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Abstra
tThis thesis is devoted to the global (as opposed to lo
al) analysis, and synthesis of stable limit 
y
leos
illations in dynami
al systems des
ribed by di�erential equations. Dynami
al systems that exhibit stablelimit 
y
le os
illations are 
alled os
illators. The main 
ontribution is the development of a theory for os
illatorsseen as open systems, that is, as systems that 
an be inter
onne
ted to other systems through their inputsand outputs. The results are obtained by 
onsidering an input-output 
hara
terization of os
illators based ondissipativity theory. The use of a dissipativity 
hara
terization opens the way to limit 
y
le global 
onvergen
eanalysis and synthesis in high dimensional and inter
onne
ted models of os
illators.In the �rst part of the thesis, we de�ne a 
lass of dynami
al systems exhibiting globally attra
tive limit
y
le os
illations, and study the fundamental me
hanisms responsible for these os
illations. We name elementsof this 
lass �passive os
illators�. Passive os
illators 
onsist in the feedba
k inter
onne
tion of a passive systemwith a stati
 nonlinearity whi
h is �lo
ally a
tive� and �globally dissipative�. For this nonlinearity, the slopeat the origin is treated as a bifur
ation parameter. For values of the parameter in the vi
inity of a 
riti
albifur
ation value, we give su�
ient 
onditions for the existen
e, uni
ity, and globally attra
tivity of a limit
y
le os
illation. Central to these results is the 
hara
terization of passive os
illators by a spe
i�
 dissipationinequality. This dissipation inequality provides an external 
hara
terization of os
illators whi
h allows arigorous global stability analysis of limit 
y
les in high dimensional systems.In the se
ond part of the thesis, we show the usefulness of the dissipativity 
hara
terization for the globalanalysis of networks of inter
onne
ted passive os
illators. In parti
ular, we give su�
ient 
onditions thatallow straightforward extensions of the results obtained for an isolated passive os
illator to networks of passiveos
illators. These extensions rely on a multivariable version of the dissipation inequality used to 
hara
terizethe network. We also introdu
e an in
remental version of this dissipation inequality and show its usefulnessfor proving existen
e, and global stability of syn
hrone os
illations in networks of identi
al passive os
illators.Finally, we show the usefulness of the 
onsidered approa
h for the synthesis of os
illations. We show that anatural os
illation me
hanism is indu
ed when a passive system is put in feedba
k with a spe
i�
 proportional-integral 
ontroller for whi
h the sign of the proportional part is lo
ally reversed. The main advantage ofthis 
ontroller is that it relies on existing energy-based stabilization theory for equilibrium points: on
e astabilizing, passive output has been designed for the system, it is used to 
lose the loop with the 
ontroller inorder to generate limit 
y
le os
illations in the 
losed loop system.
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Chapter 1Introdu
tionThis thesis is devoted to the global analysis and synthesis of stable limit 
y
le os
illations. Dy-nami
al systems that exhibit stable limit 
y
le os
illations are 
alled os
illators. They are ubiquitousin physi
al and biologi
al systems (see [Gol96, Mos97, Str03℄ for numerous examples of os
illators).Detailed models of os
illators abound in the literature, most frequently in the form of a set of nonlin-ear di�erential equations whose solutions robustly 
onverge to a limit 
y
le os
illation. Lo
al stabilityanalysis is possible by means of Floquet theory [Far94, BM94℄ but global stability analysis is usuallyrestri
ted to se
ond order models. For these models, global analysis is performed by using spe
i�
 lowdimensional tools (phase plane methods, Poin
aré-Bendixon theorem, et
.) whi
h do not easilygeneralize to higher dimensions. The la
k of analyti
al tools in higher dimensions generally for
eshigh dimensional models of os
illators to be studied through numeri
al methods thereby giving noinsight into the fundamental os
illation me
hanisms involved. Moreover, when 
onsidering inter
on-ne
tion, the methods used for the analysis of an isolated os
illator do not generalize to the network.These 
onsiderations show the need for developing general analysis methods for os
illators. Thesemethods should allow the analysis of os
illators independently from their dimension and provide aninter
onne
tion theory for os
illators.From an analysis point of view, the aim of this thesis is to develop a global analysis method. We
hara
terize a 
lass of high-dimensional feedba
k systems exhibiting globally asymptoti
ally stablelimit 
y
le os
illations and study the me
hanisms responsible for these os
illations. To this end,we 
onsider an external 
hara
terization of os
illators whi
h �ts their des
ription by physi
al statespa
e models but, at the same time, has important impli
ations for the stability and syn
hronyanalysis of their inter
onne
tions. This external 
hara
terization of os
illators follows the fundamental
hara
terization of open systems by a dissipation inequality, whi
h opens the way for the developmentof an inter
onne
tion theory for os
illators.From a synthesis point of view, the aim is to provide a simple feedba
k me
hanism that allowsfor the generation of stable limit 
y
le os
illations in stable systems. In other words, we study thedesign of a simple 
ontroller that yields stable limit 
y
le os
illations in stable systems.1.1 Thesis main 
ontributions and related publi
ationsThe main 
ontribution of this thesis is the analysis of os
illators by a dissipativity theory. Inparti
ular, we show the impli
ations of this dissipativity theory for (i) the global stability analysis ofan isolated os
illator, (ii) the global stability analysis of inter
onne
tions of os
illators, and (iii) the1



CHAPTER 1. INTRODUCTIONglobal syn
hrony analysis of inter
onne
tions of N identi
al os
illators. Regarding the synthesis ofos
illations, the main 
ontribution 
on
erns the design of a proportional-integral 
ontroller to generateos
illations in stabilizable systems.To give the reader a �avor of the results, we introdu
e hereafter the main ideas that will bedeveloped in details in the next 
hapters.1.1.1 Global stability analysis of an isolated os
illatorThis resear
h started with the analysis of two low dimensional systems whi
h are well-known fortheir global limit 
y
le os
illations: the 
elebrated Van der Pol and Fitzhugh-Nagumo models.Ea
h of these systems is a referen
e model for nonlinear os
illations in physi
al and biologi
al sys-tems. On the one hand, the Van der Pol model is a basi
 example of os
illator in the frameworkof ele
trome
hani
al systems. On the other hand, the Fitzhugh-Nagumo model, whi
h is a sim-pli�
ation of the Hodgkin-Huxley model for voltage os
illations in the neuron 
ell membrane, isa basi
 example of os
illator in biology. Starting from these two models, we 
hara
terize a 
ommonfeedba
k stru
ture in whi
h the forward blo
k is �lled with a linear system and the feedba
k blo
kwith a stati
 nonlinearity. This feedba
k inter
onne
tion stru
ture is represented in Figure 1.1. It is
ommonly referred to as a Lure feedba
k inter
onne
tion.

−k

−

u ypassivestati
 nonlinearity
Figure 1.1: Blo
k diagram of the Lure nonlinear system studied in this thesis.The stati
 nonlinearity in both models is 
hara
terized by a negative slope at the origin and a 
u-bi
 behavior far from the origin, that is a nonlinear fun
tion of the form −ky+y3. To understand thefeedba
k me
hanisms involved and, at the same time, obtain an inter
onne
tion theory for os
illators,we sear
hed for an external 
hara
terization for both the dynami
 and the stati
 blo
k. Passivityrapidly emerged as a natural external 
hara
terization. Passivity is a parti
ular 
ase of the generaldissipativity theory introdu
ed by Willems [Wil72℄. It provides a dimension-independent, inter-
onne
tion theory for open systems des
ribed by state-spa
e models. Open means that the systemdynami
s depend on external variables whi
h des
ribe the intera
tion with the environment. Passiv-ity of an open system expresses that the rate of 
hange of its internal energy is bounded by the rateat whi
h the system 
an ex
hange energy with its environment through its external variables. Themathemati
al 
hara
terization of this physi
al property is the existen
e of a s
alar, positive semidef-inite fun
tion of the state S(x), 
alled the storage fun
tion, whi
h is su
h that its time derivativesatis�es the dissipation inequality Ṡ ≤ uy where u and y represent the input and output of the system2



1.1. THESIS MAIN CONTRIBUTIONS AND RELATED PUBLICATIONSrespe
tively. For the feedba
k stati
 nonlinearity, passivity amounts to satisfy a positivity 
ondition:a stati
 nonlinearity φ(·) is passive if its graph belongs to the �rst and third quadrants, that is, if
yφ(y) ≥ 0 for any y. Furthermore, if the nonlinearity φ(·) is su
h that limy→±∞

φ(y)
y

= ∞, it issaid to be sti�ening. The 
ommon stati
 nonlinearity of the Van der Pol and Fitzhugh-Nagumoos
illators has two terms: the �rst one y3 is sti�ening, passive and the se
ond one −ky is anti-passiveor a
tive. Sin
e the feedba
k inter
onne
tion of two passive systems is passive, the a
tive term ne
-essarily plays a determinant role for the generation of limit 
y
le os
illations. We observed that,
onsidering k as a parameter, a bifur
ation o

urs in both models at a 
ertain 
riti
al value k∗. Inthe Van der Pol model, a super
riti
al Hopf bifur
ation o

urs at k = 0: two 
omplex 
onjugateeigenvalues 
ross the imaginary axis at k = 0, giving rise to a globally stable limit 
y
le surroundingthe unique unstable equilibrium point x = 0 for k > 0. The super
riti
al Hopf bifur
ation is dire
tlyresponsible for the global os
illation. The 
orresponding feedba
k os
illation me
hanism is an energyex
hange between the storage variables of the forward passive system. This energy ex
hange is reg-ulated by the stati
 nonlinearity: when the internal energy of the system is too low, the a
tive partof the nonlinearity for
es its in
rease whereas the passive part for
es its de
rease when it is too high.In the Fitzhugh-Nagumo model, the feedba
k os
illation me
hanism 
an be seen as the additionof a slow feedba
k adaptation dynami
 to a globally bistable system. This slow adaptation dynami
perpetually for
es a swit
h from one equilibrium point to the other one, thereby transforming theglobally bistable behavior into a global relaxation os
illation. The globally bistable system resultsfrom a super
riti
al pit
hfork bifur
ation o

urring in a subpart of the Fitzhugh-Nagumo dynam-i
s. This subpart 
onsists in a Lure feedba
k inter
onne
tion similar to the one sket
hed in Figure1.1.
The passivity 
hara
terization of these two low dimensional os
illators raised the question if su
hglobal os
illation me
hanisms still hold for a high dimensional, nonlinear system in the forward blo
kand a more general stati
 nonlinearity in the feedba
k blo
k. The answer to this question 
onstitutesthe �rst main result presented in Chapter 3: under some te
hni
al assumptions, the Lure feedba
kinter
onne
tion of a passive system with a stati
 nonlinearity possessing a parametrized a
tive part(−ky) and a sti�ening, passive part (φ(y)) for
es one of two bifur
ation s
enarii (Theorems 3.8and 3.12). The �rst one 
orresponds to a super
riti
al Hopf bifur
ation: two 
omplex 
onjugateeigenvalues 
ross the imaginary axis at k = k∗, giving rise to a stable limit 
y
le surrounding theunique unstable equilibrium point x = 0 for k & k∗ (the notation k & k∗ is used to denote a value ofthe parameter k near the 
riti
al value k∗, i.e. k ∈

(
k∗, k̄

] for some k̄ > k∗). The se
ond bifur
ations
enario is a super
riti
al pit
hfork bifur
ation: the stable equilibrium x = 0 be
omes a saddle pointbeyond the bifur
ation value k = k∗ and two new stable equilibria appear for k & k∗. This se
ondbifur
ation s
enario 
an be transformed into a global os
illation by addition of a slow adaptationdynami
 (Theorem 3.9). As meant by the notation k & k∗, the results are lo
al in the parameterspa
e (they hold for values of the parameter in the vi
inity of the 
riti
al bifur
ation value) butthey are global in the state-spa
e, i.e. 
onvergen
e to the stable limit 
y
le is proved for all initial
onditions that do not belong to the stable manifold of the (unstable) equilibrium at the origin. Sin
epassivity is the driving line and main assumption, we name the global os
illators 
orresponding tothis �rst result passive os
illators. The results of Chapter 3 have been presented in [SS03℄, [SS04b℄and in [SS05a℄. 3



CHAPTER 1. INTRODUCTION1.1.2 Global stability analysis of inter
onne
tions of os
illatorsA fundamental property of passivity is the analysis of inter
onne
tions. In the �rst part of Chapter4 we show that the results obtained for an isolated passive os
illator extend to networks of passiveos
illators when the stati
 
oupling between the os
illators satis�es a passivity (positivity) 
ondition.To this end, we 
onsider a MIMO representation of the network whi
h is the multivariable analogueof the Lure feedba
k stru
ture presented in Figure 1.1. As su
h, extension of the pre
eding results toa network of passive os
illators be
omes straightforward (Theorems 4.5, 4.9, and 4.12). These resultsshow that our approa
h not only provides results for isolated os
illators, but also for inter
onne
tionsof os
illators. This is fundamental to the development of a system theory for os
illators and allows forthe following analogy between passivity theory and passive os
illators theory: the building blo
ks of
omplex passive systems are their storage elements whereas the building blo
ks of 
omplex os
illatingnetworks are their passive os
illators.1.1.3 Global syn
hronization analysis of inter
onne
tions of identi
al os
illatorsAfter having determined the existen
e and stability of limit 
y
le os
illations in a network ofinter
onne
ted passive os
illators, the important question of their relative os
illating behavior arises.Global syn
hronization among identi
al passive os
illators is studied in the se
ond part of Chapter4. In this part, we show that dissipativity not only provides an inter
onne
tion theory for os
illatorsbut also, in its in
remental form, a global syn
hronization theory. Syn
hronization refers to thetenden
y of inter
onne
ted os
illators to produ
e ensemble phenomena, that is, to phase lo
k asif an invisible 
ondu
tor was or
hestrating them. Syn
hronization is a 
onvergen
e property forthe di�eren
e between the solutions of di�erent systems. Convergen
e properties for the di�eren
ebetween solutions of a 
losed system are 
hara
terized by notions of in
remental stability. For opensystems, the 
orresponding notion is in
remental passivity. The main result (Theorem 4.15) 
on
ernsthe impli
ations of in
remental passivity for the global stability of syn
hrone os
illations in networksof identi
al passive os
illators.The results of Chapter 4 have been presented in [SS04a℄, [Sep04℄ and in [SS05b℄.1.1.4 Synthesis of os
illations in stable systemsOur last 
ontribution 
on
erns the synthesis of os
illations in stabilizable systems. More spe
i�-
ally, we examine how to design a simple 
ontroller that yields stable limit 
y
le os
illations in a sta-bilizable system. To answer this question, we propose, in Chapter 5, a simple nonlinear proportional-integral feedba
k 
ontroller. The design of this 
ontroller is dire
tly inspired from the analysis of theLure feedba
k stru
ture presented in the previous se
tions. Under some te
hni
al assumptions, itallows to generate os
illations in any stabilizable system. The main advantage of this 
ontroller isthat it relies on stabilization theory for equilibrium points: on
e a stabilizing, passive output has beendesigned for the system, it is used to 
lose the loop with the 
ontroller in order to generate limit 
y
leos
illations with large basins of attra
tion. The design of a stabilizing, passive output is a 
entraltopi
 in nonlinear 
ontrol theory and many methods already exist to solve this problem (feedba
kpassivation designs, 
ontrolled Hamiltonian and Lagrangian theory, energy shaping methods, et
.).Even in the 
ase when the required te
hni
al assumptions are not satis�ed, the proposed 
ontroller isexpe
ted to yield stable limit 
y
le os
illations thus providing a simple method to for
e os
illations byfeedba
k. Appli
ation of this 
ontroller to ben
hmark undera
tuated me
hani
al systems su
h as the4



1.2. BIBLIOGRAPHICAL STATE OF THE ART
art-pendulum, the pendubot, the a
robot, or the balan
ing 
ontrol of the bipedal robot RABBIT ispart of ongoing resear
h. In Chapter 5, we present simulation results obtained for the 
art-pendulum.Real implementation of this 
ontroller for the balan
ing 
ontrol of RABBIT is the subje
t of a 
urrentjoint proje
t in 
ollaboration with the Laboratoire d'Automatique de Grenoble.1.2 Bibliographi
al state of the art1.2.1 Analysis of os
illationsThe analysis of the fundamental me
hanisms responsible for limit 
y
le os
illations in feedba
ksystems is a longstanding problem. Earlier results in the literature have exploited the stru
tureof Lure systems for the study of nonlinear os
illations. This stru
ture was �rst investigated inthe works of Yakubovi
h [Yak73℄ and Tomberg [TY89℄ whi
h provided su�
ient 
onditions forthe existen
e of �auto-os
illations�. Auto-os
illation is there understood as [TY89℄ "stable, non-de
aying os
illatory regimes that arise in nonlinear systems... it is not ne
essarily 
onne
ted, asis sometimes done, with periodi
 movement". The results presented in [Yak73, TY89℄ 
on
ern theexisten
e of auto-os
illation but do not predi
t towards whi
h auto-os
illatory regime the solutionwill 
onverge nor its uniqueness. The mathemati
al 
on
epts of auto-os
illation and self-os
illatingsystem go ba
k to the works of the A. A. Andronov s
hool [AVK66, AVK65℄. This theory hasbeen followed by many developments by the Russian s
hool summarized in the survey book [LBS96℄by Leonov. In [LBS96℄, frequen
y 
onditions for the existen
e and lo
al stability of limit 
y
lein high dimensional systems are presented. The main assumption of these frequen
y 
riteria is theLevinson dissipativity [Lev44, CL55℄ of the feedba
k system whi
h implies that all the solutions areultimately bounded. Levinson dissipativity may be proved with the help of the 
on
ept of semi-passivity introdu
ed by Pogromsky and Nijmeijer in [Pog98, PGN99℄. The presented existen
e
onditions are based on high-dimensional generalizations of the annulus prin
iple (i.e. the Poin
aré-Bendixon theorem) initiated in the work of Smith [Smi79, Smi86℄. The lo
al stability 
onditionsare mainly based on the geometri
al 
onstru
tion and linear stability analysis of Poin
aré maps.Unfortunately, no periodi
ity, uniqueness or global 
onvergen
e result is provided. Furthermore, thephysi
al interpretation of the underlying feedba
k me
hanisms responsible for the os
illations is notdis
ussed.The analysis of feedba
k indu
ed os
illations has also been investigated by Mees [MC79℄ wherenonlinear feedba
k systems exhibiting super
riti
al Hopf bifur
ations are 
onsidered. In [MC79℄,Mees presents a �frequen
y-domain� Hopf bifur
ation theorem and graphi
al 
onditions 
orrespond-ing to rigorous versions of the des
ribing fun
tions method (also known as the harmoni
 balan
emethod) to 
on
lude about lo
al stability of limit 
y
les in feedba
k loops. If one is only interested inlo
al stability properties of the limit 
y
le, then the results of Mees are well suited to draw 
on
lu-sions for any parti
ular feedba
k loop system 
onsisting of a linear feedforward path and a nonlinearfeedba
k path. For the parti
ular 
ase of Hopf indu
ed bifur
ation, a simple appli
ation of Meesresults to our 
lass of systems shows that, generi
ally, a super
riti
al Hopf bifur
ation arises (seeAppendix C). Nevertheless, in [MC79℄, the fundamental properties of the feedforward and feedba
kpath leading to global stability properties of the limit 
y
le are not dis
ussed. Moreover, the extensionof Mees results to several identi
al inter
onne
ted systems is not obvious and the pro
edure has tobe restarted ab initio for the whole network.Another way of analyzing limit 
y
le os
illations is to extend existing equilibrium point analysis5



CHAPTER 1. INTRODUCTIONmethods. In [HC94, CH95, CH97, CH98℄, Hauser and Chung present an analysis framework forthe 
omputation of Lyapunov fun
tions allowing to determine if a given limit 
y
le is lo
ally ex-ponentially stable. This framework is based on the de�nition of a lo
al 
hange of 
oordinates (θ, ρ)highlighting the n−1 dimensional transverse dynami
s of a periodi
 orbit. It allows to draw analogiesfrom the equilibrium point stability analysis (transverse linearization instead of equilibrium point lin-earization, periodi
 Lyapunov equation instead of Lyapunov equation, Lp stability and L2 gain ofa periodi
 orbit). However, no 
ondition allowing to 
on
lude about existen
e, uniqueness or globalstability of a limit 
y
le is given.For the analysis of pie
ewise linear systems, Gon
alves [GMD01, GMD03℄ re
ently developednumeri
al tools to prove existen
e and global asymptoti
 stability of limit 
y
les. In his approa
h,Gon
alves redu
es the problem of stability analysis of the limit 
y
le in pie
ewise linear systems tothat of the (numeri
al) 
onstru
tion of a set of quadrati
 Lyapunov fun
tions de�ned on the swit
hingsurfa
es of the pie
ewise linear system. These Lyapunov fun
tions are found by numeri
ally solving a�nite set of linear matrix inequalities. At the end of Chapter 3, we adapt the method of Gon
alvesto the analysis of limit 
y
le os
illations in pie
ewise linear version of passive os
illators.1.2.2 Analysis of os
illations in networksOver the last de
ade, the analysis of networks of os
illators has been a very a
tive resear
h area inbiology, 
hemistry, physi
s, 
ontrol and applied mathemati
s (see [HI97, Mos97, NRA03, GS02, SS93,Kri97, Pog98, VG01, DM01, KE02, PSN02a, SW03, SWR04, RAN04℄ to 
ite just a few). The la
k ofan inter
onne
tion theory for os
illators generally for
es an oversimpli�
ation of the models of ea
hos
illator of the network. Two important networks models, extensively studied in the literature, arethose of Hopfield [Hop82℄ and Kuramoto [Kur84℄. In Hopfield models, the dynami
 of os
illator
k in the network is des
ribed by a single s
alar variable ρk whi
h models an average a
tivity of theos
illator (as a model for networks of neurons, this average a
tivity is often thought of as the average�ring rate of the neuron). Hopfield models abound in neuros
ien
e and have been used to des
ribethe dynami
s of a number of 
omputational tasks (see for instan
e [Wil99b℄ for several illustrations invision). In these examples, the os
illatory behavior of the neuron is unimportant. The state ρk onlymodels the storage 
apa
ity of the neuron. Storage models of os
illators negle
t the phase variable ofperiodi
 solutions. As a 
onsequen
e, they are inadequate for phase-lo
king or syn
hrony analysis. In
ontrast, in Kuramoto phase models [Kur84, HI97℄, the dynami
 of the os
illator k is des
ribed bya single s
alar variable θk on the 
ir
le. These models negle
t the radial variable of periodi
 solutionsand thus disregard the dynami
al behavior of the os
illator away from its limit 
y
le solution. Theyare inadequate for (global) orbital stability analysis. Several authors have studied how to redu
egeneral models of os
illators to phase models in the limit of weak 
oupling, that is, when the 
ouplingbetween the os
illators does not a�e
t the 
onvergen
e of ea
h os
illator to a limit 
y
le solution. Formore details about this redu
tion pro
edure and the stability analysis of inter
onne
ted phase modelsof os
illators, we refer the reader to the re
ent papers [BMH04, RA03℄ and referen
es therein. In ourapproa
h, we do not make su
h simpli�
ations. We 
hara
terize su�
ient input-output properties thatenable (global) limit 
y
le os
illations for an isolated os
illator. These input-output properties arethen generalized to inter
onne
tions of os
illators, thereby providing su�
ient 
onditions for (global)limit 
y
le os
illations in networks. 6



1.2. BIBLIOGRAPHICAL STATE OF THE ART1.2.3 Analysis of syn
hronization in networksThe growing interest for syn
hronization in engineering appli
ations is due to the robustness of
olle
tive phenomena, making an ensemble phenomenon insensitive to individual failures. The mani-festations of syn
hronization are numerous both in nature and in engineered devi
es. The interestedreader will �nd several 
ompelling illustrations in [Str03℄ and [NRA03℄.In [PN01, PSN02b, PSN02a℄, Pogromsky and Nijmeijer show that the existen
e of symmetryin the network implies the existen
e of linear invariant manifolds. This 
orresponds to so-
alled partialsyn
hronization, or 
lusterization, a phenomenon o

urring when some subsystems from the networkoperate in a syn
hronous manner. The authors present su�
ient 
onditions guaranteeing globalasymptoti
 stability of the partial syn
hronization manifolds. These 
onditions are based on theassumption that the systems in the network are 
onvergent. In [LS98, WS℄, Slotine uses nonlinear
ontra
tion theory to derive results on global syn
hronization. Both 
onvergen
e and 
ontra
tion arein
remental stability notions (see [Ang02, LS98, PPvdWN04℄) that are de�ned spe
i�
ally for 
losedsystems. In these approa
hes, syn
hronization is thus not studied from an input-output perspe
tive.In this thesis, we 
onsider an input-output approa
h for the analysis of syn
hronization. Moreover,we put the emphasis on syn
hronization as a design prin
iple, that is on the use of syn
hronization toa
hieve stable limit 
y
le os
illations in networks of identi
al systems. Most of the literature resultson syn
hrony and phase-lo
king are based on the assumption that ea
h isolated system of the networkis 
hara
terized by a stable limit 
y
le. In our approa
h, we �rst prove that ea
h isolated system is
hara
terized by a globally stable limit 
y
le and then use syn
hronization to extend this property toa network of identi
al os
illators.1.2.4 Synthesis of os
illationsThe problem of synthesis of os
illations in 
ontrol systems �nds many appli
ations. In the �eld ofroboti
s, it plays an important role for the 
ontrol of (undera
tuated) rhythmi
 tasks robot su
h aswalking robots ([CAA+03, WGC02, TYS91℄), juggling robots ([SA93, SA94, BKK94, ZRB99, LB01,GS04, RLS04℄) or general dexterous robots (see e.g. [Wil99a℄). Several paths to solve this problemhave been investigated.In [BM94, BM95a, BM95b, BMS96℄, Ba

iotti and 
oworkers address the important problemsof limit 
y
le generation by feedba
k and lo
al stabilization of a preassigned limit 
y
le. For thelimit 
y
le generation by feedba
k, they prove the existen
e of a polynomial feedba
k u = u(x) forlinear 
ontrollable systems ensuring the existen
e, uniqueness, and lo
al asymptoti
 stability of alimit 
y
le. For the se
ond problem, their results 
onsist in the extension of the Artstein-Sontagand Jurdjevi
-Quinn methods to guarantee stabilization of limit 
y
les under the assumption ofthe existen
e of a Lyapunov fun
tion for the limit 
y
le.Another trend in the generation of stable limit 
y
le os
illation is due to Ara
il, Gomez-Esternand 
oworkers (see [GGEOA02, GAGE03, BAGGE04, GEBAG05℄). Their method 
onsists in twosteps. First, a globally attra
tive os
illation is indu
ed in a nominal se
ond order subsystem by aparti
ular 
ontroller. Then, the nominal stabilizing 
ontroller is extended to systems of arbitraryorder via a method in the essen
e of ba
kstepping.The problem of for
ing os
illations by feedba
k in undera
tuated me
hani
al systems is quite re-
ent. In [BAGGE04℄, the method des
ribed in the pre
eding paragraph has been applied to generatelo
ally stable os
illations in undera
tuated me
hani
al systems su
h as the ball and beam or theinverted pendulum on a 
art. In [SC04℄, Shiriaev and Canudas-de-Wit propose a 
onstru
tive7



CHAPTER 1. INTRODUCTIONmethod for generation and lo
al orbital stabilization of pre-spe
i�ed periodi
 solutions in undera
tu-ated me
hani
al systems with one degree of undera
tuation. Their results are based on a feedba
kstru
ture that expli
itly uses the general or full integral of the zero dynami
s. Their method providesa 
ontrol law that generates a limit 
y
le and makes it lo
ally exponentially stable in the 
losed-loop system. This work was initiated by Canudas-de-Wit in [CEU02℄ where a method to mat
h aparti
ular os
illatory exo-system, or a given 
losed 
urve was introdu
ed.Finally, the synthesis of os
illations 
an be seen as a parti
ular 
ase of the output regulationproblem (see e.g. [Isi95, Chapter 8℄, [Pav04℄). Output regulation methods deals with asymptoti
tra
king of pres
ribed referen
e signals. The 
lass of referen
e signals 
onsists of solutions of someexternal autonomous system 
alled the exosystem. Referen
e signals generated by the exosystem are
alled exosignals. The output to regulate is 
alled the regulated output (e.g. the tra
king error inthe tra
king problem). The output available for measurement is 
alled the measured output. Theidea is to �nd a measured output feedba
k 
ontroller su
h that the 
losed loop system is internallystable and the regulated output tends to zero along solutions of the 
losed loop system. The internalstability requirement roughly means that all solutions of the 
losed loop system �forget� their initial
onditions and 
onverge to some limit solution whi
h is determined only by the exosignal. To generateos
illations, the exosystem is designed to produ
e a spe
i�
 os
illating exosignal. The use of outputregulation methods to produ
e stable limit 
y
le os
illations is generally not easy be
ause of the needto �nd spe
i�
 output and 
ontroller that renders the 
losed loop system internally stable and atthe same time allows to solve the regulation problem. Their advantage is that they allow to tra
k aspe
i�
 orbit in the state spa
e.1.3 Organization of the thesisChapter 2 
ontains mathemati
al preliminaries to the other 
hapters of the thesis. It re
alls stan-dard de�nitions about stability, passivity, absolute stability, bifur
ations, and other 
on
epts used inthe thesis. Chapter 3 
on
erns the �rst main result of the thesis: global limit 
y
le os
illation analysisfor passive os
illators. At the end of Chapter 3, we present an adaptation of the numeri
al methodre
ently proposed in [GMD03℄ that allows the extension of our stability results in the parameterspa
e. Chapter 4 
ontains the other two main results of the thesis: �rst, the extension of the resultsof Chapter 3 to networks of passive os
illators, and se
ond, the study of global syn
hrone os
illationsin networks of identi
al passive os
illators. Finally, in Chapter 5 we adopt a synthesis point of viewfor the generation of stable os
illations. Con
lusion and future work are given in Chapter 6.
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Chapter 2PreliminariesIn this 
hapter, we re
all some fundamental 
on
epts and de�nitions that 
onstitute the mainmathemati
al prerequisites for the thesis. Most of the de�nitions are dire
tly taken from popularreferen
e books on di�erential equations and nonlinear systems. The interested reader is referred tothese books for further details and 
omments. The proofs of the 
ited Lemmas and Theorems are notgiven sin
e they 
an be found in the 
ited referen
es.2.1 PassivityPassivity is a useful tool for the analysis of nonlinear systems, whi
h relates ni
ely to Lyapunovstability. Very few system theory 
on
epts 
an mat
h passivity in its physi
al and intuitive appeal.This explains the longevity of the passivity 
on
ept from the time of its �rst appearan
e some 30years ago (see [Wil72℄), to its 
urrent use as a powerful tool for nonlinear feedba
k design (see[SJK97, vdS00℄). The main passivity theorem states that the (negative) feedba
k inter
onne
tionof two passive systems is passive. Under additional zero-state dete
tability 
onditions, the feedba
kinter
onne
tion is also asymptoti
ally stable. The passivity theorems and the small-gain theoremprovide a 
on
eptually important generalization of the fa
t that the feedba
k inter
onne
tion of twostable linear systems will be stable if the loop gain is less than one or the loop phase is less than180 degrees. The 
onne
tion between passivity and the phase of a transfer fun
tion 
omes from thefrequen
y-domain 
hara
terization of positive real transfer fun
tions. The phase of a positive realtransfer fun
tion 
annot ex
eed 90 degree. Hen
e, the loop phase 
annot ex
eed 180 degrees. If oneof the two transfer fun
tions is stri
tly positive real, the loop phase will be stri
tly less than 180degrees. Passivity results 
an be broadened with the help of loop transformations and multiplierswhi
h allow, in 
ertain 
ases, to transform the feedba
k inter
onne
tion of two systems that may notbe passive into an equivalent feedba
k inter
onne
tion of two passive systems.2.1.1 General passivity de�nitionWe begin by de�ning the 
on
epts of storage fun
tion, supply rate, dissipativity, and passivity.Dissipativity theory, introdu
ed by Willems [Wil72℄, is an inter
onne
tion theory for open systems.9



CHAPTER 2. PRELIMINARIES2.1.1.1 Class of systemsAlthough the dissipativity and passivity 
on
epts apply to wider 
lasses of systems, we restri
tour attention to dynami
al systems modeled by ordinary di�erential equations with an input ve
tor
u and an output ve
tor y:

ẋ = f(x, u) (2.1)
y = h(x, u) (2.2)We will be 
on
erned with the 
ase when the state x(t), as a fun
tion of time, is uniquely determined byits initial value x(0) and the input fun
tion u(t). Throughout the thesis, we assume that u : R≥0 → R

pbelongs to an input set U of fun
tions whi
h are bounded on all bounded subintervals of R≥0. Infeedba
k designs u be
omes a fun
tion of x, so the assumption u ∈ U 
annot be a priori veri�ed.The satisfa
tion of this assumption for initial 
onditions in the region of interest will have to be aposteriori guaranteed by the design.Another restri
tion is that the system (2.1)-(2.2) is �square�, that is, its input and output havethe same dimension p. We also assume that f : R
n×R

p → R
n is 
ontinuous, and lo
ally Lips
hitz1,

h : R
n × R

p → R
p is 
ontinuous. These assumptions imply that the system (2.1)-(2.2) has thelo
al existen
e and uniqueness property of traje
tories (see [Kha02℄ for de�nition of lo
al existen
eand uniqueness of traje
tories). Finally, an assumption made for 
onvenien
e is that the system(2.1)-(2.2) has an equilibrium point at the origin, that is, f(0, 0) = 0, and h(0, 0) = 0.We will �nd it helpful to visualize the system (2.1)-(2.2) as the input-output blo
k diagramdepi
ted in Figure 2.1. In su
h blo
k diagram the dependen
e on the initial 
ondition x(0) will notbe expli
itly stressed, but must not be overlooked.

H
u yFigure 2.1: Input-output representation of (2.1)-(2.2).The system des
ription (2.1)-(2.2) in
ludes as spe
ial 
ases the following three 
lasses of systems:

• Nonlinear input-a�ne systems
ẋ = f(x) + g(x)u

y = h(x) + j(x)u1A fun
tion f(x) is said to be lo
ally Lips
hitz on a domain (open and 
onne
ted set) D ⊂ R
n if ea
h point of Dhas a neighborhood D0 su
h that f satis�es the Lips
hitz 
ondition

|f(a) − f(b)| ≤ L |a − b| (2.3)for all points in D0 with some Lips
hitz 
onstant L0. We say that f is Lips
hitz on a set W if it satis�es theLips
hitz 
ondition (2.3) for all points in W , with the same Lips
hitz 
onstant L. A lo
ally Lips
hitz fun
tion ona domain D is not ne
essarily Lips
hitz on D, sin
e the Lips
hitz 
ondition may not hold uniformly (with the same
onstant L) for all points in D. However, a lo
ally Lips
hitz fun
tion on a domain D is Lips
hitz on every 
ompa
t(
losed and bounded) subset of D . A fun
tion f(x) is said to be globally Lips
hitz if it is Lips
hitz on R
n. TheLips
hitz property of a fun
tion is stronger than 
ontinuity and weaker than 
ontinuous di�erentiability (see [Kha02℄).10



2.1. PASSIVITY
• Linear systems

ẋ = Ax+Bu

y = Cx+Du

• Memoryless (or stati
) nonlinearity
y = φ(t, u)In the 
ase of linear systems, we will let the system be represented by its transfer fun
tion H(s) =

C(sI −A)−1B +D where s = σ + jω is the 
omplex variable.2.1.1.2 Basi
 
on
eptsFor an easy understanding of the 
on
epts of dissipativity and passivity it is 
onvenient to imaginea physi
al system with the property that its energy 
an be in
reased only through the supply froman external sour
e. As an example, let us think of baking a potato in a mi
rowave oven. As long asthe potato is not allowed to burn, its energy 
an in
rease only as supplied by the oven. A similarobservation 
an be made about an RLC-
ir
uit 
onne
ted to an external battery. The de�nitionsgiven below are abstra
t generalization of su
h physi
al properties.De�nition 2.1 [SJK97℄ Assume that asso
iated with the system (2.1)-(2.2) is a fun
tion w : R
p ×

R
p → R, 
alled the supply rate, whi
h is lo
ally integrable for every u ∈ U , that is, it satis�es
∫ t1
t0

|w(u(t), y(t))| dt <∞ for all t0 ≤ t1. Let X be a 
onne
ted subset of R
n
ontaining the origin. Wesay that the system is dissipative in X with the supply rate w(u, y) if there exists a fun
tion S(x),

S(0) = 0, su
h that for all x ∈ X

S(x) ≥ 0 and S(x(T )) − S(x(0)) ≤
∫ T

0
w(u(t), y(t)) dt (2.4)for all u ∈ U and all T ≥ 0 su
h that x(t) ∈ X for all t ∈ [0, T ]. The fun
tion S(x) is then
alled a storage fun
tion. If the dissipativity inequality (2.4) is satis�ed with the equality sign, i.e.

