal
values, which are 0.95% and 3.9% for the device and system exer-
getic efficiency, respectively (see Set-I results in Table 4). It can
be deduced from Fig. 6b that neither of the two exergetic efficien-
cies are a strong function of the temperature difference across the
device for heat source temperatures at and greater than 40–50 K or
so, unlike the average volumetric flow-rate which shows a signifi-
cant improvement with increasing DThx. This can be explained by
considering that at larger temperature differences both the total
exergy (work) input as well as the work done in the load increase,
while their ratio remains approximately the same. On the other
hand, for very low temperature heat sources, which are near the
critical DThx, the efficiency will show a rapid improvement initially,
before levelling off due to the effect of the saturation in the
nonlinearity.

3.2. Model validation

Before proceeding to the parametric investigation based on the
nonlinear NIFTE-NTP model that immediately follows the current
section (in Section 3.3), it is important to compare quantitatively
the results from this revised model with: (i) results relating to
nominal NIFTE configurations for the limiting case of near-critical
gain, when we expect the results to tend towards the predictions
of the linear NIFTE-LTP model in marginally stable conditions (Sec-
tion 3.2.1); (ii) both NIFTE-LTP model predictions and experimen-
tal data that have been made available from earlier studies [3–5]
for the variations of key performance indicators (specifically the
oscillation frequencies fo and engine efficiencies gex) when impor-
tant device parameters (specifically the feedback and load resis-
tances Rf and Rl) are perturbed from their nominal values
(Section 3.2.2); and (iii) experimental data on the amplitudes and
relative phases of key thermodynamic properties and the mea-
sured thermodynamic cycles (specifically P–V diagrams) from the
same experimental studies (Section 3.2.3).

3.2.1. Comparisons with the nominal NIFTE-LTP
Firstly, the predictions from the NIFTE-NTP model with the non-

linear bifurcation parameter K set to a value ‘slightly’ greater than
its critical value K% are compared to the corresponding predictions
generated by the NIFTE-LTP for a nominal configuration. Two sets
of nominal R, L and C parameter values are employed here, both
of which are stated in Table 3. Set-I nominal values correspond
to the configuration of a working prototype of the NIFTE as sug-
gested in Refs. [6–8], while Set-II nominal values are taken directly
from Ref. [5], which reported on the construction and testing of the
NIFTE prototype pump, and where an early effort was made to
evaluate these parameters experimentally.

The outcome of our nominal system comparison is summarised
in Table 4. Note that, in this table the values of the HHX-CHX tem-
perature differences DThx in the LTP column are approximate esti-
mates, based on the marginal stability gain (i.e. heat exchanger
temperature gradient dThx/dz) and an indicative length between
the two heat exchangers. The minimum length is taken as the
physical gap between the two heat exchanger blocks, reported as
being 3–4 mm in Ref. [5]. The maximum length is taken as
75 mm (plus the gap), which is the half-height of the combined
HHX and CHX blocks that were 90 mm and 60 mm long, respec-
tively. The agreement between the two models with regards to
the oscillation frequency, the two exergetic efficiencies, and the
‘near-critical’/marginal (minimum) gain required for oscillation is
excellent, as would be expected at low nonlinear gains, reflecting
a correct implementation of the NIFTE-NTP model. Interestingly
the two measures of efficiency, namely the device gex,dev and sys-
tem gex,sys exergetic efficiency, are different for the Set-I nominal
system, but similar for the Set-II system. In addition, the Set-II sys-
tem shows considerably higher efficiencies. The most significant
difference between the two sets of nominal values is the three or-
ders of magnitude change in Rl. On this evidence it can be sug-
gested that most of the exergy in the Set-II system is dissipated
in the load, which would also explain the significantly lower fre-
quencies of operation fo. In a practical setting both of these perfor-
mance indicators would be important in determining the eventual
flow-rate capability of the NIFTE.

3.2.2. Variations of performance indicators
Having investigated the LTP and NTP two nominal configura-

tions of the NIFTE in the previous section, Fig. 8a–c shows results
from the linear and nonlinear models, in both cases compared to
experimental data points taken from Ref. [5] (in particular
Figs. 4.15–4.21 on p. 151–160). In these plots one can examine
the variations of the oscillation frequency fo and engine exergetic
efficiency gex when the feedback and load resistances Rf and Rl

are perturbed from their Set-II nominal values, with K = 3.41
(DThx = 200 K) and K = 330. Recall, from Table 4, that the critical
value of the bifurcation parameter was K% = 2.34 (DThx = 137 K).

