
Problem Sheet 2: Eigenvalues and eigenvectors and their use in solving linear ODEs

If you find any typos/errors in this problem sheet please email jk208@ic.ac.uk.

The material in this problem sheet is not examinable. It is intended for the more mathematically-
inclined students who want to obtain a more thorough understanding of eigenvalues and eigenvectors
and their use in solving linear ODEs. Even though in the course we only deal with models of dimension
1 and 2, here we consider vectors, matrices and linear models of arbitrary (but finite) dimension n.
The reason why is because we believe that, when discussing the material in this problem sheet, nothing
is gained in terms of simplicity and comprehensibility, quite the contrary, by limiting the dimensions
of the vector/matrices we deal with to be of a fixed low dimension. However, any course assessment
will only require you to be able to apply the concepts discussed below to vectors, matrices and linear
models of dimension 1 or 2.

1. An eigenvector v of an n × n matrix of real numbers A is defined as a non-trivial vector1 of
complex numbers such that Av = λv where λ 6= 0 is a complex number called an eigenvalue. If
real, eigenvalues and eigenvectors have very simple geometric interpretations. For instance, an
eigenvector v is a vector such that A maps it onto itself, in other words, Av lies on the same line as
v, scaled (up if |λ| > 1 or down if |λ| < 1) and/or rotated by 180o (if λ < 0). Further information
on linear algebra can be found in

• http://www.khanacademy.org/math/linear-algebra (short camcasts which are excellent if
you have never seen any linear algebra before in your life).

• http://see.stanford.edu/see/lecturelist.aspx?coll=17005383-19c6-49ed-9497-2ba8bfcfe5f6
(bit more advanced, great lecturer, first 7 lectures cover useful linear algebra concepts with
engineering-type applications).

• Linear algebra done right by Sheldon Axler (it is a nice, brief and rigorous introduction to the
subject that doesn’t rely on determinants for proofs, which in our opinion is a good thing).

• Any other of the numerous textbooks on the subject.

(a) We can represent any vector x ∈ Rn as a linear combination of the eigenvectors of A if and
only if A has n eigenvectors that form a linearly independent set vectors2. In the words, if the
previous is true, and letting v1, v2, . . . , vn denote n linearly independent eigenvectors, then for
any given x ∈ Rn we can find some complex numbers c1, c2, . . . , cn such that

x = c1v1 + c2v2 + · · ·+ cnvn.

Use the above to find an expression for the vector c = [c1, c2, . . . , cn]T in terms of the ma-
trix of linearly independent eigenvectors V = [v1, v2, . . . , vn] and in terms of x. (Note that
v1, v2, . . . , vn are column vectors corresponding to the 1st, 2nd, . . . , and nth column of the
matrix V , respectively.) Hint: The inverse of a matrix exists if and only if its columns form
a linearly independent set of vectors. In addition, if it exists it is unique.

(b) Eigenvectors and eigenvalues are useful because they provide us a very straightforward way
of determining how A transforms any given vector x (i.e., what Ax looks like). Show that

Ax = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn,

where λi denotes the eigenvalue such that Avi = λivi with i ∈ {1, 2, . . . , n}. λi is said to be
the eigenvalue corresponding to, or associated with, eigenvector vi.

1A vector is said to be non-trivial if at least one of its elements is non-zero.
2A set of vectors {v1, v2, . . . , vn} is said to be linearly independent if none of the vectors is a lin-

ear combination of the other vectors, for example
{[

1
0

]
,

[
0
1

]}
,

{[
2
1

]
,

[
3
1

]}
are linearly independent, while{[

1
1

]
,

[
1
1

]}
,

{[
4
2

]
,

[
2
1

]}
,

{[
1
0

]
,

[
0
0

]}
are not (they are said to be linearly dependent sets of vectors).
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(c) Using the answers to the previous two parts, show that Ax = V ΛV −1x, where Λ is an n× n
diagonal matrix such that Λii = λi. Expressing A as V ΛV −1 is called diagonalising A. If it
is possible to diagonalise A, then A is said to bediagonalisable. It is possible to do this if and
only if one can find n eigenvectors that form a set of linearly independent vectors. Otherwise
we can’t carry out the step we did in part (a); we can’t express any arbitrary x ∈ Rn as a
linear combination of the eigenvectors of A.