S(x(T )) − S(x(0)) =
∫ T

0 w(u(t), y(t)) dt, the system is said to be 
onservative or lossless.In our RLC-
ir
uit example, the storage fun
tion S is the energy, w is the input power, and
∫ T

0 w(u(t), y(t)) dt is the energy supplied to the system from the external sour
es. The system isdissipative if the in
rease in its energy during the interval (0, T ) is not bigger than the energy suppliedto the system during that interval.De�nition 2.2 [SJK97℄ Passivity is dissipativity with the supply rate w(u(t), y(t)) = uT (t)y(t).If the storage fun
tion S(x) is di�erentiable, the dissipation inequality (2.4) is equivalently written as
Ṡ(x(t)) ≤ w(u(t), y(t))Again, the interpretation is that the rate of in
rease of energy is not bigger than the input power.Throughout the thesis, we will assume that the storage fun
tion is di�erentiable. Under theassumption of a di�erentiable storage fun
tion S(x), the following terminology is used:11



CHAPTER 2. PRELIMINARIESDe�nition 2.3 [Kha02℄ The dissipative system (2.1)-(2.2) with di�erentiable storage fun
tion S(x)is said to be
• input-feedforward passive if Ṡ ≤ uT y − uT ν(u) for some fun
tion ν(·).
• input stri
tly passive if Ṡ ≤ uT y − uT ν(u) and uT ν(u) > 0, ∀u 6= 0.
• output-feedba
k passive if Ṡ ≤ uT y − yTρ(y) for some fun
tion ρ(·).
• output stri
tly passive if Ṡ ≤ uT y − yTρ(y) and yTρ(y) > 0, ∀y 6= 0.
• stri
tly passive if Ṡ ≤ uT y − ζ(x) for some positive de�nite fun
tion ζ(·).In all 
ases, the inequality should hold for all (x, u).We also introdu
e the notion of strong passivity that will be used throughout the thesis.De�nition 2.4 (Strong passivity) We say that the system (2.1)-(2.2) is strongly passive if it ispassive and its storage fun
tion additionally satis�es the following assumptions:1. (smoothness) S(x) is 
ontinuously di�erentiable (C1) in R

n and twi
e 
ontinuously di�erentiable(C2) in a neighborhood of the origin.2. (Lyapunov) S(x) is positive de�nite, S(x) > 0, and radially unbounded, i.e. S(x) → ∞ as
|x| → ∞.3. (lo
ally quadrati
) The Hessian of S(x) evaluated at zero ∂2S(x)

∂x2

∣
∣
∣
x=0

is a symmetri
 positivede�nite matrix P = P T > 0.As it is well-known, these assumptions are always satis�ed in the (dete
table) linear 
ase be
auselinear passive systems have quadrati
 positive de�nite storage fun
tions [Wil72℄. In general, theseassumptions are 
onvenient to link the passivity of the system to the stability properties of the zeroinput system sin
e S(x) then serves as a (global) Lyapunov fun
tion.Example 2.5 An integrator is the simplest example of a dynami
 passive system. Consider system
ẋ = u

y = xThis system is strongly passive with S(x) = 1
2x

2 as a storage fun
tion.2.1.2 Passivity of memoryless nonlinearitiesWe 
onsider memoryless nonlinearities of the form y = φ(t, u), where φ : [0,∞) × R
p → R

p.Sin
e their state spa
e is void, De�nitions 2.2 and 2.3 dire
tly apply to the spe
ial 
ase of (possiblytime-varying) memoryless nonlinearities by 
onsidering that their storage fun
tion is identi
ally zero(S ≡ 0). Passivity for a single input - single output (SISO) memoryless nonlinearity geometri
allymeans that the u − y 
urve must lie in the �rst and third quadrants, as shown in Figure 2.2 (a)and (b). When this 
ondition is respe
ted, we also say that the nonlinearity belongs to the se
tor12



2.1. PASSIVITY
[0,∞], where zero and in�nity are the slopes of the boundaries of the �rst-third quadrant region.The graphi
al representation is valid even when φ is time varying. In this 
ase, the u− y 
urve willbe 
hanging with time, but will always belong to the se
tor [0,∞]. For a ve
tor fun
tion, we 
angive a graphi
al representation in the spe
ial 
ase when φ(t, u) is de
oupled in the sense that φi(t, u)depends only on ui. In this 
ase, the graph of ea
h 
omponent belongs to the se
tor [0,∞]. In thegeneral 
ase, su
h graphi
al representation is not possible.

u

y

(a)
u

y

u

y

(b) (
)Figure 2.2: (a) and (b) are examples of passive nonlinearities; (
) is an example of a non-passivenonlinearity.2.1.3 Loop transformationsIn this se
tion we present loop transformations whi
h extend the utility of passivity theorems.Starting with a feedba
k inter
onne
tion in whi
h one of the two feedba
k 
omponents is not passiveor does not satisfy a 
ondition that is needed in one of the passivity theorems, we may be ableto re
on�gure the feedba
k inter
onne
tion into an equivalent inter
onne
tion that has the desiredproperties. We illustrate the pro
ess for loop transformations with dynami
 multipliers, as show inFigure 2.3.
'≡'H1
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uv

−

+ u y
H1

H2
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M−1
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H̃2

ũ
M−

M−

M−1
−

vy ỹ

Figure 2.3: Loop transformation with dynami
 multipliers.Pre (resp. post) multiplying H1 by a spe
i�
 transfer fun
tion 
an be nulli�ed by post (resp. pre)13



CHAPTER 2. PRELIMINARIESmultiplying H2 by the inverse of this transfer fun
tion, provided that this inverse exists. This leads toan equivalent feedba
k system that is represented in its general form in Figure 2.3. The interest of su
hloop transformation is the ability to transform a feedba
k system that does not satisfy the 
onditionsneeded by one of the passivity theorem into an equivalent one that does it, thereby extending theutility of passivity theorems.2.1.4 Passivity versus Lyapunov stabilityIn this se
tion, we re
all the important links that exist between passivity and Lyapunov stability.For the proofs of the di�erent lemmas and theorems, the reader is referred to [Kha02℄. We �rst re
allthe de�nitions of Lyapunov and asymptoti
 stability.2.1.4.1 Lyapunov stabilityLyapunov stability and asymptoti
 stability are properties not of a dynami
al system as a whole,but rather of its individual solutions.Consider the time-invariant system
ẋ = f(x) (2.5)where x ∈ R

n and f : R
n → R

n is lo
ally Lips
hitz 
ontinuous. The solution of (2.5) whi
h startsfrom x0 at time t0 ∈ R is denoted as x (t;x0, t0), so that x (t0;x0, t0) = x0. Be
ause the solutionsof (2.5) are invariant under translation of t0, that is, x (t+ T ;x0, t0 + T ) = x (t;x0, t0), the stabilityproperties of x (t;x0, t0) are uniform, that is they do not depend on t0. Without loss of generality, weassume t0 = 0 and write x (t;x0) instead of x (t;x0, 0). Lyapunov stability is a 
ontinuity property of
x (t;x0) with respe
t to x0. If the initial state x0 is perturbed to x̃0, then, for stability, the perturbedsolution x (t; x̃0) is required to stay 
lose to x (t;x0) for all t ≥ 0. In addition for asymptoti
 stability,the error x (t; x̃0) − x (t;x0) is required to vanish as t→ ∞.De�nition 2.6 [SJK97℄ The solution x (t;x0) of (2.5) is

• bounded, if there exists a 
onstant K (x0)su
h that
|x (t;x0)| ≤ K (x0) , ∀t ≥ 0;

• stable, if for ea
h ǫ > 0 there exists δ(ǫ) > 0 su
h that
|x̃0 − x0| < δ(ǫ) ⇒ |x (t; x̃0) − x (t;x0)| < ǫ, ∀t ≥ 0; (2.6)

• attra
tive, if there exists an r (x0) > 0 su
h that
|x̃0 − x0| < r (x0) ⇒ lim

t→∞
|x (t; x̃0) − x (t;x0)| = 0; (2.7)

• asymptoti
ally stable, if it is stable and attra
tive;
• unstable, if it is not stable. 14



2.1. PASSIVITYSome solutions of a given system may be stable and some unstable. In parti
ular, (2.5) may havestable and unstable equilibria, that is, 
onstant solutions x (t;xe) ≡ xe satisfying f (xe) = 0. Theabove de�nitions of stability properties of an equilibrium xe involve only initial states 
lose to xe,that is, they are lo
al. If an equilibrium is attra
tive, then it has a region of attra
tion, i.e. a set Ωof initial states x0 su
h that x (t;x0) → xe as t→ ∞ for all x0 ∈ Ω. In this thesis, our attention willbe fo
used on global stability properties.De�nition 2.7 [SJK97℄ An equilibrium point of (2.5) is
• globally stable (GS) if it is stable and if all the solutions of (2.5) are bounded.
• globally asymptoti
ally stable (GAS) if it is asymptoti
ally stable and its region of attra
tion is

R
n.Any equilibrium under investigation 
an be translated to the origin by rede�ning the state as z =

x− xe. For simpli
ity, we will assume that the translation has been performed, that is f(0) = 0, andthus the equilibrium under investigation is z = 0. When, for brevity, we say that �the system (2.5)is GS or GAS�, we mean that its equilibrium z = 0 is GS or GAS. While GAS of z = 0 prevents theexisten
e of other equilibria, the reader should keep in mind that it is not so with GS.The most often used method to establish stability of equilibrium points of nonlinear systems isthe dire
t method of Lyapunov. The dire
t method of Lyapunov aims at determining the stabilityproperties of x (t;x0) from the properties of f(x) and its relationship with a positive de�nite fun
tion
V (x). Global results are obtained if this fun
tion is radially unbounded, i.e. V (x) → ∞ as |x| → ∞.Theorem 2.8 (Lyapunov stability Theorem) [SJK97℄ Let x = 0 be an equilibrium of (2.5) andsuppose f is lo
ally Lips
hitz 
ontinuous. Let V : R

n → R>0 be a C1 positive de�nite and radiallyunbounded fun
tion V (x) su
h thaṫ
V =

∂V

∂x
(x)f(x) ≤ 0, ∀x ∈ R

nThen x = 0 is GS and all solutions of (2.5) 
onverge to the set E where V̇ (x) ≡ 0. If V̇ is negativede�nite, then x = 0 is GAS.For a sharper 
hara
terization of 
onvergen
e properties we employ the 
on
ept of invariant sets.De�nition 2.9 [SJK97℄ A set M is 
alled an invariant set of (2.5) if any solution x(t) that belongsto M at some time t1 belongs to M for all future and past time, i.e.
x (t1) ∈M ⇒ x(t) ∈M, ∀t ∈ RDe�nition 2.10 [SJK97℄ A set P is positively invariant if this is true for all future time only, i.e.
x (t1) ∈ P ⇒ x(t) ∈ P, ∀t ≥ t1An important result des
ribing 
onvergen
e to an invariant set is La Salle's Invarian
e Prin
iple.15



CHAPTER 2. PRELIMINARIESTheorem 2.11 (La Salle's Invarian
e Prin
iple) [SJK97℄ Let Ω be a positively invariant setof (2.5). Suppose that every solution starting in Ω 
onverges to a set E ⊂ Ω and let M be the largestinvariant set 
ontained in E. Then, every bounded solution starting in Ω 
onverges to M as t→ ∞.An appli
ation of the Invarian
e Prin
iple is the following asymptoti
 stability 
ondition.Corollary 2.12 (Asymptoti
 stability) [SJK97℄ Under the assumptions of Theorem 2.8, let E =
{

x ∈ R
n | V̇ (x) = 0

}. If no solution other than x(t) ≡ 0 
an stay for all t in E, then the equilibrium
x = 0 is GAS.While the Lyapunov stability theorem (Theorem 2.8) establishes that the solutions are bounded and
onverge to the set E where V̇ ≡ 0, Theorem 2.11 sharpens this result by establishing the 
onvergen
eto a subset of E. Thanks to its invarian
e, this subset 
an be found by examining only those solutionswhi
h, having started in E, remain in E for all t.In 
ontrol systems, su
h invarian
e and 
onvergen
e results are made possible by system's observ-ability properties. Typi
ally, the 
onvergen
e of the system output y to zero is established �rst, andthen the next task is to investigate whether some (or all) of the states 
onverge to zero. For this taskwe need to examine only the solutions satisfying y(t) ≡ 0. If it is known beforehand that y(t) ≡ 0implies x(t) ≡ 0, then the asymptoti
 stability of x = 0 is established, as in Corollary 2.12.2.1.4.2 Passivity and Lyapunov stabilityThe de�nitions of dissipativity and passivity do not require that the storage fun
tion S(x) ispositive de�nite. They are also satis�ed if S(x) is only positive semide�nite. As a 
onsequen
e, inthe presen
e of an unobservable unstable part of the system, they allow x = 0 to be unstable. Forinstan
e, the unstable system

ẋ1 = x1

ẋ2 = u

y = x2is passive with the storage fun
tion S = 1
2x

2
2.For passivity to imply Lyapunov stability, we must ex
lude su
h situations. In linear systemsthis is a
hieved with a dete
tability assumption, whi
h requires that the unobservable part of thesystem is asymptoti
ally stable. Zero-state dete
tability de�nes an analogous 
on
ept for nonlinearsystems (see [SJK97℄ or [vdS00℄).De�nition 2.13 [SJK97℄ Consider the system (2.1)-(2.2) with zero input, that is ẋ = f(x, 0) and

y = h(x, 0), and let Z ⊂ R
n be its largest positively invariant set 
ontained in {x ∈ R

n | y = h(x, 0) = 0}.We say that the zero input system is zero-state dete
table (ZSD) if x = 0 is asymptoti
ally stable
onditionally to Z, that is if (2.6) and (2.7) hold for any x0 ∈ Z. If Z = {0}, we say that the zeroinput system is zero-state observable (ZSO).For a linear system, the notions of dete
tability and zero-state dete
tability are equivalent.Whenever we use the ZSD property to establish a global result, we assume that x = 0 is GAS
onditionally to Z. One of the bene�ts from the ZSD property is that passivity and stability are
onne
ted even when the storage fun
tion S(x) is only positive semide�nite.16



2.1. PASSIVITYLemma 2.14 [SJK97℄ Consider the system (2.1)-(2.2). Suppose that this system is passive with a
C1 storage fun
tion S(x) and h(x, u) is C1 in u for all x.Then,(1) the origin of ẋ = f(x, 0) is stable if

• the storage fun
tion S(x) is positive de�nite , or
• the system is ZSD.(2) the origin of ẋ = f(x, 0) is asymptoti
ally stable if the system is
• stri
tly passive, or
• output stri
tly passive and ZSD.(3) when there is no throughput, y = h(x), then the feedba
k u = −y a
hieves asymptoti
 stability of

x = 0 if and only if the system is ZSD.Furthermore, if the storage fun
tion is radially unbounded, the origin will be globally asymptoti-
ally stable.2.1.5 Inter
onne
tions of passive systemsConsider the feedba
k inter
onne
tion of Figure 2.4 where ea
h of the feedba
k 
omponents H1and H2 is either a time-invariant dynami
al system represented by the state model
ẋi = fi (xi, ei) (2.8)
yi = hi (xi, ei) , (2.9)with fi(0, 0) = 0 and hi(0, 0) = 0, i ∈ {1, 2}, or a (possibly time-varying) memoryless fun
tionrepresented by
yi = φi (t, ei) , (2.10)

i ∈ {1, 2}.We are interested in using passivity properties of the feedba
k 
omponents H1 and H2 to analysestability of the parallel and feedba
k inter
onne
tions. Assuming that both H1 and H2 are in theform (2.8)-(2.9), we �rst must make sure that the inter
onne
tion is also in the form (2.8)-(2.9). Thisis obviously true for the parallel inter
onne
tion. However the feedba
k inter
onne
tion may not be inthe form (2.8)-(2.9) and may fail to have a well-de�ned solution. Let us 
onsider the two possibilities(2.8)-(2.9) and (2.8)-(2.10) separately.When both 
omponents H1 and H2 are dynami
al systems, the 
losed-loop state model takes theform
ẋ = f(x, u) (2.11)
y = h(x, u) (2.12)where x =

(
xT

1 , x
T
2

)T , u =
(
uT

1 , u
T
2

)T , and y =
(
yT
1 , y

T
2

)T . We assume that f is lo
ally Lips
hitz, his 
ontinuous, f(0, 0) = 0, and h(0, 0) = 0. It 
an be veri�ed that the feedba
k inter
onne
tion willhave a well-de�ned state model if the equations
e1 = u1 − h2 (x2, e2) (2.13)
e2 = u2 + h1 (x1, e1) (2.14)17
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+ −

+

+

e2 u2

y1e1u1

y2

H1

H2

H1

H2

u y
+

+

y1

y2(b)(a)Figure 2.4: (a) Feedba
k inter
onne
tion of H1 and H2. (b) Parallel inter
onne
tion of H1 and H2.have a unique solution (e1, e2) for every (x1, x2, u1, u2). The properties f(0, 0) = 0 and h(0, 0) = 0follow from fi(0, 0) = 0 and hi(0, 0) = 0. It is also easy to see that (2.13)-(2.14) will always have aunique solution if h1 is independent of e1 or h2 is independent of e2. In this 
ase, the fun
tions fand h of the 
losed-loop state model inherit smoothness properties of the fun
tions fi and hi of thefeedba
k 
omponents. In parti
ular, if fi and hi are lo
ally Lips
hitz, so are f and h. For linearsystems, requiring hi to be independent of ei is equivalent to requiring the transfer fun
tion of Hi tobe stri
tly proper.When one 
omponent, sayH1, is a dynami
al system, while the other one is a memoryless fun
tion,the 
losed-loop state model takes the form
ẋ = f(t, x, u) (2.15)
y = h(t, x, u) (2.16)where x = x1, u =

(
uT

1 , u
T
2

)T , and y =
(
yT
1 , y

T
2

)T . We assume that f is pie
ewise-
ontinuous in t andlo
ally Lips
hitz in (x, u), h is pie
ewise 
ontinuous in t and 
ontinuous in (x, u), f(t, 0, 0) = 0, and
h(t, 0, 0) = 0. The feedba
k inter
onne
tion will have a well-de�ned state model if the equations

e1 = u1 − φ2 (t, e2)

e2 = u2 + h1 (x1, e1)have a unique solution (e1, e2) for every (x1, t, u1, u2). This will be always the 
ase when h1 isindependent of e1. The 
ase when both 
omponents are memoryless fun
tions is less importantand follows dire
tly as a spe
ial 
ase when the state x does not exist. In this 
ase, the feedba
kinter
onne
tion is represented by y = h(t, u). Theorem 2.15 
onstitutes the main property for paralleland feedba
k inter
onne
tions of passive systems.Theorem 2.15 [Kha02℄ The feedba
k and parallel inter
onne
tion of passive systems is passive.The proof is straightforward by taking as storage fun
tion for the inter
onne
tion system the sum ofthe storage fun
tions of ea
h system and taking into a

ount the inter
onne
tion rules.Using Theorem 2.15 and the results on stability properties of passive systems, we 
an arrive atsome straightforward 
on
lusions on stability of the feedba
k inter
onne
tion. We are interested instudying stability and asymptoti
 stability of the origin of the feedba
k 
losed-loop system when
u = 0. Stability of the origin follows trivially from Theorem 2.15 and the �rst part of Lemma 2.14.18



2.1. PASSIVITYTherefore, we fo
us out attention on studying asymptoti
 stability. The next theorem is an immediate
onsequen
e of Theorem 2.15 and Lemma 2.14.Theorem 2.16 [Kha02℄ Consider the feedba
k inter
onne
tion of two time-invariant dynami
al sys-tems of the form (2.8)-(2.9). The origin of the 
losed-loop system (2.11) (when u = 0) is asymptoti-
ally stable if
• both feedba
k 
omponents are stri
tly passive, or
• both feedba
k 
omponents are output stri
tly passive and ZSD, or
• one 
omponent is stri
tly passive and the other one is output stri
tly passive and ZSD.Furthermore, if the storage fun
tion for ea
h 
omponent is radially unbounded, the origin is globallyasymptoti
ally stable.The proof uses a simple idea, namely, that the sum of the storage fun
tions for the feedba
k 
ompo-nents is a Lyapunov fun
tion for the feedba
k inter
onne
tion. In fa
t, this is too restri
tive sin
eto show that Ṡ = Ṡ1 + Ṡ2 ≤ 0, we insist that both Ṡ1 ≤ 0 and Ṡ2 ≤ 0. Clearly, this is not ne
essary.One term, say Ṡ1, 
ould be positive over some region as long as Ṡ ≤ 0 over the same region. This isa manifestation of the idea that shortage of passivity of one 
omponent 
an be 
ompensated for bythe ex
ess of passivity of the other 
omponent.When the feedba
k inter
onne
tion has a dynami
al system as one 
omponent and a memorylessfun
tion as the other 
omponent, we 
an perform Lyapunov analysis by using the storage fun
tionof the dynami
al system as a Lyapunov fun
tion. It is important, however, to distinguish betweenthe time-invariant and the time-varying memoryless fun
tions, for in the latter 
ase the 
losed-loopsystem will be nonautonomous and we 
annot apply La Salle invarian
e prin
iple. We treat thesetwo 
ases separately in the next two theorems.Theorem 2.17 [Kha02℄ Consider the feedba
k inter
onne
tion of a stri
tly passive, time-invariant,dynami
al system of the form (2.8)-(2.9) with a passive (possibly time-varying) memoryless fun
tionof the form (2.10). Then, the origin of the 
losed-loop system (2.15) (when u = 0) is uniformly asymp-toti
ally stable. Furthermore, if the storage fun
tion for the dynami
al system is radially unbounded,the origin will be globally uniformly asymptoti
ally stable.Theorem 2.18 [Kha02℄ Consider the feedba
k inter
onne
tion of a time-invariant dynami
al system

H1 of the form (2.8)-(2.9) with a time-invariant memoryless fun
tion H2 of the form (2.10). Supposethat H1 is ZSD and has a positive de�nite storage fun
tion, whi
h satis�es
Ṡ1 ≤ eT1 y1 − yT

1 ρ1 (y1)and that H2 satis�es
eT2 ν2 (e2) ≤ eT2 y2Then, the origin of the 
losed-loop system (2.15) (when u = 0) is asymptoti
ally stable if

vT (ρ1(v) + ν2(v)) > 0, ∀v 6= 0Furthermore, if V1 is radially unbounded, the origin will be globally asymptoti
ally stable.Theorem 2.18 is on
e again a manifestation of the idea that shortage of passivity in one 
omponent
an be 
ompensated for by ex
ess of passivity in the other 
omponent.19



CHAPTER 2. PRELIMINARIES2.1.6 Chara
terization of input-a�ne passive systemsConsider the input-a�ne system
ẋ = f(x) + g(x)u (2.17)
y = h(x) (2.18)The passivity 
ondition amounts to Ṡ = ∂S(x)

∂x
(f(x) + g(x)u) ≤ uTh(x), ∀x ∈ R

n, ∀u ∈ R
p, orequivalently (set �rst u = 0, and then use linearity in u) to the Hill-Moylan passivity 
onditions[HM76℄

LfS(x) ≤ 0 (2.19)
LgS(x) = hT (x) (2.20)where we have used the notation LfS(x) = ∂S(x)

∂x
f(x). If the system is linear

ẋ = Ax+Bu

y = Cxthen there exists a quadrati
 storage fun
tion S(x) = xTPx, with P = P T ≥ 0, and the Hill-Moylan passivity 
onditions be
ome algebrai

PA+ATP ≤ 0 (2.21)

BTP = C (2.22)The equivalen
e of the 
onditions (2.21)-(2.22) with the frequen
y-domain 
hara
terization of pas-sivity was established by the 
elebrated Kalman-Yakubovi
h-Popov lemma. Before the statementof the KYP lemma, we introdu
e the de�nition of a positive real transfer fun
tion.De�nition 2.19 [Kha02℄ A p×p proper rational transfer fun
tion matrix G(s) is 
alled positive realif
• poles of all elements of G(s) are in ℜ{s} ≤ 0,
• for all real ω for whi
h jω is not a pole of any element of G(s), the matrix G(jω) +GT (−jω)is positive semide�nite, and
• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue lims→jω(s−
jω)G(s) is positive semide�nite Hermitian.The transfer fun
tion G(s) is 
alled stri
tly positive real if G(s− ǫ) is positive real for some ǫ > 0.When p = 1, the se
ond 
ondition of De�nition 2.19 redu
es to ℜ{G(jω)} ≥ 0, ∀ω ∈ R, whi
h holdswhen the Nyquist plot of G(jω) lies in the 
losed right-half 
omplex plane. This is a 
ondition that
an be satis�ed only if the relative degree of the transfer fun
tion is zero or one.Lemma 2.20, presented hereafter, states the Kalman-Yakubovi
h-Popov (KYP) lemma in theparti
ular 
ase when (A,B,C) is a minimal realization. Extensions of the KYP lemma to non-minimalrealizations 
an be found in [IT87, TI88℄. 20



2.1. PASSIVITYLemma 2.20 (Kalman-Yakubovi
h-Popov lemma) [Kha02℄ Let G(s) = C(sI−A)−1B+Dbe a p× p transfer fun
tion matrix, where (A,B) is 
ontrollable and (A,C) is observable. Then, G(s)is stri
tly positive real if and only if there exists P = P T > 0, L, and W , and a positive 
onstant ǫsu
h that
PA+ATP = −LTL− ǫP

PB = CT − LTW

W TW = D +DTFor linear, throughput-free (D = 0), passive systems, possessing a minimal realization, the link withthe Hill-Moylan 
onditions (2.21)-(2.22) is obvious. In the general 
ase when D 6= 0, this link isexpressed in Lemma 2.21.Lemma 2.21 [Kha02℄ The linear time-invariant minimal realization
ẋ = Ax+Bu

y = Cx+Duwith G(s) = C(sI −A)−1B +D is
• passive if G(s) is positive real,
• stri
tly passive if G(s) is stri
tly positive real.2.1.7 Stru
tural properties of input-a�ne passive systemsIn this se
tion, we 
onsider two stru
tural properties of input-a�ne passive systems. By stru
turalwe mean that they are invariant under feedba
k transformations of the form u = α(x)+β(x)v. Thesetwo stru
tural properties are the relative degree of input-a�ne passive systems and their weaklyminimum phaseness.2.1.7.1 Relative degreeThe relative degree of a system is an integer that quanti�es the number of times that the outputmust be di�erentiated w.r.t. time for the input to appear expli
itly. The statement �the system hasrelative degree r� means that the input appears expli
itly for the �rst time in the rth time derivativeof the output. For SISO linear systems, the relative degree is the di�eren
e between the number ofpoles and zeros in the transfer fun
tion.Consider the (MIMO) nonlinear input-a�ne system (2.17)-(2.18). This system has relative degreeone at x = 0 if the matrix Lgh(0) is invertible.Lemma 2.22 [SJK97℄ If the system (2.17)-(2.18) is passive with a C2 storage fun
tion S(x) then ithas relative degree one at x = 0.For a proof the reader is referred to [SJK97℄. 21



CHAPTER 2. PRELIMINARIES2.1.7.2 Weakly minimum phasenessThe remaining dynami
s when we impose the 
onstraint y(t) = h(x) ≡ 0 is 
alled the zerodynami
s. If the zero dynami
s is asymptoti
ally stable, the initial system is said to be minimumphase. If the zero dynami
s is only Lyapunov stable with a C2 positive de�nite Lyapunov fun
tion,then the system is said to be weakly minimum phase.Lemma 2.23 [SJK97℄ If the system (2.17)-(2.18) is passive with a C2 positive de�nite storage fun
-tion S(x) then it is weakly minimum phase.For a proof the reader is referred to [SJK97℄.2.2 Absolute stabilityConsider the feedba
k inter
onne
tion of Figure 2.5 where G(s) represents a linear system and
φ(·) a memoryless nonlinearity. We assume that the external input v = 0. The unfor
ed system issaid to be absolutely stable if it has a globally (uniformly) asymptoti
ally stable equilibrium point atthe origin for all nonlinearities in a given se
tor. The problem was originally formulated by Lureand is sometimes 
alled Lure's problem. The Lure problem has a very 
on
rete motivation sin
eit represents a basi
 feedba
k loop in automati
 
ontrol. This (hard) problem motivated 
entraldevelopments of system theory. It has led to the emergen
e of several stability 
riteria whi
h makeuse of the input-output properties of the linear blo
k G(s), and 
hara
terize 
lasses of nonlinearitieswhi
h ensure stability.

−
u y+

G(s)

φ(·)

v

Figure 2.5: Lure feedba
k inter
onne
tion.Passivity is useful for solving the Lure problem. A Lyapunov fun
tion 
an be 
hosen by using thepassivity tools of the previous se
tions. In parti
ular, if the 
losed-loop system 
an be represented as afeedba
k inter
onne
tion of two passive systems, then the sum of the two storage fun
tions 
an be usedas a Lyapunov fun
tion 
andidate for the 
losed-loop system. The use of loop transformations allowsto 
over various se
tors and Lyapunov fun
tion 
andidates, leading to the 
ir
le [San64a, San64b℄and Popov [Pop62, Pop73℄ 
riteria whi
h give frequen
y-domain su�
ient 
onditions for absolutestability in the form of stri
t positive realness of 
ertain transfer fun
tions. In the single input -single output (SISO) 
ase, both 
riteria 
an be applied graphi
ally rendering them very easy to usein pra
ti
e. Nowadays, numeri
al methods based on Integral Quadrati
 Constraints theory (IQC) areused to prove absolute stability of Lure feedba
k systems (see [MR97℄).22



2.3. SEMI-GLOBAL PRACTICAL ASYMPTOTIC STABILITY2.3 Semi-global pra
ti
al asymptoti
 stabilityIn this se
tion, we present the notion of semi-global pra
ti
al asymptoti
 stability for systemsdepending on a small parameter. This se
tion is inspired by the results of Moreau, summarized in[MA00℄. The results of Moreau show that if the referen
e system ẋ = g(x) is globally asymptot-i
ally stable then, starting from an arbitrarily large set of initial 
onditions, the traje
tories of theparameterized system ẋ = f ǫ(x) 
onverge to an arbitrarily small residual set around the origin when
ǫ > 0 is taken su�
iently small, under the assumption that traje
tories of the parametrized system
onverge (uniformly on 
ompa
t time intervals) to traje
tories of the referen
e system. We restri
tthe presented results to the 
ase of time-invariant dynami
s. Nevertheless, the results presented in[MA00℄ hold for the general 
ase of time-varying dynami
s.Consider two systems:

• a system that depends on a (small) parameter ǫ ∈ (0, ǫ0] (ǫ0 ∈ (0,∞))
ẋ = f ǫ(x) (2.23)

• and a system
ẋ = g(x) (2.24)We assume that f ǫ : R

n → R
n and g : R

n → R
n are 
ontinuous and lo
ally Lips
hitz. We do notassume forward 
ompleteness of the solutions, i.e. we do not ex
lude �nite es
ape times. We denoteby xfǫ (t;x0) (resp. xg (t;x0)) the solution of (2.23) (resp. the solution of (2.24)) that starts from x0at t = 0.The main result of Moreau relies on the assumption that traje
tories of (2.23) 
onverge to thoseof (2.24) in the following sense:Convergen
e of traje
tories2 [MA00℄: For every T ∈ (0,∞) and 
ompa
t setK ⊂ R

n satisfying
{(t;x0) ∈ R × R

n | t ∈ [0, T ] , x0 ∈ K} ⊂ Dom (xg), for every d ∈ (0,∞), there exists ǫ∗ ∈ (0, ǫ0] su
hthat for all x0 ∈ K and for all ǫ ∈ (0, ǫ∗)
{

xfǫ (t;x0) exists
|xfǫ (t;x0) − xg (t;x0)| < d

∀t ∈ [0, T ] (2.25)In other words, it is required that traje
tories of (2.23) 
onverge on 
ompa
t time intervals totraje
tories of (2.24) as ǫ → 0, and furthermore we assume that this 
onvergen
e o

urs for all x0belonging to 
ompa
t sets. It is important to noti
e that the assumed 
onvergen
e is not stated interms of ve
tor �elds, but in terms of traje
tories; it is not assumed that f ǫ 
onverges point-wise to
g as ǫ→ 0.Under the assumption of 
onvergen
e of traje
tories, GAS for (2.24) implies semi-global pra
ti
alasymptoti
 stability for (2.23). We �rst re
all the de�nition of semi-global pra
ti
al asymptoti
stability given by Moreau [MA00℄.De�nition 2.24 [MA00℄ Consider system (2.23). Assume that the assumptions on f ǫ are satis-�ed. We 
all the origin of this system semi-globally pra
ti
ally asymptoti
ally stable (SGPAS) if thefollowing three 
onditions are satis�ed:2In this de�nition Dom (xg) denotes the domain of de�nition of the fun
tion (t; x0) → xg (t; x0) that de�nes the �owof the ve
tor �eld g. 23



CHAPTER 2. PRELIMINARIES1. For every c2 ∈ (0,∞), there exists c1 ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] su
h that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists
|xfǫ (t;x0)| < c2

∀t ∈ (0,∞]2. For every c1 ∈ (0,∞), there exists c2 ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] su
h that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists
|xfǫ (t;x0)| < c2

∀t ∈ (0,∞]3. For every c1, c2 ∈ (0,∞), there exists T ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] su
h that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists ∀t ∈ (0,∞] ,
|xfǫ (t;x0)| < c2, ∀t ∈ (T,∞]The notion of SGPAS may be interpreted as follows. Condition 1 of De�nition 2.24 de�nes a pra
ti
alversion of stability of the origin. Condition 2 de�nes a pra
ti
al version of boundedness. Condition3 de�nes a pra
ti
al version of global attra
tivity: all traje
tories starting in an arbitrarily large ball
entered at the origin end up in an arbitrarily small ball 
entered at the origin for appropriate �depending on the radii of the 
onsidered balls � values of the parameter ǫ. Noti
e that the origin isnot required to be an equilibrium point in De�nition 2.24, nor that the solution be forward 
omplete.Consider systems (2.23) and (2.24) introdu
ed above satisfying the 
onvergen
e of traje
toriesassumption. Assume that the origin is a GAS equilibrium of (2.24). It is well known that this doesnot imply that the origin is a GAS equilibrium point of (2.23) even if ǫ is small. It seems howeverreasonable to expe
t that (2.23) inherits some weaker notion of stability: the SGPAS. The followingtheorem asserts that this weaker stability property is indeed inherited by (2.23) if the origin is a GASequilibrium of (2.24).Theorem 2.25 (SGPAS theorem) [MA00℄ Given systems (2.23) and (2.24) satisfying the 
onver-gen
e of traje
tories assumption. If the origin is a GAS equilibrium point of (2.24), the origin of(2.23) is SGPAS.For a proof, the reader is referred to [MA00℄.In Chapter 3,the SGPAS theorem will be very useful for the proving that the global stability of theequilibrium point at 
riti
ality is transmitted to the bifur
ated solution for values of the parameter'slightly larger' than the 
riti
al value.2.4 Limit 
y
les and nonlinear os
illationsOs
illation is one of the most important phenomena that o

ur in dynami
al systems. A systemos
illates when it has a nontrivial periodi
 solution
x(t+ T ) = x(t), ∀t ≥ 024



2.4. LIMIT CYCLES AND NONLINEAR OSCILLATIONSfor some T > 0. The word �nontrivial� is used to ex
lude 
onstant solutions 
orresponding to equilib-rium points. The image of a periodi
 solution in the state spa
e is a 
losed traje
tory, whi
h is usually
alled a periodi
 orbit or a 
losed orbit. The simplest example of nontrivial periodi
 solution is givenby the solutions of a se
ond-order linear system with eigenvalues ±jβ. It is usually referred to asthe harmoni
 os
illator. If we think of the harmoni
 os
illator as a model for a linear LC ele
tri
al
ir
uit (see Figure 2.6), then we 
an see that the physi
al me
hanism leading to these os
illations is aperiodi
 ex
hange (without dissipation) of the energy stored in the 
apa
itor's ele
tri
 �eld with theenergy stored in the indu
tor's magneti
 �eld.
LC

Figure 2.6: A linear LC 
ir
uit for the harmoni
 os
illator.There are, however, two fundamental problems with this linear os
illator. The �rst problem isone of robustness. In�nitesimally small perturbations (linear or nonlinear) of the linear ve
tor �eldwill destroy the os
illation, i.e. the linear os
illator is not stru
turally stable. The se
ond problem isthat the amplitude of the os
illations is dependent on the initial 
onditions. These two fundamentalproblems 
an be eliminated in nonlinear os
illators. The Van der Pol os
illator that we will 
onsiderin more details in Chapter 3 is the simplest example of su
h nonlinear os
illators. In the 
ase of theharmoni
 os
illator, there is a 
ontinuum of 
losed orbits around the equilibrium point, while in theVan der Pol os
illator, there is only one isolated periodi
 orbit. Su
h isolated periodi
 orbit is
alled a limit 
y
le. Isolated means that neighbouring traje
tories are not 
losed; they spiral eithertoward or away from the limit 
y
le. Stable limit 
y
les are very important s
ienti�
ally � they modelsystems that exhibit self-sustained os
illations. In other words, these systems os
illate even in theabsen
e of external periodi
 for
ing. Of the many examples that 
ould be given, we mention only afew: the beating of a heart, the periodi
 �ring of a pa
emaker neuron, daily rhythms in human bodytemperature and hormone se
retion, and 
hemi
al rea
tions that os
illate spontaneously. In ea
h
ase, there is a limit os
illation of some preferred period, waveform, and amplitude. If the system isperturbed slightly, it always returns to the limit 
y
le. This leads us to the de�nition of stability ofperiodi
 solutions.2.4.1 Stability of periodi
 solutionsConsider the autonomous system
ẋ = f(x) (2.26)where f : D → R

n is 
ontinuously di�erentiable and D ⊆ R
n is a domain in
luded into R

n. Let
M ⊆ D be a 
losed invariant set of (2.26). De�ne an ǫ-neighborhood of M by

Uǫ = {x ∈ R
n | dist(x,M) < ǫ}25



CHAPTER 2. PRELIMINARIESwhere dist(x,M) is the minimum distan
e from x to a point in M , i.e.dist(x,M) = inf
y∈M

|x− y|De�nition 2.26 [Kha02℄ The 
losed invariant set M of (2.26) is
• stable if, for ea
h ǫ > 0, there is δ > 0 su
h that

x(0) ∈ Uδ ⇒ x(t) ∈ Uǫ, ∀t ≥ 0

• asymptoti
ally stable if it is stable and δ 
an be 
hosen su
h that
x(0) ∈ Uδ ⇒ lim

t→∞
dist(x(t),M) = 0In parti
ular, we will apply these 
on
epts to the spe
i�
 
ase when the invariant set M is the 
losedorbit asso
iated with a periodi
 solution. Let u(t) be a nontrivial periodi
 solution of the autonomoussystem (2.26) with period T , and let γ be the 
losed orbit de�ned by

γ = {x ∈ R
n |x = u(t), 0 ≤ t ≤ T}The 
losed orbit γ is the image of u(t) in the state spa
e. It is an invariant set whose stabilityproperties are 
hara
terized by De�nition 2.26. Having de�ned the stability properties of 
losedorbits, we 
an now de�ne the stability properties of periodi
 solutions.De�nition 2.27 [Kha02℄ A nontrivial periodi
 solution u(t) of (2.26) is

• orbitally stable if the 
losed orbit γ generated by u(t) is stable.
• asymptoti
ally orbitally stable if the 
losed orbit γ generated by u(t) is asymptoti
ally stable.2.5 Center manifold theory and bifur
ationsThe lo
al asymptoti
 stability of an equilibrium point of a nonlinear system 
an be deter-mined through the stability analysis of the linearized system if this equilibrium point is hyperboli
(Hartman-Grobman Theorem [Wig90, Theorem 2.2.6℄). When the equilibrium point is not hyper-boli
 (i.e. the Ja
obian matrix of the system linearized around this equilibrium point possesses atleast one eigenvalue on the imaginary axis), the stability analysis of the equilibrium point dependson the nonlinear terms negle
ted through the linearization pro
ess.For systems depending on a parameter µ, the topologi
al 
hara
ter of equilibria 
an 
hange at a
riti
al value of the parameter, e.g. perhaps two bran
hes of equilibria 
ross or a bran
h loses or gainsstability. Su
h a state and parameter is 
alled a bifur
ation point of the parametrized ve
tor �eld.A lo
al bifur
ation takes pla
e at a parameter value where the system loses stru
tural stability withrespe
t to parameter variations, i.e. the phase portrait around the equilibrium point at the 
riti
alparameter value is not lo
ally topologi
ally 
onjugate3 to the phase portrait around the equilibrium3If the lo
al linearizations at two equilibria have no poles on the imaginary axis, the same number of stri
tly stableand the same number of stri
tly unstable poles then the lo
al phase portraits are topologi
ally 
onjugate.26



2.5. CENTER MANIFOLD THEORY AND BIFURCATIONSat nearby parameter values. Therefore a lo
al bifur
ation is mathemati
ally 
hara
terized by one ormore eigenvalues of the linearized system 
rossing the imaginary axis.A standard approa
h to analyzing the behavior of parametrized ordinary di�erential equationsaround a bifur
ation point is to treat the parameter as an additional state variable with dynami
 µ̇ = 0and to 
ompute the 
enter manifold of the extended dynami
s through the bifur
ation point and thedynami
s restri
ted to this manifold (see [Wig90℄). The 
enter manifold is an invariant manifold ofthe di�erential equation whi
h is tangent at the bifur
ation point to the eigenspa
e of the neutrallystable eigenvalues. In pra
ti
e, one does not 
ompute the 
enter manifold and its dynami
s exa
tly.In most 
ases of interest, an approximation of degree two or three su�
es. If the other eigenvaluesare in the open left-half plane, then this part of the dynami
s is lo
ally asymptoti
ally stable andtherefore 
an be negle
ted in a lo
al stability analysis around the bifur
ation point.2.5.1 The 
enter manifold theoremConsider the autonomous system
ẋ = f(x) (2.27)where f : D → R

n is twi
e 
ontinuously di�erentiable and D ⊆ R
n is a domain that 
ontains theorigin x = 0. Suppose that the origin is a non-hyperboli
 equilibrium point of (2.27). The 
entermanifold theorem states that the stability properties of the origin 
an be determined by analyzing alower order nonlinear system.Equation (2.27) 
an be represented as

ẋ = Ax+ (f(x) −Ax) = Ax+ f̃(x), (2.28)where A = ∂f
∂x

∣
∣
∣
x=0

and f̃(x) = f(x) − Ax. f̃(x) is twi
e 
ontinuously di�erentiable and f̃(0) = 0,
∂f̃
∂x

∣
∣
∣
x=0

= 0. Sin
e the origin x = 0 is assumed to be a non-hyperboli
 equilibrium point of (2.27), let
k be the number of eigenvalues with zero real parts and m = n − k the number of eigenvalues withnegative real parts. We 
an always �nd a similarity transformation matrix T that transforms A intoa blo
k diagonal matrix, i.e.

