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Abstract: This paper is concerned with the global stability of limit cycle oscillations
for a particular class of systems and networks. In previous work, we defined
a class of parameter-dependent nonlinear systems exhibiting an almost globally
asymptotically stable limit cycle. The results were proven for values of the
parameter in the vicinity of a bifurcation value. In the present paper we restrict
ourselves to a piecewise linear version of this class of systems and adapt numerical
tools recently proposed in the literature to prove global stability of the limit cycle
for a fixed value of the parameter above the bifurcation value. Furthermore, we
show how the global stability results for one isolated oscillator is useful to prove
the existence of a globally synchrone oscillation in particular networks of identical
oscillators.
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1. INTRODUCTION

Nonlinear oscillations are ubiquitous in nature.
A complex system made up of coupled oscilla-
tory systems can be considered as a large-scale
network of coupled oscillators. In previous pub-
lications (Stan and Sepulchre (2003) and Sepul-
chre and Stan (2004)), we characterized a class
of parameter-dependent systems exhibiting al-
most globally attractive limit cycle oscillations.
This class of systems consists in high-dimensional
generalizations of the well known Van der Pol
and Fitzhugh-Nagumo oscillators. Element of this
class are called dissipative oscillators. The re-
sults presented in Sepulchre and Stan (2004) were
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proven for values of the parameter in the vicin-
ity of a bifurcation value. Section 2 summarizes
these previous results. In Section 3, we define a
piecewise linear equivalent class of systems and
adapt numerical tools recently presented in the
literature (Gonçalvès et al. (2001) and Gonçalvès
et al. (2003)) to conclude about global asymp-
totic stability of the limit cycle for a particular
parameter value above the bifurcation threshold.
In Section 4, we show how the stability analysis for
one dissipative oscillator extends to the stability
analysis of a synchrone oscillation in a network
of N identical dissipative oscillators linearly cou-
pled through their outputs. Simulations results
are provided on a simple example to illustrate the
method.
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Fig. 1. Block diagram representing the class of
SISO nonlinear systems.

2. BIFURCATIONS IN ABSOLUTELY
STABLE FEEDBACK LOOPS

In Sepulchre and Stan (2004), we consider the
feedback system shown in Figure 1 where the
SISO passive system G is described by a linear
and detectable state space model (AG, BG, CG)
whereas φk(·) is the static nonlinearity

φk(y) = −ky + φ(y) (1)

where φ(·) is a smooth sector nonlinearity in the
sector (0,∞), which satisfies φ′(0) = φ′′(0) = 0,

φ′′′(0) > 0 and lim|y|→∞
φ(y)

y
= ∞ (“stiffening

nonlinearity”).

The resulting feedback dynamical equations write
{

ẋ = AGx − BGφk(y) + BGu

y = CGx
(2)

where x ∈ R
n, u ∈ R and y ∈ R represents

respectively the state, input and output of the
feedback system.

We note Gk the (positive) feedback interconnec-
tion of G with the feedback gain k. The feed-
back system is equally described as the feedback
interconnection of Gk and the (strictly passive)
nonlinearity φ(·).

We define a dissipative oscillator as a system that
admits the feedback representation in Figure 1
and which satisfies two conditions

(1) the feedback system satisfies the dissipation
inequality Ṡ ≤ (k − k∗

passive)y
2 − yφ(y) +

uy where S(x) represents the storage func-
tion associated to the feedback system and
k∗

passive is the critical value of k above which
the system Gk looses passivity.

(2) when unforced (u = 0), the feedback system
possesses a global limit cycle, i.e. a stable
limit cycle which attracts all solutions except
those belonging to the stable manifold of the
origin.

The first condition necessarily holds since we as-
sume that the forward block G is passive. Our pre-
vious papers (Stan and Sepulchre (2003); Sepul-
chre and Stan (2004)) provide sufficient conditions
for the second condition to be satisfied as well.
In particular, denoting k∗ the bifurcation value at
which Gk looses stability, we showed that absolute
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Fig. 2. Adaptation mechanism to convert a
bistable system discussed in Figure 1 into a
limit cycle.

stability of (2) at k = k∗ implies (generically) one
of the two conditions :

• a supercritical Hopf bifurcation at k = k∗

and a global limit cycle for k & k∗ 2

• a supercritical pitchfork bifurcation at k =
k∗ and a global bistability for k & k∗

The Hopf scenario provides a dissipative oscillator
in the vicinity of the bifurcation, i.e. for k & k∗.
The pitchfork scenario provides a bistable system
in the vicinity of the bifurcation. This bistable
system is turned into a relaxation oscillation by
using a slow adaptation feedback loop (see Figure
2). The resulting system is a dissipative oscillator
as well.