(d) All the above is very well, but to put it to practice one must first be able to find the eigenvectors
and eigenvalues of a given matrix A. A property of determinants is that, for any given matrix
A, there exists a non-trivial vector x such Ax = 0 if and only if det(A) = 0. By the definition
of eigenvectors, Av = λv ⇔ Av − λv = 0 ⇔ (A − Iλ)v = 0 ⇔ det(A − Iλ) = 0 for any
eigenvalue λ. Note that det(A − Iλ) is a polynomial in λ, also note that this implies that
there is at most n eigenvalues (can you see why?, Hint: think about the order of the polynomial
det(A− Iλ)). Thus, by solving for the roots of det(A− Iλ) we find the eigenvalues. Practice
this by finding the eigenvalues of the following matrices

i)

[
2 −1
0 1

]
, ii)

[
1 2
1 2

]
, iii)

[
0 −1
1 2

]
, iv)

[
2 0
0 2

]
.

(e) Once we have the eigenvalues then we simply use (A−λI)v = 0 to figure out the eigenvectors.
For the above four matrices find all linearly independent eigenvectors3.

(f) Which of the four matrices are diagonalisable?

2. In this exercise we derive the solution of arbitrary (but finite) dimensional linear models defined
by

ẋ(t) = Ax(t), x(0) = x0, (1)

where A is n× n and diagonalisable. In other words we find a function x(t) that obeys two rules:
I. ẋ(t) = Ax(t) for all t ≥ 0, i.e., that at any given time, it’s time-derivative equals A times itself
and II. x(0) = x0, i.e., its value at time 0 is x0. In addition, with no extra effort we show that
there is only one such solution x(t), i.e., that the solution x(t) is unique4.

(a) Show that d
dte

Λt = ΛeΛt = eΛtΛ, where Λ is as in exercise 1 and

eΛt :=


eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...
0 0 . . . eλnt

 .
Hint: If D1 and D2 are diagonal n× n matrices, then D1D2 = D2D1.

(b) Pre-multiply ẋ(t) = Ax(t) by (V e−ΛtV −1) and show that x(t) = V eΛtV −1c where c ∈ Rn is a
vector of constants. Hint 1: Remember integrating factors? Hint 2: IfM,N andQ(t) are n×n
matrices such that Q(t) varies in time but M,N do not, then d

dt(MQ(t)N) = M d
dt(Q(t))N .

In addition, if v(t) ∈ Rn varies with time, then d
dt(Q(t)v(t)) = d

dt(Q(t))v(t) +Q(t) ddt(v(t))5.

(c) Show that eΛ0 = I, where I is the identity matrix.

(d) Use part (c) and rule II. to show that c = x0.
3This is ’slang’, linear independence is a property of a sets of vectors not of vectors; to say that a vector v is linearly

independent has no meaning. However, it is common practice to say that a bunch of vectors are linearly independent if
the set of those vectors is linearly independent.

4It is well known that there only exists one solution, that is why we write “we will derive the solution to (1)” instead
of “we will derive a solution to (1)”. Indeed, generally, it is best to say “the unique solution” instead of “the solution” as
it removes all possible ambiguity.

5This is one of the generalisations of the product rule in multivariable calculus.
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(e) Is x(t) = V eΛtV −1x0 the unique solution to (1)?

3. (More advanced) In this exercise we take a different approach to show that

x(t) = V eΛtV −1x0, (2)

as defined in exercise 2, is the unique solution to (1). In particular, we first show that, at most,
(1) has a single solution. Then, separately, we show that (2) is a solution to (1) by verifying that
it obeys rules I. and II. (see the description of exercise 2).