TAT−1 =

(
A1 0
0 A2

)where all the eigenvalues of A1 have zero real parts and all the eigenvalues of A2 have negative realparts. Clearly, A1 is k × k and A2 is m×m. The 
hange of variables
(
y

z

)

= Tx, y ∈ R
k, z ∈ R

mtransforms (2.28) into the form
ẏ = A1y + g1(y, z)
ż = A2z + g2(y, z)

(2.29)where g1 and g2 inherit the properties of f̃ . In parti
ular, they are twi
e 
ontinuously di�erentiableand
gi(0, 0) = 0,

∂gi

∂y

∣
∣
∣
∣
(y,z)=0

= 0,
∂gi

∂z

∣
∣
∣
∣
(y,z)=0

= 0 (2.30)27



CHAPTER 2. PRELIMINARIESfor i = 1, 2. If z = h(y) is an invariant manifold of (2.29) and h is smooth, then it is 
alled a 
entermanifold if
h(0) = 0,

∂h

∂y

∣
∣
∣
∣
y=0

= 0.Theorem 2.28 (Center manifold theorem) [Kha02℄ If g1 and g2 are twi
e 
ontinuously di�eren-tiable and satisfy (2.30), all eigenvalues of A1 have zero real parts, and all eigenvalues of A2 havenegative real parts, then there exists a 
onstant δ > 0 and a 
ontinuously di�erentiable fun
tion h(y),de�ned for all |y| < δ, su
h that z = h(y) is a 
enter manifold for (2.29).If the initial state of the system (2.29) lies in the 
enter manifold, i.e. z(0) = h(y(0)), then thesolution (y(t), z(t)) will lie in the manifold for all t ≥ 0, i.e. z(t) ≡ h(y(t)). In this 
ase, the motionof the system in the 
enter manifold is des
ribed by the k-th order di�erential equation
ẏ = A1y + g1 (y, h(y)) (2.31)whi
h we refer to as the redu
ed system. Even if z(0) 6= h(y(0)), it 
an be shown (see [Kha02℄) thatthe stability properties of the origin are determined by the redu
ed system (2.31). This is summarizedin the next theorem, known as the redu
tion prin
iple.Theorem 2.29 (Redu
tion prin
iple) [Kha02℄ Under the assumptions of Theorem 2.28, if theorigin y = 0 of the redu
ed system (2.31) is asymptoti
ally stable (respe
tively, unstable) then theorigin of the full system (2.29) is also asymptoti
ally stable (respe
tively, unstable).To use Theorem 2.29, we need to �nd the 
enter manifold z = h(y). The fun
tion h is a solution ofthe partial di�erential equation

N (h(y)) =
∂h

∂y
(y) (A1y + g1 (y, h(y))) −A2h(y) − g2 (y, h(y)) = 0,with boundary 
onditions

h(0) = 0,
∂h

∂y

∣
∣
∣
∣
y=0

= 0.This equation for h 
annot be solved exa
tly in most 
ases (to do so would imply that a solution ofthe full system (2.29) has been found), but its solution 
an be approximated arbitrarily 
losely as aTaylor series in y. This result is summarized in Theorem 2.30.Theorem 2.30 [Kha02℄ If a 
ontinuously di�erentiable fun
tion φ(y) with φ(0) = 0 and ∂φ
∂y

∣
∣
∣
y=0

= 0
an be found su
h that N (φ(y)) = O (|y|p) for some p > 1, then for su�
iently small |y|,
h(y) − φ(y) = O (|y|p) ,and the redu
ed system (2.31) 
an be represented as

ẏ = A1y + g1 (y, φ(y)) + O
(

|y|p+1
)

.Remark 2.31 In Theorem 2.30, the order of magnitude notation f(|y|) = O (|y|p) is used as ashorthand notation for |f(y)| ≤ k |y|p for su�
iently small |y|.28



2.6. THE HOPF BIFURCATION THEOREM2.6 The Hopf bifur
ation theoremIn this se
tion, we state (a version of) the Hopf bifur
ation theorem and point out the importanthypotheses required for the appearan
e of a limit 
y
le. Loosely, Hopf's theorem says that if an
n-dimensional ordinary di�erential equation ẋ = f(x, µ) depends on a real parameter µ, and if onlinearizing about an equilibrium point we �nd that pairs of 
omplex 
onjugate eigenvalues of thelinearized system 
ross the imaginary axis as µ varies through 
ertain 
riti
al values, then for near-
riti
al values of µ there exist limit 
y
les 
lose to the equilibrium point. Just how near to 
riti
ality
µ has to be is not determined, and indeed unless a 
ertain rather 
ompli
ated expression (we shall
all it the 
urvature 
oe�
ient) is nonzero, the usual statement of the theorem does not guaranteeexisten
e at all. The sign of the 
urvature 
oe�
ient determines the stability of the limit 
y
le, andwhether the limit 
y
le exists for sub
riti
al (µ < µ0) or super
riti
al (µ > µ0) parameter values. (Weshall adopt the 
onvention that near µ = µ0 the real parts or the eigenvalues in
rease as µ in
reases.)Hopf �rst proved the theorem for analyti
 f by series expansion [Hop42℄. The more re
entgeometri
al approa
h presented in [MM76, HKW81℄ is less restri
tive and more intuitive, thoughextremely heavy algebra is required in the detailed proof. In [Far94℄, another version of the Hopfbifur
ation theorem based on the notion of h-asymptoti
 stability4 is given. This version of theHopf bifur
ation theorem is useful in order to avoid the 
omputation of the 
urvature 
oe�
ientsin
e h-asymptoti
 stability 
an be veri�ed through the 
onstru
tion of an appropriate Lyapunovfun
tion. A graphi
al interpretation of the Hopf bifur
ation theorem based on a rigorous version ofthe des
ribing fun
tion method has been given by Mees in [Mee81℄. The appli
ation of the graphi
alHopf bifur
ation theorem of Mees to the 
lass of passive os
illators (de�ned in Chapter 3) is donein Appendix C.The Hopf bifur
ation theorem is an important tool for understanding systems des
ribed byordinary di�erential equations be
ause it is one of the few reliable methods for establishing theexisten
e of limit 
y
les in high-dimensional systems. To use it e�e
tively, one must be aware of bothits advantages and its disadvantages. The prin
ipal advantage of the Hopf theorem in 'real-world'problems is its ability to handle high-dimensional systems; its prin
ipal disadvantage is the fa
t thatthe range of allowed values of µ is unknown, so one never knows if a given value of µ 
orrespondsto the existen
e of a limit 
y
le. The Hopf theorem is thus 'lo
al' in the sense that it only makespredi
tions for unspe
i�ed regions of parameter spa
e and state spa
e. These predi
tions may bevalid over regions whi
h are very big or very small, and the usual form of the theorem gives little helpin determining their size. Nevertheless, we 
an reasonably expe
t the parameter region to be largeas emphasized by Mees [Mee81℄ : �The Hopf theorem only makes predi
tions for an unspe
i�ed,probably small range of values of the bifur
ation parameter. Nevertheless, experien
e tends to 
on�rmthat predi
tions often remain qualitatively 
orre
t even when the system is very far from bifur
ation.This is not surprising if one imagines how the limit 
y
le grows out from equilibrium in the state spa
e:even if the limit 
y
le bifur
ates repeatedly, there will always be at least one limit 
y
le present (notne
essarily stable). If it does not grow to in�nite amplitude it 
an only disappear 
ompletely either by
ollapsing ba
k into the equilibrium or by 
oales
ing with another limit 
y
le having 
omplementarystability properties: this other limit 
y
le would have to have been generated by an independentbifur
ation pro
ess.�To introdu
e the Hopf bifur
ation, 
onsider a two-dimensional ordinary di�erential equation.4A system is said to be h-asymptoti
ally stable if its asymptoti
 stability is robust to perturbations of its ve
tor�eld by term of order h + 1. 29
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Figure 2.7: As µ in
reases, a sink 
hanges to a sour
e, expelling or absorbing a limit 
y
le. Line (a):super
riti
al bifur
ation; Line (b): sub
riti
al bifur
ation.Figure 2.7 shows how the phase portrait might alter as a parameter is varied, 
ausing a spiral sinkto be
ome a spiral sour
e. At a 
riti
al parameter value µ0, the equilibrium point is a 
enter, i.e.the lo
al linearization is equivalent to undamped simple harmoni
 motion of period 2π
ω
, where ±jωare the eigenvalues of the Ja
obian at 
riti
ality. When µ 6= µ0, the system behaves as if it is linearvery 
lose to the equilibrium, but a little further out the e�e
ts of nonlinearity sometimes manifestthemselves in the appearan
e of a limit 
y
le. In Figure 2.7 (a) the limit 
y
le grows outwards fromthe 
enter as µ in
reases through µ0, and so the period is likely to be not far from 2π

ω
. Figure 2.7 (b)shows another possibility in whi
h the stability behavior of the equilibrium point (and therefore thebehavior of the eigenvalues of the linearization) is indistinguishable from that of Figure 2.7 (a), butin whi
h an unstable limit 
y
le 
ollapses into the sink instead of a stable one growing out. Figure2.8 represents what is happening in the (x1, x2, µ) spa
e. Here the sli
es µ = constant are phaseportraits. The �bowl� in ea
h 
ase represents a lo
us of limit 
y
les. In Figure 2.8 (a) 
orrespondingto Figure 2.7 (a), an attra
ting limit 
y
le appears as µ rea
hes 
riti
ality, and grows as µ in
reasesfurther, while in Figure 2.8 (b), 
orresponding to Figure 2.7 (b), a repelling limit 
y
le gets smaller as

µ in
reases, disappearing as µ rea
hes 
riti
ality. In both 
ases, the equilibrium itself is attra
ting for
µ < µ0 and repelling for µ > µ0. We 
an distinguish between the two 
ases by whether the bowl is theright way up or upside down, and in fa
t the 
urvature 
oe�
ient mentioned earlier is just a 
onstantfa
tor times the 
urvature 
oe�
ient of the bowl at the 
riti
al point. Note that if the 
urvature isnon-vanishing the bowl is paraboli
, so the radius of the limit 
y
le grows as √|µ− µ0| (i.e. mu
hfaster than |µ− µ0| at �rst). If the 
urvature vanishes, it is possible, though not 
ertain, that the30



2.6. THE HOPF BIFURCATION THEOREMbowl is �at out to in�nity, in whi
h 
ase the periodi
 orbits exist only at the 
riti
al parameter value.An example of this 
ase is given by the linear system
ẍ+ µẋ+ x = 0and an example where the 
urvature 
oe�
ient vanishes but the bowl is nevertheless not �at is givenby

ẍ+ µẋ+ x = g (x, ẋ)where all partial derivatives of g at the origin vanish up to the 4th order, but there is a non-vanishing
5th partial derivative.Global theorems do not transfer easily from 2 to n dimensions. The Hopf bifur
ation theorem,however, is lo
al and the transition is 
omparatively painless thanks to the invariant manifold theorem(see [Kha02℄) whi
h lets us take the eigenspa
e of the bifur
ating eigenvalues as an approximation toa two dimensional manifold � the 
enter manifold � that 
ontains the limit 
y
le if there is one. TheHopf bifur
ation theorem for two dimensions 
an thus be used to establish existen
e of a limit 
y
lein the 
enter manifold, whi
h of 
ourse implies existen
e in the whole spa
e. The 
urvature 
oe�
ienthas an extra 
ontribution from the 
urvature of the 
enter manifold relative to the eigenspa
e usedto approximate it, and the limit 
y
le may, of 
ourse, attra
t some traje
tories and repel others.
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y
les lo
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Spiral sinks
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esSpiral sour
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Figure 2.8: Figures 2.7 (a) and (b) in (x1, x2, µ) spa
e. Dashed lines are repellers and solid lines areattra
tors.We shall now state a theorem whi
h, though not the most general statement of the Hopf bifur-
ation, is adequate for the majority of problems. A 
ontinuity 
ondition is imposed to ensure that,in spite of possible losses of di�erentiability, the bowl is smooth enough so that its 
urvature 
an be
al
ulated.Theorem 2.32 (Hopf bifur
ation theorem) [Mee81℄Let fµ be a ve
tor �eld on R
n (n ≥ 2), parametrized by µ ∈ R and Ck (k ≥ 4) jointly in x ∈ R

n and
µ. Suppose fµ (x̂(µ)) = 0 for a lo
ally unique point x̂(µ) and write Jµ for the Ja
obian ∂fµ

∂x
|x̂(µ).Suppose 31



CHAPTER 2. PRELIMINARIES(a) Jµ has a pair of 
omplex 
onjugate eigenvalues λ(µ), λ̄(µ) for whi
h ℜ{λ(µ)} = 0 at µ = µ0and
d

dµ
ℜ{λ(µ)} > 0, ℑ{λ(µ)} > 0at µ = µ0;(b) Every eigenvalue ν(µ) of Jµ ex
ept λ(µ) and λ̄(µ) satis�es

ℜ{ν (µ0)} 6= 0;(
) The 
urvature 
oe�
ient a given in (2.32) is nonzero.Then there is a range either of positive or of negative values of ∆µ ≡ µ− µ0 in whi
h every value of
µ 
orresponds to a unique limit 
y
le at a distan
e O

(√

|∆µ|
) from x̂(µ), and of period 2π

ℑ{λ(µ0)} +

O (∆µ). Furthermore,(d) If a < 0 and ℜ{ν (µ0)} < 0, ∀ν, the limit 
y
le is attra
ting, while if a > 0 and ℜ{ν (µ0)} >
0, the limit 
y
le is repelling.The 
urvature 
oe�
ient a is given by (see [Mee81, eq. (6.1.4)℄)

a = ℜ{ψ} , where
ψ = upvjvkv̄l

(

f
p
jkl − 2fp

jmJ
−1
mqf

q
kl − f

p
lm(J − 2iω)−1

mqf
q
jk

) (2.32)where J = Jµ0 and uT and v are respe
tively left and right eigenve
tors of J belonging to λ (µ0),normalized so that uT v = 1. Repeated subs
ripts imply summation from 1 to n and fp
jk means ∂f

µ
p (x)

∂xk∂xj(where fµ
p is the pth 
omponent of fµ) evaluated at x = x̂ (µ0). For two-dimensional systems, it 
anbe shown (see [Mee81, eq. (6.2.9)℄) that the expression of the 
urvature 
oe�
ient is

a =
1

16

(
f1
111 + f1

122 + f2
112 + f2

222

)

− 1

16ω0

(
f1
12

(
f1
11 + f1

22

)
− f2

12

(
f2
11 + f2

22

)
− f1

11f
2
11 + f1

22f
2
22

)
. (2.33)where ω0 = ω (µ0) = ℑ{λ (µ0)} and all derivatives are evaluated at x = x̂ (µ0) and µ = µ0.The 
onditions (a) and (b) of the theorem are natural and are satis�ed typi
ally. If the equilibrium

x̂(µ) is linearly asymptoti
ally stable for µ's in an interval, i.e. all the eigenvalues of Jµ have negativereal parts, then as µ is in
reased (or de
reased) one may expe
t that at a 
ertain value of µ either anegative eigenvalue 
rosses the imaginary axis or a pair of 
omplex 
onjugate eigenvalues 
rosses intothe right-hand half plane. It is �unlikely� and generi
ally does not happen in a one parameter familyof systems that two pairs of 
omplex eigenvalues or a pair and a real eigenvalue 
ross simultaneouslyinto the positive half of the 
omplex plane resulting in the destabilization of the equilibrium point.(In the 
ase the family depends on two or more parameters, su
h a situation may generi
ally o

ur,giving rise to so-
alled �
odimension two or higher bifur
ations�; see e.g., Langford [Lan79℄ andGolubitsky-S
haeffer [GSS85℄). Condition (a) insists that the eigenvalues 
ross the imaginaryaxis with nonzero speed, while 
ondition (b) is stronger than ne
essary, but simpli�es the uniquenessstatement following (
). Unfortunately, 
ondition (
) is not so easy to 
he
k be
ause of the need32



2.7. THE KRONECKER PRODUCTto �nd n4 third partial derivatives and n3 se
ond partial derivatives when 
al
ulating a. This isunavoidable, sin
e the whole point of the Hopf bifur
ation is that it deals with the 
ase when �rstderivatives do not determine behavior. If the 
urvature 
oe�
ient a is nonzero, its sign determinesthe lo
al stability of the bifur
ated limit 
y
le. The 
al
ulation of a qui
kly be
omes tedious for highdimensional systems. In Chapter 3 we will show that for the 
lass of feedba
k nonlinear system we
onsider, expli
it 
omputation of the 
urvature 
oe�
ient is unne
essary: the passivity properties ofour systems imply that the limit 
y
le is attra
ting.2.7 The Krone
ker produ
tThe use of the Krone
ker produ
t is very useful when 
onsidering inter
onne
tion of identi
alsystems (see Chapter 4). In this se
tion, we re
all its de�nition and main properties. We refer thereader to [Gra81℄ for more details on the use and appli
ations of the Krone
ker produ
t.For matri
es A and B the notation A⊗B (the Krone
ker produ
t of A and B) stands for thematrix 
omposed of sub-matri
es AijB, i.e.
A⊗B =








A11B A12B · · · A1nB

A21B A22B · · · A2nB... ... . . . ...
Am1B Am2B · · · AmnB







,where Aij , i = 1, . . . ,m, j = 1, . . . , n, stands for the ij-th entry of the m× n matrix A.The main properties of the Krone
ker produ
t are summarized hereafter. In the following, weassume that A, B, C, and D are real valued matri
es. Some identities only hold for appropriatelydimensioned matri
es.

• The Krone
ker produ
t is a bi-linear operator. Given α ∈ R,
A⊗ (αB) = α(A⊗B)

(αA) ⊗B = α(A⊗B)

• The Krone
ker produ
t distributes over addition
(A+B) ⊗ C = (A⊗ C) + (B ⊗ C)

A⊗ (B + C) = (A⊗B) + (A⊗ C)

• The Krone
ker produ
t is asso
iative
(A⊗B) ⊗ C = A⊗ (B ⊗ C)

• The Krone
ker produ
t is not 
ommutative
A⊗B 6= B ⊗A

• Transpose distributes over the Krone
ker produ
t
(A⊗B)T = AT ⊗BT33



CHAPTER 2. PRELIMINARIES
• When dimensions are appropriate, matrix multipli
ation satis�es

(A⊗B)(C ⊗D) = AC ⊗BDIn parti
ular, we have1. (A⊗ In) (Im ⊗B) = (A⊗B) = (Im ⊗B) (A⊗ In) for A ∈ R
m×m and B ∈ R

n×n,2. (A⊗ In) (Im ⊗B) = (Im ⊗B)A for A ∈ R
m×m and B ∈ R

n×1,3. (Im ⊗ C) (A⊗ In) = A (Im ⊗ C) for A ∈ R
m×m and C ∈ R

1×n.
• When A and B are square and full rank

(A⊗B)−1 =
(
A−1 ⊗B−1

)

• The determinant of Krone
ker produ
t is
det (Am×m ⊗Bn×n) = det(A)n det(B)m

• The tra
e of Krone
ker produ
t istra
e (A⊗B) = tra
e (A) tra
e (B)

34



Chapter 3Global results for one os
illatorOs
illators are dynami
al systems that exhibit stable limit 
y
le os
illations. The emphasis inthis 
hapter is on os
illators as open systems, that is, as systems that 
an be inter
onne
ted toother systems through their inputs and outputs. The aim is to show that dissipativity theory 
an beusefully applied to study the existen
e of limit 
y
le os
illations and their global stability propertiesand also to give simple explanations for the feedba
k me
hanisms responsible for these os
illations.An obvious bene�t of this dissipativity approa
h for the 
hara
terization of limit 
y
les is that it isnot restri
ted to low-dimensional systems. A further bene�t is that it is well-suited to the analysis ofinter
onne
tions. The important topi
 of networks of os
illators will be treated in Chapter 4.Starting from two of the most simple examples of nonlinear systems exhibiting globally attra
-tive limit 
y
les os
illations, namely the Van der Pol os
illator (Se
tion 3.1) and the Fitzhugh-Nagumo os
illator (Se
tion 3.2), we present two di�erent feedba
k os
illation me
hanisms responsiblefor global limit 
y
le os
illations in (generalized) Lure feedba
k systems (Se
tion 3.3). The limit 
y
leeither results from a super
riti
al Hopf bifur
ation or from the addition of a slow adaptation dynami
to a globally bistable system 
reated through a super
riti
al pit
hfork bifur
ation. The �rst s
enarioprovides a high-dimensional generalization of the Van der Pol os
illator. Its energy interpretation�ts the qualitative des
ription of many physi
al os
illations, des
ribed as the lossless ex
hange ofenergy between two storage elements, regulated by a lo
ally a
tive but globally dissipative element.The se
ond s
enario provides a high-dimensional generalization of Fitzhugh-Nagumo os
illators.Its energy interpretation �ts the qualitative des
ription of many os
illation me
hanisms in biology,viewed as periodi
 swit
hes between two quasi-stable steady-states. Sin
e the 
entral assumption forthese results is passivity, we name the resulting global os
illators, passive os
illators. Central to theresults of this 
hapter is the 
hara
terization of passive os
illators by the dissipation inequality
Ṡ ≤ (k − k∗) y2 − yφ(y) + uy. (3.1)Beyond the stability results, the dissipation inequality (3.1) provides an external 
hara
terizationof os
illators whi
h opens the way to a rigorous stability analysis of limit 
y
les in possibly high-dimensional systems and inter
onne
tions of su
h systems.3.1 The Van der Pol os
illatorIn the early days of nonlinear dynami
s, say from about 1920 to 1950, intensive resear
h was doneon nonlinear os
illations. One of the very �rst to propose a model for global limit 
y
le os
illations35



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORwas the Dut
h ele
tri
al engineer Balthazar Van der Pol. Van der Pol is nowadays 
onsideredas the pioneer engineer in the �elds of radio and tele
ommuni
ations. In an era when these topi
s weremu
h less advan
ed than they are today, va
uum tubes were used to 
ontrol the �ow of ele
tri
ity in the
ir
uitry of transmitters and re
eivers. Contemporary with Lorenz, Thompson, and Appleton,Van der Pol experimented with os
illations in a va
uum tube triode 
ir
uit and 
on
luded thatall initial 
onditions 
onverged to the same periodi
 orbit of �nite amplitude. Sin
e this behavioris di�erent from the behavior of solutions of linear equations, Van der Pol proposed a nonlineardi�erential equation, 
ommonly referred to as the Van der Pol equation, as a model for the behaviorobserved in the experiment. Sin
e its introdu
tion in the 1920's, the Van der Pol equation hasbeen a prototype for systems with self-ex
ited limit 
y
le os
illations.In this se
tion, we will show that the Van der Pol os
illator 
an be seen as a parti
ular Lurefeedba
k system and that the main feedba
k me
hanism responsible for global os
illations in the Vander Pol os
illator is the Hopf bifur
ation.3.1.1 Van der Pol dynami
s - Global resultsOs
illations in physi
al systems generally result from a sustained energy ex
hange between twoor several storage elements. In the Van der Pol os
illator the two storage elements are a 
apa
itorand an indu
tor, whereas the dissipation is regulated by means of a nonlinear stati
 element. Figure3.1 shows a sket
h of the �tetrode multivibrator� 
ir
uit used in the earliest 
ommer
ial radios andanalyzed by Van der Pol. The indu
tor and the 
apa
itor are assumed to be linear, time invariantand passive, that is, L > 0 and C > 0. In Van der Pol's day, the nonlinear stati
 element wasa va
uum tube; today it would be a semi
ondu
tor devi
e implementing a twin-tunnel-diode 
ir
uit.This nonlinear element a
ts like an ordinary resistor for high 
urrents, but like a negative resistor forlow 
urrents. Its 
urrent-voltage 
hara
teristi
 i = φR(v) resembles a 
ubi
 fun
tion with a negativeslope at the origin, as represented on Figure 3.1. The fun
tion φR(·) satis�es the 
onditions
φR(0) = 0, φ′R(0) = −R < 0, φ′′R(0) = 0, φ′′′R(0) > 0and

lim
v→+∞

φR(v) = +∞, lim
v→−∞

φR(v) = −∞,where φ′R(v) and φ′′R(v) are the �rst and se
ond derivative of φR(v) with respe
t to v respe
tively.For the Van der Pol equation,
φR(v) =

1

3
v3 −Rv (3.2)where R parameterizes the slope at the origin.Using Kir
hhoff's laws, the se
ond order dynami
s of the Van der Pol 
ir
uit of Figure 3.1are

LC
d2v

dt2
+ L

(
v2 −R

) dv

dt
+ v = 0.The foregoing equation 
an be written in a form that 
oin
ides with some well-known equationsin nonlinear systems theory. To do that, let us 
hange the time variable from t to τ = t√

LC
. Denotingthe derivative of v with respe
t to τ by v̇, we 
an rewrite the 
ir
uit equation as

v̈ +

√

L

C

(
v2 −R

)
v̇ + v = 0. (3.3)36



3.1. THE VAN DER POL OSCILLATOR
i

v

v−

elementresistiveNonlinear
C

+
i = φR(v)

i = φR(v)

L

iCiL slope at origin = −RFigure 3.1: The Van der Pol �tetrode multivibrator� 
ir
uit.This last equation is known as the Van der Pol equation and is a spe
ial 
ase of Liénard'sequation
v̈ + f(v)v̇ + g(v) = 0, (3.4)where f(v) =

√
L
C
φ′R(v) =

√
L
C

(
v2 −R

) and g(v) = v. It 
an also be interpreted me
hani
ally asthe equation of motion for a unit mass subje
t to a nonlinear damping for
e −f(v)v̇ and a nonlinearrestoring for
e −g(v). Liénard systems are well known in the literature for their nonlinear os
illationsproperties. The following theorem states that Liénard systems have a unique, stable limit 
y
le underappropriate hypotheses on f(·) and g(·). For a proof, see [JS87℄, [Gri90℄, or [Per91℄.Theorem 3.1 (Liénard's Theorem) [Str00℄ Suppose that f(v) and g(v) satisfy the following
onditions:1. f(v) and g(v) are 
ontinuously di�erentiable for all v ∈ R;2. g(−v) = −g(v) for all v ∈ R;3. g(v) > 0 for v > 0;4. f(−v) = f(v) for all v;5. The odd fun
tion F (v) =
∫ v

0 f(u) du has exa
tly one positive zero at v = a, is negative for
0 < v < a, is positive and nonde
reasing for v > a, and F (v) → ∞ as v → ∞.Then the system (3.4) has a unique, stable limit 
y
le surrounding the origin in the phase plane.The assumptions on g(v) mean that the restoring for
e a
ts like an ordinary spring, and tends toredu
e any displa
ement, whereas the assumptions on f(v) imply that the damping is negative atsmall |v| and positive at large |v|. Sin
e small os
illations are pumped up and large os
illations aredamped down, it is not surprising that the system tends to settle into a self-sustained nonlinearos
illation at some intermediate amplitude.3.1.2 The Van der Pol model as a Lure feedba
k systemThe Van der Pol os
illator may be seen as a parti
ular Lure feedba
k system that admitsthe blo
k diagram representation of Figure 3.2, whi
h is the feedba
k inter
onne
tion of a dynami
alpassive system with a stati
 nonlinearity 
hara
terized by a negative slope at the origin.37



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR
−

passive y

Σ

−RFigure 3.2: Blo
k diagram 
orresponding to the Lure SISO nonlinear system interpretation of theVan der Pol equation.This is easily seen by 
hoosing the state variables as the voltage a
ross the 
apa
itor and the
urrent through the indu
tor. Denoting the state variables by z1 = iL and z2 = v, the state model isgiven by
dz1

dt
=

1

L
z2

dz2

dt
= − 1

C

(

z1 +

(
1

3
z3
2 −Rz2

))Sin
e the �rst model (3.3) has been written with respe
t to the time variable τ = t√
LC

, let us writethis model with respe
t to τ . We obtain
ż1 =

√
C
L
z2

ż2 = −
√

L
C

(
z1 +

(
1
3z

3
2 −Rz2

)) (3.5)Let us assume, without loss of generality, that L = C = 1. We then get the Van der Pol statemodel
ż1 = z2
ż2 = −z1 −

(
1
3z

3
2 −Rz2

) (3.6)The state model (3.6) admits the blo
k diagram representation depi
ted in Figure 3.3. Sin
e anintegrator is the most simple example of a passive dynami
al system and the feedba
k inter
onne
tionof passive systems is passive (see Theorem 2.15), the blo
k diagram representation given in Figure3.3 
learly 
orresponds to the Lure feedba
k system of Figure 3.2. In Se
tion 3.3, we will prove thatthe 
lass of Lure feedba
k systems depi
ted in Figure 3.2 extends the fundamental properties of theVan der Pol os
illator to high-dimensional systems, i.e. to feedba
k systems 
hara
terized by aunique limit 
y
le whi
h is (almost) globally attra
tive.The feedba
k me
hanism responsible for global os
illations in the Van der Pol model (3.6) is theHopf bifur
ation. This is easily seen by 
onsidering R as a parameter and performing a bifur
ationanalysis on the linearized system. The Ja
obian matrix of the linearized system is
A =

(
0 1
−1 R

)

.38



3.2. THE FITZHUGH-NAGUMO OSCILLATOR
−−

1
s

1
s

z2

z1

1
3
z3
2 − Rz2

φR(·)Figure 3.3: Blo
k diagram representation of the Van der Pol state model (3.6).For negative values of R, the origin (z1, z2) = (0, 0) is asymptoti
ally stable whereas for positive valuesof R, the origin is unstable. For R = 0, the origin of the linearized system is marginally stable withtwo eigenvalues (±i) on the imaginary axis. Moreover, as R is in
reased through 0, the 
orrespondingeigenvalues 
ross the imaginary axis with nonzero speed. The assumptions of the Hopf bifur
ationin Theorem 2.32 are thus satis�ed. The type of Hopf bifur
ation is determined by the sign of the
urvature 
oe�
ient a given in (2.33), i.e.
a =

1

16

(
f1

z1z1z1
+ f1

z1z2z2
+ f2

z1z1z2
+ f2

z2z2z2

)

− 1

16

(
f1

z1z2

(
f1

z1z1
+ f1

z2z2

)
− f2

z1z2

(
f2

z1z1
+ f2

z2z2

)
− f1

z1z1
f2

z1z1
+ f1

z2z2
f2

z2z2

)
,where f i denotes the ith 
omponent of the ve
tor �eld at the 
riti
al value R = 0, i.e. ( f1

f2

)

=
(
f1 (z1, z2, 0)
f2 (z1, z2, 0)

)

=

(
z2

−z1 − 1
3z

3
2

) and all partial derivatives are evaluated at the bifur
ation point,i.e. (z1, z2, R) = (0, 0, 0). In the Van der Pol model, we obtain a = −1
8 < 0. Sin
e a is negative,we dedu
e that the Hopf bifur
ation is super
riti
al and gives rise to a lo
ally stable limit 
y
le for

R > 0. Furthermore, from the Liénard Theorem 3.1, we know that this limit 
y
le is unique andglobally asymptoti
ally stable for R > 0. It 
an also be shown that the origin of the Van der Polstate model (3.6) is globally asymptoti
ally stable for R ≤ 0 (see [Kha02℄). In Se
tion 3.3, we willsee that the global asymptoti
 stability of the origin before the 
riti
al bifur
ation value R = 0 (i.e.for R ≤ 0) is an important 
ondition for obtaining a globally attra
tive limit 
y
le for values of Rgreater than 0.3.2 The Fitzhugh-Nagumo os
illatorOs
illations in biologi
al systems generally result from a relaxation os
illation 
hara
terized byrapid swit
hes between two quasi steady states (see [Mur02℄). Most of the time, this relaxationos
illation is the result of the feedba
k addition of a slow adaptation me
hanism to a globally bistablesystem. In this se
tion, we are interested in one of the most simple models for voltage os
illations in theneuron 
ell membrane, the Fitzhugh-Nagumomodel. We will show that, under 
ertain assumptions,this model admits the Lure feedba
k representation of Figure 3.2, plus a feedba
k adaptation loop.39



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORIn the Fitzhugh-Nagumo model, the Lure feedba
k system is globally bistable. The os
illationme
hanism 
onsists in the transformation of this globally bistable system into a relaxation os
illationthrough the addition of a slow adaptation dynami
.3.2.1 Fitzhugh-Nagumo dynami
s - Global resultsThe simplest model that has been proposed for spike generation is the Fitzhugh-Nagumo model.This model is a simpli�
ation of the Hodgkin-Huxley model for voltage os
illations in the neuron
ell membrane [HH52℄.In 1952, Hodgkin and Huxley [HH52℄ proposed a mathemati
al model to explain pulse gen-eration by neurons. A

ording to their analysis, the ele
tri
al pulses arise be
ause the neuron 
ellmembrane is preferentially permeable to various 
hemi
al ions with the permeabilities a�e
ted bythe 
urrents and ions present. The key elements in the system are potassium ions (K+) and sodiumions (Na+). The Hodgkin-Huxley equations are 
hara
terized by a threshold for generating limit
y
les and thus provide a qualitative approximation to spike generation thresholds. Simpli�
ationsof the model of Hodgkin and Huxley lead to the well-known se
ond order Fitzhugh-Nagumomodel whi
h qualitatively preserves its important properties.The Fitzhugh-Nagumo dimensionless model is (see [Mur02℄)
v̇ = f(v) − w + Ia
ẇ = bv − γw,

(3.7)where Ia models the external ex
itation 
urrent, f(v) = −v(v− a)(v− 1), 0 < a < 1, and b and γ arepositive 
onstants. The 
orresponding null
lines are w = b
γ
v and w = f(v) + Ia.With Ia = 0, the possible phase portraits, as illustrated in Figure 3.4, show that there 
an be noperiodi
 solutions sin
e we either have a unique, asymptoti
ally stable equilibrium point or a bistablesystem, i.e. two stable equilibrium points with a saddle point in between.

v

w

0
v

w

0
w = f(v) w = f(v)

v̇ > 0 v̇ < 0

ẇ > 0ẇ < 0

S1

S2
w = bv

γ

(a) (b)

w = bv
γ

a a 11
Figure 3.4: Null
lines for the original Fitzhugh-Nagumo model (3.7) when Ia = 0. As the param-eters b and γ vary there 
an be (a) one stable equilibrium point or, (b) three equilibrium points, oneunstable, namely, S1, and two stable, namely, (0, 0) and S2.Suppose now that there is an applied 
urrent Ia > 0. The e�e
t on the null
lines is simply tomove the v null
line, with Ia = 0, up the w-axis. The 
orresponding null
lines are illustrated in40



3.2. THE FITZHUGH-NAGUMO OSCILLATORFigure 3.5 (a) to (d) for several Ia > 0. With parameter values su
h that the null
lines are as inFigure 3.4-(a), we 
an see that by varying only Ia there is a range of applied 
urrents (I1, I2) wherethe steady state 
an be unstable and limit 
y
le os
illations possible, that is, a null
line situationlike that in Figure 3.5-(b). The algebra to determine the various parameter ranges for a, b, γ and Iafor ea
h of these various possibilities to hold is straightforward [Mur02℄. Finally, with the situationexhibited in Figure 3.5-(d) limit 
y
le solutions are not possible. On the other hand this form 
anexhibit equilibria swit
h properties.

v

w

0
v

w

v

w

v

w

(a) (b)

(
) (d)

0 < Ia < I1 I1 < Ia < I2

Ia > I2

w = f(v) + Ia

S1

S3

Ia

Ia

Ia

S2

Figure 3.5: Null
lines for the original Fitzhugh-Nagumo model (3.7) with di�erent applied 
urrents
Ia. Cases (a), where Ia < I1, and (
), where Ia > I2, have linearly stable steady states, while in(b), where I1 < Ia < I2, the steady state 
an be unstable and limit 
y
le periodi
 solutions arepossible. With the 
on�guration (d), the steady states S1, S3 are stable whereas S2 is unstable. Inthe 
on�guration (d), a perturbation from either S1 or S3 
an e�e
t a swit
h to the other.Sin
e we are interested in the situation where a limit 
y
le os
illation o

urs in the Fitzhugh-Nagumo model (3.7), the positive 
onstants a, b, γ, and Ia are 
hosen su
h that the system possessesa unique unstable equilibrium point as in Figure 3.5-(b). For null
lines to be as in Figure 3.5-(b), wemust impose that the slope at the in�exion point (v = a+1

3 ) of the null
line w = f(v)+ Ia is less than41



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR
b
γ
(the slope of the null
line w = b

γ
v). This leads to the 
ondition

b

γ
>

1

3

(
a2 − a+ 1

) (3.8)whi
h guarantees uniqueness of the equilibrium point of the state model (3.7).Suppose now that for a parti
ular value Īa of Ia, the equilibrium point is the in�exion point ofthe null
line, i.e. w̄ = f(v̄) + Īa = b
γ
v̄ with v̄ = a+1

3 . Then for the in�exion point to be unstable wemust further impose the 
ondition
γ <

1

3

(
a2 − a+ 1

)
. (3.9)It may be similarly showed that the equilibrium point is unstable in the range of values

V̄1 ≤ v̄ ≤ V̄2, (3.10)where V̄1 = a+1
3 −

√
(a2−a+1)−3γ

3 and V̄2 = a+1
3 +

√
(a2−a+1)−3γ

3 with (a2 − a+ 1
)
− 3γ > 0 from
ondition (3.9).From 
ondition (3.10) we may approximate the range of values for the ex
itation 
urrent Ia(leading to a situation similar to that des
ribed in Figure 3.5 (b)) by

I1 ≤ Ia ≤ I2, (3.11)where I1 = b
γ
V̄1 − f

(
V̄1

) and I2 = b
γ
V̄2 − f

(
V̄2

).3.2.2 The Fitzhugh-Nagumo model as a Lure feedba
k system plus a feedba
kadaptation loopIn this se
tion we perform several 
hanges of 
oordinates in order to obtain a state model of theFitzhugh-Nagumo equations (3.7) that admits the Lure feedba
k representation of Figure 3.2,plus a feedba
k adaptation loop.In order to 
enter the origin of the axes in Figure 3.5-(b) at the in�exion point of the fun
tion
f(v), we perform the following 
hange of 
oordinates

z1 = w − f

(
a+ 1

3

)

− Ia

z2 = v − a+ 1

3
,whi
h leads to the equivalent model

1

γ
ż1 =

b

γ
z2 − z1 +

(
b

γ

a+ 1

3
− f

(
a+ 1

3

)

− Ia

)

ż2 = −z1 −
(

z3
2 − 1

3

(
a2 − a+ 1

)
z2

)

.If we assume that Ia = b
γ

a+1
3 − f

(
a+1
3

) (whi
h belongs to the 
urrent range (3.11)), the statemodel be
omes
τ ż1 = bτz2 − z1,

ż2 = −z1 −
(
z3
2 − 1

3

(
a2 − a+ 1

)
z2
)
,

(3.12)42



3.2. THE FITZHUGH-NAGUMO OSCILLATORwhere τ = 1
γ
, and admits the feedba
k representation of Figure 3.6 where φa (z2) = z3

2 −
1
3

(
a2 − a+ 1

)
z2. In the model (3.12), the uniqueness of the equilibrium point is guaranteedby the 
ondition 1

3

(
a2 − a+ 1

)
< bτ and its unstability by the 
ondition 1

3

(
a2 − a+ 1

)
> 1

τ
. We
learly see that both 
onditions are simultaneously satis�ed for τ large enough.