A sufficient condition for absolute stability at
k = k∗ is that the system Gk looses passivity
and stability for the same value of the parameter
k, i.e. when k∗ = k∗

passive. Multipliers can be
used to extend the result to the more general
situation where k∗ > k∗

passive (see Sepulchre and
Stan (2004)).

3. A NUMERICAL TOOL FOR GLOBAL
ANALYSIS OF LIMIT CYCLES

3.1 Problem definition

For a dissipative oscillator, an almost globally
attractive limit cycle appears as the result of the
feedback interconnection of a SISO passive system
H with the static nonlinearity φk(·) defined by (1).
In Figure 1, H is equal to G. In Figure 2, H is the
feedback interconnection of G with the adapation
block 1

τs+1 .

H is described by a linear and detectable state
space model

(H)

{

ẋ = Ax + Bv, x ∈ R
n, v ∈ R

y = Cx, y ∈ R
(3)

In this section, we define a qualitatively equiv-
alent piecewise linear system by considering the
feedback interconnection of H with a piecewise
linear function fpls(y):

v = −fpls(y) =







−p(y + m) − km for y < −m

ky for −m ≤ y ≤ m

−p(y − m) + km for y > m

(4)

2 k & k∗ means k “slightly” greater than k∗, i.e. k ∈

(k∗, k∗ + ε) where ε > 0 is small.



with m =
√

k
3 and p > 0.

The resulting piecewise linear system consists of
three regions, (R1), (R2) and (R3) in the state
space delimited by two switching surfaces, S0

and S1. The linear dynamics in each region are
respectively

(R1) y(t) < −m

ẋ = (A − pBC)x − dB = A2x − dB

(R2) −m ≤ y(t) ≤ m

ẋ = (A + kBC)x = A1x

(R3) y(t) > m

ẋ = (A − pBC)x + dB = A2x + dB

where d = m(k + p).

Because the feedforward system H is passive and
detectable, the matrix A2 is Hurwitz for any
positive value of p. In contrast, the matrix A1 has
at least 2 eigenvalues with positive real parts for
k > k∗.

Furthermore, we assume that m > −CA−1
2 dB, to

guarantee that the unique equilibrium of system
(3),(4) is at x = 0.

From our previous results recalled in Section 2, we
expect a limit cycle with a large basin of attrac-
tion for a certain range of the parameter k. Our
analysis, based on Gonçalvès et al. (2003), will be
in terms of contraction properties of impact maps
that solutions of the PLS define between switching
surfaces. The key observation in Gonçalvès et al.
(2003) is that these impact maps are linear maps
parametrized by the switching time, which is a
scalar function of the state.

3.2 Existence of limit cycles

We will only be interested in cycles of (3),(4) that
are of the type illustrated in Figure 3 : a (periodic)
solution initialized at Z∗

0 ∈ S0 obeys the linear
dynamics (R2) and reaches a point Z∗

1 ∈ S1 after
a finite switching time t∗1; it then obeys the linear
dynamics (R3) and reaches the point −Z∗

0 ∈ S1

after a finite switching time t∗2.

The values Z∗
0 , Z∗

1 , t∗1 and t∗2 that determine the
periodic solution satisfy the algebraic equations

f1(t
∗
1, t

∗
2) = CZ∗

0 (t∗1, t
∗
2) + m = 0 (5)

f2(t
∗
1, t

∗
2) = CZ∗

1 (t∗1, t
∗
2) − m = 0 (6)

where

Z∗
0 (t∗1, t

∗
2) = (I + eA2t∗

2eA1t∗
1 )−1A−1

2 (I − eA2t∗
2 )dB

Z∗
1 (t∗1, t

∗
2) = (I + eA1t∗

1eA2t∗
2 )−1eA1t∗

1A−1
2 (I − eA2t∗

2 )dB

The roots of (5),(6) determine periodic solutions
of (3),(4). Simulations of the system (3),(4) pro-

S0 S1

m−m

Z
∗

0

−Z
∗

1

−Z
∗

0

Z
∗

1

Cx

(R1) (R2) (R3)

Fig. 3. Limit cycle with four switches per period
(first half period in plain line and second half
period in dashed line).
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Fig. 4. Impact maps of the PLS; (a) impact map
1 and impact map 2a (b) impact map 1 and
impact map 2b.

vide a good guess for the numerical search of
(t∗1, t

∗
2) solving (5),(6).