It can be seen in Fig. 8a–c that the trends for the investigated
quantities are captured, and that the reported magnitudes of the
performance indicators are reasonable considering the uncertainty
in the evaluation of the electrical parameters and the experimental
errors associated with the data points (these are estimated as being
of the order of ±20%, being dominated by the error in the volumet-
ric displacement measurement5). Also shown are two additional
trend lines for higher Rth, which demonstrate an improved prediction
of the frequency fo and device efficiency gex,dev. This suggests that,
either this parameter has been significantly under-predicted, or
one or more exergy loss mechanisms are absent from the description
of the engine. Nevertheless, the overall agreement with the experi-
mental data is sufficient to allow predictions with some confidence,
without the necessity to include additional complexity into the cur-
rent model.

3.2.3. Thermodynamic properties and cycles
Finally, Fig. 8d shows Pad – Vl diagrams at selected Rl from the

NIFTE-NTP and comparison with data taken from Ref. [5]
(Fig. 4.23 on p. 162). The two cycles from the NIFTE-NTP were gen-
erated with all system parameters set to their nominal (Set-II) val-
ues, a nonlinear gain that matches the known temperature
difference used in these experiments of DThx = 60 K (K = 1.02),
and K = 330. As the setting (value) of the feedback resistance

5 Based on the total random error of ±2.5 cm3 for this variable reported in Ref. [5]
(on p. 137), and a measured displacement amplitude in the range 10–15 cm3.
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was not stated, Rf was adjusted to match the measurements. The
main experimental observations are captured well; an increase in
load resistance Rl leads to reduced liquid displacement amplitudes
in the load Vl and (less so) an increased pressurisation of the work-
ing fluid in the vapour phase in the adiabatic chamber Pad, though
the pressurisation amplitude is slightly overpredicted by the mod-
el. The general shapes of these diagrams also reveal information on
the phase relationships between the two plotted variables, which
on the evidence of Fig. 8d is also well represented by the NIFTE-
NTP description.

Thus, it can be concluded that the NIFTE-NTP model can capture
the first order effects undergone by the NIFTE device within a
range of operation that is close to that corresponding to the exper-
imental prototype pump described in Refs. [3–5], and provide rea-
sonable predictions of its dynamic behaviour and performance.
With this in mind it is possible to proceed to a parametric study
based on this model, with a view to exploring the NIFTE’s design
for improved performance.

3.3. Parametric study of operational performance

In a previous study it was observed that the NIFTE is highly sen-
sitive to the capacitance in the power cylinder Cp and the resis-
tance in the feedback tube Rf [6]. In addition to this, the effect of
the load parameters, that is the load resistance Rl and inertia Ll,
are of great importance to the designer as these are specifications
of the device, which are set externally by the application (i.e., the
setting within which the NIFTE pump is to operate). The results
presented in this section concern the independent perturbation

of each of these parameters within a certain range, while all other
parameters are set to their Set-I nominal values. The range over
which each parameter is perturbed is given in Table 3. The effects
of Rf, Rl, Ll and Cp on the NIFTE’s performance are presented in this
section. In Fig. 9 and subsequent plots that concern the electrical
parameters, the abscissa has been normalised using the nominal
value of the corresponding parameter. The nominal value of a
parameter is thus observed at a normalised value (denoted by
the superscript ‘+’) of 100 = 1.

3.3.1. Condition for oscillation
The minimum value of the gain parameter K necessary for the

system to exhibit sustained limit cycle oscillations is given by
the critical bifurcation value K% calculated as the value at which
two complex conjugate eigenvalues cross the imaginary axis. The
critical value K% of the gain K allows one to estimate the minimum
temperature difference between the heat exchangers that is re-
quired to achieve sustained oscillations. In this section, we discuss
the effects of the parameters Rf, Rl, Ll and Cp on K%, i.e., on the min-
imum temperature difference between the heat exchangers that
would be required in order to induce sustained limit cycle oscilla-
tions. These four parameters are used throughout the present pa-
per because the NIFTE efficiencies have been shown to be most
sensitive to Cp and Rf [6], while the parameters related to the load,
Rl and Ll, can reveal important information regarding the most suit-
able deployment of this early-stage technology.