−−

z2

z1

1
s

bτ
τs+1

φa(·)

Figure 3.6: Blo
k diagram representation of the Fitzhugh-Nagumo state model (3.12).We are now ready to interpret the os
illation me
hanism of the Fitzhugh-Nagumo os
illator.The inner-loop dynami

ż2 = kaz2 − z3

2 , (3.13)where we have posed ka = 1
3

(
a2 − a+ 1

)
> 0, 
onstitutes a globally bistable system. The mostnatural way to obtain a bistable system from a s
alar parameterized system is through a pit
hforkbifur
ation. The Fitzhugh-Nagumo os
illator exploits this idea. Consider ex
lusively the innerloop dynami
 (3.13) of the Fitzhugh-Nagumo model parameterized by k ∈ R, we obtain
ż2 = kz2 − z3

2 . (3.14)It is easy to see that this �rst order system undergoes a super
riti
al pit
hfork bifur
ation at k = 0sin
e for k < 0, the origin of (3.14) is globally asymptoti
ally stable, whereas for k > 0, the origin isa saddle point and there exists two other asymptoti
ally stable equilibrium points lo
ated at ±√
k.Considering only the inner loop dynami
 (3.14), one thus obtains the phase portrait shown in Figure3.7-(a) for k = ka > 0.The outer-loop in Figure 3.6 or equivalently the adaptation equation

τ ż1 = −z1 + bτz2 (3.15)
onverts the bistable behavior into a limit 
y
le in the phase plane (z1, z2) as shown in Figure 3.7-(b).The limit 
y
le is guaranteed to be globally asymptoti
ally stable provided that the time 
onstant τis large enough, i.e. the adaptation is slow enough to let the �fast" dynami
s 
onverge to quasi steadystate (this is easily seen by applying singular perturbation theory � see [Kha02℄).The global bistability of the inner loop 
ombined with the slow adaptation of the outer loop thusprovides a se
ond feedba
k me
hanism for global os
illations. The resulting relaxation os
illation is
hara
terized by rapid swit
hes between two quasi steady states.43
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z2unstablestable stablekaz2 − z3

2 , ka > 0

Unique, unstableequilibrium point
z2

z1 = bτz2

z1 = kaz2 − z3
2

z1

Relaxation Os
illation
(a) Without adaptation (b) With adaptationGlobally bistable system Relaxation os
illationFigure 3.7: The hysteresis asso
iated to a bistable system.3.3 First result of this thesis - Passive os
illator de�nitionThe aim of this se
tion is to 
onstru
t a 
lass of high-dimensional systems that generalizes theglobal limit 
y
le os
illation me
hanisms of the Van der Pol and Fitzhugh-Nagumo os
illators.In the Van der Pol example (3.6), the feedba
k me
hanism responsible for the generation of globallimit 
y
le os
illation is the super
riti
al Hopf bifur
ation that o

urs at R = 0. In the Fitzhugh-Nagumo example (3.12), the global os
illation feedba
k me
hanism 
onsists in the addition of a slowadaptation dynami
 to a globally bistable system.Both in the Van der Pol and the Fitzhugh-Nagumo models, the bifur
ations o

ur in astru
ture that 
orresponds to the feedba
k inter
onne
tion of a 
onservative system with a stati
nonlinearity of the form φk(y) = −ky + y3, i.e. a nonlinearity φ(y) = y3 that satis�es the se
tor
ondition yφ(y) > 0, ∀y ∈ R plus a parameterized slope at the origin −ky. In the Van der Pol ex-ample (3.6), the 
onservative system 
onsists in the feedba
k inter
onne
tion of two simple integratorswhereas in the Fitzhugh-Nagumo situation (3.12), the 
onservative system is a single integrator.To generalize the Van der Pol and Fitzhugh-Nagumo global os
illation properties to higher-dimensional systems, the ideal situation would be to repla
e the integrator appearing in the forwardpath of Figures 3.3 and 3.6 dire
tly by a general passive system. This is a su�
ient 
ondition forproving global boundedness of the solutions of the feedba
k system as we will see in Se
tion 3.3.2.However, it is a too general assumption that 
annot reasonably lead to global os
illations in thegeneral 
ase. In Se
tion 3.3.3, we will prove that in order to obtain global stability properties througha super
riti
al bifur
ation, it is essential that the system under 
onsideration possesses a unique,globally asymptoti
ally stable equilibrium point before the bifur
ation. In other words, the systemmust be absolutely stable for values of the bifur
ation parameter less or equal to the 
riti
al value.This will allow the global stability property of the equilibrium point to be transmitted to the bifur
atedsolution, at least in the vi
inity of the 
riti
al bifur
ation value. Repla
ing the forward integrator inFigures 3.3 and 3.6 by a passive system does not lead to a situation where this 
ondition is satis�edgeneri
ally. As we will see, for a general Lure system of the form represented in Figure 3.8, passivityof the parameterized system Σk is generi
ally lost before its stability as the parameter k is in
reased(i.e. before the bifur
ation), leading to a situation where the feedba
k system is not ne
essarilyglobally asymptoti
ally stable before the bifur
ation. Stronger assumptions are to be imposed to theforward system Σk if one is interested in global os
illations. These assumptions will be dis
ussed in44



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONSe
tion 3.3.3.3.3.1 Class of systems studiedConsider the Lure system shown in Figure 3.8 whi
h represents the feedba
k inter
onne
tionof the nonlinear system Σ with a stati
 nonlinearity φk(·). Throughout this 
hapter, we make thefollowing assumptions. We assume that the (SISO) system Σ is des
ribed by the state-spa
e model
(Σ)

{
ẋ = f(x) + g(x)v, x ∈ R

n, v ∈ R

y = h(x), y ∈ R
(3.16)where the ve
tor �elds f and g and the s
alar fun
tion h are smooth1. We assume that the origin x = 0is an equilibrium point, i.e. f(0) = 0, and that h(0) = 0 and g(0) 6= 0. We also assume zero-statedete
tability of the pair (f, h), i.e. that every solution x(t) of ẋ = f(x) that veri�es y(t) = h(x(t)) ≡ 0asymptoti
ally 
onverges to the zero solution x = 0 as t→ ∞.The stati
 nonlinearity φk(·) : R → R is des
ribed as

φk(y) = −ky + φ(y), (3.17)where φ(·) is a smooth se
tor nonlinearity in the se
tor (0,∞), whi
h satis�es φ′(0) = φ′′(0) = 0,
φ′′′(0) = κ > 0 and lim|s|→∞

φ(s)
s

= +∞ (�sti�ening� nonlinearity). The parameter k regulates thelevel of �a
tivation� near the equilibrium x = 0.The feedba
k inter
onne
tion is de�ned by
v = −φk(y) + u, (3.18)where u ∈ R represents the external input of the feedba
k nonlinear system. Sin
e, in this 
hapter,we are interested in self-os
illating systems, the external input u is 
onsidered to be equal to zero. InChapter 4 it will be used to inter
onne
t several systems (os
illators) into a network.We denote by G(s) the transfer fun
tion of the linearization of Σ at x = 0 and by Σk the (positive)feedba
k inter
onne
tion of Σ with the feedba
k gain k. Similarly, we denote by Gk(s) = G(s)

1−kG(s) thetransfer fun
tion of the linearization of Σk at x = 0. The feedba
k system is equally des
ribed as thefeedba
k inter
onne
tion of Σk and the nonlinearity φ(·) (see Figure 3.8).
u y

−
v

≡
u y

−
Σ Σk

φ(·)φk(·)Figure 3.8: Equivalent representations of the Lure SISO nonlinear system.We assume that the system Σ is strongly passive with storage fun
tion S(x) (see De�nition 2.4).For 
larity, we re
all here the three additional assumptions 
hara
terizing the storage fun
tion S(x)of a strongly passive system.1By smooth, we mean 
ontinuously di�erentiable up to order k (Ck) with k large enough to satisfy our needs (i.e.to ful�l the requirements of the theorems we are using, su
h as the theorem on existen
e and uniqueness of solutions,the theorem on 
ontinuous dependen
e of a solution on the initial 
ondition (see [KhalilBook2, Se
tions 3.1 and 3.2℄),the Hopf bifur
ation theorem, et
.). 45



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR1. (smoothness) S(x) is 
ontinuously di�erentiable (C1) in R
n and twi
e 
ontinuously di�erentiable(C2) in a neighborhood of the origin.2. (Lyapunov) S(x) is positive de�nite, S(x) > 0, and radially unbounded, i.e. S(x) → ∞ as

|x| → ∞.3. (lo
ally quadrati
) The Hessian of S(x) evaluated at zero ∂2S(x)
∂x2

∣
∣
∣
x=0

is a symmetri
 positivede�nite matrix P = P T > 0.As it is well-known, these assumptions are always satis�ed in the (dete
table) linear 
ase be
auselinear passive systems have quadrati
 positive de�nite storage fun
tions [Wil72℄. In general, theseassumptions are 
onvenient to link the passivity of Σ to the stability properties of the zero inputsystem sin
e S(x) then serves as a (global) Lyapunov fun
tion. The lo
ally quadrati
 assumptionfurther ensures that the linearization of Σ is passive, with the quadrati
 approximation of S(x) as astorage fun
tion. It also implies that the system has a relative degree one2, i.e. ∂h
∂x

(x)g(x) > 0 for all
x in a (small) neighborhood of the origin x = 0, and that it is weakly minimum phase, i.e. its zerodynami
s are Lyapunov stable [BIW91℄.The �rst question if we are interested in global results 
on
erns the global boundedness of thesolutions of the feedba
k system (3.16),(3.17),(3.18) with u ≡ 0. To this end, we introdu
e an extraproperty for the feedba
k system in Figure 3.8. The feedba
k inter
onne
tion of Σ and φk(·) is 
alledultimately bounded3 if all solutions enter in �nite time a 
ompa
t set Ω = Ω(k). The main resultof this 
hapter (see Se
tion 3.3.3) states ultimate boundedness as an extra assumption to strongpassivity and zero-state dete
tability of Σ. Following the argument of Ar
ak and Teel in [AT02℄,we observe that this extra assumption is always satis�ed when the feedba
k inter
onne
tion of Σwith a sti�ening, stri
tly passive nonlinearity is input-to-state stable. This is be
ause the sti�eningnonlinearity φk(·) always admits the de
omposition

φk(y) = ψ(y) + χk(y),with ψ(y) stri
tly passive and χk(y) uniformly bounded by a 
onstant C = C(k). If Σ is passive,the feedba
k inter
onne
tion of Σ and φk(·) is thus equivalent to the feedba
k inter
onne
tion of Σwith ψ(·), whi
h is stri
tly passive, for
ed by the bounded input χk(y). Ultimate boundedness is thusimplied by input-to-state stability (see [Son89℄) of the stri
tly passive inter
onne
tion of Σ and ψ(·),whereas stri
t passivity only implies a �nite L2 gain when Σ is nonlinear. In the parti
ular 
ase of
Σ linear, Ar
ak and Teel [AT02℄ have proved that weakly minimum phaseness and dete
tabilityof the linear system Σ ne
essarily implies ultimate boundedness of the feedba
k inter
onne
tion of Σ2This 
an be easily seen from the se
ond Hill-Moylan 
ondition (2.20). Condition (2.20) implies

∂

∂x

 

g
T (x)

„

∂S

∂x

«T
!

g(x) =
∂h(x)

∂x
g(x)By de�nition of the storage fun
tion S(x), ∂S

∂x

˛

˛

x=0
= 0, and we obtain gT (0) ∂2S

∂x2

˛

˛

˛

x=0
g(0) = Lgh(x)|x=0. Sin
e, byassumption, ∂2S

∂x2

˛

˛

˛

x=0
is a symmetri
, positive de�nite matrix, and g(0) 6= 0, this implies, Lgh(x)|x=0 > 0, whi
h meansthat the system has relative degree one around the origin (see [SJK97, Appendix A.1℄).3In the literature, this property is often 
alled dissipativity (or Levinson dissipativity) whi
h should not be 
onfusedwith the dissipativity notion in this do
ument. In [Pog98, PGN99℄ this ultimate boundedness property is proved usingthe 
on
ept of semi-passive system. 46



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONwith the sti�ening, stati
 nonlinearity φk(·). For the seek of 
ompleteness, we summarize the resultsof Ar
ak and Teel for Σ linear in the following se
tion. For proofs of the 
ited theorems, theinterested reader is referred to the paper [AT02℄.3.3.2 Global boundedness results for Σ linearAr
ak and Teel [AT02℄ have given su�
ient 
onditions for input-to-state stability (ISS4) of thefeedba
k inter
onne
tion of a linear, passive, and dete
table blo
k with a stati
 nonlinear element. Inthe absolute stability framework, they prove ISS from the passivity of the linear blo
k, by restri
tingthe se
tor nonlinearity to grow unbounded as its argument tends to in�nity. When this growthproperty is violated, examples show that the ISS property is lost. The ISS result of Ar
ak andTeel 
an be used to give a simple proof of boundedness for negative resistan
e os
illators, su
h asthe Van der Pol os
illator. Their main result is re
alled in Theorem 3.2.Theorem 3.2 (Ar
ak's Theorem [AT02℄) Consider the system
ẋ = Ax+B[−φ(y) + d] (3.19)
y = Cx (3.20)where x ∈ R

n, φ(·) : R
m → R

m, and (C,A) is dete
table. If there exists a matrix P = P T ≥ 0satisfying the Hill-Moylan 
onditions
ATP + PA ≤ 0, (3.21)

C = BTP, (3.22)a 
onstant µ > 0, and a 
lass K∞ fun
tion φl(·), su
h that
‖y‖∞ φl (‖y‖∞) ≤ yTφ(y) for all y ∈ R

m, (3.23)
‖φ(y)‖∞ ≤ yTφ(y) when ‖y‖∞ ≥ µ, (3.24)then the system is ISS with respe
t to d.Remark 3.3 [AT02℄ When (A,B,C) is a minimal realization, a straightforward modi�
ation of theKalman-Yakubovi
h-Popov lemma 2.20 for P ≥ 0 shows that assumptions (3.21), (3.22) areequivalent to the positive realness of H(s) = C(sI − A)−1B. For a more general result, in Theorem3.2, Ar
ak and Teel allow non-minimal realizations and only restri
ts (C,A) to be dete
table.Remark 3.4 [AT02℄ For s
alar nonlinearities φ(·) : R → R the 
ondition (3.23) is equivalent to these
tor property

yφ(y) > 0, ∀y 6= 0, (3.25)4A dynami
al system of the form ẋ = f(x, u), y = h(x) is input-to-state stable (ISS) if there exist γ ∈ K,β ∈ KLsu
h that for all x0, u and t ≥ 0:
|x (t, x0, u)| ≤ β (|x0| , t) + γ

`

‖u‖∞
´A fun
tion γ : R≥0 → R≥0 is of 
lass K if it is 
ontinuous, positive de�nite, and stri
tly in
reasing. It is of 
lass K∞if it is also unbounded.A fun
tion β : R≥0 × R≥0 → R≥0 is of 
lass KL if, for ea
h �xed t ≥ 0, β(·, t) is of 
lass K and, for ea
h �xed s ≥ 0,

β(s, t) de
reases to 0 as t → ∞. 47



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORand the growth 
ondition
|y| → ∞ ⇒ |φ(y)| → ∞. (3.26)For s
alar nonlinearities, the 
ondition (3.24) is redundant be
ause (3.23) implies yφ(y) =

|y| |φ(y)| and, thus, (3.24) holds with µ = 1. For multivariable nonlinearities, (3.23) does not imply(3.24). A 
ounterexample is
φ(y) = y + |y|3 Jy,where J satis�es J +JT = 0 and JTJ = I. In this example, yTφ(y) = |y|2 and |φ(y)| =

√

|y|2 + |y|8,whi
h means that (3.23) is satis�ed with φl (|y|) = |y|, but (3.24) is violated.The ISS result of Theorem 3.2 
an be used to prove boundedness for negative resistan
e os
illatorssu
h as the Van der Pol os
illator as well as for the larger 
lass (3.19),(3.20), whi
h in
ludes higherorder systems and bounded disturban
es. This se
ond result of Ar
ak and Teel is summarized inTheorem 3.5.Theorem 3.5 [AT02℄ Consider the system (3.19),(3.20) where x ∈ R
n, φ(·) : R → R, (C,A) isdete
table, and d is a bounded disturban
e. If there exists a matrix P = P T ≥ 0 satisfying 
onditions(3.21) and (3.22), and if the nonlinearity φ(·) satis�es φ(y) → −∞ as y → −∞ and φ(y) → ∞ as

y → ∞, then all the traje
tories are bounded.This result 
an be further generalized: Theorem 3.5 
an be used to establish boundedness of traje
-tories for a relative degree one, weakly minimum phase, linear blo
k, in feedba
k with a sti�eningnonlinearity, de�ned by the property
lim

|y|→∞

φ(y)

y
→ +∞. (3.27)Using the Isidori normal form [Isi95℄ for relative degree one systems, this feedba
k inter
onne
tionis expressed as

ż = A0z +B0y (3.28)
ẏ = −C0z − ay − φ(y) + d, (3.29)where the z-subsystem represents the zero dynami
s of the linear blo
k. This third result of Ar
akand Teel is summarized in Theorem 3.6.Theorem 3.6 [AT02℄ Consider the system (3.28),(3.29), where d is a bounded disturban
e, (C0, A0)is a dete
table pair, and there exists a matrix P0 = P T

0 ≥ 0 su
h that
AT

0 P0 + P0A0 ≤ 0, P0B0 = CT
0 (3.30)If the nonlinearity φ(·) : R → R satis�es the sti�ening property (3.27), then the traje
tories arebounded.This last result is useful to prove boundedness for systems with imaginary axis zeros. To illustrateTheorem 3.6, we 
onsider the following example: 48



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONExample 3.7 Consider the negative feedba
k inter
onne
tion of the linear system H(s) = s2+1
s3−s2+2s−1with the sti�ening nonlinearity φ(y) = y3. To apply Theorem 3.6, we note that H(s) is relative degreeone, and rewrite the system as in (3.28)-(3.29) with d = 0 and

A0 =

(
0 1
−1 0

)

, B0 =

(
0
1

)

, C0 =
(

0 1
)
, a = −1.The origin is unstable from the Ja
obian linearization. However, be
ause (3.30) holds with P0 = I,Theorem 3.6 ensures boundedness. Numeri
al simulations indi
ate that the traje
tories 
onverge toone of the two stable equilibria (x1, x2, x3) = ± (0, 0, 1) (Figure 3.9-(a)), or to a limit 
y
le as shown(Figure 3.9-(b)).
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(a) (b)Figure 3.9: Example of Ar
ak [AT02℄. (a) The initial 
ondition belongs to the basin of attra
tionof the equilibrium point (x1, x2, x3) = (0, 0,−1); (b) The initial 
ondition belongs to the basin ofattra
tion of the limit 
y
le.As a 
onsequen
e of the results of Ar
ak and Teel, we may 
on
lude that for linear systems Σ,weakly minimum phaseness5 and dete
tability seem to be important su�
ient 
onditions for ultimateboundedness of the Lure feedba
k inter
onne
tion represented in Figure 3.8. Nevertheless, as wehave seen in example 3.7, these 
onditions are not su�
ient to guarantee existen
e, uniqueness andglobal asymptoti
 stability of the limit 
y
le. In the next se
tion, we give su�
ient 
onditions forthe existen
e, uniqueness and global asymptoti
 stability of a limit 
y
le in Lure feedba
k systemssatisfying the representation given in Figure 3.8.3.3.3 Bifur
ations in absolutely stable Lure feedba
k systemsIn this se
tion, we present the main results of this 
hapter, i.e. Theorems 3.8, 3.9, and 3.12.These results 
on
ern the high dimensional extension of the feedba
k (global) os
illation me
hanismspresent in the Van der Pol and Fitzhugh-Nagumo models introdu
ed in Se
tions 3.1 and 3.2.Theorem 3.8 presents the typi
al bifur
ation s
enarii that o

ur in Lure feedba
k systems satisfying5We re
all that weakly minimum phaseness is a stru
tural property of input-a�ne passive systems (see Se
tion2.1.7). 49



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORthe representation given in Figure 3.8, i.e. super
riti
al Hopf and super
riti
al pit
hfork bifur
ations.Theorem 3.12 extends the results presented in Theorem 3.8 by weakening its assumptions throughthe use of multipliers. Finally, Theorem 3.9 shows that the global bistability behavior that appearsthrough the super
riti
al pit
hfork bifur
ation s
enario 
an be transformed into a global relaxationos
illation by addition of a feedba
k adaptation loop to the Lure system.The feedba
k system (3.16),(3.17),(3.18) with u ≡ 0 is absolutely stable when the equilibrium x = 0is globally asymptoti
ally stable (GAS) for any nonlinearity φ(·) in the se
tor (0,+∞). Be
ause these
tor memoryless nonlinearity v̄ = φ(y) is stri
tly input passive, a su�
ient 
ondition for absolutestability is that Σk is strongly passive and zero-state dete
table. This results from Theorem 2.18.Assuming that Σ is strongly passive and zero-state dete
table, the feedba
k system (3.16),(3.17),(3.18)with u ≡ 0 is absolutely stable for k = 0. As k in
reases, a root lo
us argument shows that thefeedba
k system must loose stability at some 
riti
al value k∗6. The following result 
hara
terizes thepossible bifur
ations under a passivity assumption for Gk∗ . The notation k & k∗ is used to denote avalue of the parameter near the bifur
ation, i.e. k ∈
(
k∗, k̄

] for some k̄ > k∗.Theorem 3.8 Consider the system shown in Figure 3.8 and 
hara
terized by (3.16),(3.17),(3.18)with u ≡ 0. Assume that Σ is strongly passive, that both Σ and its linearization are zero-statedete
table and that the feedba
k inter
onne
tion of Σ and φk(·) is ultimately bounded. Let k∗ ≥ 0 bethe minimum value for whi
h the transfer fun
tion Gk(s) has a pole on the imaginary axis.If Gk∗(s) has a unique pole on the imaginary axis and if Σk∗ is strongly passive, then the bifur
ationis a super
riti
al pit
hfork bifur
ation; for k & k∗ the system is globally bistable, that is, the equilibrium
x = 0 is a saddle and its stable manifold Es(0) separates the state spa
e in two open sets, ea
h ofwhi
h is the basin of attra
tion of a stable equilibrium.If Gk∗(s) has a unique pair of 
onjugated poles on the imaginary axis and if Σk∗ is strongly passive,then the bifur
ation is a super
riti
al Hopf bifur
ation; for k & k∗ the system has a stable limit 
y
lewhi
h is globally asymptoti
ally stable in R

n\Es(0).ProofThe proof is divided into a lo
al argument and a global argument. Both arguments rely on thedissipation inequality
Ṡ ≤ −yφ(y) (3.31)at the bifur
ation point, where S(x) denotes a storage fun
tion for Σk∗ . The lo
al argument willshow the existen
e of a super
riti
al Hopf (respe
tively, pit
hfork) bifur
ation at ǫ = k − k∗ = 0.This implies the existen
e of a 
onstant ǭ1 > 0 and a neighborhood U of x = 0 su
h that for ea
h

ǫ ∈ (0, ǭ1], all solutions with initial 
ondition in U either 
onverge to the unstable equilibrium x = 0or to a unique stable limit 
y
le of radius O (
√
ǫ) (respe
tively, one of two stable equilibria lo
atedat a distan
e O (

√
ǫ) of the origin). The global argument will show that there exists a 
onstant

0 < ǭ2 ≤ ǭ1, su
h that for ea
h ǫ ∈ (0, ǭ2], all solutions enter the set U in �nite time (whi
h means6For the positive feedba
k inter
onne
tion of G(s) with the stati
 gain k, the root lo
us is su
h that parts of the realaxis lo
ated at the left of an even number of real singularities (poles or zeros) and at the right of the rightmost realsingularity belong to the root lo
us. As the transfer fun
tion of a strongly passive system, G(s) has a relative degreeequal to one and all its poles and zeros belong to the 
losed left-half 
omplex plane. As a 
onsequen
e, one bran
h(at least) of the root lo
us must enter the right-half 
omplex plane sin
e the positive part of the real axis ne
essarilybelongs to the root lo
us. 50



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONthat the lo
al argument eventually applies to ea
h solution).We �rst prove the global argument. Ultimate boundedness implies that for ea
h ǫ ∈ (0, ǭ3], allsolutions enter in �nite time an invariant 
ompa
t set Ω = Ω(ǫ). Furthermore, the robustness ofglobal asymptoti
 stability at ǫ = 0 implies semi-global pra
ti
al asymptoti
 stability of the solution
x = 0 (see Theorem 2.257), i.e. the existen
e of ǭ2 ≤ ǭ3 su
h that, for ea
h ǫ ∈ (0, ǭ2], all solutionswith initial 
ondition in Ω enter in �nite time the set U .Next we turn to the lo
al argument. At the bifur
ation, i.e. for k = k∗, the system possesses a 
entermanifold. In a neighborhood of the origin x = 0, the dissipation inequality (3.31) writes

Ṡ ≤ −κy4 + O
(
y5
)
, κ = φ′′′(0) > 0 (3.32)with S(x) being lo
ally quadrati
 positive de�nite. In parti
ular, this last inequality holds valid onthe 
enter manifold as well. The restri
tion of S(x) on the 
enter manifold is thus a lo
ally quadrati
Lyapunov fun
tion that satis�es (3.32). Moreover, dete
tability of the linearization of Σ impliesobservability of the linearized 
enter manifold dynami
s8.Case (1): If Gk∗(s) has a unique pole on the imaginary axis, the 
enter manifold is one-dimensional.For a one dimensional manifold, the assumption h(0) = 0 implies that the output of the system is

y = cξ + O
(

|ξ|2
) with ξ ∈ R. Sin
e the linearization of the 
enter manifold dynami
 is observable,

c is nonzero. This implies that y quali�es for a lo
al 
oordinate in the 
enter manifold. In normalform, the 
enter manifold dynami
 thus writes [Wig90℄
ẏ = a3y

3 + O
(
y4
)
, y ∈ R. (3.33)The restri
tion of the storage fun
tion on the 
enter manifold is a lo
ally quadrati
 fun
tion of theform S
enter manifold = 1

2P1y
2 + O

(
y3
) (with P1 > 0 from the strong passivity assumption of Σk∗)that satis�es the dissipation inequality

Ṡ
enter manifold = P1yẏ ≤ −κy4 + O
(
y5
)
. (3.34)We thus obtain

a3P1y
4 + O

(
y5
)
≤ −κy4 + O

(
y5
)
,whi
h in turn implies that a3 < 0. As a 
onsequen
e, the pit
hfork bifur
ation is super
riti
alpit
hfork, that is, there exists one unstable equilibrium at y = 0 and two asymptoti
ally stableequilibria y = ±O (

√
ǫ) for small ǫ > 0.Case (2): If Gk∗(s) has two 
onjugated poles at s = ±jω, the 
enter manifold is two-dimensional.7With the notations of Theorem 2.25, f ǫ 
orresponds to the ve
tor �eld of Σk with k & k∗ and g to the ve
tor�eld of Σk∗ . This implies that the 
onvergen
e assumption is ne
essarily satis�ed sin
e f ǫ 
onverges point-wise to g as

ǫ → 0.8If a linear system is (zero-state) dete
table then its unobservable modes are asymptoti
ally stable. This 
an alsobe formulated as follows: If a linear system is (zero-state) dete
table then its non asymptoti
ally stable modes areobservable. 51



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORThe normal form of the 
enter manifold dynami
s is [Wig90℄
ξ̇ = Acξ + |ξ|2

(
a3ξ1 − b3ξ2
b3ξ1 + a3ξ2

)

+ O
(

|ξ|4
)

, Ac =

(
0 ω

−ω 0

) (3.35)whi
h, in polar 
oordinates, yields
{
ρ̇ = a3ρ

3 + O
(
ρ4
)

θ̇ = ω + O
(
ρ2
) (3.36)The restri
tion of S on the 
enter manifold is a lo
ally quadrati
 Lyapunov fun
tion S =

ξTQξ + O
(

|ξ|3
) whi
h satis�es

Ṡ = ξT
(
QAc +AT

c Q
)
ξ + O

(

|ξ|3
)

≤ −κy4 + O
(
y5
)
. (3.37)Up to a s
aling fa
tor, the only positive de�nite solution Q of QAc + AT

c Q ≤ 0 is Q = 1
2I, whi
himplies S = 1

2ρ
2 + O

(
ρ3
). For initial 
onditions in the 
enter manifold, the dissipation inequality(3.37) thus satis�es

Ṡ = a3ρ
4 + O

(
ρ5
)
≤ −κy4 + O

(
y5
)
.Integration on both sides over an arbitrarily 
hosen time interval T > 0 yields

a3

∫ T

0
(ρ(t))4 dt ≤ −κ

∫ T

0
(y(t))4 dt+ O

(
y5
)whi
h, from the observability of the linearized 
enter manifold dynami
s, for
es a3 < 0. This impliesthat the bifur
ation is a super
riti
al Hopf bifur
ation, that is, for small ǫ > 0, all solutions in Ueither 
onverge to the unstable equilibrium x = 0 or to a unique stable limit 
y
le of radius O (

√
ǫ).This 
on
ludes the proof.The Hopf bifur
ation s
enario of Theorem 3.8 provides a high dimensional generalization of theglobal limit 
y
le os
illation me
hanism satis�ed by the Van der Pol os
illator. It has the followingenergy interpretation: passivity at the bifur
ation point allows for a lossless ex
hange of energybetween at least two storage elements9. The stati
 nonlinearity φk �regulates" the dissipation in theLure feedba
k system, restoring energy when it is too low and dissipating it when it is too high.On the other hand, the pit
hfork bifur
ation s
enario provides a high dimensional generalization ofthe global bistability behavior o

uring in the inner loop of Figure 3.6. The following result transformsthis global bistability behavior into a feedba
k me
hanism for global os
illations.Theorem 3.9 Under the assumptions of Theorem 3.8, suppose that the feedba
k inter
onne
tion of

Σ and φk(·) undergoes a super
riti
al pit
hfork bifur
ation at k = k∗ and that the feedba
k systemshown in Figure 3.10 is ultimately bounded. Then there exists 
onstants ǭ > 0, and τ > 0 su
h thatfor all k ∈ (k∗, k∗ + ǭ) and τ ≫ (k − k∗)−1, the feedba
k system shown in Figure 3.10 is 
hara
terizedby a globally asymptoti
ally stable limit 
y
le in R
n+1\Es(0).9In the Van der Pol os
illators these two elements are the two integrators appearing in Figure 3.3.52



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITION
−−

y

R

φk(·)

Σ

1
τs+1

u

Figure 3.10: Converting the global bistability s
enario into a relaxation os
illator with a slow adapta-tion me
hanism (τ ≫ (k − k∗)−1). The 
ase Σ = 1
s

orresponds to the Fitzhugh-Nagumo os
illator.ProofThe proof is similar to the proof of Theorem 3.8. Let ǫ = (k − k∗). Consider the system representedon Figure 3.10. By assumption, the feedba
k inter
onne
tion of Σ and φk(·) possesses a one dimen-sional 
enter manifold at ǫ = 0. For u 6= 0, strong passivity of Σ implies that the 
enter-unstablemanifold dynami
 writes10

ẏ = ǫy + a3y
3 + bu+ O

(
y4
)
, a3 < 0, b > 0.Thus, if we augment the one-dimensional 
enter-unstable manifold of the original system (withoutadaptation) with the adaptation equation, we obtain

ẏ = ǫy + a3y
3 − bR+ O

(

|(y,R)|4
)

, a3 < 0, b > 0,

Ṙ = δ(−R+ y),
(ǫ̇ = 0,

δ̇ = 0),

(3.38)where treating δ = τ−1 as a state variable makes the adaptation equation part of the 
enter-unstablemanifold lo
ally de�ned around (x,R, ǫ, δ) = (0, 0, 0, 0) (see [Wig90, Se
tion 2.1b℄). The equilibrium
(y,R) = (0, 0) of (3.38) is stable for ǫ < δ > 0 and unstable for ǫ > δ > 0. Standard arguments basedon singular perturbation theory (see [Kha02, pp. 445-448℄) prove that there exists a 
onstant ǭ > 0and a neighborhood U of the equilibrium (y,R) = (0, 0) of (3.38) su
h that for any �xed 0 < δ ≪ ǫ,
ǫ ∈ (0, ǭ], all solutions with initial 
ondition in U\{0} 
onverge to a unique limit 
y
le. Be
ause ofthe time-s
ale separation, this limit 
y
le 
orresponds to a relaxation os
illation.The global part of the proof is as in Theorem 3.8: for δ > 0 and ǫ = 0, the equilibrium (x,R) = (0, 0)is globally asymptoti
ally stable be
ause the augmented storage V = δS+ 1

2R
2 satis�es the dissipationinequality V̇ = δṠ+ ṘR = −δyφ(y)− δyR+ δR (−R+ y) ≤ −δyφ(y), whi
h is analogous to (3.31).10The strong passivity of Σ and the assumption g(0) 6= 0 imply that Σ has relative degree one at x = 0. This,in turn, implies that for x in a neighborhood of the origin, the input v of Σ dire
tly enters the ẏ dynami
s, i.e.

ẏ = ∂h
∂x

ẋ = Lfh(x) + Lgh(x)v with Lgh(0) = ∂h
∂x

˛

˛

x=0
g(0) = b > 0.53



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORRemark 3.10 If the forward system Σ is linear, strongly passive and dete
table, then ultimate bound-edness results from Theorem 3.6 sin
e the adaptation dynami
 is passive.Theorems 3.8 and 3.9 provide high dimensional extensions of the fundamental global os
illation me
h-anisms present in the Van der Pol and Fitzhugh-Nagumo models thus allowing for the de�nitionof high dimensional, global nonlinear os
illators. Sin
e the main property of the system Σ is itsstrong passivity, we name su
h os
illators passive os
illators. In the next se
tion, we give the generalde�nition of a passive os
illator.3.3.4 Passive os
illator de�nitionWe de�ne a passive os
illator as a system that admits the feedba
k representation in Figure 3.8,is 
hara
terized by (3.16), (3.17), and (3.18), and satis�es the two following 
onditions:1. the feedba
k system satis�es the dissipation inequality Ṡ ≤
(

k − k∗passive

)

y2−yφ(y)+uy where
S(x) represents the storage fun
tion of Σ and k∗passive ≥ 0 is the 
riti
al value of k above whi
hthe system Σk loses passivity;2. when unfor
ed (u ≡ 0), the feedba
k system possesses a global limit 
y
le, i.e. a stable limit
y
le whi
h attra
ts all solutions ex
ept those belonging to the stable manifold of the origin.The �rst 
ondition ne
essarily holds if we assume that the forward blo
k Σ is strongly passive. InTheorems 3.8 and 3.9, we provided su�
ient 
onditions for the se
ond 
ondition to be satis�ed aswell. The most restri
tive assumption of Theorem 3.8 is the strong passivity assumption of Σk∗ . Itamounts to impose that, in
reasing k, Σk remains passive until it loses stability, i.e. to impose that

k∗passive = k∗. In the next se
tion, we show that this assumption 
an be weakened through the use ofmultipliers.The external 
hara
terization of our � possibly high-dimensional � passive os
illators by a dis-sipation inequality plays a role both in the super
riti
al 
hara
ter of the bifur
ation and in thepreservation of global 
onvergen
e properties beyond the bifur
ation value. In Chapter 4, we showthat this external 
hara
terization also plays an important role in the study of os
illations in networksof inter
onne
ted passive os
illators.3.4 Relaxation of the assumptions of Theorem 3.7 - Use of multipli-ersThe important property used in the proof of Theorem 3.8 is the absolute stability of the systemat 
riti
ality (i.e. when k = k∗). As we have seen, this property is satis�ed under the assumptionthat Σk∗ is strongly passive. The assumption that Σk∗ is strongly passive is rather restri
tive. Itrequires that Σk loses stability and passivity for the same value of the parameter k. In general,this is not the 
ase. As the parameter k in
reases, passivity of Σk is generally lost before stability.Spe
ial 
ases where passivity and stability are lost simultaneously in
lude lossless systems, e.g. thesimple integrator 1
s
or general Output Feedba
k Lossless (OFL) systems, i.e. systems that 
an berendered lossless by feedba
k. This quite restri
ts the appli
ability of Theorem 3.8. Fortunately, theassumptions of Theorem 3.8 
an be relaxed with the help of multipliers (see [MR97℄ for a re
ent and54



3.4. RELAXATION OF THE ASSUMPTIONS OF THEOREM 3.7 - USE OF MULTIPLIERSgeneral treatment of multipliers). In this se
tion, we will see how multipliers 
an be used to relax the
Σk∗ strong passivity assumption but still guarantee the absolute stability at k = k∗.For the results of the present 
hapter, the main observation is that, when H1(s) and H2(s)are two transfer fun
tions with both poles and zeros in the open left-half 
omplex plane, then thefeedba
k inter
onne
tion of Σk and φ in Figure 3.8 is equivalent to the feedba
k inter
onne
tionof Σ̃k = H1ΣkH

−1
2 and φ̃ = H2φH

−1
1 showed in Figure 3.11. If H1 and H2 are su
h that φ̃ isstri
tly passive, then strong passivity of Σ̃k be
omes su�
ient for absolute stability, yielding relaxed
onditions for the stability of the feedba
k system.