3.3 Quadratic stability of impact maps

Stability of the limit cycle will now be studied
through quadratic stability of the impact maps of
the system.

Consider a subset S+
0 of S0 given by S+

0 = {x ∈
S0 : CA1x ≥ 0}. S+

0 is the set of points in
S0 that can be reached by trajectories initialized
in (R1). In a similar way, define S−

0 ⊂ S0 as
S−

0 = {x ∈ S0 : CA1x ≤ 0} and also S+
1 = −S−

0

and S−
1 = −S+

0 . From symmetry considerations,
three impact maps only are of interest for the
analysis. The first impact map (impact map 1)
takes points from S−

0 and maps them in S+
0 . The

second impact map (impact map 2a) takes points
from S+

0 \{Z∗
0} and maps them back to S−

0 \{Z∗
0}.

Finally, the third impact map (impact map 2b)
takes points from S+

0 and maps them to S+
1 .

Let x1 be a point in S−
0 \{−Z∗

1}. The trajectory
x1(t) will necessarily switch after a finite switching
time t1 at x2 = x1(t1) since A2 is Hurwitz.
Since A1 is not Hurwitz, a trajectory starting at
x2 ∈ S+

0 \{Z∗
0} can either switch at some point in

S0 or at some point in S1 (or not switch at all if x2

belongs to the stable manifold of the origin). Let
Sa ⊂ S+

0 \{Z∗
0} (Sb ⊂ S+

0 ) be the set of points



that switch in S0 (S1). If x2 ∈ Sa (x2 ∈ Sb)
the trajectory switches in finite time t2a (t2b) at
x3a = x2(t2a) ∈ S−

0 \{−Z∗
1} (x3b = x2(t2b) ∈ S+

1 ).
Then, it switches again at x4a = x3a(t3a) (x4b =
x3b(t3b)), and so on (see Figure 4).

The symmetry of the system allows to perform the
analysis on a half trajectory. This means that it
is equivalent to consider the trajectory starting at
x2 or −x2. The idea is to check if x3a or −x3b are
closer in some sense to −Z∗

1 than x1. If so for any
point x1 ∈ S−

0 \{−Z∗
1}, the limit cycle is globally

asymptotically stable.

Since x1, x2, x3a ∈ S0 and x3b ∈ S1, we can write
x1 = −Z∗

1 + ∆1, x2 = Z∗
0 + ∆2, x3a = −Z∗

1 + ∆3a

and x3b = Z∗
1 + ∆3b, where C∆1 = C∆2 =

C∆3a = C∆3b = 0.

A sufficient condition for the first return map to
be contracting around Z∗

0 is

V2(∆2) < V1(∆1) for all ∆1 ∈ S−
0 \{−Z∗

1}

V1(∆3a) < V2(∆2) for all ∆2 ∈ Sa\{Z
∗
0}

V1(∆3b) < V2(∆2) for all ∆2 ∈ Sb\{Z
∗
0}

where V1(·) and V2(·) are quadratic Lyapunov
functions defined on S−

0 and S+
0 respectively (see

Figure 4).

The key result proven by Gonçalvès et al. (2003) is
that the impact maps induced by an LTI (linear
time invariant) flow between two switching sur-
faces can be represented as a linear transformation
analytically parametrized by a scalar function of
the state. This parameter is simply the switching
time associated with the impact map. Thus, we
have ∆2 = H1(t1)∆1, ∆3a = H2a(t2a)∆2, ∆3b =
H2b(t2b)∆2.

We then have to prove that

r1(t1) , ∆T
1 P1(t1)∆1 (7)

= V1(∆1) − V2(H1(t1)∆1) > 0

r2a(t2a) , ∆T
2 P2a(t2a)∆2 (8)

= V2(∆2) − V1(H2a(t2a)∆2) > 0

r2b(t2b) , ∆T
2 P2b(t2b)∆2 (9)

= V2(∆2) − V1(H2b(t2b)∆2) > 0

for all expected switching times t1 ∈ T1, t2a ∈ T2a

and t2b ∈ T2b where T1, T2a and T2b denote the set
of all expected switching times corresponding re-
spectively to all ∆1 ∈ S−

0 \{−Z∗
1}, ∆2 ∈ Sa\{Z

∗
0}

and ∆2 ∈ Sb\{Z
∗
0}.