(a) The Gronwall-Bellman inequality implies that if a continuous function y : [0,+∞) → R
satisfies

y(t) ≤ α+

∫ t

0
βy(τ)dτ

where α ∈ R and β ≥ 0 are constants, then

y(t) ≤ αeβt. (3)

Assume that the solution is not unique, i.e., that we have two functions, x(t) and z(t) both of
which satisfy (1). Consider the norm difference between x(t) and z(t), i.e., δ(t) = ||x(t)−z(t)||.
Use (3) to show that δ ≡ 0, that is that δ(t) = 0 for all t ≥ 0, and thus argue that the solution
is indeed unique.

(b) Next, show that (2) satisfies rule I., i.e., that ẋ(t) = Ax(t). Hint: Use exercise 2(a) and the
second hint given in exercise 2(b).

(c) Finish by showing that (2) satisfies rule II., i.e., that x(0) = x0. Hint: Use exercise 2(c).
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Solutions
1. (a) The fact that the eigenvectors are linearly independent, in other words, that the columns of

V are linearly independent, implies that the inverse of V exists, hence

x = c1v1 + c2v2 + · · ·+ cnvn = V c⇔ c = V −1x.

(b) This follows simply from linearity, A(b1x1 + b2x2) = b1Ax1 + b2Ax2 for any matrix A, vectors
x1, x2 and scalars b1, b2.
From (a), we have that x, written in terms of the linearly independent eigenvectors of A, is
given by x = c1v1 + c2v2 + · · ·+ cnvn. Therefore, we have:

Ax = A(c1v1+c2v2+· · ·+cnvn) =
ci are scalars

c1Av1+c2Av2+· · ·+cnAvn = c1λ1v1+c2λ2v2+· · ·+cnλnvn.

(c) Using (b) and (a), we have:

Ax =
(using (b))

c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn = V


λ1c1

λ2c2
...

λncn

 = V Λc =
(using (a))

V ΛV −1x.

(d) By the fundamental theorem of algebra, a polynomial of order n has at most n complex roots.
Hence any matrix of dimension n has at most n eigenvalues.

i) λ1 = 2, λ1 = 1. A little trick is that the eigenvalues of triangular matrices are the ele-
ments on the main diagonal of the matrix.

ii) λ1 = 0, λ2 = 3.

iii) λ1 = 1, λ2 = 1 (repeated eigenvalue at 1).

iv) λ1 = 2, λ2 = 2 (repeated eigenvalue at 2).
(e) i) v1 = [1, 0]T , v2 = [1, 1]T , where v1 denotes the eigenvector that corresponds to λ1. Note

that av1 and av2 are also valid eigenvectors for any non-zero real number a. However, the
biggest set of linearly independent eigenvectors has two elements v1 and v2 or any scaled
versions of them.

ii) v1 = [1, 1]T , v2 = [1,−1/2]T .

iii) v1 = [1,−1]T .

iv) v1 = [1, 0]T , v2 = [0, 1]T . There is one eigenvalue but two eigenvectors! This is fine,
however you can’t have the contrary; there is at least one eigenvector per eigenvalue (other-
wise the definition of eigenvector/eigenvalue doesn’t make sense).

(f) Matrices i), ii), and iv) are the only ones that have 2 linearly independent eigenvectors, hence
they are the only ones that are diagonalisable.

2. (a) From the hint, we know that ΛeΛt = eΛtΛ. Thus, we only need to show d
dte

Λt = ΛeΛt (or,
equivalently, d

dte
Λt = eΛtΛ):

d

dt
eΛt =


d
dte

λ1t 0 . . . 0

0 d
dte

λ2t . . . 0
...

...
. . .

...
0 0 . . . d

dte
λnt

 =


λ1e

λ1t 0 . . . 0
0 λ2e

λ2t . . . 0
...

...
. . .

...
0 0 . . . λne

λnt

 = ΛeΛt.
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(b) Starting from rule I.

ẋ(t) = Ax⇔ ẋ(t)−Ax(t) = 0⇔ (V e−ΛtV −1)(ẋ(t)−Ax(t)) = 0.

Notice that the fact that (V e−ΛtV −1) is invertible (with inverse (V e−ΛtV −1)−1 = V eΛtV −1)
is responsible for the second if and only if, i.e., the second ⇔. Next,

(V e−ΛtV −1)(ẋ(t)−Ax(t)) = V e−ΛtV −1ẋ(t)− V e−ΛtV −1Ax(t).