−

u y ỹũ
Σk

φ(·) H−1
1 (s)

Σ̃k

φ̃(·)

H−1
2 (s)

H2(s)

H1(s)

M(s) = H1(s)H2(−s)
ausal and stable with �nite gainsH1 and H2 are invertible
H1, H−1

1 , H2 and H−1
2 areφ(y) y

Figure 3.11: Equivalent feedba
k loop with multipliers.For the se
tor nonlinearity φ, the simplest example of multiplier is the Popov multiplier
M(s) = H1(s) = 1 + γs, γ > 0.Requiring strong passivity of the system (1 + γs)Σk for absolute stability of the feedba
k system(3.16),(3.17),(3.18) with u ≡ 0 is Popov 
riterion [Kha02℄. For monotone in
reasing stati
 nonlin-earities, a broad 
lass of multipliers was introdu
ed by Zames and Falb [ZF68℄ in the form

M(jω) = 1 − Z(jω) = 1 −
∫ +∞

−∞
z(t)e−jωt dt,

∫ ∞

−∞
|z(t)| dt < 1. (3.39)The additional assumption z(t) ≥ 0 is also needed unless φ(·) is odd. Zames and Falb [ZF68℄ showedthat multipliers of the form (3.39), whi
h are not ne
essarily 
ausal, 
an always be fa
tored in theform

M(s) = H1(s)H2(−s)with H1, H2, and their inverses being 
ausal and stable and with the operator φ̃ = H2φH
−1
1 beingstri
tly passive. As a 
onsequen
e, strong passivity of Σ̃k is su�
ient for absolute stability of thefeedba
k system. Note that when Σk is a linear system, (strong) passivity of Σ̃k is equivalent topositive realness of the transfer fun
tion Gk(s)H1(s)H

−1
2 (s) (see Lemma 2.21).We summarize the following su�
ient 
onditions for absolute stability of the feedba
k system inFigure 3.8. 55



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORTheorem 3.11 Consider the system shown in Figure 3.8 and 
hara
terized by (3.16),(3.17),(3.18)with u ≡ 0. Assume that Σ and its linearization are zero-state dete
table and that all solutions of thefeedba
k system are bounded. Then ea
h of the following 
onditions is su�
ient for global asymptoti
stability of the equilibrium x = 0 of the feedba
k system.
• φ is in the se
tor (0,∞) and there exists γ > 0 su
h that Σ̃k = (1 + γs)Σk is strongly passive;
• φ is monotone in
reasing in the se
tor (0,∞) and there exists M(s) = H1(s)H2(−s) in the form(3.39), z(t) ≥ 0, su
h that Σ̃k = H1ΣkH

−1
2 is strongly passive;

• φ is odd, monotone in
reasing in the se
tor (0,∞) and there exists M(s) = H1(s)H2(−s) in theform (3.39) su
h that Σ̃k = H1ΣkH
−1
2 is strongly passive.ProofLet x be the state of Σ̃k and S̃(x) be its the storage fun
tion. Strong passivity of Σ̃k implies

˙̃
S ≤ ũỹ, (3.40)where ỹ = H1y and ũ is the output of the operator (−φ̃).For the Popov multiplier, this yields

˙̃
S ≤ −φ(y)(y + γẏ).A Lyapunov fun
tion for the inter
onne
tion is given by V = S̃ + γ

∫ y

0 φ(s) ds, whi
h satis�es
V̇ = ˙̃

S + γφ(y)ẏ ≤ −yφ(y).For Zames-Falb multipliers, the operator (−φ̃) is of the form
(

−φ̃
){

ẇ1 = A1w1 +B1ỹ, y = C1w1 +D1ỹ

ẇ2 = A2w2 +B2φ(y), ũ = −C2w2 −D2φ(y)
(3.41)with (Ai, Bi, Ci, Di), i = 1, 2, being minimal realizations of the (stable) �lters H−1

1 and H2, respe
-tively. For a given ỹ(t), t ≥ 0, we denote by −φ̃ (ỹ(t)) the (unique) output ũ(t) of (3.41) for theinitial 
ondition w(0) = (w1(0), w2(0)) = (0, 0). Stri
t passivity of the operator φ̃ is established in[ZF68℄. It implies
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt > 0for all T > 0, whi
h in turn implies that the integral monotoni
ally in
reases as a fun
tion of T .For an arbitrary initial 
ondition w(0), the di�eren
e ũ(t) + φ̃ (ỹ(t)) is exponentially de
aying, andbe
ause ỹ(t) is bounded for all t ≥ 0, we have

∫ ∞

0

(

ũ(t) + φ̃ (ỹ(t))
)

ỹ(t) dt ≤ C (w(0)) ,56



3.4. RELAXATION OF THE ASSUMPTIONS OF THEOREM 3.7 - USE OF MULTIPLIERSwhere the 
onstant C 
ontinuously depends on the initial 
ondition and satis�es C(0) = 0. Integrat-ing the dissipation inequality (3.40), we obtain
∀T ≥ 0 : −S̃ (x(0)) < S̃ (x(T )) − S̃ (x(0)) ≤

∫ T

0
ũ(t)ỹ(t) dt

=

∫ T

0

(

ũ(t) + φ̃ (ỹ(t))
)

ỹ(t) dt

−
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt

≤ C (w(0)) −
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt.This yields

∀T ≥ 0 :

∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt < S̃ (x(0)) + C (w(0)) .Be
ause the integral in the left hand side monotoni
ally in
reases as a fun
tion of T , the �nite upperbound in the right hand side for
es asymptoti
 
onvergen
e of ỹ(t) to zero as t → ∞. Convergen
eof the state follows from the zero-state dete
tability of Σ̃k. Finally, Lyapunov stability of the originfollows from the 
ontinuous dependen
e of S̃ (x(0)) + C (w(0)) on the initial 
ondition and from thedete
tability of the linearized system. Global attra
tivity and Lyapunov stability of the origin implythat system resulting from the feedba
k inter
onne
tion of Σ̃k and φ̃ is globally asymptoti
ally stable.This 
on
ludes the proof.Using Theorem 3.11, the assumptions of Theorem 3.8 
an be weakened. Theorem 3.12 
onstitutesthe multiplier version of Theorem 3.8.Theorem 3.12 The statements of Theorem 3.8 hold if the strong passivity assumption on Σk∗ isrepla
ed by one of the following 
onditions:

• φ(·) is in the se
tor (0,∞) and there exists γ > 0 su
h that (1 + γs)Σk∗ is strongly passive;
• φ(·) is monotone in
reasing in the se
tor (0,∞) and there exists M(s) = H1(s)H2(−s) in theform (3.39), z(t) ≥ 0, su
h that Σ̃k∗ = H1Σk∗H−1

2 is strongly passive;
• φ(·) is odd, monotone in
reasing in the se
tor (0,∞) and there exists M(s) = H1(s)H2(−s) inthe form (3.39) su
h that Σ̃k∗ = H1Σk∗H−1

2 is strongly passive.ProofThe global argument of the proof of Theorem 3.8 is un
hanged be
ause it relies on the absolutestability of the system when ǫ = k − k∗ = 0. Conditions of Theorem 3.11 still guarantee absolutestability when ǫ = 0. For the lo
al argument, in the 
ase of Popov multiplier, the dissipationinequality (3.31) is re
overed with the new storage S̃ + γ
∫ y

0 φ(s) ds. In the 
ase of Zames-Falbmultipliers, we 
onsider, as in the proof of Theorem 3.11, a C1 and lo
ally quadrati
 storage fun
tion57



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR
S̃ for Σ̃k∗ , whi
h satis�es the dissipation inequality

˙̃
S ≤ ũỹ (3.42)with ỹ = H1y and ũ the output of (3.41).From the assumptions of Zames and Falb [ZF68℄, H1 and H2 are invertible and H1, H−1

1 , H2, and
H−1

2 are 
ausal and bounded (i.e. have �nite gains) operators. As a 
onsequen
e, the �lters H1,
H−1

1 , H2, and H−1
2 do not 
hange the dimension of the 
enter manifold. In normal form, the 
entermanifold dynami
s write [Wig90℄

ξ̇ = Acξ + O
(

|ξ|3
) (3.43)with ξ ∈ R and Ac = 0 when Gk∗(s) has a unique pole at s = 0, and with (3.43) repeated from (3.35)when Gk∗(s) has two 
onjugated poles at s = ±jω.In order to analyze the dissipation inequality (3.42) on the 
enter manifold, we approximate theexpression of ũ and ỹ as fun
tions of ξ up to suitable order. We note ũ = ũ(3)(ξ) + O

(

|ξ|4
),

w2 = h
(3)
2 (ξ) + O

(

|ξ|4
), ỹ = c̃ξ + O

(

|ξ|2
), and w1 = h1ξ + O

(

|ξ|2
). By de�nition, we have

ũ(3)(ξ) = −C2h
(3)
2 (ξ) −D2κ (cξ)3 , c = C1h1 +D1c̃.The fun
tion h(3)

2 is the solution of the partial di�erential equation that expresses the invarian
e ofthe 
enter manifold up to terms O (|ξ|4) (see [Car81℄):
(

−C2
∂h

(3)
2

∂ξ
−D23κ (cξ)2 c

)

Acξ = −C2A2h
(3)
2 (ξ) − C2B2κ (cξ)3 −D23κ (cξ)2 cAcξ (3.44)with the boundary 
onditions h(3)

2 (0) = 0, ∂h
(3)
2

∂ξ

∣
∣
∣
∣
ξ=0

= 0. Be
ause they satisfy the same partialdi�erential equation (see [Isi95, Chapter 8℄), the solution ũ(3) (ξ(t)) 
oin
ides with the unique steady-state output of the operator (−φ̃(3)
), whi
h is the operator (−φ̃) with φ(·) repla
ed by its 
ubi
approximation, to the (periodi
) input ỹ(1) = c̃eActξ(0).Case (1): When ξ ∈ R, the 
onstant input ỹ(1) = c̃ξ gives rise to the 
onstant output ũ(3)(ξ) = βξ3.Stri
t positivity [ZF68℄ of the operator φ̃(3) implies that c̃β = −γ < 0. The dissipation inequalitythus be
omes

˙̃
S ≤ ũ(3)(ξ)ỹ(1)(ξ) + O

(

|ξ|5
)

= −γξ4 + O
(

|ξ|5
)

,whi
h for
es the existen
e of a super
riti
al pit
hfork bifur
ation, as in the proof of Theorem 3.8.Case (2): When ξ ∈ R
2, the periodi
 input ỹ(1) (ξ(t)) = c̃eActξ(0) gives rise to the periodi
 output

ũ(3) (ξ(t)). Stri
t positivity [ZF68℄ and homogeneity of the operator φ̃(3) implies
∫ T

0
ũ(3) (ξ(t)) ỹ(1) (ξ(t)) dt < −γ |ξ(0)|4 + O

(

|ξ(0)|5
)

, T =
2π

ω
.58



3.5. EXAMPLES AND SIMULATION RESULTSUsing the same argument as in the proof of Theorem 3.8, integration of (3.42) over one period yieldsfor initial 
onditions in the 
enter manifold
S̃ (x(T )) − S̃ (x(0)) = a3

∫ T

0
ρ4(t) dt+ O

(

(ρ(0))5
)

< −γ (ρ(0))4 + O
(

(ρ(0))5
)

.This for
es a3 < 0 in the 
enter manifold dynami
s (3.36), whi
h proves the existen
e of a super
riti
alHopf bifur
ation. This 
on
ludes the proof.3.5 Examples and simulation resultsWe illustrate the main result of Se
tion 3.4 with the se
ond-order system
θ̈ + ω2

nθ + 2ζωnθ̇ = u, τ > 0, ωn > 0. (3.45)The 
hoi
e of the output y = τ θ̇ + ω2
nθ results in the transfer fun
tion
H(s) =

τs+ ω2
n

s2 + 2ζωns+ ω2
n

, (3.46)whi
h is passive if
2ζ ≥ ωn

τ
> 0. (3.47)Su
h a transfer fun
tion is a model for the me
hani
al system represented in Figure 3.12. Themass m glides on the ground without fri
tion. It is atta
hed to a spring and a dashpot linked to ea
hother through a gearing. Denoting by d the damping fa
tor of the dashpot, by r the spring fa
tor,by l0 the natural length of the spring, and by α the gearing ratio, the dynami
al equation of thisme
hani
al system is

mẍ = −d (ẋ− v̇) − r (x− u− l0) ,where u is the input of the system and x − l0 its output. Sin
e v = αu, the 
orresponding transferfun
tion of the system is
H(s) =

dαs+ r

ms2 + ds+ r
=

dα
m
s+ r

m

s2 + d
m
s+ r

m

,where the passivity 
ondition (3.47) is satis�ed if d2 ≥ r
α
m > 0.In the next se
tions, we illustrate the results of Theorems 3.8, 3.9, and 3.12 on this simpleme
hani
al example. To this end, we 
onsider the Lure feedba
k system in Figure 3.8 where Σ =

H(s). φ(·) is assumed to satisfy the assumptions of Se
tion 3.3.1 and additionally to be odd (thisis useful for the use of Zames-Falb multipliers) and monotone in
reasing (this will be useful forillustrations used in Chapter 4). 59
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Figure 3.12: Me
hani
al example.
y
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φk(·)

1
s

H(s)

Figure 3.13: For
ing the Hopf bifur
ation with an integrator in the feedba
k loop. The 
aseH(s) = 1
s
orresponds to the Van der Pol os
illator.3.5.1 For
ing the Hopf bifur
ationAs a �rst illustration, we for
e the Hopf bifur
ation s
enario by 
onsidering the feedba
k systemshown in Figure 3.13. Rewriting the system in the Lure form of Figure 3.8, the Hopf bifur
ation isfor
ed be
ause of the presen
e of a single zero at s = 0 in the transfer fun
tion G(s) = sH(s)

s+H(s) . As wehave seen, in Se
tion 3.3.3, the positive part of the real axis belongs to the root lo
us. The presen
eof a single zero at s = 0 then ne
essarily for
es the Hopf bifur
ation s
enario.The system is equivalently des
ribed by the feedba
k inter
onne
tion of Gk(s) = sH(s)
s+(1−ks)H(s) withthe stati
 nonlinearity φ(·). Here, the transfer fun
tion Gk(s) is

Gk(s) =
s
(
τs+ ω2

n

)

s3 + (2ζωn − kτ) s2 + (τ + ω2
n(1 − k)) s+ ω2

n

.A Hopf bifur
ation arises at
k∗ =

τ(τ + ω2
n) + 2ζω3

n −
√

τ4 + 2ω2
nτ

3 + ω3
n(ωn − 4ζ)τ2 + 4ω4

nτ(1 − ζωn) + 4ζ2ω6
n

2ω2
nτ

, (3.48)with
Gk∗(s) =

sH(s)

s+ (1 − k∗s)H(s)
=

s(τs+ ω2
n)

(s+ α) (s2 + Ω2)
,and

α = 2ζωn − k∗τ, Ω =
√

τ + ω2
n(1 − k∗).60



3.5. EXAMPLES AND SIMULATION RESULTSFurthermore, Gk(jω) is passive (see Lemma 2.21) if k ≤ k∗passive, with
k∗passive = min

(

1,
(

2ζ − ωn

τ

) ωn

τ

)

. (3.49)If k∗passive = k∗, we may dire
tly use Theorem 3.8 to 
on
lude to the existen
e of a globallyasymptoti
ally stable limit 
y
le for k & k∗.If k∗passive < k∗, we may still obtain the result with the help of Theorem 3.12. Indeed, when
k∗passive < k∗, and 0 < α < 2ω2

n

τ
(whi
h is equivalent to the 
ondition 2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
), wemay use a Zames-Falb multiplier to prove absolute stability at the 
riti
al bifur
ation value k = k∗.This Zames-Falb multiplier is

M(s) = H1(s) = 1 − Z(s), Z(s) =
ω2

n

τ
− α

s+ ω2
n

τ

, ROC =

{

s ∈ C | ℜ{s} > −ω
2
n

τ

}

, (3.50)whi
h, at k = k∗, yields the passive transfer fun
tion
Gk∗(s)H1(s) = τ

s

s2 + Ω2
.By Theorem 3.12, for τ > 0, ωn > 0, and ζ > 0 satisfying (3.47), and k∗ given in (3.48) satisfying

2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
, the feedba
k system in Figure 3.13 with H(s) de�ned by (3.46), isabsolutely stable for all k ≤ k∗ and possesses a globally asymptoti
ally stable limit 
y
le for k & k∗.3.5.1.1 Simulation resultsSuppose we 
hose the parameters values as ωn = 1, τ = 2 and ζ = 1.25. We thus have H(s) =

2s+1
s2+2.5s+1

. From these parameters values we 
an 
ompute the 
riti
al value k∗ of the bifur
ationparameter and the quantity k∗passive de�ning the ex
ess of passivity of H (see (3.48) and (3.49)). Weobtain k∗ = 1 and k∗passive = 1. In this parti
ular 
ase, there is no need of a multiplier to prove theabsolute stability at k = k∗ sin
e the system looses passivity and stability simultaneously at k = 1.Dire
t appli
ation of Theorem 3.8 allows to 
on
lude to the existen
e of a globally asymptoti
allystable limit 
y
le for k & k∗.For the simulations, we 
onsidered the feedba
k inter
onne
tion of G(s) = sH(s)
s+H(s) with the non-linearity φk(y) = y3 − ky. We simulated the system obtained with H(s) = 2s+1

s2+2.5s+1
for di�erentvalues of k around the 
riti
al value k∗ = 1 and for di�erent initial 
onditions. Figure 3.14 illustratesthe simulation results for an arbitrarily 
hosen initial 
ondition. As 
an be seen, the origin of thefeedba
k nonlinear system is GAS for k ≤ 1 whereas a limit 
y
le appears for values of k & 1. To testthe range of values of k for whi
h the result holds, we have simulated the system with many di�erentvalues of k > 1. In all 
ases, we obtained an asymptoti
ally stable limit 
y
le whose amplitude isproportional to the value of k − k∗ as predi
ted by the Hopf bifur
ation theorem.To illustrate a 
ase where the multiplier (3.50) is needed to prove absolute stability at k = k∗, we
onsidered the following parameters values: ωn = 1, τ = 2 and ζ = 1. We thus have H(s) = 2s+1

s2+2s+1
.With these parameters values, we obtain k∗passive = 0.75 and k∗ = 0.7753. Sin
e the 
ondition61
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2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
is satis�ed, we 
an use the Zames-Falb multiplier (3.50) to proveabsolute stability at k = k∗.For the simulations, we 
onsidered, on
e again, the feedba
k inter
onne
tion of G(s) = sH(s)

s+H(s)with the nonlinearity φk(y) = y3 − ky. We simulated the system obtained with H(s) = 2s+1
s2+2s+1

fordi�erent values of k around the 
riti
al value k∗ = 0.7753, and for di�erent initial 
onditions. Figure3.15 illustrates the simulation results for an arbitrarily 
hosen initial 
ondition. As 
an be seen, theorigin of the feedba
k nonlinear system is GAS for k ≤ k∗ whereas a limit 
y
le appears for values of
k & k∗.3.5.1.2 Graphi
al interpretation of the multiplier e�e
tIn this se
tion, we 
onsider the example given in the previous se
tion and show the e�e
t of themultiplier on the Nyquist and Bode plots of the transfer fun
tion Gk(jω).62
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ase in the multiplier illustrative example of the pre
eeding se
tion, 
onsider thetransfer fun
tion G(s) = sH(s)

s+H(s) with H(s) = 2s+1
s2+2s+1

. Figure 3.16 represents the Nyquist plots of
G(jω) and Gk(jω) (Gk(jω) is the (positive) feedba
k inter
onne
tion of G(jω) with the stati
 gain
k; it 
orresponds to the the transfer fun
tion of the linearization of Σk and is used to perform thebifur
ation analysis). Figure 3.16 represents the Nyquist plots of G(jω) and Gk(jω). As 
an beseen on the Nyquist plot of G(jω), the point of loss of passivity (interse
tion of the disk margin11with the real axis, see [SJK97℄) does not 
oin
ide with the point of loss of stability (interse
tion of11The disk margin is the smallest disk that entirely 
ontains the Nyquist plot of G(jω). It 
orresponds to the opendisk in the 
omplex plane with its 
enter on the real axis and its boundary interse
ting the real axis at the points (0, 0)and “0, 1

k∗

passive

”. 63



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORthe Nyquist plot of G(jω) with the real axis). As a result, when k is in
reased, the system losespassivity before losing stability. The e�e
t of the Zames-Falb multipliers is to transform the initialfeedba
k loop into an equivalent one (see Figure 3.11) where the forward path Σ̃k is strongly passivefor k ≤ k∗. This 
an be seen in Figure 3.17. In this �gure, we see that, without multiplier, Gk(jω)loses passivity at k∗passive = min
(
1,
(
2ζ − ωn

τ

)
ωn

τ

). This is trivially seen on the Nyquist plot of
Gk(jω) where the positive realness 
ondition ℜ (Gk(jω)) ≥ 0, ∀ω of Lemma 2.21 is not satis�ed for
k > k∗passive, or on the Bode phase diagram where the passivity phase 
ondition ∠ (Gk(jω)) ≤ π

2is not satis�ed for k > k∗passive. On the 
ontrary, the transfer fun
tion Gk(jω)M(jω) satis�es these
onditions for k ≤ k∗ whi
h equivalently means that k∗passive = k∗ for the system with multiplier.
Gk(jω) (without multiplier) Gk(jω)M(jω) (with multiplier)

k =k∗passive − 0.1, k∗passive, k∗passive + 0.1 k =k∗ − 0.1, k∗, k∗ + 0.1
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3.5. EXAMPLES AND SIMULATION RESULTS3.5.2 Not for
ing the Hopf bifur
ation - pit
hfork bifur
ationAs a se
ond illustration, we do not for
e the Hopf bifur
ation with an additional integrator. Weanalyze bifur
ations in the feedba
k inter
onne
tion of H(s) with φk(·). Di�erent bifur
ation s
enariiare possible. To see this, 
onsider the transfer fun
tion
Hk(s) =

H(s)

1 − kH(s)
=

τs+ ω2
n

s2 + (2ζωn − kτ) s+ (1 − k)ω2
n

. (3.51)The bifur
ation in the feedba
k loop di�ers a

ording to the relative position of the poles and zero of
H(s). If 2ζωn > τ , then a pit
hfork bifur
ation o

urs at k∗ = 1, and

Hk∗(s) =
τs+ ω2

n

s (s+ 2ζωn − τ)
.The (Popov) multiplier M(s) = 1 + s (2ζωn − τ)−1 makes the transfer fun
tion Hk∗(s)M(s) =

τs+ω2
n

(2ζωn−τ)s passive for k ≤ k∗. By Theorem 3.12, the feedba
k inter
onne
tion of Hk∗(s) with φ(·) isabsolutely stable for k ≤ k∗ and globally bistable for k & k∗.3.5.2.1 Simulation resultsTo illustrate the global bistability behavior, we have 
hosen the following parameters values:
ωn = 1, τ = 2 and ζ = 2.5. With these parameters values, we are in the 
ase where 2ζωn > τ .We then 
onsidered the feedba
k inter
onne
tion of H(s) with the nonlinearity φk(y) = y3 − ky.We simulated the feedba
k system for di�erent values of k around the 
riti
al value k∗ = 1. Figure3.18 illustrates the simulation results. As 
an be seen, the origin of the feedba
k nonlinear system isGAS for k ≤ 1 whereas it is globally bistable for k & 1. To 
learly see the two stable equilibria weperformed the simulation twi
e with two opposed sign initial 
onditions.
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CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORTo illustrate the results of Theorem 3.9, we then performed simulations of the feedba
k systemwhen an additional adaptation loop is present as in Figure 3.10. The system resulting from theaddition of the feedba
k adaptation loop is of order 3. The adaptation parameter is 
hosen as
τ = 100 (k − k∗)−1. The simulation results are shown in Figure 3.19 for k = 2. In Figure 3.19-(b),we show the proje
tion of the state spa
e on the two dimensional spa
e of the state variables of H.The relaxation nature of the os
illation is 
learly seen in Figure 3.20 whi
h represents the output yof the system.
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e on the two dimensional spa
e of the state variables of H for k = 2, with adaptation feedba
kloop.
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3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETER3.5.3 Not for
ing the Hopf bifur
ation - Hopf bifur
ationConsider, on
e again, the transfer fun
tion (3.51). If 2ζωn < τ , then a Hopf bifur
ation arises at
k∗ = 2ζωn

τ
, and

Hk∗(s) =
τs+ ω2

n

s2 +
(

1 − 2ζωn

τ

)

ω2
n

.No valid multiplier 
ould be found to prove absolute stability of the feedba
k loop for k ≤ k∗. Theresults of Theorem 3.12 do not apply in this situation and the stability properties of the limit 
y
lemay depend on the parti
ular nonlinearity φ(·).3.6 Numeri
al analysis of PLS - GAS of the limit 
y
le for a parti
-ular value of the bifur
ation parameterIn Se
tion 3.3.3, we de�ned a 
lass of parameter-dependent nonlinear systems exhibiting an almostglobally asymptoti
ally stable limit 
y
le. The results were proved for values of the parameter in thevi
inity of a bifur
ation value. Unfortunately, Theorems 3.8 and 3.9 do not give any predi
tion aboutthe range of parameter values in whi
h the results hold. In order to be able to 
on
lude aboutglobal asymptoti
 stability of the limit 
y
le for a parti
ular value of the parameter, we 
onsider anequivalent pie
ewise linear 
hara
terization of this 
lass of systems and adapt numeri
al tools re
entlyproposed in the literature (see [GMD03℄).In [GMD03℄, Gon
alves developed a 
onstru
tive numeri
al method in order to analyse the be-havior of pie
ewise linear systems (PLS). These systems are 
hara
terized by a �nite number of a�nelinear dynami
al models together with a set of rules for swit
hing among these models. The method-ology developed by Gon
alves 
onsists in inferring global properties of PLS solely by studying theirbehavior at their 
orresponding swit
hing surfa
es. The method allows the global stability analysisof equilibrium points as well as that of limit 
y
les through the same 
on
epts. The main idea is toanalyze impa
t maps, i.e. maps from one swit
hing surfa
e to the next swit
hing surfa
e. These mapsare proved globally stable by 
onstru
ting quadrati
 Lyapunov fun
tions on the swit
hing surfa
es.The notion of an impa
t map 
an be thought as a generalization of a Poin
aré map. Proving thatall the impa
t maps are globally 
ontra
ting around some spe
i�
 points is a su�
ient 
ondition forproving that the Poin
aré map asso
iated to the PLS is globally 
ontra
ting. In this way globalasymptoti
 stability of a limit 
y
le 
an be proved by 
he
king global 
ontra
tion of the impa
t mapsaround the spe
i�
 swit
hing points that this limit 
y
le has in 
ommon with the swit
hing surfa
es.The key result of Gon
alves 
on
erns a representation of impa
t maps that allows to use themto 
on
lude about stability of PLS. Impa
t maps are known to be �unfriendly� maps in the sense thatthey are highly nonlinear, multivalued, and not 
ontinuous. Although analysis of nonlinear systemsat swit
hing surfa
es has already been studied (e.g. Poin
aré), with the ex
eption of very simplesystems, no one really knew how to use impa
t maps to analyse global properties of PLS. The reasonwhy Gon
alves was able to use impa
t maps in the global analysis of 
ertain 
lasses of hybridsystems is based on the dis
overy that an impa
t map indu
ed by an LTI (linear time-invariant) �owbetween two swit
hing surfa
es 
an be represented as a linear transformation analyti
ally parametrizedby a s
alar fun
tion of the state. This parameter is simply the swit
hing time asso
iated with theimpa
t map. This representation of impa
t maps allows the sear
h for quadrati
 Lyapunov fun
tionson swit
hing surfa
es to be done by simply solving a set of linear matrix inequalities (LMIs) using67
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ient 
omputational algorithms. Global asymptoti
 stability of limit 
y
les and equilibrium pointsof PLS 
an in this way be e�
iently 
he
ked.The algorithms developed by Gon
alves depend on the swit
hing stru
ture imposed by theparti
ular PLS under 
onsideration. These algorithms have to be adapted to ea
h parti
ular type ofpie
ewise linear system. This amounts to adapt the de�nition of the swit
hing surfa
es, their positionin the state spa
e and the parti
ular linear dynami
s in ea
h region.In the next se
tions, we de�ne a pie
ewise linear version of the passive os
illator. We then showhow the method of Gon
alves may be adapted to numeri
ally prove global asymptoti
 stabilityof the limit 
y
le for se
ond order pie
ewise linear passive os
illators. Extension of this numeri
almethod to high-order pie
ewise linear passive os
illator is part of ongoing resear
h.3.6.1 Problem de�nitionWe start by de�ning a pie
ewise linear system (PLS) qualitatively equivalent to the 
lass of passiveos
illators. For this, we 
onsider the PLS resulting from the feedba
k inter
onne
tion of a stronglypassive, linear system with a pie
ewise linear approximation of the nonlinearity φk(·) de�ned by (3.17).In other words, we 
onsider the feedba
k inter
onne
tion of a linear system H whose dynami
s are
H :

{
ẋ = Ax+Bv, x ∈ R

n (n ≥ 2), v ∈ R

y = Cx, y ∈ R
(3.52)with a pie
ewise linear fun
tion fpls(y):

v = −fpls(y) =







−p(y +m) − km for y < −m
ky for −m ≤ y ≤ m

−p(y −m) + km for y > m

(3.53)The system H is assumed to be strongly passive and dete
table. The parameters of the pie
ewiselinear fun
tion fpls(·) satisfy k > 0, m =
√

k
3 and p > 0. The fun
tion fpls(·) is a pie
ewise linearapproximation of the 
ubi
 nonlinearity φk(y) = −ky + y3 that appears in the Van der Pol andFitzhugh-Nagumo os
illators, as 
an be seen in Figure 3.21. This 
ubi
 nonlinearity is one of themost simple example of nonlinearity that satis�es the assumptions made in Theorems 3.8 and 3.9.The method presented here 
an be applied to any other kind of nonlinearity. For more 
ompli
atednonlinearities, the 
omplexity of its pie
ewise approximation (i.e. the number of pie
ewise linearregions) in
reases and so does the 
omplexity of the 
orresponding algorithm.Sin
e fpls(·) is odd, the resulting system is symmetri
 in the sense that if x(t) is a solution startingat x0 then −x(t) is another solution starting at −x0. As we will see shortly, this symmetry propertyhelps in redu
ing the 
omplexity of the numeri
al algorithm.The pie
ewise linear system resulting from the feedba
k inter
onne
tion of (3.52) and (3.53) 
on-sists of three regions, (R1), (R2), and (R3) in the state spa
e delimited by two swit
hing surfa
es, S0and S1. The linear dynami
s in ea
h region are respe
tively1. (R1) y(t) < −m

ẋ = (A− pBC)x− dB = A1x− dB,2. (R2) −m ≤ y(t) ≤ m

ẋ = (A+ kBC)x = A2x, 68
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Figure 3.21: Repla
ing the nonlinear fun
tion φk(·) by a pie
ewise linear fun
tion fpls(·).3. (R3) y(t) > m

ẋ = (A− pBC)x+ dB = A1x+ dB,where d = m(k + p).Throughout this se
tion, we assume that A2 has no real unstable eigenvalue. We also assumethat 1
k+p

> −CA−1
1 B in order to guarantee that the system (3.52),(3.53) has a unique equilibrium,lo
ated at x = 0.Be
ause the feedforward linear system H is assumed to be (strongly) passive and dete
table, thematrix A1 is Hurwitz for any positive value of p. Sin
e the fun
tions φ(·) and fpls(·) have thesame linearization around the origin, the dynami
s in the intermediate region (R2) is the same as thedynami
s of the nonlinear feedba
k system linearized around the origin. This implies that the matrix

A2 has at least 2 eigenvalues with positive real parts for k > k∗.The swit
hing surfa
es of the PLS are de�ned by
S0 = {x ∈ R

n |Cx = −m},
S1 = {x ∈ R

n |Cx = m} = −S0.Our analysis, based on [GMD03℄, will be in terms of 
ontra
tion properties of impa
t maps thatsolutions of the PLS de�ne between swit
hing surfa
es. The key observation in [GMD03℄ is that theseimpa
t maps are linear maps parametrized by the swit
hing time, whi
h is a s
alar fun
tion of thestate.3.6.2 Existen
e of limit 
y
lesWe will only be interested in 
y
les of (3.52),(3.53) that are of the type illustrated in Figure 3.22:a (periodi
) solution initialized at −x∗1 ∈ S0 obeys the linear dynami
s (R1) and rea
hes a point69
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x∗0 ∈ S0 after a �nite swit
hing time t∗1; it then obeys the linear dynami
s (R2) and rea
hes the point
x∗1 ∈ S1 after a �nite swit
hing time t∗2. The values x∗0, x∗1, t∗1 and t∗2 that determine the periodi
solution satisfy the algebrai
 equations (see [GMD03℄)

f1 (t∗1, t
∗
2) = Cx∗0 (t∗1, t

∗
2) +m = 0, (3.54)

f2 (t∗1, t
∗
2) = Cx∗1 (t∗1, t

∗
2) −m = 0, (3.55)where

x∗0 (t∗1, t
∗
2) =

(

I + eA1t∗1eA2t∗2

)−1
A−1

1

(

I − eA1t∗1

)

dB,

x∗1 (t∗1, t
∗
2) =

(

I + eA2t∗2eA1t∗1

)−1
eA2t∗2A−1

1

(

I − eA1t∗1

)

dB.These solutions simply 
hara
terize the swit
hing points that the limit 
y
le of Figure 3.22 de�nes onthe swit
hing surfa
es.

S0 S1

m−m Cx

(R2) (R3)(R1)

x∗

0

x∗

1

−x∗

0

−x∗

1Figure 3.22: Limit 
y
le with four swit
hes per period (�rst half period in plain line and se
ond halfperiod in dashed line).The roots of (3.54),(3.55) determine periodi
 solutions of (3.52),(3.53). Simulations of the system(3.52),(3.53) provide a good initial guess for the numeri
al sear
h of (t∗1, t
∗
2) solving (3.54),(3.55).3.6.3 Quadrati
 stability of impa
t mapsAs we have stated in the introdu
tion of Se
tion 3.6, stability of the limit 
y
le 
an be studiedthrough quadrati
 stability of the impa
t maps of the system. Indeed, 
onsider a subset S+

0 of
S0 given by S+

0 = {x ∈ S0 : CA2x ≥ 0}. S+
0 is the set of points in S0 that 
an be rea
hed bytraje
tories initialized in (R1). In a similar way, de�ne S−

0 ⊂ S0 as S−
0 = {x ∈ S0 : CA2x ≤ 0} andalso S+

1 = −S−
0 and S−

1 = −S+
0 . From symmetry 
onsiderations, three impa
t maps only are ofinterest for the analysis. The �rst impa
t map (impa
t map 1) takes points from S−

0 and maps themin S+
0 . The se
ond impa
t map (impa
t map 2a) takes points from S+

0 \ {x∗0} and maps them ba
k to
S−

0 \ {x∗0}. Finally, the third impa
t map (impa
t map 2b) takes points from S+
0 and maps them to

S+
1 . Let x1 be a point in S−

0 \ {−x∗1}. Sin
e A1 is Hurwitz and 1
k+p

> −CA−1
1 B, the traje
tory x1(t)will ne
essarily swit
h after a �nite swit
hing time t1 at x2 = x1 (t1). Sin
e A2 is not Hurwitz and70



3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETERhas no real unstable eigenvalue, a traje
tory starting at x2 ∈ S+
0 \ {x∗0} 
an either swit
h at some pointin S0, or at some point in S1, or not swit
h at all if x2 belongs to the stable manifold of the origin.Let Sa ⊂ S+

0 \ {x∗0} (resp. Sb ⊂ S+
0 ) be the set of points that swit
h in S0 (resp. S1). If x2 ∈ Sa(resp. x2 ∈ Sb), the traje
tory swit
hes in �nite time t2a (resp. t2b) at x3a = x2 (t2a) ∈ S−

0 \ {−Z∗
1}(resp. x3b = x2 (t2b) ∈ S+

1 ). Then, it swit
hes again at x4a = x3a (t3a) (resp. x4b = x3b (t3b)), and soon (see Figure 3.23).
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Figure 3.23: Impa
t maps of the PLS; (a) impa
t map 1 and impa
t map 2a, (b) impa
t map 1 andimpa
t map 2b.The symmetry of the system allows to perform the analysis on a half traje
tory. This means thatit is equivalent to 
onsider the traje
tory starting at x2 or −x2. To perform asymptoti
 stability ofthe limit 
y
le, the idea is to 
he
k if x3a (resp. −x3b) is 
loser to −x∗1 than x1. If so for any point
x1 ∈ S−

0 \ {−x∗1}, the limit 
y
le is globally asymptoti
ally stable.Sin
e x1, x2, x3a ∈ S0 and x3b ∈ S1, we 
an write x1 = −x∗1 +∆1, x2 = x∗0 +∆2, x3a = −x∗1 +∆3a,and x3b = x∗1 + ∆3b, where x∗0 and x∗1 have been found as numeri
al solutions of (3.54),(3.55) and
C∆1 = C∆2 = C∆3a = C∆3b = 0. A su�
ient 
ondition for the Poin
aré map to be 
ontra
tingaround x∗0 is

V2 (∆2) < V1 (∆1) for all ∆1 ∈ S−
0 \ {−x∗1},

V1 (∆3a) < V2 (∆2) for all ∆2 ∈ Sa\ {x∗0},
V1 (∆3b) < V2 (∆2) for all ∆2 ∈ Sb\ {x∗0},where V1(·) and V2(·) are quadrati
 Lyapunov fun
tions de�ned on S−

0 and S+
0 respe
tively (seeFigure 3.23).The key result of [GMD03℄ is that the impa
t maps indu
ed by an LTI (linear time invariant) �owbetween two swit
hing surfa
es 
an be represented as a linear transformation analyti
ally parametrizedby a s
alar fun
tion of the state. This parameter is simply the swit
hing time asso
iated with theimpa
t map. We thus have ∆2 = H1 (t1) ∆1, ∆3a = H2a (t2a) ∆2, ∆3b = H2b (t2b)∆2, where (see[GMD03℄) 71
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H1 (t1) = (−x∗1 (t1) − x∗0)w1 (t1) + eA1t1 ,

w1 (t1) =
CeA1t1

−m+ Cx∗1 (t1)
,

−x∗1 (t1) = −eA1t1x∗1 +A−1
1

(
I − eA1t1

)
dB,

H2 (t2a) = (x∗0 (t2a) + x∗1)w2a (t2a) + eA2t2a ,

w2a (t2a) =
CeA2t2a

−m− Cx∗0 (t2a)
,

x∗0 (t2a) = eA2t2ax∗0,

H2 (t2b) = (x∗0 (t2b) − x∗1)w2b (t2b) + eA2t2b ,

w2b (t2b) =
CeA2t2b

m− Cx∗0 (t2b)
,

x∗0 (t2b) = eA2t2bx∗0.We then have to prove that
r1 (t1) , ∆T

1 P1 (t1)∆1 (3.56)
= V1 (∆1) − V2 (H1 (t1) ∆1) > 0,

r2a (t2a) , ∆T
2 P2a (t2a) ∆2 (3.57)

= V2 (∆2) − V1 (H2a (t2a)∆2) > 0,

r2b (t2b) , ∆T
2 P2b (t2b)∆2 (3.58)

= V2 (∆2) − V1 (H2b (t2b) ∆2) > 0for all expe
ted swit
hing times t1 ∈ T1, t2a ∈ T2a and t2b ∈ T2b where T1, T2a and T2b denote the setof all expe
ted swit
hing times 
orresponding respe
tively to all ∆1 ∈ S−
0 \ {−x∗1}, ∆2 ∈ Sa\ {x∗0},and ∆2 ∈ Sb\ {x∗0}. If the sets of expe
ted swit
hing times are bounded, then by dis
retizing the setsof expe
ted swit
hing times, inequalities (3.56), (3.57), and (3.58) de�ne a �nite set of LMIs in theunknowns Pi (ti) > 0, i = 1, 2a, 2b.3.6.4 Bounds on swit
hing timesComputationally, it is impossible to 
he
k dire
tly if the stability 
onditions (3.56), (3.57) and(3.58) are satis�ed for all expe
ted swit
hing times. An alternative is to �nd some intervals su
h thatif (3.56), (3.57) and (3.58) are satis�ed in these intervals, then stability follows. In other words, wewould like to �nd a lower and an upper bound for ea
h swit
hing time. We denote them respe
tivelyby t1min, t1max, t2amin, t2amax, t2bmin, t2bmax. We then only need to solve the LMIs ri(t) > 0