The plots in Fig. 9 delineate different stability regions. Below
these curves the system is (locally) asymptotically stable, whereas
above these curves it is unstable. The minimum temperature

Fig. 8. (a) and (b) Oscillation frequency fo for varying RfCd and Rl (normalised by its nominal value), respectively. (c) Device exergetic efficiency gex,dev for varying RfCd. (d)
Pressure–volume Pad-Vl diagrams from the NIFTE-NTP model (with a nonlinear gain of K = 1.02 corresponding to a HHX-CHX temperature difference of DThx = 60 K) and
comparison with experimentally obtained data points taken from Ref. [5] for the range of provided in this reference. Unless otherwise stated, all parameters are set to their
Set-II nominal values (stated in Table 3), and K = 330.
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difference between the HHX and CHX required to make the system
unstable for the nominal configuration is approximately 5.7 K,
while the minimum temperature gradient at the origin in these
conditions is 0.57 K/cm. The value of 5.7 K is about 20 times great-
er than that predicted by the (linear) Constant Temperature Differ-
ence (CTD) model [7,8] for the same (nominal) configuration. On
the other hand the temperature gradient is in complete agreement
with the value of 0.57 K/cm that was obtained with the NIFTE-LTP
model [7]. This is of course expected, as the NIFTE-LTP is a linear-
ised version of the NIFTE-LTP around the equilibrium point. The
minimum temperature difference between the heat exchangers in-
creases monotonically as Rf, Rl and Cp increase as shown in Fig. 9a, b
and d, respectively. Interestingly, a minimum in the minimum
temperature difference required to make the system unstable is
observed when perturbing the load inertia Ll, as shown in Fig. 9c.

3.3.2. Oscillation frequency
The effects of the resistance in the feedback tube Rf and the

resistance in the load Rl, the inertia in the load Ll and the capaci-
tance in the power cylinder Cp on the oscillation frequency of the
NIFTE fo are shown in Fig. 10. Specifically, Fig. 10a and b shows
the frequencies predicted by the NTP and LTP models respectively,
when Rf, Rl, Ll and Cp are perturbed within the ranges given in Ta-
ble 3. The oscillation frequency of the NIFTE is an important perfor-
mance indicator as it is directly proportional to the pumped
hydraulic power and pumped flow-rate capacity of the device.

An important first conclusion is that the frequencies predicted
by the LTP and NTP models are almost identical. Experimentally,
the NIFTE prototype pump has been reported to operate at
fo = 0.1–0.2 Hz in Refs. [3–5]. Specifically focussing on variations
in load and feedback resistance, Rl and Rf, respectively, it was ob-
served that experimentally increasing resistance leads to a lower
oscillation frequency [3–5]. From Fig. 10a and b it can be seen that
both the LTP and NTP models predict the correct trend for increas-
ing Rf and Rl. So in summary, it can be seen that both the LTP and

the NTP models predict similar frequencies, in broad agreement
with actual experimental observations.

Furthermore, in both models, perturbing Rf, Rl and Ll below their
nominal respective values does not noticeably affect fo. On the
other hand, the frequency drops monotonically when the same
variables are perturbed above their nominal values. The relation-
ship between fo and Cp shows an interesting feature, which was
also reported in Ref. [8]. This involves the appearance of a discon-
tinuity in the oscillation frequency when Cp is perturbed by about
101 from its nominal value. It may be concluded that the linear
models are perfectly adequate in predicting the oscillation fre-
quency of the NIFTE.

3.3.3. Exergetic efficiency
In order to calculate the device gex,dev and system gex,sys exerget-

ic efficiencies from Eqs. (13a) and (13b) respectively, it was neces-
sary to evaluate the areas enclosed inside the plots of Pth(Vth) in
Fig. 7a–c; these plots are equivalent to T–S diagrams, or plots of
T(S)). To this end, dynamic simulations of the NIFTE-NTP model
were run by fixing a value for the gain K that is higher than the crit-
ical Hopf bifurcation value K%. The particular value of K (or, equiv-
alently, temperature difference between the heat exchangers) that
was selected is not significant in terms of the resulting efficiency
predictions from the model, as long as it is greater than the critical
value K% above which the system exhibits oscillatory, limit cycle
behaviour. This statement is made on the evidence of Fig. 6b,
which demonstrates that both exergetic efficiencies are almost
independent of the value of K. A value of K = 1.37, which corre-
sponds to a temperature difference of about 80 K between the heat
exchangers that was reported in Ref. [5], was used here to run the
dynamic simulations whenever a parameter was perturbed from
its nominal value. Recall that in each investigated model configura-
tion (i.e., selection of values for the set of perturbed electrical
parameters) in the parametric study, all parameter values other

Fig. 9. (a) Temperature difference DThx vs. feedback resistance Rf, (b) temperature difference DThx vs. load resistance Rl, (c) temperature difference DThx vs. inertia in the load
Ll, and (d) temperature difference DThx vs. capacitance in the power cylinder Cp. All independent variables are normalised by their respective nominal values (Set-I in Table 3),
with the exception of the insert in (a), which shows the Set-II nominal result for DThx as a function of RfCd, with a nominal Cd.
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than the single one that was being parametrically varied were set
to nominal.

