
Problem Sheet 0: Numerical integration and Euler’s method

If you find any typos/errors in this problem sheet please email jk208@ic.ac.uk.

The material in this problem sheet is not examinable. It is merely designed to illustrate
what is meant by “simulating an ODE model” and to give a rough idea of what MATLAB actually
does when we use an ode solver command (e.g., ode45(...)).

1. We often cannot solve analytically a nonlinear Ordinary Differential Equation (ODE), that is find
a function x(t) that satisfies the ODE: ẋ(t) = f(x(t)), x(0) = x0. Note that this does not mean
that such a function does not exist, it merely means we cannot find an analytical formula for it.
Thus, to figure out how the model behaves we must resort to other analytical tools (e.g., finding
fixed points, checking the stability of the fixed points, . . . , etc.) or, alternatively, we can inte-
grate numerically, solve numerically or simply simulate the model. This consists in using some
algorithm to find discrete approximations of the solutions (that is an approximate solution de-
fined only at certain discrete instances of time). With modern computing power the approximate
solutions can often be made more than sufficiently accurate for the purposes that they are required.

In the lecture notes we claimed that one algorithm that can be used to this end is Euler’s nu-
merical integration algorithm. It is the simplest such algorithm and it dates back to Leonhard
Euler in the 2nd half of the 18th century. Consider the general model

ẋ(t) = f(x(t)), x(0) = x0 (1)

where f : R → R is a function and x0 ∈ R is the initial condition. The algorithm yielded from
Euler’s method for the above model is obtained by making the following approximation:

ẋ(t) =
dx(t)

dt
= lim

δ→0

x(t+ δ)− x(t)
δ

≈ x(t+ h)− x(t)
h

,

where h is a small positive parameter called the step size.

(a) Obtain the difference equation describing the Euler’s method for models of the type (1). In
other words, find an expression relating x(t+ h) to x(t).

(b) Consider the affine model

ẋ(t) = kx(t) + a, x(0) = x0 (2)

where k ∈ R, a ∈ R are parameters. Use your answer to the previous part to show that in the
case of affine models, i.e., those of the form (2), Euler’s method is described by

x(t+ h) = (1 + hk)x(t) + ah. (3)

(c) We can now use MATLAB to solve the difference equation you obtained. We do this by
iterating it forward, i.e., plugging in x(0) = x0 (which we know!) to work out x(h), then
using x(h) to work out x(2h) . . . , etc. Write a function in MATLAB titled ‘function [xnext]
= euleraff(x,h,k,a)’ such that it takes in x(ih), h, k and a as arguments and returns x((i+1)h)
where i denotes any non-negative integer.

(d) Now write a second function titled ‘function [sol,t] = numint(h,k,a,x0,tf)’ that takes in h,
k, a, x0 and the final simulation time, tf , (a positive scalar) and returns two vectors t and
sol, where t = [0, h, 2h, . . . , nh] with n being the greatest integer such that nh ≤ tf and sol
= [x(0), x(h), x(2h), . . . , x(nh)].

mailto:jk208@ic.ac.uk

(e) We can now just write a quick MATLAB script that calls numint.m, feed it the desired
parameter values, the duration of the simulation and a small step size and, in theory, the
vector sol should contain a good approximation of x(0), x(h), x(2h), . . . , x(nh). However how
should small should we choose h and how good of an approximation does it give? We can
answer these questions by testing different values of h and comparing with the actual analytical
solution of (2)1. Assuming that k 6= 0, use an integrating factor to find the analytic solution of
(2). In addition, write a third Matlab function titled ‘function [sol,t] = analytic(h,k,a,x0,tf)’
such that sol contains the values x(0), x(h), x(2h), . . . , x(nh) given by the analytical solution
evaluated at the discrete-time points 0, h, 2h, . . . , nh.