∀t ∈ [timin, timax], where i = 1, 2a, 2b. This 
an be done by dis
retizing ea
h [timin, timax] interval,72
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orresponding LMIs at those dis
rete time instants. In order to do so, we must be ableto guarantee that there exists a t0 su
h that the di�eren
e between any two 
onse
utive swit
hingtimes of a traje
tory x(t) for t > t0 is higher than tmin, but lower than tmax. Su
h bounds 
anbe 
omputed, for instan
e, when the linear dynami
s in ea
h region are Hurwitz and possess noequilibrium (see [GMD03℄ for details).3.6.4.1 Lower bounds on the swit
hing timesFor the PLS (3.52),(3.53), the lower bounds are 0, i.e. t1min = t2amin = t2bmin = 0.3.6.4.2 Upper bound on t1To 
ompute upper bounds, Gon
alves proposes a general method in [GMD03, Propositions B.1and B.2℄. The idea 
an be summarized by the following steps. First, the existen
e of a boundedinvariant set where every traje
tory will eventually enter is proved. Se
ond, bounds on the expe
tedswit
hing times are found by 
omputing bounds on swit
hing times of traje
tories inside that boundedinvariant set. This method holds valid for PLS for whi
h the feedba
k pie
ewise linear fun
tion isbounded su
h as for relay feedba
k systems and saturation systems. For these systems, it is possibleto guarantee that there exists a t̄ su
h that the di�eren
e between any two 
onse
utive swit
hing timesof a traje
tory x(t) for t > t̄ is lower than tmax. Unfortunately, in our 
ase fpls(·) is not bounded andthe method 
annot be applied.Gon
alves also presents a method for 
omputing upper bounds on t1 when a bounded invariantset 
annot be guaranteed. In this 
ase, the analysis must be done for all ti ≥ 0. The idea is thefollowing: for large values of ti, we 
ompute the value of r(∞) and show that this value is nonnegative.We then show that for large enough tmax, r(t) > 0 for all t ≥ tmax. To this end, we show that ṙ(t) < 0for all t ≥ tmax. If the matrix A1 of the 
onsidered impa
t map is stable this is done a

ording to themethod des
ribed in [GMD03, Appendix A.3℄.3.6.4.3 Upper bounds on t2a and t2bThe unstable equilibrium x = 0 of (3.52),(3.53) typi
ally possesses a stable manifold when n > 2.In this 
ase, the swit
hing times are unbounded be
ause of interse
tions between the stable eigenspa
eof A2 and the swit
hing surfa
es S0 and S1: any traje
tory starting on a point belonging to theseinterse
tions will remain on the stable manifold until it asymptoti
ally rea
hes the origin. As a 
onse-quen
e, the 
orresponding swit
hing time will tend towards in�nity. Intuitively, traje
tories startingin a neighborhood of su
h an interse
tion point will be 
hara
terized by a swit
hing time inverselyproportional to the distan
e to this point. In other words, the 
loser we start from the interse
tion,the longer the swit
hing time. A solution to apply the LMI numeri
al method of Gon
alves wouldbe to geometri
ally 
hara
terize a neighborhood of the interse
tion points and to 
ompute the upperbounds on the swit
hing time asso
iated to points whi
h do not belong to this neighborhood. Themethod of Gon
alves 
an then be applied to study 
ontra
tion of impa
t maps de�ned for any pointwhi
h is not in the de�ned neighborhood. For points in the neighborhood, new 
ontra
tion 
onditionsexpressed in the form of LMIs would have to be satis�ed. This solution is still under resear
h.If we restri
t our attention to the 2-dimensional 
ase, then x = 0 has no stable manifold (A2 isanti-stable). Moreover, in this 
ase, by symmetry 
onsiderations, any traje
tory belonging to S+
0 willne
essarily swit
h at a point belonging to S1. As a 
onsequen
e, there are only two impa
t maps to73
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onsider, i.e. impa
t map 1 and impa
t map 2b. The upper bound on t1 is 
omputed by 
onsideringthe worst swit
hing s
enario for a point belonging to S+
0 . This worst swit
hing s
enario o

urs when

Cx = −m and Cẋ = 0. There exists only one point on S+
0 
orresponding to this situation. The upperbound is thus the swit
hing time asso
iated with this point.3.6.5 Simulation resultsTo illustrate the numeri
al method presented in the previous se
tions, we present here the resultsobtained for two dimensional systems 
orresponding to Figure 3.10 where the transfer fun
tion de-s
ribing the forward linear system is Σ = G(s) = 1

s+α
with α > 0 and the adaptation parameter τ issu
h that τ ≫ (k − k∗)−1. The 
riti
al bifur
ation value of Gk(s) is k∗ = k∗passive = α and the 
orre-sponding transfer fun
tion is Gk∗(s) = 1

s
. The 
ondition τ ≫ (k − k∗)−1 thus writes τ ≫ (k − α)−1.From Theorems 3.8 and 3.9, we expe
t the feedba
k system to be 
hara
terized by a globally asymp-toti
ally limit 
y
le for k & α and τ ≫ (k − α)−1. Nevertheless, the range of values of k for whi
hthis behavior holds is not known. Repla
ing φk(y) = −ky + y3 by fpls(y) (see (3.53)) in Figure 3.10,and 
hoosing values for p and k su
h that p > 0 and k > k∗, we may use the numeri
al analysismethod presented in Se
tion 3.6.3 to 
on
lude about existen
e and global asymptoti
 stability of alimit 
y
le for any �xed value of k.Before presenting the simulation results, we brie�y des
ribe the inputs and outputs of the algo-rithm. The inputs are the transfer fun
tion G(s) together with the parameters α, k > α, p > 0 and

τ ≫ (k − α)−1. A graphi
 showing the minimum eigenvalues of ea
h Pi(ti), i = 1, 2b (see (3.56), and(3.58)) is generated. GAS of the limit 
y
le is then 
on
luded if the minimum eigenvalues are positiveon their respe
tive set of expe
ted swit
hing times.To illustrate the appli
ation of the numeri
al method, we 
onsidered the parameters values α = 1and τ = 20. From these values, we 
ompute k∗ = k∗passive = 1. We then have 
hosen the followingvalues for k and p: k = 1.2 and p = 5. The 
orresponding values ofm and d arem = 0.63 and d = 3.92.The simulation results showing the state spa
e and the time evolution of the state variables for aparti
ular initial 
ondition are given on Figure 3.24. The numeri
al algorithm des
ribed previouslyis then applied to this parti
ular PLS. The number of (t∗1, t
∗
2) solutions found by the algorithm for(3.54) and (3.55) is equal to one, i.e. t∗1 = 8.4 and t∗2 = 8.88. These values agree with those foundby simulation of the dynami
al system. The algorithm then solves the �nite set of LMIs de�ned bythe dis
retization of (3.56) and (3.58) on their expe
ted swit
hing times interval T1 and T2b and plotsFigure 3.25. On this �gure, we see that the minimum eigenvalue of ea
h Pi(ti), i = 1, 2b is positiveon its respe
tive set of expe
ted swit
hing times T1 and T2b. The set of expe
ted swit
hing times inthis example are approximately T1 = (0, 12) and T2b = (0, 9.0414). The �rst upper bound t1max = 12was 
hosen arbitrarily. We then numeri
ally 
he
ked that r1 (t1) > 0 for all t1 ≥ t1max as explainedin Se
tion 3.6.4.2. The se
ond upper bound was 
omputed a

ording to the worst swit
hing s
enariomethod: if t2b ≥ 9.0414, there is no point in S+

0 with swit
hing time equal to t2b. Using 
onditions(3.56) and (3.58), we thus have shown that the system possesses a globally asymptoti
ally stable limit
y
le in R
2\{0}.Remark 3.13 If we 
onsider Figure 3.8 where the forward system Σ results from the feedba
k inter-
onne
tion of G(s) = 1

s+α
with the transfer fun
tion 1

τs+1 , the bifur
ation analysis is di�erent. Thetransfer fun
tion 
orresponding to the feedba
k inter
onne
tion of 1
s+α

with 1
τs+1 is Σ = H(s) =

τs+1
τs2+(1+ατ)s+(α+1)

. The system in Figure 3.8 is equivalently des
ribed as the (negative) feedba
k74
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onne
tion of Hk(s) = H(s)
1−kH(s) = τs+1

τs2+(1+(α−k)τ)s+(1+α−k)
with the stati
 nonlinear fun
tion

φ(y) = y3. The 
riti
al value at whi
h Hk(s) looses passivity is k∗passive = α. For τ > 1, a Hopfbifur
ation o

urs at the 
riti
al value k∗ = α + 1
τ
. The 
orresponding 
riti
al transfer fun
tion is

Hk∗(s) = τ τs+1
τ2s2+(τ+1)

. This 
riti
al transfer fun
tion is similar to the one obtained in Se
tion 3.5.3.In that se
tion we saw that, with su
h a transfer fun
tion, no multiplier 
ould be found to prove abso-lute stability of the feedba
k system at k = k∗. In this 
ase, the analyti
al results of our theorems donot apply. The appli
ation of the numeri
al method to the PLS resulting from the feedba
k inter
on-ne
tion of H(s) with fpls(y) 
an then be useful to numeri
ally prove existen
e and global asymptoti
stability of a limit 
y
le. To illustrate this, we performed a simulation with the same parameters values75



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORex
ept for τ = 2 and k = 1.8. With these values, we obtain k∗passive = 1, k∗ = 1.5, m = 0.775, and
d = 5.267. The simulation results are shown in Figure 3.26.The results of the appli
ation of the same numeri
al algorithm to this PLS are shown in Figure
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(a) (b)Figure 3.26: Simulation results for the PLS de�ned by the parameters values α = 1, k = 1.8, p = 5and τ = 2. Column (a): state-spa
e. Column (b): time evolution of the state variables.3.27. The number of (t∗1, t
∗
2) solutions found by the algorithm for (3.54) and (3.55) is equal to one,i.e. t∗1 = 3.1227 and t∗2 = 5.1617. These values agree with those found by simulation of the dynam-i
al system. The set of expe
ted swit
hing times in this example are approximately T1 = (0, 12) and

T2b = (0, 5.3291). On
e again, the PLS was numeri
ally proved to be 
hara
terized by a GAS limit
y
le in R
2\{0} sin
e the minimum eigenvalues of P1 (t1) and P2b (t2b) are positive on their respe
tiveset of expe
ted swit
hing times.3.7 SummaryThe point of view developed in this 
hapter is that of os
illators as open systems. To this end,we 
onsidered an external 
hara
terization of os
illators whi
h �ts their des
ription by physi
al statespa
e models and, at the same time, has impli
ations for their global stability analysis. This exter-nal 
hara
terization of os
illators is expressed by a dissipation inequality that was shown to enableglobal limit 
y
le os
illations in the isolated system. The presented theory 
overs two global os
il-lation me
hanisms whi
h are present in the 
elebrated low dimensional models of Van der Poland Fitzhugh-Nagumo. These two global os
illation me
hanisms were extended to higher dimen-sional systems 
omposed of a strongly passive system in feedba
k with a slope parametrized stati
nonlinearity. We showed that this feedba
k inter
onne
tion undergoes either a super
riti
al Hopf,or a super
riti
al pit
hfork bifur
ation (Theorem 3.8). The global os
illation results either from thesuper
riti
al Hopf bifur
ation or from the addition of a slow adaptation dynami
 to the globallybistable system 
reated by the super
riti
al pit
hfork bifur
ation (Theorem 3.9). The main assump-tion that allows the global asymptoti
 stability of the unique equilibrium point to be retained by76



3.7. SUMMARY
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Figure 3.27: Time evolution of the minimum eigenvalues of P1 (t1) and P2b (t2b) for the PLS de�nedby the parameters values α = 1, k = 1.8, p = 5 and τ = 2.the bifur
ated solution is the absolute stability of the system at 
riti
ality. A su�
ient 
ondition forthis assumption to be satis�ed is the simultaneous loss of stability and passivity of the bifur
ationparameter at a 
ertain 
riti
al value . This 
ondition has been relaxed with the help of multipliers(Theorem 3.12), thereby broadening the 
lass of passive os
illators. These results were illustrated ona simple me
hani
al example. Finally, we 
onsidered an equivalent pie
ewise linear 
hara
terizationof the passive os
illator and adapted a numeri
al method re
ently proposed in the literature to proveglobal stability of the limit 
y
le for �xed values of the parameter. This method was su

essfullyapplied to numeri
ally study global asymptoti
 stability of the limit 
y
le solution of a se
ond orderpie
ewise linear, passive os
illator.
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Chapter 4Global results for inter
onne
tedos
illatorsThe aim of the previous 
hapter was to show that dissipativity theory 
an be usefully applied tostudy existen
e and global asymptoti
 stability of limit 
y
les and to give simple explanations for thefeedba
k me
hanisms responsible for these nonlinear os
illations. As we have pointed out previously,an important bene�t is that a dissipativity approa
h is not restri
ted to low-dimensional systems. Inthis 
hapter, we fo
us on the se
ond important bene�t of a dissipativity approa
h: the analysis ofinter
onne
tions. In Se
tion 4.1, we show that the 
hara
terization of a globally asymptoti
ally stablelimit 
y
le for one os
illator extends in a straightforward manner when several passive os
illators arearranged in a network 
on�guration through input-output 
oupling. Se
tion 4.2 
ontains the �rstmain results of the 
hapter: extension of the results presented in Chapter 3 to networks of passiveos
illators. In Se
tion 4.3, we 
onsider some illustrative examples of these results, i.e. we 
onsidernetworks of in
reasing sizes for whi
h the existen
e of a globally asymptoti
ally stable limit 
y
le 
anbe dire
tly dedu
ed from the results of Se
tion 4.2. In Se
tion 4.4 we present the se
ond main resultof this 
hapter: su�
ient network topology 
onditions leading to existen
e and global asymptoti
stability of syn
hrone os
illations in networks of identi
al passive os
illators. The emphasis is onsyn
hronization as a design prin
iple, that is on the use of syn
hronization to a
hieve globally stableos
illations in inter
onne
ted systems. We propose an explanation for the global syn
hronization ofidenti
al os
illators based on an input-output 
hara
terization that we name in
remental passivity.Finally, in Se
tion 4.5 we present simulation results to illustrate our theory.4.1 Networks of passive os
illatorsConsider a network of N passive os
illators, 
oupled through their input and output. The os-
illators are 
onstru
ted a

ording to the Lure feedba
k stru
ture shown in Figure 3.8. The stati
feedba
k nonlinearities used in ea
h passive os
illator are identi
al, i.e. φk (yi) = −kyi + φ (yi) , ∀i =
1, . . . , N , where yi represents the output of passive os
illator i. Only the feedforward blo
ks Σi maydi�er. The network may be seen as a MIMO system whose inputs and outputs are respe
tively
U = (u1, . . . , uN )T and Y = (y1, . . . , yN )T where ui and yi are the s
alar input and output of passiveos
illator i respe
tively. The network admits the representation in Figure 4.1 whi
h is a MIMO ex-tension of the blo
k diagram of Figure 3.8. In the 
ase of a network of identi
al passive os
illators, all79



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSthe forward Σi blo
ks of the passive os
illators are identi
al. This is then emphasized by the notation
Υ = diag{Σ}. In Figure 4.1, F (Y ) represents the 
oupling between the os
illators while the stati
nonlinearity Φk(Y ) is des
ribed as Φk(Y ) = (φk (y1) , . . . , φk (yN ))T . The repeated nonlinear elementis the stati
 nonlinear fun
tion φk(y) given in (3.17) and satisfying the asso
iated assumptions givenin Se
tion 3.3.1. Repeated nonlinearities are generally denoted by diag{φ(·)}....y1

yN

YU

−−

Φk(Y )

F (Y )

−

...y1

yN

Y

Φk(Y )

Ξ
W W

≡

Υ
VṼ

Figure 4.1: MIMO representation of a network of passive os
illators. Φk(Y ) = (φk (y1) , . . . , φk (yN ))Tis a multivariable repeated nonlinearity. The repeated nonlinear element is φk(y) = −ky+φ(y) where
φ(·) is a stati
 nonlinear fun
tion that satis�es the assumptions of Se
tion 3.3.1. F (Y ) 
hara
terizesthe 
oupling. Ξ denotes the feedba
k inter
onne
tion of Υ and F (Y ).As parallel inter
onne
tion of the input-a�ne Σi blo
ks de�ned in (3.16), Υ admits the input-a�nestate model

(Υ)

{
Ẋ = fΥ(X) + gΥ(X)Ṽ
Y = hΥ(X)

(4.1)where X =
(
xT

1 , . . . , x
T
N

)T with xi denoting the state of passive os
illator i. fΥ, gΥ and hΥ inheritthe properties of the fun
tions fi, gi and hi de�ning the Σi blo
ks, i.e. fΥ, gΥ and hΥ are smooth,and satisfy fΥ(0) = 0, hΥ(0) = 0, and gΥ(0) 6= 0.We denote by Ξ the feedba
k inter
onne
tion of Υ with F (Y ) and by Ξk the (positive) feedba
kinter
onne
tion of Ξ with the MIMO feedba
k stati
 gain diag{k}. The MIMO feedba
k system inFigure 4.1 is thus equivalently represented as the feedba
k inter
onne
tion of Ξ and Φk(·), or as thefeedba
k inter
onne
tion of Ξk and Φ(·) (see Figure 4.2).Remark 4.1 The MIMO system Ξ obviously admits an input-a�ne state model of the form (4.1)with fΞ(X) = fΥ(X) − gΥ(X)F (hΥ(X)), gΞ(X) = gΥ(X) and hΞ(X) = hΥ(X).As parallel inter
onne
tion of strongly passive systems, the forward blo
k Υ has the same passivityproperties as the forward systems Σi of ea
h passive os
illator. Not taking into a

ount the 
oupling,the dissipativity inequality satis�ed by the MIMO system in Figure 4.1 is thus (see Lemma 2.15)
Ṡ ≤

(
k − k∗passive

)
Y TY − Y T Φ(Y ) + Y TU, (4.2)where S(X) is the sum of the storage fun
tions of the passive os
illators of the network.The 
oupling between the os
illators is des
ribed by the relation

U = −F (Y ) +W, (4.3)80



4.1. NETWORKS OF PASSIVE OSCILLATORS
− ≡ −

V Y YW W

Φk(·) Φ(·)

Ξ Ξk

Figure 4.2: Two equivalent representations of the Lure MIMO nonlinear system studied in this
hapter. Φk(Y ) = (φk (y1) , . . . , φk (yN ))T is a multivariable repeated nonlinearity. The repeatednonlinear element is φk(y) = −ky + φ(y) where φ(·) is a stati
 nonlinear fun
tion that satis�es theassumptions of Se
tion 3.3.1.where F (·) is a C1 fun
tion in R
N de�ning the topology of the network and W is the external inputof the network. We assume that F (0) = 0 and that the 
oupling fun
tion F (·) satis�es the passivity
ondition

Y TF (Y ) ≥ 0, ∀Y ∈ R
N . (4.4)This dire
tly implies that the passivity properties of Υ transmit to Ξ, i.e. that Ξ is strongly passive.As a result, the dissipativity 
hara
terization of the MIMO system in Figure 4.1 is similar to thedissipativity 
hara
terization of the SISO system in Figure 3.8, i.e.

Ṡ ≤
(
k − k∗passive

)
Y TY − Y T Φ(Y ) + Y TW. (4.5)This means that, under the assumption of passive 
oupling, the network dissipativity 
hara
terizationis similar to that of one of its 
onstituting passive os
illator.If we assume linear 
oupling, F (Y ) = ΓY , and (4.3) be
omes

U = −ΓY +W, (4.6)where Γ ∈ R
N×N represents the inter
onne
tion matrix. The passivity 
ondition (4.4) implies that

Γ is a real positive semide�nite matrix1. Note that even the positive semide�niteness 
ondition on
Γ may be relaxed through a parameter shift. Let k0 be a s
alar su
h that Γ′ = Γ + k0IN is a realpositive semide�nite matrix of rank q < N and de�ne k′ = k + k0. This simply amounts to de�nethe 
oupling as U = − (Γ + k0IN ) + k0IN +W . The network admits the representation of Figure 4.1where F (Y ) = Γ′Y and k is repla
ed by k′. The dissipation inequality (4.5) be
omes

Ṡ ≤ −Y T Γ′Y
︸ ︷︷ ︸

≥0

+
(
k − k∗passive + k0

)
Y TY − Y T Φ(Y ) + Y TW

≤
(
k′ − k∗passive

)
Y TY − Y T Φ(Y ) + Y TWwhi
h is similar to (4.5) with k′ repla
ing k.To pursue the analogy with the SISO situation, we will assume that the network is unfor
ed, i.e.

W ≡ 0. This external network input is important for the analysis of inter
onne
ted networks. The1We re
all that a real matrix A is positive semide�nite i� xT Ax ≥ 0 for all x ∈ R
n. As a 
onsequen
e of thisde�nition, a real matrix A is positive semide�nite i� its symmetri
 part 1

2

`

A + AT
´ is positive semide�nite. Thisallows to 
onsider matri
es whi
h are not symmetri
 (see also Appendix A for some properties of real positive de�nitematri
es). 81



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSargument developed in this 
hapter dire
tly extends to this situation. This allows the analysis ofnetworks of in
reasing 
omplexity through the same methodology. This emphasizes the far rea
hingimpli
ations of an input-output point of view for the 
hara
terization of limit 
y
le os
illations.4.2 Se
ond result of this thesis - Networks of passive os
illatorsIn this se
tion we present an extension of the bifur
ation results presented in Chapter 3. Thestatement of the results in Chapter 3 were global in the state-spa
e. To this end, we introdu
edthe additional assumption that the feedba
k inter
onne
tion of Σ and φk(·) is ultimately bounded.Following a result of Ar
ak [AT02℄, we remarked in Se
tion 3.3.2 that this assumption was alwayssatis�ed for Σ linear, passive and dete
table. In the following se
tion, we extend this result to the
orresponding MIMO situation when Υ is linear, passive and dete
table, F (Y ) = ΓY , with Γ ∈ R
N×Nand Γ ≥ 0, and Φk(·) = diag{φk(·)} is a multivariable repeated nonlinearity where φ(·) is assumed tosatisfy the assumptions of Se
tion 3.3.1 and to be additionally monotone in
reasing. For the general
ase when Υ is nonlinear, we will expli
itly assume that the unfor
ed (W ≡ 0) MIMO feedba
k systemin Figure 4.2 is ultimately bounded.4.2.1 Global boundedness result for Υ linear and linear 
ouplingIn the 
ase of Υ linear and linear 
oupling, we extend the global boundedness results of Ar
ak[AT02℄ to networks of passive os
illators.We have seen in Se
tion 3.3.2 that (3.23) does not imply (3.24) for general multivariable nonlin-earities. However, in the 
ase of multivariable repeated nonlinearities, denoted by

Φ(Y ) = (φ (y1) , . . . , φ (yN ))T , (4.7)
onditions (3.23) and (3.24) are satis�ed if the repeated nonlinearity φ(·) satis�es (3.25), (3.26) andis monotone in
reasing. We summarize this result in Theorem 4.2.Theorem 4.2 If φ(·) : R → R satis�es (3.25), (3.26) and is monotone in
reasing then the multi-variable repeated nonlinearity (4.7) satis�es (3.23) and (3.24).ProofFirst, we prove property (3.23).
Y T Φ(Y ) =

∑

i6=k

yiφ(yi) + ykφ (yk) , where k is s.t. ‖Y ‖∞ = |yk|

≥ ykφ (yk)

≥ |yk|φl (|yk|)
≥ ‖Y ‖∞ φl (‖Y ‖∞) .The se
ond inequality is a 
onsequen
e of the se
tor 
ondition (3.25) and the growth 
ondition (3.26):for s
alar nonlinearities, the se
tor 
ondition (3.25) 
ombined with the growth 
ondition (3.26) isequivalent to property (3.23) (see Remark 3.4). 82



4.2. SECOND RESULT OF THIS THESIS - NETWORKS OF PASSIVE OSCILLATORSSe
ond, we prove property (3.24)
Y T Φ(Y ) =

∑

i6=k

yiφ(yi) + ykφ (yk) , where k is s.t. ‖Y ‖∞ = |yk|

≥ |yk| |φ (yk)|
≥ |φ (yk)| , when |yk| ≥ 1

= ‖Φ(Y )‖∞ , when ‖Y ‖∞ ≥ 1 sin
e φ(·) is monotone in
reasing.From Theorem 4.2, we may 
on
lude to global boundedness of the solutions of the network if Ξis a linear system. This result is summarized in Theorem 4.3.Theorem 4.3 Consider the system represented in Figure 4.2, where Ξ is a linear, passive and de-te
table system and Φk(·) = diag{φk(·)} : R
N → R

N is a multivariable repeated nonlinearity. If therepeated nonlinearity φk(·) satis�es
φk(y) → ∞ as y → ∞ and φk(y) → −∞ as y → −∞, (4.8)and is su
h that φk(y) is monotone in
reasing for |y| > b for some b ≥ 0, then the traje
tories arebounded.ProofWe �rst note that from (4.8) we 
an �nd a 
onstant a > 0 su
h that

|y| > a⇒ yφk(y) > 0.Then, we let φ̃(y) be a 
ontinuous, monotone in
reasing fun
tion su
h that
φ̃(y) = φk(y) when |y| > c = max(a, b)and yφ̃(y) > 0 for all y 6= 0. It follows that (3.25) and (3.26) hold for φ̃. From Theorem 4.2,this implies that the repeated multivariable nonlinearity Φ̃(Y ) =

(

φ̃ (y1) , . . . , φ̃ (yN )
)T satis�es
onditions (3.23) and (3.24).The dynami
s of the isolated (W ≡ 0) feedba
k system represented in Figure 4.2 may be written as

Ẋ = AX +B[−Φ̃(Y ) + D̃(Y )], (4.9)where D̃(Y ) = Φ̃(Y )−Φk(Y ) is bounded be
ause (D̃(Y )
)

i
= 0 when |yi| > c. Sin
e, by assumption,the linear system Ξ is passive and dete
table, and Φ̃(·) satis�es (3.23) and (3.24), we 
on
lude fromTheorem 3.2 that the traje
tories of (4.9) are bounded.Remark 4.4 The assumptions on Ξ are obviously satis�ed for Υ linear, passive and dete
table and

F (Y ) linear and passive. The assumptions on Φk(·) = diag{φk(·)} are obviously satis�ed for φk(y) =
−ky + yφ(y) with φ(·) satisfying the assumptions of Se
tion 3.3.1 and monotone in
reasing.83



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS4.2.2 Bifur
ations in networks of passive os
illatorsIn this se
tion, we fo
us on the bifur
ations that may arise in a network of passive os
illatorssatisfying the representation in Figure 4.2. We �rst present a MIMO generalization of Theorem 3.8,then we show its usefulness for the bifur
ation analysis in networks of passive os
illators.Similarly to the SISO situation of Se
tion 3.3.3, the MIMO system in Figure 4.2 may be seen as the(positive) feedba
k inter
onne
tion of an absolutely stable MIMO system with the MIMO stati
 gaindiag{k}. Generi
ally, a bifur
ation o

urs when k is in
reased2. We note R(s) the MIMO transferfun
tion of the linearization of Ξ at X = 0. Similarly, we note Rk(s) the MIMO transfer fun
tion ofthe linearization of Ξk at X = 0.Theorem 4.5 Consider the unfor
ed (W ≡ 0) system shown in Figure 4.2. Assume that Ξ is stronglypassive, that both Ξ and its linearization are zero-state dete
table and that the feedba
k inter
onne
tionof Ξ and Φk(·) is ultimately bounded. Let k∗network ≥ 0 be the minimum value for whi
h the MIMOtransfer fun
tion Rk(s) has a pole on the imaginary axis.If Rk∗
network

(s) has a unique pole on the imaginary axis and if Ξk∗
network

is strongly passive, thenthe bifur
ation is a super
riti
al pit
hfork bifur
ation; for k & k∗network the system is globally bistable,that is, the equilibrium X = 0 is a saddle and its stable manifold Es(0) separates the state spa
e intwo open sets, ea
h of whi
h is the basin of attra
tion of a stable equilibrium.If Rk∗
network

(s) has a unique pair of 
onjugated poles on the imaginary axis and if Ξk∗
network

isstrongly passive, then the bifur
ation is a super
riti
al Hopf bifur
ation; for k & k∗network the systemhas a stable limit 
y
le whi
h is globally asymptoti
ally stable in R
nN\Es(0).ProofThe proof is a straightforward extension of the SISO 
ase presented in the proof of Theorem 3.8. Itrelies on the dissipation inequality at the bifur
ation point,

Ṡ ≤ −Y T Φ(Y ), (4.10)where S denotes the storage fun
tion of Ξk∗
network

. The global part of the proof is identi
al: it relies onabsolute stability of the MIMO system at 
riti
ality. The lo
al part is similar. For a one dimensionalmanifold, the output of the system is Y = Cξ + O
(

|ξ|2
) with C ∈ R

N and ξ ∈ R. Sin
e thelinearization of the 
enter manifold dynami
s is observable, C is full rank whi
h means that at leastone 
omponent of C is nonzero. The 
orresponding 
omponent of Y quali�es for a lo
al 
oordinate2This is easily seen from the Isidori normal form of the linearization of Ξk at X = 0, i.e.
Ż = QZ + DY

Ẏ = EZ + (K + kCB)Y,where CB = (CB)T
> 0 from the strong passivity assumption of Ξk (see [SJK97, Se
tion 2.4.2℄). The system ne
essarilybe
omes unstable for large positive values of k. To see this, we note that for k su�
iently large, the symmetri
 matrix

Ks + kCB (where Ks denotes the symmetri
 part of K) is symmetri
 positive de�nite (e.g. from Weyl theorem[HJ85, Theorem 4.3.1, p. 181℄ whi
h allows to 
ompare the eigenvalues of Ks + kCB with those of Ks and kCB:
λmin (Ks) + λmin (kCB) ≤ λmin (Ks + kCB)). This in turn implies that K + kCB is positive de�nite and thus thatall its eigenvalues have positive real parts (see Appendix A). Using the S
hur 
omplement of the Ja
obian matrix
„

Q D

E K + kCB

«, it is then easy to show that the system is unstable for k su�
iently large.84



4.2. SECOND RESULT OF THIS THESIS - NETWORKS OF PASSIVE OSCILLATORSin the 
enter manifold, i.e. ∃i ∈ {1, . . . , N} su
h that yi = ciξ + O
(

|ξ|2
) with ci 6= 0 and the prooffollows as in the SISO 
ase. For a two dimensional manifold, the proof dire
tly follows as in the SISO
ase (see[SS05b℄ for an expli
it proof in the MIMO framework).Remark 4.6 As the feedba
k inter
onne
tion of Υ and F (Y ), Ξ and its linearization are zero-statedete
table if Υ and its linearization are zero-state dete
table. Similarly, Ξk∗

network
is strongly passiveif Υk∗

network
is strongly passive sin
e the 
oupling F (Y ) is assumed to be passive. For networks ofidenti
al passive os
illators, i.e. Υ = diag{Σ}, these 
onditions are satis�ed if they hold for Σ.4.2.2.1 Dimension of the 
enter manifold for a network of identi
al passive os
illatorswith linear symmetri
 
ouplingThe results of Theorem 4.5 restri
t the dimension of the 
enter manifold at the bifur
ation.The dimension is generi
ally one or two in a general inter
onne
tion. However, it 
an be higher insymmetri
 inter
onne
tions of identi
al os
illators: when the network possesses symmetry, multipleeigenvalues may 
ross the imaginary axis simultaneously even in the generi
 
ase (see [GS02℄), andthe dimension of the 
enter manifold 
an be greater than 2. The situation is mu
h more 
ompli
atedand a deeper analysis has to be done � this is the 
ase, for example, of the equivariant bifur
ationsdes
ribed in [GSS88℄. In this thesis, we do not 
onsider su
h degenerate situations.Knowing the dimension of the 
enter manifold of one isolated passive os
illator, what 
an be saidabout the dimension of the 
enter manifold of a network of identi
al passive os
illators? This questionis easily answered in the 
ase of a network of identi
al passive os
illators with linear and symmetri
positive semi-de�nite 
oupling. If we assume linear symmetri
, positive semi-de�nite 
oupling, i.e.

U = −ΓY with Γ = ΓT ≥ 0 and rank(Γ) = q < N , the poles of the MIMO transfer fun
tion Rk(s) areeasily obtained from the poles of the SISO transfer fun
tion Gk(s). The poles of the MIMO transferfun
tion Rk(s) are the 
omplex values of s su
h thatrank(1 − kG(s)

G(s)
IN + Γ

)

< N.Be
ause Γ is a symmetri
 positive semide�nite matrix of rank q, there exists an orthogonal matrix Lsu
h that Γ = LT ΛL where Λ = diag (0, . . . , 0, λN−q+1, . . . , λN ) with 0 < λN−q+1 ≤ · · · ≤ λN . Wethus have to sear
h for the 
omplex values of s that render the diagonal matrix (1−kG(s)
G(s) IN + Λ

)singular. This matrix is singular for ea
h 
omplex value of s solution of one of the equations
1−(k−λi)G(s)

G(s) = 0, i = 1, . . . , N . Thus the poles of the MIMO 
losed-loop transfer fun
tion are foundby repla
ing k by k − λi, i = 1, . . . , N in the expression of the poles of Gk(s). As a 
onsequen
e,at k = k∗, the MIMO system possesses a 
enter manifold of dimension m(N − q) where m is thedimension of the 
enter manifold of one isolated passive os
illator at 
riti
ality. In Theorem 3.8 wehave shown that, generi
ally, m ∈ {1, 2}. As a result, if q = N − 1 we are in the situation des
ribedby Theorem 4.5.Remark 4.7 As we have noted in Se
tion 4.1, if the matrix Γ is only symmetri
, a shift by k0INtransforms Γ into a positive semide�nite matrix Γ′ = Γ+k0IN of rank q < N . The 
riti
al bifur
ationvalue for network, k∗network, is then linked to the 
riti
al value for an isolated passive os
illator k∗ bythe relation k∗network = k∗ − k0. 85



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSThese 
onsiderations lead to the following proposition.Proposition 4.8 Consider a network of N identi
al passive os
illators with linear symmetri
 
ou-pling U = −ΓY , where Γ = ΓT . Let k0 be the minimal shift su
h that Γ′ = Γ′T = Γ + k0IN ≥ 0and rank (Γ′) = N − 13. If one isolated os
illator has a 
enter manifold of dimension one or two at
k = k∗, then the network possesses a 
enter manifold of the same dimension at the bifur
ation value
k∗network = k∗ − k0.4.2.2.2 Relaxation os
illations in networks of passive os
illatorsIn this se
tion we give an extension of Theorem 3.9 whi
h transforms the global bistability resultof Theorem 4.5 into a relaxation os
illation result. For this, we 
onsider the addition of a feedba
kadaptation loop to the globally bistable system in Figure 4.2. The adaptation loop is represented onFigure 4.3. As we have seen in the proof of Theorem 4.5, there always exists (at least) one output
omponent that quali�es for a lo
al 
oordinate in the 
enter manifold. Let yi be this 
omponent.The adaptation we 
onsider is diagonal and a
ts only on yi, i.e. only the 
orresponding 
omponent
wi of the external input W is nonzero . This 
omponent is su
h that wi = −Ri where Ri is the statevariable of the additional adaptation dynami
.

ei = (0, . . . , 0, 1, 0, . . . , 0)

i

−−
Ξ

Φk(·)

Let yi be the 
omponent of the MIMOoutput Y that quali�es for a lo
al 
oordinatein the 
enter manifold when the adaptation is not present.Y

1
τs+1eie

T
i

W The adaptation loopis de�ned as:
wj = 0, ∀j 6= i
τṘi = yi − Ri

wi = −Ri

V

Figure 4.3: Converting the global bistability s
enario into a relaxation os
illator with a slow adapta-tion me
hanism (τ ≫ (k − k∗network)
−1).With this additional feedba
k adaptation loop, the global bistability result of Theorem 4.5 
anbe transformed into a global relaxation os
illation for the network. This result is summarized inTheorem 4.9.Theorem 4.9 Under the assumptions of Theorem 4.5, suppose that the feedba
k inter
onne
tion of Ξand Φk(·) undergoes a super
riti
al pit
hfork bifur
ation at k = k∗network and that the feedba
k systemshown in Figure 4.3 is ultimately bounded. Then there exists 
onstants ǭ > 0, and τ > 0 su
h that

∀k ∈ (k∗network, k
∗
network + ǭ) and τ ≫ (k − k∗network)

−1, the feedba
k system shown in Figure 4.3 hasa globally asymptoti
ally stable limit 
y
le in R
nN+1\Es(0).ProofThe proof is similar to the proof of Theorem 3.9. Let ǫ = (k − k∗network) and 
onsider the systemrepresented on Figure 4.3. By assumption, the feedba
k inter
onne
tion of Ξ and Φk(·) possessesa one dimensional 
enter manifold at ǫ = 0. For W 6= 0, strong passivity of Ξ implies that the3This 
ondition 
an be satis�ed i� the minimal eigenvalue of Γ has an algebrai
 multipli
ity equal to one.86
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enter-unstable manifold equation writes4
ẏi = ǫyi − κ′y3

i +
N∑

j=1

αjwj + O
(
y4

i

)
,where κ′ > 0 and wj represents the jth 
omponent of the network external input ve
tor W . Thus, ifwe augment the one-dimensional 
enter-unstable manifold of the original system (without adaptation)with the adaptation equation, we obtain

ẏi = ǫyi − κ′y3
i − bRi + O

(

|(yi, Ri)|4
)

, κ′ > 0, b > 0

Ṙi = δ (−Ri + yi) ,
(ǫ̇ = 0,

δ̇ = 0),

(4.11)where δ = τ−1. The dynami
s (4.11) are identi
al to those obtained in the SISO 
ase (see (3.38)).The lo
al part of the proof is thus similar to the SISO 
ase.The global part of the proof follows as in Theorem 4.5: for δ > 0 and ǫ = 0, the equilibrium
(x,Ri) = (0, 0) is globally asymptoti
ally stable be
ause the augmented storage V = δS+ 1

2R
2
i satis�esthe dissipation inequality V̇ = δṠ+ṘiRi = −δY T Φ(Y )−δyiRi +δRi (−Ri + yi) ≤ −δY T Φ(Y ) whi
his analogous to (4.10).Remark 4.10 If the forward system Ξ is linear, strongly passive and dete
table and the repeatednonlinearity φ(·) satis�es the assumptions of Se
tion 3.3.1 and is monotone in
reasing, then ultimateboundedness results from Theorem 4.3 sin
e the adaptation dynami
s are passive.4.2.3 Relaxation of the assumptions of Theorem 4.5 - Use of multipliersThe key to our results is the absolute stability of the feedba
k system at 
riti
ality. The strongpassivity of Ξk∗

network
is a su�
ient 
ondition for su
h a property. Nevertheless, it is rather restri
tivesin
e it requires that Ξk loses stability and passivity for the same value of the parameter k. Multipliers
an be used to extend the results of Theorem 4.5 to more general situations. In Theorem 4.11, wepresent an extension of Theorem 3.11 that provides su�
ient 
onditions for absolute stability of thefeedba
k system of Figure 4.2.Theorem 4.11 Consider the system shown in Figure 4.2 with W ≡ 0. Assume that Ξ and itslinearization are zero-state dete
table and that the feedba
k inter
onne
tion of Ξ and Φk(·) is ultimatelybounded. Then ea
h of the following 
onditions is su�
ient for global asymptoti
 stability of theequilibrium X = 0 of the feedba
k system.