By discretizing the sets of expected switching
times, inequalities (7), (8) and (9) define a finite
set of LMIs in the unknowns Pi = PT

i > 0, i =
1, 2a, 2b.

3.4 Bounds on switching times

A key point in the above quadratic stability anal-
ysis is to determine good upper bounds on the
switching times. Such bounds can be computed
for instance when the linear dynamics in each
region are Hurwitz and possess no equilibrium (see
Gonçalvès et al. (2003) for details).

The unstable equilibrium x = 0 of (3),(4) typically
possesses a stable manifold when n > 2. In this
case, the switching times are unbounded because
of intersections between the stable eigenspace of
A1 and the switching surfaces S0 and S1. This
situation requires a special treatment that will
be presented in a forthcoming publication. For
the sake of illustration in the present paper, we
restrict our attention to the case where x = 0
has no stable manifold. This occurs trivially in
the 2-dimensional case (even though alternative
methods exist to analyse global properties of limit
cycles in the plane) but also for conservative sys-
tems (3) for which A1 is antistable. We generically
assume that A1 has no real unstable eigenvalue.

If n = 2, the matrix A1 is generically antistable
and the upper bound on t1 is computed by consid-
ering the worst switching scenario for a point be-
longing to S+

0 , i.e. when Cẋ = 0. There exist only
one point on S+

0 corresponding to this worst case
situtation. The upper bound is thus the switching
time associated with this point.

Moreover, when A1 is antistable, any trajectory
belonging to S+

0 will necessarily switch at a point
belonging to S1. As a consequence, there are only
two impact maps to consider, i.e., impact map 1
and impact map 2b.

3.5 Simulation results for PLS Fitzhugh-Nagumo

In Sepulchre and Stan (2004), we showed that the
system in Figure 2 with G(s) = 1

s
is a particular

case of the Fitzhugh-Nagumo oscillator (Murray
(2002)). Analytical results that allow to conclude
about global asymptotic stability for k & k∗

for dissipative oscillators based on the feedback
structure in Figure 2 were also presented. To
illustrate the method, we present here the results
obtained for 2 dimensional systems corresponding
to Figure 2 where G(s) = 1

s+α
, τ > 1.

The critical bifurcation value for this example
is k∗ = α + 1

τ
. The chosen parameters values

are α = 1 and τ = 20. From these values, we
compute k∗ = 1.05. From our previous analytical
results, we expect a global asymptotic limit cycle
for k & 1.05. Nevertheless, the range of values
of k for which this behavior holds is not known.
Replacing φk(y) by fpls(y), and choosing values
for p and k such that p > 0 and k > k∗, we may
use the numerical tools presented in Section 3 to
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conclude about global asymptotic stability of a
limit cycle for the chosen value of k.

Before presenting the simulation results, we briefly
explain the inputs and outputs of the algorithm.
The inputs are the transfer function G(s) together
with the parameters α, k > 0, p > 0 and τ . A
graphic showing the minimum eigenvalues of each
Pi(ti), i = 1, 2b in (7)-(9) is generated. GAS of
the limit cycle is then concluded if the minimum
eigenvalues are positive on their respective set of
expected switching times.

In this example, we consider the particular values
k = 1.2 and p = 5 . We then compute m = 0.63
and d = 3.92. The simulation results of this
PLS for a particular initial condition are given on
Figure 5.

The numerical algorithm is then applied to this
particular PLS. The number of (t∗1, t

∗
2) solutions

found by the algorithm for (5) and (6) is equal to
one, i.e. t∗1 = 8.88 and t∗2 = 8.4. These values agree
with those found by simulation of the dynamical
system. We then solve the LMIs defined by (7)
and (9) and plot Figure 6. On this figure, we see
that the minimum eigenvalue of each condition (7)
and (9) is positive on its respective set of expected
switching times T1 and T2b. The set of expected
switching times in this example are approximately
T1 = (0, 16.7) and T2b = (0, 9). For instance, if
t2b ≥ 9, there is no point in S+

0 with switching
time equal to t2b. Using conditions (7) and (8) we
have showed that this system possesses a globally
asymptotically stable limit cycle in R

2\{0}.