(f) Lastly, we need some way to check how ‘close’ is the approximation is to the actual answer.
Write two final MATLAB functions. The first titled ‘function error = AE(soln,sola)’ such
that it works out the average absolute error of the approximation given by

1

n

n∑
i=0

|x̂(ih)− x(ih)|,

where n is defined as in part (d) above, x̂ denotes the approximate solution obtained from
Euler’s method and x denotes the actual solution given by the derived analytical expression.
The second function should be titled ‘function error = APE(soln,sola)’ and it should work
out the average percentage error given by,

1

n

n∑
i=0

|x̂(ih)− x(ih)|
|x(ih)|

,

(g) Test out the functions you wrote using them to plot on the same figure both the analytical
and approximated solutions for different values of the parameters, initial conditions and sim-
ulations time. In particular, try tf = 1, x0 = 3, h = 0.1, k = 1 and a = 2. You should
be getting an average absolute error of 0.2387 and an average percentage error of 2.92% (or
something close to that).

(h) Use the MATLAB function surf.m (check MATLAB help) to investigate how the average error
and average percentage errors change with the simulation time and the step size. In particular,
using the parameter values and the initial conditions above vary the step size between 0.001
and 0.1 and the simulation time between 1 and 10. How does the error change?

(i) (Optional) Can you derive the analytic solution to the difference equation (3), that is, solve
x(nh) where n is a non-negative integer? Hint: iterate forward (3) from x(0) = x0 and use
the result regarding geometric series,

∑n
j=m ar

j = a r
m−rn+1

1−r .

1As previously discussed, most models do not have analytic solutions, however this one is one of the few that does (it
was picked specifically for this exercise).

Page 2

Solutions
1. (a)

x(t+ h)− x(t)
h

= f(x(t))⇔ x(t+ h) = x(t) + hf(x(t)).

(b) Plug in f(x(t)) = kx(t) + a to obtain x(t+ h) = x(t) + h(kx(t) + a) = (1 + hk)x(t) + ha.

(c) Should look like

1 function [xnext] = euleraff(x,h,k,a)
2

3 xnext = (1+h*k)*x+a*h;
4

5 end

(d) Something like

1 function [sol,t] = numint(h,k,a,x0,tf)
2

3 sol(1) = x0; t(1) = 0;
4

5 for i = 2:floor(tf/h)+1
6 t(i) = (i-1)*h;
7 sol(i) = euleraff(sol(i-1),h,k,a);
8 end
9

10 end

(e)

ẋ(t) =
dx

dt
(t) = kx(t) + a⇔ dx

dt
(t)− kx(t) = a⇔ dx

dt
(t)e−kt − kx(t)e−kt = ae−kt

⇔ d

dt
(x(t)e−kt) = ae−kt ⇔

∫
d

dt
(x(t)e−kt)dt =

∫
ae−ktdt⇔ x(t)e−kt = −a

k
e−kt + b

where b ∈ R is an integration constant. Thus

x(t) = bekt − a

k
.

In addition we can solve for b because we know that x(0) = x0. Hence

x(0) = x0 = b− a

k
⇔ b = x0 +

a

k
.

So we get the solution

x(t) =
(
x0 +

a

k

)
ekt − a

k
(4)

Then, the MATLAB function should look something like

1 function [sol,t] = analytic(h,k,a,x0,tf)
2

3 sol(1) = x0; t(1) = 0;
4

5 for i = 2:floor(tf/h)+1
6 t(i) = (i-1)*h;
7 if k 6=0

Page 3

8 sol(i) = (x0+(a/k))*exp(k*t(i))-(a/k);
9 else

10 sol(i) = a*t(i)+x0;
11 end
12 end
13

14 end

(f) Something like the following for the average error

1 function error = ae(soln,sola)
2

3 error = 0;
4

5 for i = 1:length(soln)
6 error = error + abs(soln(i)-sola(i));
7 end
8

9 error = error/length(soln);
10

11 end

and something like the following for the average percentage error

1 function error = ape(soln,sola)
2

3 error = 0;
4

5 for i = 1:length(soln)
6 error = error + abs(soln(i)-sola(i))/abs(sola(i));
7 end
8

9 error = error/length(soln);
10

11 end

(g) See the following.