However, for some model configurations the Hopf bifurcation
point was associated with critical values of nonlinear gain K% great-
er than 1.37. Therefore, when investigating the model with these
parameter values, using a value of K = 1.37 in the dynamic simula-
tions would not have resulted in oscillatory behaviour. To achieve
oscillations in this case, values of K = 3.42 were employed, repre-
senting a temperature difference of 200 K between the heat
exchangers. The cases (i.e., model configurations associated with
a particular set of parameter values) in which the value for the
nonlinear gain used for running dynamic simulation was
K = 3.42, such that the heat exchanger temperature difference
was 200 K, are indicated clearly in these figures by crosses and
dashed lines.

Fig. 11 shows results related to the Set-I nominal NIFTE config-
uration, as described in Table 3 and in Section 2.3.3. The predic-
tions concerning the device exergetic efficiency gex,dev from both
the LTP and NTP models indicate that this decreases monotonically
as Rf increases, reaching a value of about 1% at the highest investi-
gated values of Rf. Above its nominal value Rf does not affect gex,dev

in either model, whereas below its nominal value an increasing Rf

causes a decrease in gex,dev; this is more evident in the LTP results.

The implication is that the effect of the feedback valve setting on
gex,dev is strongly affected by the design of the rest of the NIFTE sys-
tem; compare for example the trend here with that in Fig. 8c, gen-
erate for the Set-II nominal system.

Importantly, although at the lower Rf the linear model (Fig. 11b)
tends to predict significantly higher efficiencies, at near-nominal
configurations it is associated with lower efficiency values com-
pared to the nonlinear equivalent. In particular with regards to
gex,dev at near-nominal values of Rf, the NTP model predicts efficien-
cies (,2.5%) approximately 2.5 times higher than the equivalent
LTP ones (,1%). This arises possibly as a consequence of the differ-
ence in the input pressures in the two models. In any case, these
values are considered low, but in relatively good agreement with
direct experimental evidence [5,6]. For comparison, from Ref. [5],
the device exergetic efficiency was stated as being between 0.4%
and 1.6% increasing monotonically with increasing Rf.

Further, the system exergetic efficiency gex,sys in the NIFTE pro-
totype was measured and found to be between 3% and 10% [5]. It
can be seen in Fig. 11 that, unlike the device efficiency, gex,sys does
not increase monotonically with decreasing Rf. The NTP model re-
veals an optimum value at low resistance settings, whereas the LTP
model shows a continual improvement as Rf is progressively re-
duced. Both models predict the efficiencies in the correct range

Fig. 10. Effects of the resistance in the feedback tube (Rf), resistance in the load (Rl), inertia in the load (Ll), and capacitance in the power cylinder (Cp) on the oscillation
frequency fo from the: (a) NIFTE-NTP (nonlinear) model; and (b) NIFTE-LTP (linear) model. The independent variables are normalised by their respective nominal values (Set-I
in Table 3). In (a) the nonlinear gain is set to K = 1.37 (representing an DThx = 80 "C temperature difference between the heat exchangers), except for the results indicated by
the symbols ‘+’ for which the model demonstrated asymptotically stable behaviour (i.e., a lack of oscillation) with K < K⁄. For these points a higher gain of K = 3.42 was used,
corresponding to DThx = 200 "C.

Fig. 11. Effect of the feedback resistance Rf on the two measures of the NIFTE exergetic efficiency gex from the: (a) NIFTE-NTP (nonlinear) model; and (b) NIFTE-LTP (linear)
model. Rf is normalised by its nominal value (Set-I in Table 3). In (a) the nonlinear gain is set to K = 1.37 (representing an DThx = 80 "C temperature difference between the heat
exchangers), except for the results indicated by the symbols ‘+’ for which the model demonstrated asymptotically stable behaviour (i.e., a lack of oscillation) with K < K%. For
these points a higher gain of K = 3.42 was used, corresponding to DThx = 200 "C.
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and order of magnitude. When Rf is increased by a factor of more
than 102 relative to its nominal value, the device and system exer-
getic efficiencies deteriorate and approach each other to a value of
about 1%, in both models.