• Φ(·) = diag{φ(·)} with φ(·) in the se
tor (0,∞) and there exists γ > 0 su
h that (1 + γs)INΞkis strongly passive;4The strong passivity of Ξ (and gΞ full rank) implies that Ξ has relative degree one at X = 0. This, in turn,implies that for X in a neighborhood of the origin, the input V of Ξ dire
tly enters the Ẏ dynami
s, i.e. Ẏ = ∂hΞ

∂X
Ẋ =

LfΞ
hΞ(X) + LgΞ

hΞ(X)V with LgΞ
hΞ(0) = ∂hΞ

∂X

˛

˛

˛

X=0
gΞ(0) being a symmetri
 positive de�nite matrix.87
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• Φ(·) = diag{φ(·)} with φ(·) monotone in the se
tor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN with M(s) in the form (3.39), z(t) ≥ 0, su
h that Ξ̃k = H1INΞkH

−1
2 IN isstrongly passive;

• Φ(·) = diag{φ(·)} with φ(·) odd, monotone in the se
tor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN withM(s) in the form (3.39) su
h that Ξ̃k = H1INΞkH

−1
2 IN is strongly passive.ProofFor Popov MIMO multipliers, the assumption that (1+γs)INΞk is strongly passive implies that Ṡ ≤

− (Φ(Y ))T
(

Y + γẎ
). A Lyapunov fun
tion for the inter
onne
tion is V = S + γ

∑N
i=1

∫ yi

0 φ(s) ds,whi
h satis�es V̇ ≤ − (Φ(Y ))T Y .For Zames-Falb MIMO multipliers M(s)IN , with M(s) in the form (3.39), su�
ient 
onditions forthe stri
t positivity (stri
t passivity) of the MIMO nonlinearity Φ̃(·) = H2INΦ(·)H−1
1 IN are given in[SK00, Theorem 1℄ :

Φ(0) = 0,
∫ +∞

−∞
(r(t) − s(t))T (Φ(r(t)) − Φ(s(t))) dt ≥ 0,

(
dΦ

ds
(s)

)

−
(
dΦ

ds
(s)

)T

= 0.These 
onditions are satis�ed for a repeated monotone nonlinearity Φ(·) = diag{φ(·)} with φ(·)monotone in
reasing and satisfying φ(0) = 0. The rest of the proof dire
tly follows as the one ofTheorem 3.11.We now present Theorem 4.12. It is an extension of Theorem 3.12 that generalizes the results ofTheorem 4.5 through the use of multipliers.Theorem 4.12 The statements of Theorem 4.5 hold if the strong passivity assumption on Ξk∗
networkis repla
ed by one of the following 
onditions:

• Φ(·) = diag{φ(·)} with φ(·) in the se
tor (0,∞) and there exists γ > 0 su
h that (1 +
γs)INΞk∗

network
is strongly passive;

• Φ(·) = diag{φ(·)} with φ(·) monotone in the se
tor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN withM(s) in the form (3.39), z(t) ≥ 0, su
h that Ξ̃k∗

network
= H1INΞk∗

network
H−1

2 INis strongly passive;
• Φ(·) = diag{φ(·)} with φ(·) odd, monotone in the se
tor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN with M(s) in the form (3.39) su
h that Ξ̃k∗

network
= H1INΞk∗

network
H−1

2 IN isstrongly passive.ProofThe proof is similar to that of Theorem 3.12. An expli
it proof in the MIMO framework 
an be foundin [SS05b℄. 88



4.3. ILLUSTRATIVE EXAMPLESRemark 4.13 Suppose that a passive os
illator is 
onstru
ted through the use of a multiplier M(s)as des
ribed in Theorem 3.12. Consider a network of su
h identi
al passive os
illators representeda

ording to Figure 4.1. We would like to use the MIMO repeated version of this multiplier M(s)INto 
on
lude about bifur
ation with the help of Theorem 4.12. A su�
ient 
ondition is that the repeatedmultiplier also preserves the positivity of the 
oupling (sin
e the MIMO repeated multiplier M(s)INalready ensures that diag{Σk} is strongly passive for k ≤ k∗network). For this 
ondition to be satis�ed,the 
oupling F (Y ) has to be the gradient of a 
onvex fun
tion (see [SK00℄). In the 
ase of linear
oupling F (Y ) = ΓY , a su�
ient 
ondition is Γ = ΓT ≥ 0.4.3 Illustrative examplesIn this se
tion, we illustrate the results of Theorems 3.8 or 4.12 by examples of networks ofidenti
al passive os
illators of order 3. These passive os
illators were presented in Se
tion 3.5.1. Inthese os
illators, the forward blo
k appearing in Figure 3.8 is �lled with a passive linear system whose
orresponding transfer fun
tion is
G(s) =

s
(
τs+ ω2

n

)

s3 + 2ζωns2 + (τ + ω2
n) s+ ω2

n

, (4.12)with
2ζ ≥ ωn

τ
> 0, (4.13)and the stati
 nonlinearity is

φk(y) = y3 − ky. (4.14)As mentioned in Se
tion 3.5.1, the presen
e of a single zero at s = 0 for
es the Hopf bifur
ations
enario des
ribed in Theorem 3.8. The 
riti
al values k∗ and k∗passive of Gk(s) are given in (3.48)and (3.49) respe
tively.Using Theorem 3.8 or 3.12, we have shown in Se
tion 3.5.1 that, for parti
ular values of theparameters, this system satis�es the de�nition of a passive os
illator given in Se
tion 3.3.4 for k & k∗,i.e.1. the feedba
k system satis�es the dissipation inequality Ṡ ≤
(

k − k∗passive

)

y2 − y4 + uy;2. when isolated, this system possesses a global limit 
y
le for k & k∗.We now illustrate some network topologies whi
h allow for a dire
t appli
ation of Theorem 4.5 (or 4.12,depending on the parameters values). We su

essively 
onsider networks 
omposed of an in
reasingnumber of os
illators: N = 2, N = 3, and N > 3.4.3.1 Case 1: N = 2Consider the positive (resp. negative) feedba
k 
oupling of 2 identi
al passive os
illators of type(4.12)-(4.14) as illustrated in Figure 4.4. The inter
onne
tion matri
es 
orresponding to these 
asesare respe
tively Γ1 =

(
0 −1
−1 0

) for 
olumn (a) and Γ2 =

(
0 1
1 0

) for 
olumn (b). The networkis un
hanged by the shifts Γ′ = Γ + k0IN and k′ = k + k0. In both 
ases, 
hoosing k0 = 1, the89



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSshifted matri
es Γ′
1 =

(
1 −1
−1 1

) and Γ′
2 =

(
1 1
1 1

) are positive semide�nite with rank 1. ByProposition 4.8, the dimension of the 
enter manifold of the network is 2. The 
riti
al bifur
ationvalue for the network is k∗network = k∗ − 1. From Theorem 4.5 (or Theorem 4.12, depending on theparameters values), we 
on
lude that the network possesses a limit 
y
le for k & k∗network. This isillustrated by the simulation results presented in Figure 4.4. In this simulation, the 
hosen parametervalues are the same as in Se
tion 3.5.1.1, i.e. ωn = 1, ζ = 1.25, τ = 2. For these parameter values, weobtain k∗ = k∗passive = 1 (see Se
tion 3.5.1.1) and k∗network = 0. As 
an be seen on these simulationresults, the inter
onne
tion de�ned by Γ1 leads to syn
hrone os
illations while the inter
onne
tionde�ned by Γ2 leads to anti-syn
hrone os
illations.4.3.2 Case 2: N = 3We 
onsider now a network of 3 os
illators of type (4.12)-(4.14) 
onne
ted a

ording to the 
hainstru
ture of Figure 4.5.The 
orresponding inter
onne
tion matrix is
Γ =





3 1 1
1 2 0
1 0 2



 > 0 (4.15)The eigenvalues of Γ being 1, 2 and 4, the shift k0 required to transform Γ into a positive semide�nitematrix of rank 2 is k0 = −1. The shifted matrix Γ′ is then  2 1 1
1 1 0
1 0 1



 ≥ 0. By Proposition 4.8, thedimension of the 
enter manifold is 2. The 
riti
al bifur
ation value for the network is k∗network = k∗+1.From Theorem 4.5 (or Theorem 4.12 a

ording to the parameter values), we 
on
lude that the networkpossesses a limit 
y
le for k & k∗network. This is illustrated by the simulation results presented in Figure4.6. For this simulation we 
onsidered a network of 3 identi
al passive os
illators of type (4.12)-(4.14)
oupled a

ording to (4.15). On
e again, we 
hosed the parameters values ωn = 1, ζ = 1.25, τ = 2.These parameter values lead to a 
riti
al bifur
ation value k∗network = 2.4.3.3 Case 3: N > 3As an illustration for a large number of os
illators, we �rst 
onsider a SN symmetry (all-to-all)network of passive os
illators of type (4.12)-(4.14). The SN symmetry 
oupling 
orresponds to theinter
onne
tion matrix
Γ =








(N − 1)K −K · · · −K
−K (N − 1)K · · · −K... ... . . . ...
−K −K · · · (N − 1)K








(4.16)where K is the 
oupling strength 
hara
terizing the SN symmetry network. The eigenvalues of Γ are
NK with a multipli
ity N − 1 and 0. As a 
onsequen
e, the rank of Γ is N − 1. By Proposition4.8, the dimension of the 
enter manifold is 2. The 
riti
al bifur
ation value for the network is
k∗network = k∗. From Theorem 4.5 (or Theorem 4.12 a

ording to the parameter values), we 
on
lude90
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(a) (b)Figure 4.4: Simulation results for a network of 2 identi
al os
illators of type (4.12)-(4.14). The 
ir
lesrepresent the os
illators. Column (a) 
orresponds to Γ1 and 
olumn (b) 
orresponds to Γ2. Theparameters values are ωn = 1, ζ = 1.25, τ = 2, k = 0.3. The 
riti
al bifur
ation value for anisolated os
illator is k∗ = 1 and the 
orresponding bifur
ation value for the network is k∗network = 0.The traje
tories generated in the state spa
e of ea
h os
illator are represented on the se
ond row. Adi�erent 
olor is used for ea
h os
illator (red for the traje
tory of os
illator 1 and blue for the traje
toryof os
illator 2). The third row represents the time evolution of the outputs of the os
illators.that the network possesses a limit 
y
le for k & k∗network. This is illustrated by the simulation resultspresented in Figure 4.7. For this simulation we 
onsidered a network of 5 identi
al passive os
illatorsof type (4.12)-(4.14) 
oupled a

ording to S5 symmetry. The parameters values are ωn = 1, ζ = 1.25,
τ = 2. This leads to a 
riti
al bifur
ation value k∗network = 1.The results of Theorems 4.5, or 4.12 hold only for k & k∗network. Nevertheless, we expe
t theseresults to hold valid for a (large) range of the bifur
ation parameter k. To illustrate this we sele
ted k =91



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS
O2 O1 O3

−2−3−2

−1

−1

−1

−1

Figure 4.5: Network of 3 os
illators in 
hain stru
ture.

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

−0.5

0

0.5

1

1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

X
1

State−space of 3 oscillators for k
p
=2.100000e+00

X
2

ξ

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

Time evolution of the three outputs for k
p
=2.100000e+00

y
1
(t)

y
2
(t)

y
3
(t)

(a) (b)Figure 4.6: Simulation results for a network of 3 identi
al os
illators of type (4.12)-(4.14) 
oupleda

ording to Figure 4.5. The parameters values are ωn = 1, ζ = 1.25, τ = 2, k = 2.1. The 
riti
albifur
ation value for an isolated os
illator is k∗ = 1 and the 
orresponding bifur
ation value for thenetwork is k∗network = 2.
2. In this simulation, we see that all the os
illators syn
hronize. We will return to the syn
hronizationbehavior in Se
tion 4.4.2.The same results hold for DN symmetry networks, i.e. bidire
tional rings of os
illators. In the
ase of DN symmetry networks, the matrix Γ has the form

Γ =














2K −K 0 · · · 0 −K
−K 2K −K 0 · · · 0

0 −K . . . . . . . . . ...... 0
. . . 2K −K 0

0
... . . . −K 2K −K

−K 0 · · · 0 −K 2K














. (4.17)
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(a) (b)Figure 4.7: Simulation results for a network of 5 identi
al os
illators of type (4.12)-(4.14) 
oupledthrough S5 symmetry. The parameters values are ωn = 1, ζ = 1.25, τ = 2, k = 2, and K = 1. The
riti
al bifur
ation value for an isolated os
illator is k∗ = 1 and the 
orresponding bifur
ation valuefor the network is k∗network = 1.This matrix is 
y
li
 and its eigenvalues 
an be 
al
ulated analyti
ally (see e.g. [Hop86℄): λj(Γ) =

2K
(

1 − cos
(

2πj
N

))

≥ 0, j = 1, . . . , N . The rank of Γ is on
e again equal to N − 1 and the resultsof Theorems 4.5 (or 4.12 a

ording to the parameter values) may be dire
tly applied.4.4 Third result of this thesis - In
remental passivity and syn
hro-nizationAfter having determined the existen
e and stability of sustained os
illations in a network of inter-
onne
ted passive os
illators, the next step is to 
hara
terize their relative os
illating behavior, i.e.one with respe
t to the other ones. The question of global syn
hronization among the os
illators isparti
ularly relevant. Syn
hronization refers to the tenden
y of inter
onne
ted os
illators to produ
eensemble phenomena, that is, to phase lo
k as if an invisible 
ondu
tor was or
hestrating them. Syn-
hronization is a 
onvergen
e property for the di�eren
e between the solutions of di�erent systems.Convergen
e properties for the di�eren
e between solutions of a 
losed system are 
hara
terized bynotions of in
remental stability [Ang02, LS98, PPvdWN04℄. For open systems, the 
orrespondingnotion is in
remental passivity.In the next se
tion, we de�ne the notion of in
remental passivity and give su�
ient 
onditionsunder whi
h passive os
illators are in
rementally passive. In Se
tion 4.4.2, we show the impli
ationsof in
remental passivity for syn
hronization and derive su�
ient network topology 
onditions forthe existen
e of globally asymptoti
ally stable syn
hrone os
illations in networks of os
illators. Theresults 
on
ern the inter
onne
tion of N identi
al passive os
illators with network topologies thatin
lude SN symmetry (all-to-all topology), DN symmetry (bidire
tional ring topology), ZN symme-try (unidire
tional ring topology) and open 
hain symmetry. Exploiting the properties of passiveos
illators, we additionally show that the network solutions are bounded and that the global limit
y
le stability analysis 
arried out for an isolated os
illator extends to the network. These results are93



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSrelated to other re
ent syn
hronization results in the literature [SW03, Pog98, Ang02℄ that are allbased on in
remental stability notions.4.4.1 In
remental passivityConsider two di�erent solutions xa(t) and xb(t) of the input-a�ne system Σ given in (3.16) with
orresponding inputs and outputs (ua(t), ya(t)) and (ub(t), yb(t)). Denote the in
remental variablesby ∆x = xa − xb, ∆u = ua − ub, and ∆y = ya − yb. The system is in
rementally dissipative if itsatis�es a dissipation inequality of the forṁ
∆S ≤ w (∆u,∆y) (4.18)for the s
alar in
remental storage fun
tion ∆S(∆x) ≥ 0 with the in
remental supply rate w (∆u,∆y).In
remental dissipativity (4.18) with the in
remental supply rate w (∆u,∆y) = (∆u)T ∆y is 
alledin
remental passivity.Passivity implies in
remental passivity for linear systems, that is, if the quadrati
 stor-age S(x) = xTPx satis�es the dissipation inequality Ṡ ≤ uT y then the in
remental storage

∆S(∆x) = (∆x)T P∆x satis�es the in
remental dissipation inequality ∆̇S ≤ (∆u)T ∆y. Passivityalso implies in
remental passivity for monotone in
reasing, stati
 nonlinearity: if φ(·) is monotonein
reasing, then (s1 − s2) (φ (s1) − φ (s2)) = ∆s∆φ(s) ≥ ∆sψ(∆s) ≥ 0, ∀∆s = s1 − s2 for somestati
 nonlinearity ψ(·).Passive os
illators made of the feedba
k inter
onne
tion of a linear system Σk with a monotonein
reasing nonlinearity φ(·) are thus also in
rementally passive. In the following se
tions we restri
tourselves to linear passive systems Σ and to nonlinearities φ(·) that are monotone in
reasing.4.4.2 Syn
hronizationConsider a network of N identi
al passive os
illators of type (3.16),(3.17),(3.18). We assume thatthe only nonlinearity in ea
h passive os
illator is due to the nonlinear monotone in
reasing fun
tion
φ(·) appearing in the de�nition of φk(·). The dynami
s for os
illator i = 1, . . . , N write

{
ẋi = Axi −Bφk (yi) +Bui

yi = Cxiwhere ui represents the external input of os
illator i. The dynami
s of the network are easily repre-sented with the help of the Krone
ker produ
t (see Se
tion 2.7 for a reminder of the main propertiesof the Krone
ker produ
t).
{
Ẋ = (IN ⊗A)X − (IN ⊗B) Φk(Y ) + (IN ⊗B)U
Y = (IN ⊗ C)X

(4.19)where X =
(
xT

1 , . . . , x
T
N

)T ∈ R
nN , Y = (y1, . . . , yN )T ∈ R

N ,
Φk(Y ) = (φk (y1) , . . . , φk (yN ))T ∈ R

N , and IN represents the N by N identity matrix.We assume linear 
oupling, i.e. the topology of the network is de�ned by the input-output relation
U = −ΓY. (4.20)Furthermore, we make the following network topology assumptions:94



4.4. THIRD RESULT OF THIS THESIS - INCREMENTAL PASSIVITY ANDSYNCHRONIZATION
• We assume that Γ is real and positive semide�nite, and that 1 (the ve
tor (1, . . . , 1)T ∈ R

N )belongs to the kernel of Γ. This is equivalent to the assumption that all rows of Γ sum tozero whi
h implies that the 
oupling between the os
illators disappears when syn
hronizationis rea
hed.
• We assume that the rank of Γ is equal to N − 1, i.e. Γ has only one zero eigenvalue. This isequivalent to the assumption that the network is 
onne
ted.
• We do not require the inter
onne
tion matrix Γ to be symmetri
 but we assume that ker (Γ) =

ker
(
ΓT
)

= range (1).Theorem 4.15 gives su�
ient 
onditions for the existen
e of a globally asymptoti
ally stable os
illationin a network of identi
al passive os
illators satisfying the above made assumptions.De�nition 4.14 We denote by λmin 6=0
(Γs) the smallest nonzero eigenvalue of the symmetri
 part of

Γ.Theorem 4.15 Consider the MIMO system (4.19)-(4.20) representing a network of N identi
al in-
rementally passive os
illators. Assume that (A,C) is observable, φ(·) is monotone in
reasing andea
h isolated os
illator (ui ≡ 0) possesses a globally asymptoti
ally stable limit 
y
le in R
n\Es(0)where Es(0) denotes the stable manifold of the origin. If the inter
onne
tion matrix Γ is a real, pos-itive semide�nite matrix su
h that ker (Γ) = ker

(
ΓT
)

= range (1) then for λmin 6=0
(Γs) > k − k∗passive(strong 
oupling), the network has a limit 
y
le whi
h attra
ts all solutions ex
ept those belonging tothe stable manifold of the origin, and all the os
illators of the network exponentially syn
hronize.ProofWe 
ompare the solution of ea
h os
illator in the network to that of an isolated referen
e os
illator.The isolated referen
e os
illator dynami
s are

{
ẋ0 = Ax0 −Bφk (y0)
y0 = Cx0where x0 ∈ R

n and y0 ∈ R. Consider the in
remental dynami
s
{

∆Ẋ = (IN ⊗A) ∆X − (IN ⊗B)∆Φk(Y ) + (IN ⊗B)U
∆Y = (IN ⊗ C) ∆X

(4.21)where ∆X = X − 1 ⊗ x0 with X satisfying the dynami
s (4.19), 1 ∈ R
N and ∆Φk(Y ) =

Φk(Y ) − 1 ⊗ φk (y0). Sin
e ea
h passive os
illator is in
rementally passive, the in
remental system(4.21) satis�es the in
remental dissipation inequality
Ṡ∆ ≤ (k − k∗passive)∆Y

T ∆Y − ∆Y T ∆Φ(Y ) + ∆Y TU

≤ k̄∆Y T ∆Y + ∆Y TU

≤ k̄∆Y T ∆Y − ∆Y T Γ∆Y,

(4.22)where k̄ = k − k∗passive and S∆ = 1
2∆XT (IN ⊗ P ) ∆X with P = P T > 0 de�ning the storagefun
tion asso
iated to ea
h in
rementally passive os
illator (i.e. Si = xT

i Pxi). S∆ is the sum of thein
remental storage fun
tions of the in
rementally passive os
illators. The se
ond inequality 
omes95



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSfrom the monotone in
reasing property of φ(·). The third inequality 
omes from the properties of Γ,i.e. U = −ΓY = −Γ (∆Y + 1 ⊗ y0) = −Γ∆Y sin
e 1 ∈ ker (Γ).De
ompose (uniquely) the ve
tor X into two 
omponents belonging respe
tively to the kernel of
Γ ⊗ In and to its orthogonal 
omplement, i.e. X = Xker + Xker⊥ where Xker ∈ ker (Γ ⊗ In) and
Xker⊥ ∈ ker (Γ ⊗ In)⊥ =

{
V ∈ R

nN : V TW = 0, ∀W ∈ ker (Γ ⊗ In)
}. The 
orresponding outputde
omposition is Y = Yker + Yker⊥with Yker = (IN ⊗ C)Xker ∈ ker (Γ) and Yker⊥ = (IN ⊗ C)Xker⊥ ∈

(ker (Γ))⊥ (this is obvious from the Krone
ker produ
t properties, see Propositions A.6 and A.7 inAppendix A). From the assumption ker (Γ) = range (1), we have Xker = 1⊗xker and Yker = 1⊗ yker,with 1 ∈ R
N . We thus write ∆X = 1⊗ (xker − x0)+Xker⊥ and ∆Y = 1⊗ (yker − y0)+Yker⊥ . Underthe assumption that ker (Γ) = ker

(
ΓT
), it 
an be shown that −∆Y T Γ∆Y ≤ −λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2where λmin 6=0

(Γs) represents the smallest nonzero eigenvalue of the symmetri
 part of Γ (see Propo-sition A.5 in Appendix A). The in
remental passivity inequality (4.22) then writes
Ṡ∆ ≤ k̄ |1 ⊗ (yker − y0)|2 +

(
k̄ − λmin 6=0

(Γs)
) ∣
∣Yker⊥

∣
∣2 (4.23)Assume that the initial 
ondition of the referen
e os
illator x0(0) is 
hosen to be equal to the initial
ondition of the kernel 
omponent of X, i.e. x0(0) = xker(0). The invarian
e of the kernel dynami
s(see Appendix A) implies that x0(t) = xker(t), ∀t ≥ 0 and thus that yker(t) − y0(t) = 0, ∀t ≥ 0. Thein
remental passivity inequality now writes

Ṡ∆ ≤
(
k̄ − λmin 6=0

(Γs)
) ∣
∣Yker⊥

∣
∣2 . (4.24)From the strong 
oupling assumption, we have

γ = λmin 6=0
(Γs) − k̄ > 0. (4.25)Integrating (4.24) over [t0, t0 + δ] where δ > 0 is arbitrarily 
hosen, we obtain

∫ t0+δ

t0

Ṡ∆dτ ≤ −γ
∫ t0+δ

t0

∣
∣Yker⊥(τ)

∣
∣2 dτ

≤ −αγ
∣
∣Xker⊥ (t0)

∣
∣2 , α > 0, (4.26)for all Xker⊥ (t0), t0 ≥ 0. The last inequality 
omes from the observability of the pair (A,C)(see Appendix A). Global exponential stability (GES) of Xker⊥(t) is then dedu
ed from 
lassi
alexponential stability theorems (see, for example, [SB89, Theorem 1.5.2℄). This means that with aparti
ular 
hoi
e of initial 
ondition for the referen
e os
illator, we were able to show that ∆X(t) = 0is GES. GES of the solution ∆X = 0 for the di�eren
e system (4.21) implies that all solutions of thenetwork (4.19) exponentially 
onverge to the invariant subspa
e

{
X ∈ R

nN : x1 = · · · = xN = x0

} (4.27)where the dynami
s are de
oupled. Be
ause the dynami
s of the network de
ouple in the invariant96



4.4. THIRD RESULT OF THIS THESIS - INCREMENTAL PASSIVITY ANDSYNCHRONIZATIONsubspa
e (4.27), GES of the solution ∆X = 0 for the di�eren
e system (4.21) implies that all boundedsolutions 
onverge to the ω-limit sets of the de
oupled system and that all os
illators syn
hronizeasymptoti
ally.Combining GES of the di�eren
e system (4.21) and global boundedness of the solutions (see Se
tion4.2.1), we 
on
lude that, for strong 
oupling, all solutions of the network (4.19) 
onverge to the ω-limitsets of the un
oupled dynami
s, i.e. all solutions ex
ept those belonging to the stable manifold of theorigin of the network 
onverge towards a unique limit 
y
le.Remark 4.16 The result still holds if the observability assumption on the pair (A,C) is relaxed to adete
tability assumption.Remark 4.17 The GES result of ∆X = 0 may be viewed as an in
remental input-to-state stability(δ-ISS) property of the network with S(X) being the 
orresponding δ-ISS Lyapunov fun
tion [Ang02℄.Remark 4.18 Theorem 4.15 is 
losely linked to re
ent syn
hronization results by Slotine [SW03℄and Pogromsky [Pog98℄. This may easily be noti
ed from the normal form of passive systems. Thenormal form for os
illator i of the network is [SJK97℄
(
żi
ẏi

)

=

(
Q e

fT g

)(
zi
yi

)

+

(
0

CB

)

(kyi − φ (yi))

−
N∑

j=1

γij

(
0 0

T

0 CB

)((
zj
yj

)

−
(
zi
yi

))

,where CB is positive de�nite from the strong passivity assumption. Assume, as it is done by Slo-tine and Pogromsky, that γij ≤ 0 for i 6= j, and that γii =
∑N

j=1 |γij |, then the 
ouplings
−γij

(
0 0

T

0 CB

) are positive semide�nite. The symmetri
 part of the Ja
obian of the un
oupleddynami
s, divided a

ording to the 
oupling stru
ture, is given by
Jis =

(

Qs
1
2(e+ f)

1
2(e+ f)T g + CBk − CB

dφ(yi)
dyi

)

.It is then easily seen that the su�
ient 
onditions given by Slotine [SW03, Remark 3 of Theorem2℄ are satis�ed, i.e.1. Qs is 
ontra
ting sin
e it is Hurwitz from the passivity and dete
tability assumptions;2. λmax(g + CBk − CB
dφ(yi)

dyi
) < g + CBk <∞ from the monotone in
reasing assumption;3. σmax

(
1
2(e+ f)

)
=
∣
∣
∣
e+f
2

∣
∣
∣

2
<∞.Exploiting the spe
ial stru
ture of passive os
illators, Theorem 4.15 additionally proves that thenetwork solutions are bounded and that the limit 
y
le stability analysis 
arried out for an isolatedos
illator extends to the network. 97



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS4.5 Examples and simulation resultsAs an illustration of Theorem 4.15 for a non symmetri
 inter
onne
tion matrix, we 
onsider a ZNsymmetry network of passive os
illators of type (4.12)-(4.14). In the 
ase of ZN symmetry networks,the matrix Γ has the form
Γ =











K −K · · · · · · 0
0 K −K · · · 0... 0 K

. . . ...... ... . . . . . . −K
−K 0 · · · 0 K











(4.28)and it 
an be easily shown that rank(Γ) = N − 15 and that all its eigenvalues have nonnegative realparts (this results from a simple appli
ation of the Gershgorin Theorem [GvL89℄). Indeed, it 
an beshown that λmin 6=0
(Γs) = K

(
1 − cos

(
2π
N

)). From the strong 
oupling 
ondition (4.25), this impliesthat syn
hronization is guaranteed if K > KZN
with KZN

=
k−k∗

passive

(1−cos( 2π
N ))

. Moreover, from Theorem4.15, we 
on
lude that for K > KZN
, all solutions, ex
ept those belonging to the stable manifold,
onverge towards the ω-limit set of the un
oupled system whi
h is a globally attra
tive limit 
y
le for

k & k∗.
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Figure 4.8: Time evolution of the outputs in a network of 5 os
illators 
oupled through Z5 symmetry.Simulation results for a Z5 symmetry network of passive os
illators of type (4.12)-(4.14) arepresented in Figure 4.8. For this simulation, we have 
hosen the following values of the parameters:
τ = 2, ζ = 1.25 and ωn = 1. This leads to a 
riti
al bifur
ation value k∗ = 1 while the loss ofpassivity o

urs at k∗passive = 1. The value of the bifur
ation parameter k has been 
hosen equal to
2. The initial 
onditions for this simulation have been 
hosen at random. For global syn
hronization,the 
ommon 
oupling strength K has to be strong enough (i.e., K > 2−1

1−cos( 2π
5 )

= 1.4472). For thissimulation, the value of K was equal to 2.5The 
hara
teristi
 polynomial is (K − x)N − KN whi
h has only one root equal to zero for any N .98



4.5. EXAMPLES AND SIMULATION RESULTS
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Figure 4.9: Superposition of the state spa
es of the 5 passive os
illators 
oupled through Z5 symmetry.In Figure 4.9, we 
learly see that the os
illators syn
hronize around a 
ommon limit 
y
le. Thislimit 
y
le is identi
al to the one obtained for an isolated os
illator.The same global syn
hronization results hold for DN and SN symmetry networks. For DN sym-metry networks, the 
oupling strength syn
hronization threshold is KDN
=

k−k∗
passive

2(1−cos( 2π
N ))

. For SNsymmetry networks, the 
oupling strength syn
hronization threshold is KSN
=

k−k∗
passive

N
.Finally, the 
ase of bidire
tional open 
hain stru
tures is also in
luded in Theorem 4.15. Considerthe network represented on Figure 4.10. The 
orresponding inter
onne
tion matrix Γ is symmetri
tridiagonal and writes

Γ =














K −K 0 · · · 0 0
−K 2K −K 0 · · · 0

0 −K . . . . . . . . . ...... 0
. . . 2K −K 0

0
... . . . −K 2K −K

0 0 · · · 0 −K K












and it is easy to show that its eigenvalues are λj = 2K

(

1 − cos
(

jπ
N

))

, j ∈ {0, . . . , N − 1}. The
oupling strength threshold is KOpen 
hain =
k−k∗

passive

2(1−cos( π
N ))

.We see that the 'larger' the symmetry of the syn
hronizing inter
onne
tion stru
ture, the smallerthe 
oupling strength threshold, i.e. KSN
< KDN

< KZN
< KOpen 
hain. This is in a

ordan
e withthe results of Slotine [WS℄ whi
h predi
t that the syn
hronization rate is proportional to the numberof os
illators in the network and to the symmetry of the network. The higher the number of os
illatorsor the symmetry, the higher the syn
hronization rate. This is 
on�rmed by the simulations results inFigure 4.11 where we 
onsider four di�erent topologies with the same number of os
illators, the sameinitial 
onditions and the same 
oupling strength. We see from Figure 4.11 that the syn
hronizationrate in
reases with the symmetry of the network.99
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hronizing bidire
tional open 
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(
) (d)Figure 4.11: Simulation results for networks of �ve identi
al passive os
illators. (a) Open 
hain, (b)
Z5 symmetry, (
) D5 symmetry, (d) S5 symmetry. The parameters values are ωn = 1, ζ = 1.25,
τ = 2, k = 2. The 
riti
al bifur
ation value for an isolated os
illator is k∗ = 1 and the 
orrespondingbifur
ation value for the network is k∗network = 1. The 
oupling strength value is K = 3. The sameinitial 
onditions have been used for the di�erent network topologies.4.6 SummaryIn the previous 
hapter, we showed that dissipativity theory has impli
ation for the global stabilityanalysis of the limit 
y
le solution of passive os
illators. In this 
hapter, we extended the dissipative100



4.6. SUMMARY
hara
terization of passive os
illators to networks. This was done by 
onsidering a MIMO feedba
krepresentation of the network that is similar to the feedba
k stru
ture of ea
h isolated passive os
illa-tor. The main assumption was the passivity (positivity) of the 
oupling. Under this assumption, weobtained a dissipation inequality for the network that is similar to that satis�ed by ea
h isolated pas-sive os
illator. Based on this dissipativity inequality, we showed that the results of Chapter 3 extendin a straightforward manner to networks of passive os
illators (Theorems 4.5, 4.9, and 4.12). As ase
ond result, we showed that global syn
hronization is implied by an in
remental dissipativity 
har-a
terization of the network that we named in
remental passivity. We provided su�
ient 
onditionsunder whi
h passive os
illators are in
rementally passive and derived su�
ient network topology
onditions for the existen
e of globally asymptoti
ally stable syn
hrone os
illations in networks ofidenti
al os
illators (Theorem 4.15). This syn
hronization result 
on
erns network topologies thatin
lude SN symmetry (all-to-all topology), DN symmetry (bidire
tional ring topology), ZN symme-try (unidire
tional ring topology) and open 
hain symmetry. We 
ompared our result with re
entliterature results on global syn
hronization and showed that generi
ally passive os
illators satisfy therequired 
onditions.
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Chapter 5Synthesis of stable os
illationsIn this 
hapter, we adopt a synthesis point of view for the generation of stable limit 
y
le os
il-lations. We examine how to design a simple 
ontroller that yields stable limit 
y
le os
illations ina stabilizable system. The problem of synthesis of stable os
illations �nds many appli
ations. Forexample, in the �eld of roboti
s, it plays an important role for (undera
tuated) rhythmi
 task robotssu
h as walking robots ([CAA+03, WGC02, TYS91℄), juggling robots ([SA93, SA94, BKK94, ZRB99,LB01, GS04, RLS04℄) or general dexterous robots (see e.g. [Wil99a℄). In Se
tion 5.1, we propose aproportional-integral 
ontroller to generate os
illations in stabilizable systems. The proposed 
on-troller is dire
tly inspired from the theory introdu
ed in the previous 
hapters. In Se
tion 5.2 weshow that this 
ontroller is a natural 
hoi
e for the generation of limit 
y
le os
illations in me
hani
alsystems. We also show that for 
onservative stabilizable (me
hani
al) systems in feedba
k with our
ontroller, the only assumption of our theorems that is not satis�ed is the low dimension of the 
entermanifold: these systems are generi
ally 
hara
terized by a degenerate bifur
ation. In Se
tion 5.3 wepropose a method to regularize the degenerate bifur
ation. We also show that this regularizationmethod is only possible for fully a
tuated, two degrees of freedom me
hani
al systems. In Se
tion5.4, we provide simulation results for the 
art-pendulum system as a typi
al example of an undera
-tuated me
hani
al system for whi
h dire
t appli
ation of the proposed 
ontroller results in generationof stable limit 
y
le os
illations. Finally, as a se
ond illustration, we des
ribe the resear
h proje
tthat we have initiated with the Laboratoire d'Automatique de Grenoble. This proje
t 
on
erns thebalan
ing 
ontrol of the bipedal robot RABBIT.5.1 A proportional-integral me
hanism to generate os
illations in astabilizable systemIn this se
tion, we 
onsider the problem of generation of limit 
y
le os
illations in stabilizablesystems. To this end, we introdu
e the de�nition of a stabilizable system.Consider an input-a�ne nonlinear system Σ represented by the state spa
e model
ẋ = f(x) + g(x)u, (5.1)where x ∈ R

n is the state and u ∈ R
m is the input.103



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSDe�nition 5.1 The input a�ne system (5.1) is 
alled stabilizable if there exists a 
ontrol law u(x)and a Lyapunov fun
tion V (x) whose time derivative is rendered negative de�nite by u(x).We also introdu
e the 
on
ept of a �
ontrol Lyapunov fun
tion� (CLF) [SJK97, Se
tion 3.5.3℄, whi
his strongly linked with de�nition 5.1.De�nition 5.2 [SJK97, Se
tion 3.5.3℄ A smooth, positive de�nite, and radially unbounded fun
tion
V (x) is 
alled a 
ontrol Lyapunov fun
tion (CLF) for the input a�ne system (5.1) if, for all x 6= 0,

LgV (x) = 0 ⇒ LfV (x) < 0. (5.2)By de�nition, any Lyapunov fun
tion whose time derivative 
an be rendered negative de�nite (by
ontrol) is a CLF.Proposition 5.3 If system (5.1) with Lyapunov fun
tion V (x) is stabilizable by the 
ontrol r(x),then it is passive and ZSD with respe
t to the input v = u− r(x) and the output y = (LgV (x))T .ProofThe time derivative of the Lyapunov fun
tion V (x) along the traje
tories of system (5.1) is given by
V̇ = LfV (x) + LgV (x)u.Using feedba
k 
ontrol u = r(x) + v, we obtaiṅ

V < yT v,whi
h implies passivity of the system w.r.t. input v and output y. Furthermore, by de�nition, V (x)is a CLF and thus satis�es (5.2). This dire
tly implies zero-state dete
tability of system (5.1) w.r.t.
y. Assume that the system (5.1) is stabilizable by the 
ontrol r(x). To generate stable limit 
y
leos
illations, we 
onsider the output y = (LgV (x))T ∈ R

m and 
lose the loop with the nonlinearproportional (P) and integral (I) 
ontroller
u(t) = r(x(t)) − Φk (y(t)) −KI

∫ t

0
y(τ) dτ, (5.3)where r(x) is referred to as the stabilization part, Φk (y(t)) as the �proportional part�, and

KI

∫ t

0 y(τ) dτ (with KI = KT
I > 0) as the �integral part� (see Figure 5.1). The nonlinear fun
-tion Φk(·) = diag{φk(·)} de�ning the proportional part is a multivariable repeated nonlinearity. Therepeated nonlinearity φk(y) = −ky + φ(y) is assumed to satisfy the assumptions given in Se
tion3.3.1, and φ(·) is furthermore assumed to be monotone in
reasing.To intuitively understand the e�e
t of this 
ontroller, 
onsider the SISO 
ase when u ∈ R and

y ∈ R. The proportional part is then denoted by φk(y). Its sign varies a

ording to the magnitudeof the output. For small values of the output, the proportional part is sign opposed to y whereas forlarge values of the output, the proportional part has the same sign as y. This means that the sign ofthe dissipation inje
ted into the system through the proportional part depends on the magnitude of104



5.1. A PROPORTIONAL-INTEGRAL MECHANISM TO GENERATE OSCILLATIONS IN ASTABILIZABLE SYSTEMthe output y. Sin
e the feedba
k system dissipates energy for large values of the output and restoresit for small values, a limit 
y
le is expe
ted to appear. As we have seen in Chapter 3, the integralpart generi
ally for
es a Hopf bifur
ation be
ause of the presen
e of a zero at the origin for thelinearized system. If the system already in
ludes an integral a
tion, the integral part of the 
ontrolleris unne
essary and may be omitted. Stable systemfun
tion V
with Lyapunovv

−

y = (LgV )T

Φk(·) + KIdiag{1
s
}Figure 5.1: Synthesis of os
illations by nonlinear PI 
ontrol of a stable system.Controller (5.3) is inspired by 
lassi
al PI 
ontrollers u = r(x(t)) −KP y −KI

∫ t

0 y(τ) dτ used inequilibrium point stabilization and regulation theory (see e.g. [CSB96, Chapter 2℄). These 
ontrollersare well-known for their robustness to 
onstant perturbations: for any KP = KT
P > 0, KI = KT

I > 0,the feedba
k system is (globally) asymptoti
ally stable. This is an immediate 
onsequen
e of Theorem2.15, Lemma 2.14 and Proposition 5.3: the feedba
k inter
onne
tion of system (5.1) with the integralpart of the PI 
ontroller yields a passive and ZSD system 
hara
terized by the storage fun
tion
S = V + 1

2x
T
I KIxI where xI denotes the state of the integrator part of the 
ontroller. The wholefeedba
k system is then 
hara
terized by the dissipation inequality Ṡ < −yTKP y. This last inequalitytogether with ZSD implies global asymptoti
 stability of the system 
omposed of a forward passiveblo
k in feedba
k with the 
lassi
al PI 
ontroller u = KP y +KI

∫ t

0 y(τ) dτ .Other solutions for the generation of os
illation in stable systems have been proposed in theliterature. We 
lassify them mainly in two 
ategories:
• Output regulation where the idea is to for
e the stable system with an external os
illating input(see e.g. [Isi95, Chapter 8℄, [Pav04℄).
• Inversion and zero dynami
s shaping where the idea is to design a parti
ular output su
h that,when for
ed to zero, the remaining dynami
s yield a stable limit 
y
le os
illation (see e.g.[GAGE03, BAGGE04, GEBAG05℄, [BM94, BM95a, BM95b, BMS96℄, [CEU02, SC04℄).Output regulation methods deal with asymptoti
 tra
king of pres
ribed referen
e signals. The 
lassof referen
e signals 
onsists of solutions of some external autonomous system 
alled the exosystem.Referen
e signals generated by the exosystem are 
alled exosignals. The output to regulate is 
alledthe regulated output (e.g. the tra
king error in the tra
king problem). The output available formeasurement is 
alled the measured output. The idea is to �nd a measured output feedba
k 
ontrollersu
h that the 
losed loop system is internally stable and the regulated output tends to zero along105