(h) Using something along the lines of

1 tf = 1:0.5:10; x0 = 3; h = 0.001:0.001:0.1; k = 1; a = 2;
2

3 error1 = zeros(length(tf),length(h)); error2 = error1;
4

5 tic
6 for i = 1:length(tf)
7 for j = 1:length(h)
8 [soln,t] = numint(h(j),k,a,x0,tf(i)); [sola,ta] = ...
9 analytic(h(j),k,a,x0,tf(i));

10 error1(i,j) = ae(soln,sola); error2(i,j) = ape(soln,sola);
11 clear soln sola
12 end
13 end
14 toc
15

16 surf(h,tf,error1);
17 xlabel('Step Size'); ylabel('Simulation Time'); zlabel('Average Error');
18

19 figure;
20 surf(h,tf,error2);

Page 4

21 xlabel('Step Size'); ylabel('Simulation Time'); ...
22 zlabel('Average Percentage Error');

we obtain

(a) Average absolute error. (b) Average percentage error.

From the above plots we can note several things. First, the error decreases as the step size de-
creases. This is not surprising; the algorithm is taking smaller ‘jumps’ so it is more accurate.
Furthermore, if the simulation time is kept constant, the error decreases roughly linearly with
the step size. Second, the error increases as the simulation time increases. Earlier errors in
the simulation accumulate and ‘snowball’ as the simulation proceeds making it less and less
accurate.

Indeed, one can show that when integrating, using Euler’s method, any model of the type
ẋ = f(x), x(0) = x0, the error will be bounded above by some function of the shape
hφ(f(·), tf , x0), in other words, a function that is linear with the step size. For this rea-
son Euler’s method is said to be a first order numerical integrator. Unfortunately, as it is
in our case (see the average error), φ(·) can be an unbounded function. This is not very
good, especially if we want run long simulations. For example, in our case the error seems to
be growing exponentially with the simulation time. Hence if we want to run slightly longer
simulations with the same accuracy we will have to decrease the step size by a large amount.

For this reason Euler’s method is actually not a very good numerical integrator. There exists
much better integration routines in the sense that the reduction in error per reduction in step
size is defined by terms of higher orders. For example the integration error of the famous 4th

order Runge-Kutta algorithm mentioned in the notes is proportional to h4 (that is why it is
said to be of 4th order). Hence it is considered much better than Euler’s because you get a
lot more “bang for your buck” in terms of reducing the error by reducing the step size. For
instance, in Euler’s method a tenfold reduction in step size lead to a tenfold reduction in error,
however in the 4th order Runge-Kutta a tenfold reduction in step size leads to a 10, 000-fold
reduction in error.

The above said, with modern computing power Euler’s method can still often be success-
fully be used to numerically solve a model. In particular, even for the longest running time of
10 and using a step size of just 4 orders of magnitude less than the simulation time (h = 0.001),
on average, the approximation was only 0.25% off from the actual value.

(i)
x(0) = x0, x(h) = (1+hk)x0+ha, x(2h) = (1+hk)x(1)+ha = (1+hk)2x0+(1+hk)ha+ha, . . . ,

Page 5

x(nh) = (1+hk)nx0+
n−1∑
i=0

ha(1+hk)i = (1+hk)nx0+ha
1− (1 + hk)n

1− (1 + hk)
= (1+hk)nx0−

a

k
(1−(1+hk)n)

⇔ x(nh) =
(
x0 +

a

k

)
(1 + hk)n − a

k
.

Note that, just as with ODEs, it is not possible to solve analytically the vast majority of
difference equations. In the above case we can do it because the difference equation is affine,
but it is a rare exception. However, generally there is absolutely no problem with solving
them numerically on a computer, just as we did with numint.m to solve (3).

Page 6