Results related to variations in the load (Rl and Ll) beyond the
nominal configuration explored above are shown in Fig. 12. The de-
vice and system exergetic efficiencies show a peak in the nonlinear
model when both Rl and Ll (Fig. 12a) are perturbed past the nom-
inal values. This finding has noteworthy implications for the design
of these devices. Furthermore, the linear model predicts maximum
efficiencies of about 60% for the range of Rl and Ll investigated,
whereas the nonlinear model predicts maximum efficiencies of
about 20%. This may be explained by the fact that, unlike the linear
model, the nonlinear model does not allow temperature excursions
outside the saturation temperature amplitude in the heat exchan-
ger walls as the liquid level in the displacer cylinder approaches
the ends of the heat exchangers. The 60% prediction for the effi-
ciencies from the linear model is unrealistically high; the maxi-
mum system exergetic efficiency observed experimentally was
reported as ,10% [5]. It is also evident from these figures that
the nominal configuration is acutely sub-optimal, with signifi-
cantly lower efficiencies than the maximum values reported here.

Lastly, the effect of the capacitance in the cylinder Cp on the
exergetic efficiency measures is shown in Fig. 13. The discontinuity

that appears in the exergetic efficiency that has been previously
presented in the LTP model [8] is also observed in the NTP model
when perturbing Cp, so this is not a result of the nonlinearity, but
of the switch in the dominant frequency in the output of the sys-
tem reported in Ref. [8]. Both the LTP and NTP models predict high
efficiencies, with the LTP model predicting generally higher values,
as before, especially at low values of Cp. The discontinuity at higher
Cp has not been reported experimentally, but this is due to the fact
that such high values of Cp have not been previously employed. It is
something that is worth attempting in future investigations.

4. Further discussion and conclusions

A nonlinearity has been introduced into an existing (linear)
model for the NIFTE fluid pump, whereby the temperature of the
heat exchangers is allowed to saturate at long distances from the
equilibrium level that is found halfway between the two heat ex-
changer blocks. Simulations with this model have shown that its
frequency of oscillation does not depend on the temperature differ-
ence between the hot and the cold heat exchangers, and also, that
this frequency is similar to that predicted by the previous linear
models [6–9] and is in reasonable agreement with experiments
on a NIFTE prototype [3–5]. It was also found that the predicted
exergetic efficiency of the model for this device does not depend

Fig. 12. Effect of the load resistance Rl and load inertia Ll on the two measures of the NIFTE exergetic efficiency gex from the: (a) NIFTE-NTP (nonlinear) model; and (b) NIFTE-
LTP (linear) model. The load variables are normalised by their respective nominal values (Set-I in Table 3). In (a) the nonlinear gain is set to K = 1.37 (representing an
DThx = 80 "C temperature difference between the heat exchangers), except for the results indicated by the symbols ‘+’ for which the model demonstrated asymptotically
stable behaviour (i.e., a lack of oscillation) with K < K%. For these points a higher gain of K = 3.42 was used, corresponding to DThx = 200 "C.

Fig. 13. Effect of the power cylinder capacitance Cp on the two measures of the NIFTE exergetic efficiency from the: (a) NIFTE-NTP (nonlinear) model; and (b) NIFTE-LTP
(linear) model. Cp is normalised by its nominal value (Set-I in Table 3). In (a) the nonlinear gain is set to K = 1.37 (representing an DThx = 80 "C temperature difference between
the heat exchangers), except for the results indicated by the symbols ‘+’ for which the model demonstrated asymptotically stable behaviour (i.e., a lack of oscillation) with
K < K%. For these points a higher gain of K = 3.42 was used, corresponding to DThx = 200 "C.
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on the temperature difference between two heat exchangers when
heat at up to ,300 "C is used.

Parameters that have been previously observed to influence
strongly the behaviour of the NIFTE [6] were perturbed from their
nominal values (associated with the reported experimental proto-
type) and comparison was made with observations from the linear
models. Parameters that are related to the load (the liquid flow
resistance and inertia) were also perturbed since it is believed that
they can reveal important information regarding the practical
employment of the technology. Both linear and nonlinear models
predict similar trends for the oscillation frequencies as a function
of the investigated parameters. Values of these parameters in the
load and in the feedback connection that are higher than the nom-
inal ones lead to a decrease in the oscillation frequency, while the
trend of frequency as a function of the capacitance of the adiabatic
volume shows a minimum at values greater than nominal.

