
Problem Sheet 4: Second order non-linear models

If you find any typos/errors in this problem sheet please email jk208@ic.ac.uk.

1. Consider the model of arbitrary order n

ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn. Suppose that (1) has a fixed point p ∈ Rn, i.e., p satisfies f(p) = 0, and let J(p)
denote the Jacobian of (1) evaluated at this fixed point p. Then, the Hartman-Grobman Theorem
states that if no eigenvalue of J(p) has a real part equal to zero1 then p locally behaves like the
fixed point at the origin of the linearised model2

ż(t) = J(p)z(t) (2)

where z ∈ Rn. By this we mean that there exists a ball centred around p of sufficiently small radius
(possibly very small) in which the phase portrait of the fixed point p of (1) “looks arbitrarily close”
to that of the fixed point at the origin of (2). That is, if the origin of (2) is an unstable node,
then p of (1) acts as an unstable node in that ball (with the same eigenvectors/eigenvalues), if the
origin of (2) is an unstable spiral, then . . . , etc.

Let’s illustrate the Hartman-Grobman Theorem by applying it to the following second order model

ẋ = 2µ(1− y2)x− atan(y) (3a)
ẏ = x (3b)

where µ ∈ R is a parameter.

(a) Find all fixed points of (3).

(b) Compute the analytical expression of the Jacobian matrix of (3).

(c) For each fixed point p, what can you deduce about p using the Hartman-Grobman Theorem?
(consider all possible values of µ ∈ R)

2. Consider the second order model3

ẋ = x+ y − x3 (4a)

ẏ = y − x− y3. (4b)

(a) Find all fixed points of (4). Hint: Plot the nullclines and look for intersections.

(b) Find and evaluate the Jacobian at each fixed point. For each fixed point p, what can you
deduce about p using the Hartman-Grobman Theorem discussed in exercise 1?

(c) Show that any ball centred around the origin and of sufficiently large radius R, that is any
set BR = {(x, y) ∈ R2 : x2 + y2 ≤ R2} where R is “sufficiently large” (i.e., is larger than a
certain quantity to be computed), is forward invariant.

(d) Using your answers to parts (a) - (c) and the Poincaré-Bendixson Theorem, what can you say
about the existence of a limit cycle?

1If the Jacobian matrix J(p) is such that none of its eigenvalues has a zero real part, we say that p is a hyperbolic
fixed point.

2We sometimes refer to the process of finding this linearised model as “linearising around the fixed point p”.
3This question was provided by Dr Angeli and it’s taken from his course EE4-23 Stability and Control of Non-linear

Systems.
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3. In 1979, Schnackenberg suggested that the following three biochemical reactions could lead to
oscillations if the concentrations of species A and B were fixed at a constant level.

X
k1−−⇀↽−−
k−1

A, 2X + Y
k2−→ 3X, B

k3−→ Y

Assuming that the concentrations of A and B are constant and applying the law of mass action
one can model the above system of reactions as

d[X]

dt
= k−1[A]− k1[X] + k2[X]2[Y ] (5a)

d[Y ]

dt
= k3[B]− k2[X]2[Y ] (5b)

where [A] > 0, [B] > 0, [X] > 0 and [Y ] > 0 denote the concentrations of A, B, X and Y ,
respectively; k1 > 0 and k−1 > 0 denote the forward and backward reaction coefficients of the first
reaction, respectively; and k2 > 0 and k3 > 0 denote the reaction coefficients of the second and
third reactions, respectively.

(a) Use the substitutions X = αx1, Y = βx2 and t = ξτ to non-dimensionalise model (5) and
obtain the non-dimensionalised model

dx1
dτ

= σ − γx1 + x21x2 (6a)

dx2
dτ

= 1− x21x2 (6b)

where σ > 0 and γ > 0 are two new parameters. Give expressions of σ and γ in terms of the
original parameters [A], [B], k1, k−1, k2 and k3.

(b) Find all fixed points of the non-dimensionalised model (6).
(c) Consider the trapezoidal region in the phase plane shown in the figure below. Do the fixed

point/s lie inside the trapezoidal region? Show that this trapezoidal region is a trapping
region (i.e., is forward invariant) for the model (6).

Figure 1: Candidate trapping region (shaded in red).

(d) Compute the Jacobian matrix, J(x), of the non-dimensionalised model (6). Do not plug in
the expressions for the coordinate of the fixed point/s you obtained in the part (b).
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(e) Suppose that σ = 5 and γ = 6. Use your answers to parts (b) and (d) and sketch the local
phase portrait of each fixed point. Classify each fixed point as either a stable/unstable node
or a stable/unstable spiral. Hint: This requires you to work out the eigenvalues (and if the
fixed point in question is a node, the eigenvectors as well) of the Jacobian matrix.