But, A = V ΛV −1, so

−V e−ΛtV −1Ax(t) = −V e−ΛtV −1V ΛV −1x(t) = −V e−ΛtΛV −1x(t) = V e−Λt(−Λ)V −1x(t).

From part (a) we have that d
dte

(−Λ)t = eΛt(−Λ). So,

V e−Λt(−Λ)V −1x(t) = V
d

dt
(e(−Λ)t)V −1x(t).

Using the second hint we have that V d
dte

(−Λ)tV −1 = d
dt(V e

(−Λ)tV −1) and thus

V e−ΛtV −1ẋ(t)− V e−ΛtV −1Ax(t) = V e−ΛtV −1 d

dt
(x(t)) +

d

dt
(V e(−Λ)tV −1)x(t)

=
d

dt
(V e(−Λ)tV −1x(t)).

ẋ(t) = Ax⇔ d

dt
(V e(−Λ)tV −1x(t)) = 0⇔

∫
d

dt
(V e(−Λ)tV −1x(t))dt = V e(−Λ)tV −1x(t) = c

where c ∈ Rn is a vector of integration constants. Then, pre-multiplying the above with
V e(Λ)tV −1 we get that x(t) = V eΛtV −1c.

(c)

eΛ0 =


eλ10 0 . . . 0

0 eλ20 . . . 0
...

...
. . .

...
0 0 . . . eλn0

 =


e0 0 . . . 0
0 e0 . . . 0
...

...
. . .

...
0 0 . . . e0

 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 = I.

(d) x(0) = V eΛ0V −1c = V IV −1x0 = V V −1c = Ic. But, x(0) = x0, hence, c = x0.
(e) In parts (a) − (d) we proved that x(t) = V eΛtV −1x0 is a solution to (1). In addition, given

that throughout the whole derivation we only employed if and only ifs, ⇔, we also proved
(“for free!”) that x(t) = V eΛtV −1x0 is the only solution to (1).

3. (a) By assumption, we have that ẋ(t) = Ax(t), x(0) = x0, ż(t) = Az(t), z(0) = x0 and x 6≡ z,
i.e., that there exists a t ≥ 0 such that x(t) 6= z(t). Note that

x(t) = x(0)+

∫ t

0
ẋ(τ)dτ = x0 +

∫ t

0
Ax(τ)dτ, z(t) = z(0)+

∫ t

0
ż(τ)dτ = x0 +

∫ t

0
Az(τ)dτ.

Hence, using both linearity of integration and the properties of norms,

δ(t) = ||x(t)−z(t)|| =
∣∣∣∣∣∣∣∣x0 +

∫ t

0
Ax(τ)dτ −

(
x0 +

∫ t

0
Az(τ)dτ

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∫ t

0
A(x(τ)− z(τ))dτ

∣∣∣∣∣∣∣∣
≤
∫ t

0
||A(x(τ)− z(τ))||dτ ≤

∫ t

0
||A|| ||x(τ)− z(τ)||dτ =

∫ t

0
||A||δ(t)τ.

Using α = 0 and β = ||A|| ≥ 0 and applying (3) we get

δ(t) ≤ αeβt = 0e||A||t = 0, ∀t ≥ 0.

Hence, δ ≡ 0, so x ≡ z, which contradicts our initial assumption that x(t) and z(t) are
different (at least for one value of t). Thus, there are not multiple solutions to (1), there is at
most one.
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(b)

ẋ(t) =
d

dt
x(t) =

d

dt
(V eΛtV −1x0) = V

d

dt
(eΛt)V −1x0 = V ΛeΛtV −1x0

ButA = V ΛV −1, henceAV = V Λ. Plugging this into the above we get ẋ(t) = AV eΛtV −1x0 =
Ax(t).

(c) x(0) = V eΛ0V −1x0 = V IV −1x0 = V V −1x0 = Ix0 = x0. Thus we can conclude that the
unique solution to (1) is given by (2).
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