The linear model typically predicts higher exergetic efficiencies
than the nonlinear equivalent, and outside the range that has been
reported experimentally. This can be explained by the fact the LTP
model does not consider the saturation in the temperature of the
heat exchanger walls as the liquid level in the displacer cylinder
covers an ever increasing extent (overlap) of the heat exchangers.
The NIFTE is shown to be most efficient at low values of feedback
resistance, and with an optimal load that has a higher resistance
and inductance (i.e., higher liquid flow drag and inertia) than that
used in the nominal prototype configuration. Furthermore, a strong
discontinuity arises when the capacitance of the adiabatic volume
(i.e., the ratio of the time-averaged volume to the time-averaged
pressure of the combined vapour volume at the top of the engine)
is perturbed above a certain value. This discontinuity was also ob-
served in the linear models, and in agreement with those related
studies, operation at capacitance values beyond this discontinuity
results in greatly improved efficiencies. The capacitance value at
which this is observed is also greater than that used in the nominal
prototype.

Lastly, a numerical simulation of the nonlinear NIFTE model
was performed in conditions representative of operation with
low-grade heat. The results indicate that the frequency of oscilla-
tions is independent of the temperature difference between the
heat exchangers, while the amplitude is a strong function of this
temperature difference. This is a noteworthy finding. One can con-
clude that it is possible control the amplitude of the limit cycle
oscillations (and hence, the pumping capacity) of the device inde-
pendently of its frequency by varying the temperature difference
between the heat exchangers. The relationship between the tem-
perature difference and the frequency of the limit cycle oscillation,
as well as the identification of the parameter that can allow us to
control the frequency independently of the amplitude of oscillation
provides us with valuable information for the design of more
efficient NIFTE and will be an excellent starting point for future
studies and implementations.

Appendix A. Estimation of NTP model parameter b

Let the vertical temperature profile on the surfaces of the NIFTE
heat exchangers be given by,

Thx ¼ a tanhðbzÞ ðA:1Þ

Clearly, a is the maximum available temperature amplitude
in the heat exchangers, or half of the maximum available
temperature difference between the hot and cold heat exchangers
DThx = max{Thx} – min{Thx}, and the product ab is equal to the
spatial gradient of the temperature profile in the heat exchangers
Thx(z) at (and near) the equilibrium at z = 0, such that the gradient
depends on both parameters a and b. In this study a is a variable

and is related to the nonlinear gain K (see Eq. (9)), whereas a value
for b is required in order to solve the system of equations for the
NIFTE-NTP.

The term by in the bracket in Eq. (A.1) is dimensionless. This im-
plies that b must be of dimension L$1, and therefore we can say
that b scales with the inverse of the total height L of the heat ex-
changer block. Substituting for a = DThx/2 in Eq. (A.1), we obtain
an expression for b,

b ¼ 1
L

tanh$1 Thx

DThx=2

# $
: ðA:2Þ

The factor of 2 in Eq. (A.2) comes from the fact that the ampli-
tude in Tw is being compared to half of the temperature difference
between the heat exchangers, as indicated in Fig. A1.

A value of b was calculated by requiring the temperature profile
in the heat exchangers to achieve 95% saturation of DThx (i.e., Thx/
a = Thx/(DThx/2) = 0.95) when z = L = 0.09 m, which was the length
of the HHX block stated in Ref. [5]. This value of b also sets the in-
crease of Thx relative to its value at z = 0 to ,15-20% of a in the first
10%, ,30-40% of a in the first 20%, and ,50% of a in the first 30% of
the HHX height L. This spatial temperature profile rise is consistent
with: (i) approximate heat transfer scaling arguments; (ii) a simpli-
fied numerical simulation of the unsteady heat transfer in the HHX
block; and (iii) the reported geometry and conditions in the NIFTE
prototype heat exchangers [5] and visual observations of the NIFTE
device in operation [23], all based on 125–150 W of electrical heat-
ing leading to a = DThx/2 = 30–50 K [3–5]. This choice gives
tanh$1(0.95) = 1.8, and therefore, b = 20 m$1 from Eq. (A.2). The
choice is demonstrated in Fig. A1, which shows a plot of the verti-
cal temperature profile in the heat exchangers that reaches 95% of
the saturation value attained by z = L = 0.09 m. This value of b was
used for all runs contained in the present paper.
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