(f) Repeat part (e) but this time using σ = 1
2 and γ = 3.

(g) Using your answers to parts (c), (e), (f) and the Poincaré-Bendixson Theorem, what can you
say about the existence of a limit cycle if i) σ = 5 and γ = 6, ii) σ = 1

2 and γ = 3.
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Solutions
1. (a) At any fixed point p = (x̄, ȳ), we have ẋ = ẏ = 0.

Let’s start with ẏ = 0: ẏ = 0 ⇔ x̄ = 0

Next, ẋ = 0 ⇔ 2µ(1− ȳ2)x̄−atan (ȳ) = 2µ(1− ȳ2)(0)−atan (ȳ) = 0 ⇔ atan (ȳ) = 0 ⇔ ȳ = 0.
Thus, (3) has a unique fixed point p = (0, 0).

(b)

J(x, y) =

[
∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

]
=

[
2µ(1− y2) −(4µxy + 1

1+y2
)

1 0

]
.

(c) The Jacobian evaluated at the origin gives

J(0, 0) =

[
2µ −1
1 0

]
The eigenvalues are the roots of det(J(0, 0)−λI) = λ2−2µλ+1. Hence, λ1,2 = µ±

√
µ2 − 1.

Hence applying the Hartman-Grobman Theorem we can conclude that
• If 0 < µ < 1, then the local phase portrait p resembles that of an unstable spiral.
• If µ ≥ 1, then the local phase portrait p resembles that of an unstable node (note that
µ2 > µ2 − 1 ≥ 0 ⇒ µ >

√
µ2 − 1 ⇒ µ−

√
µ2 − 1 > 0 ).

• If µ = 0, both the eigenvalues are ±i, thus the Hartman-Grobman Theorem is not
applicable and one cannot deduce the local stability properties of (1) from the stability
properties of the linearised system (2).4

• If −1 < µ < 0, then the local phase portrait of p resembles that of a stable spiral.
• If µ ≤ −1, then the local phase portrait p resembles that of a stable node.

2. (a) If one attempts to solve for the fixed points algebraically, one ends up trying to find the roots
of an 8th order polynomial - which is far from desirable. In these sorts of situations, plotting
the nullclines and checking graphically for intersections (which give the fixed points) will,
sometimes, solve the problem. So, following the hint we have the x nullcline Nx = {(x, y) :
y = x3 − x} and the y nullcline Ny = {(x, y) : x = y − y3}, see Figure 2.

Figure 2: Nullclines.

4In such a case, the local stability property of the fixed point of (1) needs to be established by explicitly taking into
account the nonlinear terms, e.g., using Lyapunov’s direct method (constructing a Lyapunov function) or the Centre
Manifold Theorem (these methods are beyond the scope of this course and will not be covered here).
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From the figure, it is fairly clear that the nullclines only intersect at the origin. Thus p = (0, 0)
is the unique fixed point. This said, one could play devil’s advocate and ask how can we be
certain that something along the lines of what is plotted in Figure 3 is not the actual situation
and we really have more than one fixed point (which would be a perfectly valid question).
The short answer is because of both symmetry and that the coefficients in the cubics defining
the nullclines are not large enough (the curve would have to be quite steep, compare Figures 2
and 3). However if one wanted to check carefully, for example, that the nullclines do not cross
in the second quadrant, one could work out the coordinates of the local maximum (q1, q2) of
Nx, and then check that (q1, α) ̸∈ Ny where 0 ≤ α ≤ q2 (a good exercise is to actually prove
that the nullclines don’t intersect, try it).

Figure 3: Are there nine fixed points?

(b)

J(x, y) =

[
1− 3x2 1
−1 1− 3y2

]
⇒ J(0, 0) =

[
1 1
−1 1

]
The eigenvalues are the roots of the characteristic polynomial det(J(0, 0)−λI) = (λ−1)2+1 =
λ2 − 2λ + 2 ⇒ λ1,2 = 1 ± i. Neither eigenvalue has zero real part, thus, by the Hartman-
Grobman Theorem, the fixed point at the origin of (4) behaves locally as an unstable spiral
(rotating in the clockwise direction, can you see why? Hint: for example, look at the sign of
ẏ on the x-axis (i.e., when y = 0). You will see that, on the x-axis, you have ẋ = x− x3 and
ẏ = −x, therefore the vector field on the x-axis is such that trajectories are rotating clockwise).