4. DISSIPATIVITY AND GLOBAL
SYNCHRONIZATION

In Stan and Sepulchre (2004), we show how the
stability analysis for one dissipative oscillator of
type (3),(1) extends to the stability analysis of
a synchrone oscillation in a network of coupled
identical dissipative oscillators. In this section, we
recall the main result without proof.
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We consider a network of N identical oscilla-
tors, linearly coupled through their outputs. The
dynamics of the network are easily represented
with the help of the Kronecker product (Graham
(1981)), i.e.
{

Ẋ = (IN ⊗ A)X + (IN ⊗ B) (−Φk(Y ) − ΓY )
Y = (IN ⊗ C) X

(10)
where X = (x1, . . . , xN )T , U = (u1, . . . , uN )T ,
Y = (y1, . . . , yN )T with xi, ui, yi representing,
respectively, the state, input and output of oscil-
lator i in the network. Φk(Y ) is a column vector
whose ith element is φk(yi) and Γ ∈ R

N×N is the
interconnection matrix of the network. We assume
that all rows of Γ sum to zero and that the rank
of Γ is equal to N − 1. This last assumption is
equivalent to the assumption that the network is
connected.

The assumptions on Γ imply

R̄Γ =

(

0 0T

0 Γ̃

)

R̄ (11)

where R̄ = (IN − (1, 0N×N−1)) with 1 = (1, . . . , 1)T

is a projection matrix.

The class of interconnection matrices Γ is further
assumed to be such that Γ̃ is positive definite (i.e.
xT Γ̃sx = xT 1

2 (Γ̃ + Γ̃T )x > 0,∀x ∈ R
n\{0}). We

denote by λmin(Γ̃s) the smallest eigenvalue of the
symmetric part of Γ̃.

Property (11) with Γ̃ > 0 constitutes the main
characteristic of the class of interconnections we
consider. Note that our assumptions do not re-
quire that Γ is symmetric.

In Stan and Sepulchre (2004) we show that, for
strong coupling (i.e. λmin(Γ̃s) > threshold(k)),
all solutions of (10) exponentially converge to the
invariant subspace

{X ∈ R
nN : x1 = · · · = xN} (12)

Because the dynamics of the network decouple in
the invariant subspace (12), this, in turn, implies
that all oscillators synchronize exponentially and
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that all bounded solutions converge to the ω-limit
sets of the decoupled system.

The synchronization property (12) derives from an
incremental dissipativity property of the network.
Our approach is closely related to the contrac-
tion approaches of Slotine and Wang (2003) and
Pogromsky and Nijmeijer (2001). The incremental
dissipativity property together with an observabil-
ity assumption may also be seen as an incremental
stability property of the particular network (see
Angeli (2002)).

4.1 An example

We consider a network composed of 5 identical
PLS Fitzhugh-Nagumo oscillators characterized
by G(s) = 1

s+1 , k = 1.2, p = 5 and τ = 20
and coupled in order to form a S5 symmetry
network where the input of oscillator i is ui =
K

∑N
j=1(yj−yi). For this class of interconnection,

it can be shown (Stan and Sepulchre (2004)) that
λmin(Γ̃s) = NK. The value of K is chosen such
that the strong coupling assumption is satisfied.
We consider K = 1.

In Section 3.5 we have numerically proved that
for these parameters values the uncoupled PLS
Fitzhugh-Nagumo possesses a globally asymptot-
ically stable limit cycle in R

2\{0}.

A separate argument, not included in the present
paper, shows that all solutions of the coupled
system are bounded. We thus conclude that for
strong coupling, all solutions, except the trivial
one, converge towards the ω-limit set of the de-
coupled system which is a globally attractive limit
cycle.

Simulation results are presented in Figure 7. We
clearly see that the oscillators synchronize around
a common limit cycle oscillation. This limit cycle
is identical to the one obtained for an isolated
oscillator. Particular to our simulation, we note
the relaxation type of the oscillations due to the
high value of τ (τ = 20).

5. CONCLUSIONS

In previous publications (Stan and Sepulchre
(2003) and Sepulchre and Stan (2004)), we have
presented conditions for global limit cycle oscil-
lations in the feedback interconnection of a pas-
sive system with a static nonlinearity that has a
parameterized negative slope at the origin. These
results hold valid for values of the parameter in the
vicinity of a critical bifurcation value. In this pa-
per, we adapt numerical algorithms recently pro-
posed in the literature to conclude about global
asymptotic stability for a particular value of the
parameter above the critical value. Moreover, us-
ing recent global synchronization results, we show
how the analysis for one system extends to the
analysis of a synchrone oscillation in particular
networks of identical oscillators.
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