(c) We have that B = {(x, y) ∈ R2 : g(x) ≤ 0} where g(x) = x2 + y2 − R2. Note that g(x) is
continuously differentiable. Thus, B is forward invariant if and only if, for all (x, y) such that
g(x, y) = 0, i.e., for all (x, y) such that x2 + y2 = R2, we have

dg(x(t), y(t))

dt
=

[
∂g(x,y)

∂x
∂g(x,y)

∂y

] [dx(t)
dt

dy(t)
dt

]
=

[
2x 2y

] [x+ y − x3

y − x− y3

]
= 2(x2 − x4 + y2 − y4)

= 2
(
(x2 + y2)− (x4 + y4)

)
≤ 0.

Hence, suppose that x2 + y2 = R2, then, dg(x(t),y(t))
dt = 2(R2 − (x4 + y4)). In addition, notice

that because x2 and y2 are non-negative and x2 + y2 = R2, then either x2 ≥ R2

2 or y2 ≥ R2

2

(or x2 = y2 = R2

2 ). Hence, x4 + y4 ≥
(
R2

2

)2
= R4

4 . So, 2(R2 − (x4 + y4)) ≤ 2(R2 − R4

4 ) =

2R2(1− R2

4 ) ≤ 0 for any R ≥ 2.

Page 5



Hence, any ball centred around the origin with radius greater or equal than 2 is forward
invariant.

(d) In part (c) we showed that the first condition of the Poincaré-Bendixson Theorem is satisfied,
i.e., that there exists a bounded forward invariant subset of the phase plane. More specifically,
we showed that all balls B centred at the origin and with radius larger or equal to 2 are forward
invariant. From part (a) we know that there is a fixed point inside B, namely the origin. Thus
the second condition of the theorem is not satisfied. Fortunately, by linearising around the
origin in part (b) we verified that the origin is an unstable spiral, thus, as discussed in the
notes, we can safely assume that this locally unstable fixed point (i.e., the origin in this case)
can be “cut out” of the region B without any further analysis on our part. Thus, we can
conclude that there exists at least a limit cycle inside the forward invariant set B and that all
trajectories that enter B eventually converge to a limit cycle.

3. (a) Plugging in the substitutions and moving the constants to the right hand side of both equations
one obtains

dx1
dτ

=
ξk−1[A]

α
− ξk1x1 + ξαβk2x

2
1x2

dx2
dτ

=
ξk3[B]

β
− ξα2k2x

2
1x2.

Next, we need to find values of α, β and ξ such that ξk3[B]
β = 1, ξα2k2 = 1 and ξαβk2 = 1.

First, ξk3[B]
β = 1 ⇒ β = ξk3[B]. Next, ξαβk2 = ξ2α[B]k2k3 = 1 ⇒ α = 1

[B]k2k3ξ2
. Lastly,

ξα2k2 = 1
[B]2k2k23ξ

3 = 1 ⇒ ξ = 3

√
1

[B]2k2k23
. Now that ξ is expressed solely in terms of the

parameters of (5), we can find the expression of α and β in terms of these parameters by
substituting in the final expression of ξ.

Then we finish by setting σ = ξk−1[A]
α = ξ3k−1[A][B]k2k3 =

k−1[A]
k3[B] and γ = k1ξ = k1 3

√
1

[B]2k2k23
.

(b) At the fixed point p = (x̄1, x̄2), we have that dx1
dτ |(x̄1,x̄2) =

dx2
dτ |(x̄1,x̄2) = 0.

First, dx2
dτ |(x̄1,x̄2) = 0 ⇒ 1− x̄21x̄2 = 0 ⇒ x̄21x̄2 = 1. Then, dx1

dτ |(x̄1,x̄2) = 0 ⇒ σ − γx̄1 + x̄21x̄2 =

σ − γx̄1 + 1 = 0 ⇒ x̄1 =
σ+1
γ . Lastly, using 1− x̄21x̄2 = 0 again we get x̄2 =

1
x̄2
1
= γ2

(1+σ)2
.

Hence we conclude there is a unique fixed point p =
(
σ+1
γ , γ2

(1+σ)2

)
.

(c) From part (b) we have that the unique fixed point of (6) is p = (p1, p2) =
(
σ+1
γ , γ2

(1+σ)2

)
.

Examining the figure one can see that it lies inside the trapezoidal region if and only if
0 ≤ p2 ≤ γ2

σ2 . But γ > 0, σ > 0 ⇒ γ2

(1+σ)2
> 0 and σ > 0 ⇒ (1 + σ)2 > σ2 ⇒ γ2

(1+σ)2
< γ2

σ2 . So
yes, the fixed point does lie inside the trapezoidal region.

One can show that the trapezoidal region is forward invariant by showing that the vector
field f(x) (given by (6)) evaluated along the boundary of the trapezoidal region always points
“inside” the trapezoidal region. This is so if along each of the four line segments that define
the boundary of the region, the angle between f(x) and the normal vector to the line segment
(pointing outwards of the trapezoidal region), n, is greater or equal to π/2 (i.e., nT f(x) ≤ 0).

As shown in the figure the four line segments defining the trapezoidal region boundary are
given by l1 = {(x1, 0) : σ

γ ≤ x1 ≤ σ+1
γ + γ2

σ2 }, l2 = {(x1, σ+1
γ + γ2

σ2 −x1) :
σ+1
γ ≤ x1 ≤ σ+1

γ + γ2

σ2 },
l3 = {(x1, γ

2

σ2 ) :
σ
γ ≤ x1 ≤ σ+1

γ } and l4 = {(σγ , x2) : 0 ≤ x2 ≤ γ2

σ2 }.
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The normal vectors then are n1 = (0,−1)T , n2 = (1, 1)T , n3 = (0, 1)T and n4 = (−1, 0)T ,
respectively. In what follows, we denote fracdx1dτ by ẋ1 and fracdx2dτ by ẋ2. The dot
products are thus:

x ∈ l1 ⇒ nT
1 f(x)|x∈l1 = −ẋ2|x∈l1 = −(1− x21x2)|x∈l1 = −1 ≤ 0,

x ∈ l2 ⇒ nT
2 f(x)|x∈l2 = ẋ1 + ẋ2|x∈l2 = (σ + 1− γx1)|x∈l2 ≤ σ + 1− γ

σ + 1

γ
= 0,

x ∈ l3 ⇒ nT
3 f(x)|x∈l3 = ẋ2|x∈l3 = (1− x21x2)|x∈l3 ≤ 1−

(
σ

γ

)2 γ2

σ2
= 0,

x ∈ l4 ⇒ nT
4 f(x)|x∈l4 = −ẋ1|x∈l4 = −(σ − γx1 + x21x2)|x∈l4 ≤ γx1 − σ|x∈l4 = γ

σ

γ
− σ = 0

Thus, we can conclude that the trapezoidal region is forward invariant with respect to (6).

(d) J(x) =

[
2x1x2 − γ x21
−2x1x2 −x21

]
(e) Plugging in σ = 5 and γ = 6 we have that the fixed point p =

(
σ+1
γ , γ2

(1+σ)2

)
= (1, 1). Next,

J(p) =

[
2x1x2 − γ x21
−2x1x2 −x21

]
=

[
−4 1
−2 −1

]
.

The eigenvalues are the roots of the characteristic polynomial det(J(p) − λI) = (λ + 4)(λ +
1) + 2 = λ2 + 5λ+ 6 = (λ+ 3)(λ+ 2). Hence the two eigenvalues are λ1 = −3 and λ2 = −2.
The corresponding eigenvectors are given by the non-trivial solutions to J(p)vi = λivi. So,[
−4 1
−2 −1

]
v1 = −3v1 ⇒ v1 = [1, 1]T and

[
−4 1
−2 −1

]
v2 = −2v2 ⇒ v2 = [1/2, 1]T .

From the above we can conclude that p is a stable node with fast eigenvector [1, 1]T and slow
eigenvector [1/2, 1]T . Thus, the phase portrait should look something similar to:

Figure 4: Phase portrait.

(f) Plugging in σ = 1
2 and γ = 3 we have that the fixed point p =

(
σ+1
γ , γ2

(1+σ)2

)
= (1/2, 4). Next,

J(p) =

[
2x1x2 − γ x21
−2x1x2 −x21

]
=

[
1 1/4
−4 −1/4

]
.

The eigenvalues are the roots of the characteristic polynomial det(J(p) − λI) = (λ − 1)(λ +
1
4) + 1 = λ2 − 3

4λ+ 3
4 . Hence the two eigenvalues are λ1,2 =

3
8 ±

√
−39

64 .
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From the above we can conclude that p is an unstable spiral. To tell whether the trajectories
will spin in the clockwise or anticlockwise direction we can simply examine the vector field
the linearised model ż = J(p)z at a single point z ̸= 0. J(p)[1, 0]T = [1,−4]T which is in the
4th quadrant, hence the trajectories are spinning in the clockwise direction. Thus, the phase
portrait should look something similar that in Figure 5.

Figure 5: Phase Portrait

(g) Previously, it was shown that the trapezoidal region displayed in Figure 1 is forward invariant.
In addition, the unique fixed point always lies inside the region. Thus, if it is an unstable
node or spiral, applying the Poincaré-Bendixson Theorem, we can conclude that there exists
an attracting limit cycle inside the trapezoidal region. Otherwise, we cannot say anything
regarding the existence (or not) of a limit cycle. Thus, in case i) where σ = 5 and γ = 6 we
cannot say anything while in case ii) where σ = 1

2 and γ = 3 we can conclude there exists an
attracting limit cycle inside the trapezoidal region.

Page 8