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSsolutions of the 
losed loop system. The internal stability requirement roughly means that all solutionsof the 
losed loop system �forget� their initial 
onditions and 
onverge to some limit solution whi
his determined only by the exosignal. To generate os
illation the exosystem is designed to produ
ea spe
i�
 os
illating exosignal. The use of output regulation methods to produ
e stable limit 
y
leos
illations is generally not easy be
ause of the need to design spe
i�
 output and 
ontroller thatrender the 
losed loop system internally stable and at the same time allow to solve the regulationproblem. Their advantage is that they allow to tra
k a spe
i�
 orbit in the state spa
e.Inversion methods generally require pre
ise models of the system. They use the 
ontrol to destroyunwanted (generally nonlinear) parts of the dynami
s in order to feedba
k transform the systeminto a spe
i�
, easier to 
ontrol, system (e.g. partially linear system). To generate os
illations, the
ontrol is used to for
e the output of the transformed system to zero and simultaneously to indu
ea zero dynami
s that yields stable limit 
y
le os
illations. The main drawba
k of these methods aretheir la
k of robustness to unmodeled dynami
s, and/or the di�
ulty to perform the required zerodynami
s shaping for 
omplex nonlinear systems.The main advantage of the PI 
ontroller (5.3) is that it relies on stabilization theory for equi-librium points. It is thus easy to implement: on
e a stabilizing, passive output has been designedfor the system, it is used to 
lose the loop with the 
ontroller in order to generate limit 
y
le os-
illations. The design of a stabilizing, passive output is a 
entral topi
 in nonlinear 
ontrol theoryand many methods already exist to solve this problem (feedba
k passivation designs [vdS00, SJK97℄,
ontrolled Hamiltonian and Lagrangian theory [BLM01, BCLM01, BOvdS02℄, energy shaping meth-ods [OvdSMM01, OvdSME02℄, et
.). Furthermore, this passivity based 
ontroller is expe
ted to havegood robustness properties to model un
ertainties and perturbations be
ause it does not rely on theexa
t 
an
ellation of parts of the dynami
s. The 
ounterpart is that it does not allow to tra
k aspe
i�
 orbit and, as we have seen in Theorem 4.51, that spe
i�
 assumptions have to be satis�ed:
• ultimate boundedness of the 
losed-loop system;
• absolute stability at 
riti
ality, that is, when k = k∗.The ultimate boundedness assumption is a te
hni
al assumption. As we have seen in Chapter 3,it is always satis�ed when the forward blo
k is linear. For a general nonlinear forward blo
k, thisassumption is di�
ult to verify. Nevertheless, for a passive, zero-state dete
table, forward system,unbounded solutions are unlikely to happen. This is intuitively 
lear if one 
onsiders the sign of thedissipation added by the nonlinear proportional part of the 
ontroller. For large values of the output,the sign of the dissipation is positive leading intuitively to bounded solutions.The absolute stability assumption is thus the most 
riti
al one. Numerous 
riteria have beendeveloped in order to verify absolute stability of a feedba
k system: e.g. 
ir
le 
riterion, Popov
riterion, Zames-Falb multipliers, and numeri
al methods (e.g. Integral-Quadrati
-Constraints �see [MR97℄ for a general and re
ent treatment). In the next se
tion, we introdu
e and justify the useof a passivity based 
ontroller for the generation of limit 
y
le os
illations in me
hani
al systems.1In this 
hapter, Theorem 4.5 is used to 
hara
terize os
illations in MIMO feedba
k systems. For this, we 
onsiderTheorem 4.5 where Ξ is not supposed to result from the inter
onne
tion of several SISO systems as in Chapter 4, butfrom the inter
onne
tion of the stabilizable MIMO system (5.1) with the integral part of 
ontroller (5.3). As su
h,Theorem 4.5 is the dire
t and immediate extension of Theorem 3.8 to the feedba
k inter
onne
tion of a MIMO stronglypassive system Ξ with the multivariable repeated nonlinearity Φk(·). Sin
e the notion of network has no sense here, wedenote the 
riti
al value of bifur
ation by k∗ instead of k∗

network. With these 
onsiderations in mind, the formulationof the Theorem is identi
al. 106



5.2. SYNTHESIS OF STABLE OSCILLATIONS IN MECHANICAL SYSTEMS5.2 Synthesis of stable os
illations in me
hani
al systemsFor the generation of stable os
illations in me
hani
al systems, the nonlinear PI 
ontroller (5.3)is natural for several reasons:
• The total energy of the me
hani
al system is generally a good Lyapunov fun
tion 
andidate.
• Passivity is a natural physi
al property between 
onjugated variables of the system.
• Even for unstable me
hani
al systems (e.g. the 
art-pendulum with pendulum in invertedposition), various energy shaping methods exist to feedba
k transform the initial system into astable and 
onservative system.Using the PI 
ontroller (5.3), global limit 
y
le os
illations are obtained for k & k∗ if the assumptionsof Theorem 4.5 are satis�ed. As we have seen, the 
riti
al assumption is the absolute stability of thefeedba
k system at k = k∗. In order to satisfy this assumption, we may 
onsider systems for whi
h itis trivially satis�ed. This is the 
ase for general 
onservative systems whi
h typi
ally loose stabilityand passivity simultaneously at k∗ = 0 when put in feedba
k with 
ontroller (5.3). Unfortunately, theresulting feedba
k system is generi
ally 
hara
terized by a degenerate bifur
ation, i.e. the number ofeigenvalues 
rossing the imaginary axis at k = 0 is typi
ally greater than 2 (see Appendix B). Threesolutions may be 
onsidered at this stage:
• Solution 1: Take into a

ount Rayleigh dissipation in the model and 
he
k if all the assump-tions of Theorem 4.5 are satis�ed (that is, mainly the absolute stability at 
riti
ality).
• Solution 2: Regularize the bifur
ation by feedba
k in order to return to the standard bifur
ations
enario.
• Solution 3: Generalize Theorem 4.5 to the 
ase of degenerate bifur
ations.Solution 3 is beyond the s
ope of this 
hapter and will be the subje
t of future work. Solution 2is 
onsidered in Se
tion 5.3. The idea is to inje
t dissipation into the 
onservative system in orderto return to a non-degenerate bifur
ation situation. In Se
tion 5.3, we show that generi
ally, thisregularization is possible only for fully a
tuated, two degrees of freedom me
hani
al systems.5.3 Fully a
tuated, two degrees of freedom me
hani
al systemsIn this se
tion we present a method to regularize the degenerate bifur
ation that generi
ally ap-pears when 
onsidering the feedba
k inter
onne
tion of a linear, 
onservative system with 
ontroller(5.3). This method 
onsists in inje
ting spe
i�
 dissipation into the system in order to 'push' all eigen-values but two in the open left-half 
omplex plane, thus keeping the 
riti
al value k∗ = 0 un
hangedbut regularizing the bifur
ation. Su�
ient 
onditions that allow for the feedba
k implementation ofthis spe
i�
 dissipation are presented in Se
tion 5.3.1. We show that the proposed su�
ient 
onditions
an be satis�ed only for fully a
tuated, two degrees of freedom me
hani
al system.107



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS5.3.1 Transforming a linear PCH system into a passive system that satis�es theassumptions of Theorem 4.5Consider the feedba
k inter
onne
tion of Figure 5.1 where the forward blo
k, denoted by Σ, islinear, strongly 
onservative and dete
table. We denote by Ξ, the feedba
k inter
onne
tion of Σ withthe integral part of the 
ontroller. As feedba
k inter
onne
tion of two 
onservative systems, Ξ is
onservative w.r.t. its input w and its output y. It is also easy to show that Ξ is dete
table.Let z denote the state variable of Ξ. The dynami
s of the linear system Ξ are given by
ż = Az +Bw (5.4)
y = CzSin
e Ξ is 
onservative, there exists a matrix P = P T > 0 su
h that the Hill-Moylan 
onditions

ATP + PA = 0 (5.5)
C = BTP (5.6)are satis�ed. Taking J = AP−1, the �rst Hill-Moylan 
ondition (5.5) leads to J = −JT whi
hshows that J is a skew symmetri
 matrix and that the system (5.4) may be written as a port 
ontrolledHamiltonian (PCH) system (see [vdS00, se
tion 4.2.2℄).

ż = JPz +Bw = J
∂H

∂z
(z) +Bw (5.7)

y = BTPz = BT ∂H

∂z
(z) (5.8)where the Hamiltonian fun
tion H(z) is the storage fun
tion S(z) asso
iated to the (strongly) 
on-servative system (5.4), i.e. H(z) = S(z) = 1

2z
TPz with P = P T > 0.We now present a method that transforms the linear PCH system (5.7),(5.8) into a system thatsatis�es the assumptions of Theorem 4.5. The intuitive idea is to inje
t dissipation into the systemin order to push all the eigenvalues but two into the open left-half 
omplex plane.Consider system (5.7),(5.8). There always exists a real orthogonal matrix Q that transforms itinto a blo
k triangular system, i.e. a system with a blo
k triangular Ja
obian matrix (see [HJ85, p.82, theorem 2.3.4℄). Under this 
oordinate transformation, equations (5.7),(5.8) write

˙̃z = J̃ P̃ z̃ + B̃w (5.9)
y = B̃T P̃ z̃ (5.10)where z̃ = Qz, B̃ = QB, J̃ = QJQT = −J̃T , and P̃ = QPQT = P̃ T > 0 Sin
e passivity (
onserva-tiveness) is a 
oordinate independent property, system (5.9),(5.10) is also 
onservative w.r.t. input wand output y. In these 
oordinates, the matrix J̃ P̃ writes
J̃ P̃ =

(
δ ⋆

0 ∆

)

, (5.11)108



5.3. FULLY ACTUATED, TWO DEGREES OF FREEDOM MECHANICAL SYSTEMSwhere δ is a 2 × 2 matrix, and both δ and ∆ have all their eigenvalues on the imaginary axis (seeAppendix B). The idea of the method is to design a dissipation matrix R = RT ≥ 0 su
h that theresulting port 
ontrolled Hamiltonian system with dissipation (PCHD):
˙̃z =

(

J̃ −R
)

P̃ z̃ + B̃w (5.12)
y = B̃T P̃ z̃ (5.13)has only two eigenvalues on the imaginary axis, the other eigenvalues having stri
tly negative realparts.Thus, given P , we want to �nd R = RT ≥ 0 su
h that (J̃ −R

)

P̃ has the form
(
δ ⋆

0 ∆ − ǫI

)

.This amounts to �nd a symmetri
 positive semide�nite matrix R su
h that
R =

(
0 ⋆

0 ǫI

)

P̃−1.If we 
hoose ⋆ = ǫP12P
−1
22 , where P12 and P22 appear in the blo
k de
omposition of P̃−1 
orrespondingto the blo
k de
omposition of J̃ P̃ , i.e. P̃−1 =

(
P11 P12

P T
12 P22

)

=
(

P̃−1
)T

> 0, then R is a symmetri
positive semide�nite matrix. This is proved hereafter.ProofWith ⋆ = ǫP12P
−1
22 , we have R =

(
0 ǫP12P

−1
22

0 ǫI

)(
P11 P12

P T
12 P22

)

= ǫ

(
P12P

−1
22 P

T
12 P12

P T
12 P22

), whi
his obviously symmetri
. Moreover, it is positive semide�nite for ǫ > 0 sin
e ǫP22 is symmetri
 positivede�nite and its S
hur 
omplement is positive semide�nite2 (see [HJ85, Theorem 7.7.6℄).Generi
ally, the PCHD system (5.12)-(5.13) with the dissipation matrix
R = ǫ

(
P12P

−1
22 P

T
12 P12

P T
12 P22

)will satisfy all the assumptions of Theorem 4.5. In order to have a 
onstru
tive way that allows toregularize the bifur
ation, we now present a method to implement this dissipation matrix by feedba
k.5.3.2 Implementing spe
i�
 dissipation by feedba
kThe following algorithm leads to the 
omputation of the feedba
k law implementing the desireddissipation matrix R. This algorithm is derived from the more general mat
hing theorem of port-
ontrolled Hamiltonian systems given in [OvdSMM01, OvdSME02, BOvdS02℄:1. Compute the image of B̃, i.e. W = Im(B̃) =
{

p ∈ R
n : B̃v = p, ∀v ∈ R

m
}2. Compute the left annihilator of W , i.e. W ◦ = Ann(W ) = {l ∈ R

n : lp = 0, ∀p ∈W}2The S
hur 
omplement is 0. 109



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS3. If ∃l ∈W ◦ su
h that lRP̃ z̃ = 0, ∀z̃ ∈ R
n, then −RP̃ z̃ ∈W for all z̃ ∈ R

n, whi
h in turn impliesthat there exists a 
ontrol w ∈ R
m su
h that B̃w = −RP̃ z̃ for all z̃ ∈ R

n4. The 
ontrol law that implements the dissipation matrix R is w = −
(

B̃T B̃
)−1

B̃TRP̃ z̃ + w̃where w̃ denotes the new 
ontrol input of the system.For the parti
ular matrix R that we have 
hosen, the 
ondition ∃l ∈ W ◦ s.t. lRP̃ z̃ = 0, ∀z̃ ∈ R
namounts to verify that Im( P12

P22

)

⊆ Im(B̃). This is easily seen by partitioning the ve
tor l a

ordingto the partition of RP̃ . The 
ondition then writes ∃l ∈W ◦ s.t. ǫ ( l1 l2
)
(

0 P12P
−1
22

0 I

)(
z1
z2

)

=

0, ∀z ∈ R
n, whi
h amounts to verify that ∃l ∈ W ◦ s.t. ( l1 l2

)
(
P12

P22

)

= 0. This 
ondition issatis�ed if and only if Im( P12

P22

)

⊆ Im(B̃).The matrix ( P12

P22

) is a n× (n− 2) matrix. The matrix B̃ is a n×m matrix where n denotesthe dimension of the system and m the number of 
ontrol inputs. For fully a
tuated me
hani
alsystems, we have m = n
2 , where n

2 is an integer that denotes the number of degrees of freedom of theme
hani
al system. It results that the 
ondition Im( P12

P22

)

⊆ Im(B̃) 
an generi
ally be satis�edonly for n = 4 and m = 2, i.e. for a fully a
tuated me
hani
al systems with two degrees of freedom.This dissipation implementation method has been given here for the sake of 
ompleteness. Indeed,be
ause of its limited appli
ation �eld, and sin
e our �nal goal is to generalize Theorem 4.5 todegenerate bifur
ations, we 
hosed not to investigate further in this way but rather to have a �rstinsight into the qualitative behavior in the degenerate 
ase. In this 
ase, we 
annot 
on
lude to theexisten
e, uniqueness and global asymptoti
 stability of limit 
y
le os
illations generated by 
ontroller(5.3). Nevertheless, we intuitively expe
t this 
ontroller to yield limit 
y
le os
illations when usedin feedba
k with a stabilizable, 
onservative system. To show this, we provide, in the next se
tion,simulation results for the 
art pendulum system as a typi
al example of undera
tuated, 
onservativeme
hani
al systems for whi
h dire
t appli
ation of our 
ontroller leads to limit 
y
le os
illations.These simulation results show that, even in the presen
e of a degenerate bifur
ation, a limit 
y
leos
illation with a large basin of attra
tion is generated. This tends to 
on�rm that our results shouldhold even if the bifur
ation is degenerate, whi
h would allow to apply 
ontroller (5.3) dire
tly to anystabilizable, 
onservative system.5.4 Dire
t appli
ation to undera
tuated, me
hani
al systemsAs an illustration of the appli
ation of our theory to undera
tuated, me
hani
al systems we
onsider the 
art-pendulum example and provide simulation results when the loop is 
losed with our
ontroller. We have 
hosen this simple example be
ause it 
onstitutes a ben
hmark, undera
tuated,me
hani
al system for whi
h stabilization by energy shaping has already been solved. The limit 
y
legeneration method is explained in the next se
tions. The general idea is the following: �rst, we useenergy shaping to feedba
k transform the system into a 
onservative, stabilizable system, and se
ond,we use the 
orresponding 
onservative output to 
lose the loop with our 
ontroller. This idea is used110



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMSto generate limit 
y
le os
illations both around the stable and the unstable position of the pendulum.As we have remarked in Se
tion 5.2, generi
ally the bifur
ation is degenerate and Theorem 4.5 doesnot allow to draw 
on
lusions about limit 
y
le os
illations. Nevertheless, simulation results showthat, even in the degenerate bifur
ation 
ase, limit 
y
le os
illations with large basin of attra
tion aregenerated. The proof of this 
laim (Solution 3 in Se
tion 5.2) is beyond the s
ope of this 
hapter andwill be the subje
t of future work. As a se
ond illustration, we present, in Se
tion 5.4.4, our 
urrentresear
h proje
t in 
ollaboration with the Laboratoire d'Automatique de Grenoble (Fran
e) involvingthe problem of balan
ing 
ontrol of the bipedal robot RABBIT.5.4.1 Typi
al example of undera
tuated me
hani
al system: the inverted pen-dulum on a 
artWe 
onsider the 
art-pendulum system without fri
tion. We derive a non-linear 
ontrol law aimedat produ
ing limit 
y
le os
illations around the origin of the 
art axis. For the pendulum, twosituations are 
onsidered: os
illations around the stable position of the pendulum and os
illationsaround its unstable position.We denote by x the 
art position, by v = ẋ the 
art velo
ity, by θ the angle between the verti
alaxis and the pendulum, by ω = θ̇ the angular velo
ity of the pendulum, and by F the lateral for
eapplied to the 
art (see Figure 5.2). With these notations, the 
art-pendulum equations of motionare {
Jω̇ −mgl sin θ +mlv̇ cos θ = 0
Mv̇ +mlω̇ cos θ −mlω2 sin θ = F

(5.14)where J = ml2 is the moment of inertia with respe
t to the pivot point, m the mass of the pendulum,
mc the mass of the 
art and M = m+mc. Equivalently we have

{
Jω̇ −mgl sin θ +mlv̇ cos θ = 0

(

M −m (cos θ)2
)

v̇ −mlω2 sin θ +mg sin θ cos θ = FThe (nonsingular) feedba
k transformation
(

M −m (cos θ)2
)

a−mlω2 sin θ +mg sin θ cos θ = Fyields the simpli�ed dynami
s
{
Jω̇ −mgl sin θ +mla cos θ = 0

v̇ = a
(5.15)where the new input a dire
tly 
ontrols the 
art a

eleration.The open-loop stru
ture of this system is

{
ẍ = a

Ėpendulum = aẏ2 = a(−mlω cos θ)where Ependulum = 1
2Jω

2 +mgl cos θ and y2 = −ml sin θ.5.4.2 Around the stable position of the pendulumIn order to generate limit 
y
le os
illations around the stable position of the pendulum, we �rstdesign a 
onservative output y that allows stabilization of the system by damping inje
tion. We thenuse this output to generate os
illations in the whole system by 
losing the loop with φk(y) = −ky+y3.111



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS
θ

mc

x

+

+F

m

Figure 5.2: The 
art-pendulum system5.4.2.1 Design of a stabilizing outputThe total energy of the system is given by
Ẽ = Ependulum +

1

2
v2,whose derivative is

˙̃
E = ażwhere z = x+ y2 = x−ml sin θ.In order to 
reate a minimum at (x, ẋ, θ, θ̇) = (0, 0, π, 0), we perform (potential) energy shapingby 
onsidering the energy fun
tion

V = Ẽ +
1

2
Kpz

2, Kp > 0whose derivative is
V̇ = (a+Kpz)ż.Taking the 
ontrol input a to be a = −Kpz + u, we get

V̇ = uywhere y = ż is the output with respe
t to whi
h the system is 
onservative.5.4.2.2 Stabilization of the systemThe damping 
ontrol u = −Kdy, asymptoti
ally stabilizes the pendulum at its stable positionand the 
art at the origin. The 
orresponding a

eleration 
ontrol is given by
a = −Kpz −Kdy.112



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMS5.4.2.3 Creation of a limit 
y
le os
illationAfter feedba
k transformation into a stabilizable, 
onservative system, we 
onsider the poles/zeros
on�guration of the linearization around (θ, θ̇, x, ẋ) = (π, 0, 0, 0). This poles/zeros map is sket
hedon Figure 5.3. As 
an be seen the system already possesses a zero at the origin. The integral part ofthe 
ontroller is thus not ne
essary.
ℜ{s}

ℑ{s} zeropoleLEGEND

Figure 5.3: Poles/zeros 
on�guration for the 
art pendulum system after feedba
k transformationinto a stabilizable and 
onservative system.For k & 0, the 
ontrol law u = ky− y3 is expe
ted to produ
e a limit 
y
le os
illation around thestabilized position of Se
tion 5.4.2.2. The 
orresponding a

eleration 
ontrol is given by
a = −Kpz + ky − y3. (5.16)5.4.2.4 Simulation resultsIn this se
tion, we present the simulation results obtained with the 
ontrol law (5.16) for di�erentvalues of the 
ontrol parameter k. The physi
al parameters of the system have been 
hosen in order to
orrespond to reality: m = 0.14 kg, mc = 0.44 kg, g = 9.81m/s2, l = 0.215m. The 
ontrol parameter

Kp was 
hosen equal to 10. The initial 
ondition was (arbitrarily) 
hosen as x(0) = 1, ẋ(0) = 0.3,
θ(0) = π+0.2, and θ̇(0) = 0.1. We then have 
onsidered three values of the parameter k, respe
tively
k = −1, k = 1, and k = 2.In Figure 5.4, we 
learly see that the origin of the system is asymptoti
ally stable for k = −1,and unstable for k = 1 and k = 2. Moreover, as expe
ted, a limit 
y
le whose radius depends on kappears for k > 0. The same steady state responses were obtained when other initial 
onditions wereused.5.4.3 Around the unstable position of the pendulumSimilarly to the idea presented in Se
tion 5.4.2, we �rst design a 
onservative output y that allowsstabilization of the system with pendulum in inverted position and 
art at the origin. As we did113
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(a) k = −1 (b) k = 1 (
) k = 2Figure 5.4: Cart-pendulum system: 
reation of os
illations around the stable position of the pen-dulum. Column (a) k = −1, Column (b) k = 1, Column (
) k = 2. The �rst line represents theproje
tion of the state spa
e on the pendulum state variables plane. The se
ond line represents theproje
tion on the 
art state variables plane. The third line represents the temporal evolution of thestate variables.in se
tion 5.4.2, we then use this output to generate os
illations in the whole system by 
losing theloop with φk(y) = −ky + y3. The stabilization part is dire
tly inspired by literature results (see[BLM01, BCLM01, BOvdS02℄).5.4.3.1 Design of a stabilizing outputIn the �rst step, the kineti
 energy of the pendulum is shaped by 1
2kpẏ

2
2 (kp < 0). In the se
ondstep, overall energy shaping is a
hieved.

• Step 1We use the feedba
k a = −kpÿ2 + w to obtain
{

z̈ = w
˙̃
Ependulum = wẏ2114



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMSwith z = x + kpy2, and Ẽpendulum = Ependulum + 1
2kpẏ

2
2. This leads to Ẽpendulum = 1

2Jθ̇
2 +

m cos θ
(

gl + 1
2Jkpθ̇

2 cos θ
).

• Step 2We perform overall energy shaping by 
onsidering the energy fun
tion
V = Ẽpendulum +

1

2
ż2 +

1

2
Kp (z + y2)

2 ,whose derivative is
V̇ = (ż + ẏ2) (w +Kp (z + y2)) .Taking the 
ontrol input w to be w = u−Kp (z + y2), we get

V̇ = uy,where y = ż + ẏ2 is the output with respe
t to whi
h the system is 
onservative.5.4.3.2 Stabilization of the systemThe damping 
ontrol u = −Kdy stabilizes the pendulum in the inverted position and the 
art atthe origin (see [BLM01℄). The 
orresponding a

eleration 
ontrol is given by
a = −kpÿ2 −Kp (z + y2) −Kdy.Taking into a

ount the de�nitions of y2 and z, and the dynami
s (5.15) for the elimination of ÿ2from the equation, we obtain

a =
kpmg sin θ cos θ − kpmlθ̇2 sin θ − Kp (x − (kp + 1) ml sin θ) − Kd

“

ẋ − (kp + 1) mlθ̇ cos θ
”

1 + kpm (cos θ)2
.5.4.3.3 Creation of a limit 
y
le os
illationAfter feedba
k transformation into a stabilizable, 
onservative system, the poles/zeros 
on�gura-tion of the linearization around (θ, θ̇, x, ẋ) = (0, 0, 0, 0) is similar to that sket
hed in Figure 5.3. Thesystem being 
onservative w.r.t. the output y, the 
ontrol law u = ky − y3 is expe
ted to produ
e alimit 
y
le os
illation around the stabilized position of Se
tion 5.4.3.2 for k & 0. The 
orrespondinga

eleration 
ontrol is given by

a = −kpÿ2 −Kp (z + y2) + ky − y3.Taking into a

ount the de�nitions of y2 and z, and the dynami
s (5.15) for the elimination of ÿ2from the equation, we obtain
a =

kpmg sin θ cos θ − kpmlθ̇2 sin θ − Kp

`

x −
`

kp + 1
´

ml sin θ
´

+ k
“

ẋ −
`

kp + 1
´

mlθ̇ cos θ
”

−
“

ẋ −
`

kp + 1
´

mlθ̇ cos θ
”

3

1 + kpm (cos θ)2
. (5.17)115
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(a) k = −1 (b) k = 0.1 (
) k = 1Figure 5.5: Cart-pendulum system: 
reation of os
illations around the unstable position of the pen-dulum. Column (a) k = −1, Column (b) k = 0.1, Column (
) k = 1. The �rst line represents theproje
tion of the state spa
e on the pendulum state variables plane. The se
ond line represents theproje
tion on the 
art state variables plane. The third line represents the temporal evolution of thestate variables.5.4.3.4 Simulation resultsIn this se
tion, we present the simulations results obtained with the 
ontrol law (5.17) for di�erentvalues of the 
ontrol parameter k. The values of physi
al parameters are the same as in Se
tion5.4.2.4. The value of the 
ontrol parameters kp and Kp are 
hosen equal to −80 and 2 respe
tively(see [BLM01℄). The initial 
onditions are x(0) = 10, ẋ(0) = 0.3, θ(0) = 0.2, and θ̇(0) = 0.1. Note thelarge initial deviation of position of the 
art with respe
t to the origin. On
e again we have 
onsideredthree values of the parameter k, respe
tively k = −1, k = 0.1, and k = 1.In Figure 5.4, we 
learly see that the origin of the system is asymptoti
ally stable for k = −1,and unstable for k = 0.1 and k = 1. Moreover, as expe
ted, a limit 
y
le whose radius dependson k appears for k > 0. Using di�erent initial 
onditions, we have obtained the same steady stateresponses, whi
h tends to 
on�rm that the 
reated limit 
y
le has a large basin of attra
tion.As a se
ond illustration of the appli
ation of our 
ontroller to the generation of stable limit 
y
leos
illations in me
hani
al systems, we present, in the next se
tion, our 
urrent resear
h proje
t in116



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMS
ollaboration with the Laboratoire d'Automatique de Grenoble (Fran
e).5.4.4 Balan
ing 
ontrol of RABBITRABBIT is a bipedal robot spe
i�
ally designed to advan
e the fundamental understanding of
ontrolled legged lo
omotion (see [CAA+03℄ for an ex
ellent introdu
tion to the RABBIT proje
t).A pi
ture of RABBIT is displayed in Figure 5.6. A 
anoni
al problem in bipedal robots is the designof a 
ontroller that generates 
losed-loop motions su
h as walking, running, or balan
ing, that areperiodi
 and stable (i.e. limit 
y
les).
Figure 5.6: The bipedal robot RABBITDuring a balan
ing motion, RABBIT is modeled as a three link inverted pendulum (see Figure5.7): the stan
e leg is supposed to be rigidi�ed in su
h a way that the tibia, femur and torso arealigned while the balan
ing leg is a
tuated at the hip and knee. The goal is to �nd a feedba
k 
ontrollaw that indu
es a non-trivial, limit 
y
le in the three-link inverted pendulum. As emphasized in[CAA+03℄: �what makes this 
ontrol problem quite di�erent from walking is that ground impa
ts arenot 
onsidered in balan
ing. At �rst glan
e, this may seem to simplify the problem, but, upon furtherre�e
tion, this is not the 
ase. The di�
ulty lies in the fa
t that the 
lass of stable, periodi
 motionsthat 
an be a
hieved by balan
ing seems to be mu
h smaller than what 
an be a
hieved throughallowing impa
ts.� A solution to the balan
ing problem has been re
ently proposed in [CEU02, SC04℄.This solution is based on the 
on
epts of zero dynami
s shaping and virtual 
onstraints. It allows togenerate lo
ally stable periodi
 orbits for the balan
ing motions of the three-link pendulum model ofRABBIT.
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Figure 5.7: Modelization of RABBIT as a three-link inverted pendulum.In ongoing resear
h, we envision to apply our nonlinear PI 
ontroller to generate stable balan
ingmotions for RABBIT. The aim is to illustrate our theory and to show that our PI 
ontroller provides a117



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSsimple and robust method to generate limit 
y
le os
illations in su
h a 
omplex system as RABBIT. Tosupport this idea, we 
onsider some analogies with the problem of generating limit 
y
le os
illations inthe 
art-pendulum system. The modelization of RABBIT as a three-link inverted pendulum indi
atesseveral similarities with this system. First, it 
onstitutes an undera
tuated system with one degree ofundera
tuation. Se
ond, if we 
onsider small deviation of the stan
e leg (
orresponding to the free linkof the three-link pendulum) w.r.t. the verti
al axis, the movement of the hip is almost horizontal andmay be assimilated to the translational degree of freedom of the 
art. Preliminary works show that thedynami
s of the three link inverted pendulum for small deviation around the inverted verti
al position(free link in inverted position and a
tuated links hanging in stable position) is very similar to thatof the 
art-pendulum ex
ept for some additional 
entrifugal terms in the (free) pendulum dynami
s.Based on these analogies, appli
ation of our 
ontroller to the three-link pendulum is expe
ted to allowfor the development of a simple and robust 
ontrol law for the balan
ing 
ontrol of RABBIT.5.5 SummaryIn this 
hapter we adopted a synthesis point of view for the generation of stable limit 
y
le os
illa-tions in stabilizable systems. Based on the theory developed in the previous 
hapters, we presented aproportional-integral feedba
k 
ontroller to answer the synthesis question and brie�y 
ompared it withother solutions proposed in the literature. Under some te
hni
al assumptions presented in the previ-ous 
hapters, we showed that this 
ontroller is useful to generate os
illations in stabilizable systems.The main advantage of this 
ontroller is that it relies on existing stabilization theory for equilibriumpoints: on
e a stabilizing, passive output has been designed for the system, it is used to 
lose theloop with the 
ontroller in order to generate limit 
y
le os
illations with large basins of attra
tion.The design of a stabilizing, passive output is a 
entral topi
 in nonlinear 
ontrol theory and manymethods already exist to solve this problem (feedba
k passivation designs, 
ontrolled Hamiltonianand Lagrangian theory, energy shaping methods, et
.). However, the use of the proposed 
ontrollerdoes not allow to dire
tly draw 
on
lusions from the theorems presented in the previous 
hapter. Themain reason is the di�
ulty of verifying the absolute stability assumption at 
riti
ality. To guaranteethat this assumption is satis�ed, we have 
onsidered the 
lass of stabilizable, 
onservative systemsfor whi
h it generi
ally holds. Unfortunately, we have shown that the 
orresponding bifur
ation isgeneri
ally degenerate. To regularize the degenerate bifur
ation we have proposed a method basedon the feedba
k inje
tion of spe
i�
 damping into the system. This solution has been shown to beappli
able only to fully a
tuated two degrees of freedom me
hani
al systems. Even in the 
ase whenthe degenerate bifur
ation is not regularized, the proposed 
ontroller is expe
ted to yield stable limit
y
le os
illations thus providing a simple method to for
e os
illations by feedba
k. As an illustrationof the proposed synthesis method to undera
tuated me
hani
al systems, we have shown simulationresults for the 
art-pendulum. In future work, we plan to extend our theorems to in
lude degeneratebifur
ations and apply this 
ontroller to the balan
ing 
ontrol of the bipedal robot RABBIT.
118



Chapter 6Con
lusion and future work6.1 SummaryThe 
entral theme of this thesis is the global analysis and synthesis of os
illators. Our aim hasbeen to develop a global analysis method for os
illators whi
h is independent of their dimensionand provides an inter
onne
tion theory. The proposed approa
h was to 
onsider a dissipativity
hara
terization of os
illators whi
h �ts their des
ription by physi
al state spa
e models and, atthe same time, has impli
ations for their global stability analysis. This theory in
ludes two globalos
illation me
hanisms whi
h are illustrated in their simplest way in the 
elebrated low dimensionalmodels of Van der Pol and Fitzhugh-Nagumo. A �rst main 
ontribution has been the extensionof these global os
illation me
hanisms to high-dimensional systems 
omposed of a strongly passivesystem in feedba
k with a slope parametrized, stati
 nonlinearity. Under some te
hni
al assumptions,we showed that, generi
ally, this feedba
k inter
onne
tion undergoes either a super
riti
al Hopf, or asuper
riti
al pit
hfork bifur
ation. The global os
illation results either dire
tly from the super
riti
alHopf bifur
ation or from the addition of a slow adaptation dynami
 to the globally bistable system
reated by the super
riti
al pit
hfork bifur
ation.As a se
ond 
ontribution, we have shown that the results obtained for an isolated passive os-
illator extend to passive inter
onne
tions of passive os
illators. Moreover, we showed that globalsyn
hronization is implied by an in
remental dissipativity 
hara
terization of the network that wenamed in
remental passivity. We also provided su�
ient 
onditions under whi
h passive os
illatorsare in
rementally passive and derived su�
ient network topology 
onditions for the existen
e of glob-ally asymptoti
ally stable syn
hrone os
illations in networks of identi
al passive os
illators. Thisglobal syn
hronization result 
on
erns network topologies that in
lude SN symmetry (all-to-all topol-ogy), DN symmetry (bidire
tional ring topology), ZN symmetry (unidire
tional ring topology) andopen 
hain symmetry. We 
ompared our syn
hronization result with other re
ent results on globalsyn
hronization and showed that generi
ally passive os
illators satisfy the required 
onditions.Finally, based on these analysis results, we presented a proportional-integral feedba
k 
ontrollerto answer the limit 
y
le synthesis question and brie�y 
ompared it with other solutions proposed inthe literature. The main advantage of the proposed 
ontroller is that it relies on existing stabilizationtheory for equilibrium points: on
e a stabilizing, passive output has been designed for the system,it 
an be used to 
lose the loop with the 
ontroller in order to generate limit 
y
le os
illations withlarge basins of attra
tion. The design of a stabilizing, passive output is a 
entral topi
 in nonlinear
ontrol theory and many methods already exist to solve this problem (feedba
k passivation designs,119



CHAPTER 6. CONCLUSION AND FUTURE WORK
ontrolled Hamiltonian and Lagrangian theory, energy shaping methods, et
.). As an illustration ofthe appli
ation of this 
ontroller to undera
tuated me
hani
al systems, we showed simulation resultsfor the 
art-pendulum for whi
h limit 
y
le os
illations with large basins of attra
tion were su

essfullygenerated.6.2 Future workIn future work, we plan to investigate the following open questions:
• Extension of the numeri
al method proposed in Se
tion 3.6 to pie
ewise linear passive os
illatorsof order greater than two.This extension would lead to a global numeri
al analysis method for pie
ewise linear approxi-mations of passive os
illators. Su
h a method would be very interesting for testing numeri
allythe existen
e and global stability of the limit 
y
le for a parti
ular value of the bifur
ationparameter.
• Generalization of our theorems to the degenerate bifur
ation situation when more than twoeigenvalues 
ross the imaginary axis simultaneously at 
riti
ality.This generalization would yield analyti
al results proving that, even if the bifur
ation is degener-ate, a globally asymptoti
ally stable limit 
y
le is 
reated. This result is parti
ularly importantfor the synthesis of global os
illations in 
onservative systems.
• Appli
ation and experimental validation of our limit 
y
le os
illations synthesis method toundera
tuated me
hani
al systems in
luding the pendubot, the a
robot, and the balan
ing
ontrol of the bipedal robot RABBIT.
• Extension of the syn
hronization results to networks of non identi
al passive os
illators.
• Analysis of other feedba
k os
illation me
hanisms through an input-output approa
h.The feedba
k me
hanisms presented in this thesis were based on bifur
ations 
aused by aninversion of the feedba
k stati
 gain. Other feedba
k me
hanisms based on bifur
ations 
ausedby inversion of the phase are 
ommon in bio
hemistry. This phase inversion is generally due tothe presen
e of a delay in the feedba
k loop. The use of an input-output approa
h to performanalysis of delay feedba
k systems yielding globally stable limit 
y
le os
illations 
onstitutes animportant open question that is 
urrently investigated.
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Appendix AComplement to Chapter 4A.1 Real positive de�nite matri
esIn this se
tion we give the de�nition of real positive de�nite matri
es. This de�nition does notimpli
itly assume, as is often the 
ase in the literature, that the matrix is symmetri
. This distin
tionis important in the 
ontext of inter
onne
tion of passive os
illators sin
e it allows for non symmetri
network topologies to be 
onsidered.De�nition A.1 A real matrix A is positive de�nite i� xTAx > 0, ∀x ∈ R
n\{0}.For positive semi-de�nite matri
es, the same de�nition holds ex
ept that the inequality is non-stri
t.Note that these de�nitions of positive (semi) de�nite matri
es hold for non-symmetri
 matri
es. Infa
t, sin
e any matrix A may be written under the form As + Aa where As = 1

2

(
A+AT

) is thesymmetri
 part of A and Aa = 1
2

(
A−AT

) is the anti-symmetri
 part of A, we immediately see that
xTAx = xTAsx, for all x ∈ R if A is real. Thus a real matrix is positive (semi) de�nite if and only ifits symmetri
 part is positive (semi) de�nite.For a symmetri
 positive de�nite matrix the eigenvalues are positive. The 
orresponding propertyfor non symmetri
 positive de�nite matrix is given in Theorem A.2.Theorem A.2 The eigenvalues of a real positive de�nite matrix have positive real parts.ProofIf λ = (λR + iλI) ∈ C is an eigenvalue of A, then, by de�nition,

λv = Av, v ∈ C
n, (A.1)where v = vR + ivI denotes the 
orresponding eigenve
tor.From equation (A.1), we get the system of equations

{
λRvR − λIvI = AvR

λIvR + λRvI = AvI
(A.2)Sin
e A is positive de�nite, we have 121



APPENDIX A. COMPLEMENT TO CHAPTER 4
{
vT
RAvR > 0
vT
I AvI > 0

(A.3)Inje
ting the equations appearing in (A.2) into (A.3), we obtain
{

|vR|2 λR − λIv
T
RvI > 0

|vI |2 λR + λIv
T
I vR > 0

(A.4)Summing these two inequalities, we get the following 
ondition whi
h has to be respe
ted for anyeigenvalue λ
λR |v|2 > 0.This 
ondition implies λR > 0.A.2 Syn
hronization topologiesThe syn
hrone os
illation result of Theorem 4.15 requires some parti
ular assumptions on theinter
onne
tion matrix Γ. These assumptions are

• Γ ∈ R
N×N is positive semide�nite, i.e. Y T ΓY ≥ 0, ∀y ∈ R

N ;
• ker (Γ) = ker

(
ΓT
)

= range (1).Note that these assumptions do not require the inter
onne
tion matrix Γ to be symmetri
.We will 
on
entrate on the ker (Γ) = ker
(
ΓT
) assumption. This assumption is essential for provingthat Y T

ker⊥
ΓYker⊥ > λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2 for any Yker⊥ belonging to the orthogonal 
omplement of

ker (Γ), i.e. for any Yker⊥ ∈ (ker (Γ))⊥ =
{
Y ∈ R

N : Y TZ = 0, ∀Z ∈ ker (Γ)
}. First of all, we notesome propositions 
on
erning the impli
ations of this assumption.Proposition A.3 If ker (Γ) = ker

(
ΓT
), then Y ∈ ker (Γ) ⇒ Y ∈ ker (Γs).ProofObvious.This property is important for the ZN symmetry 
ase.Proposition A.4 If ker (Γ) = ker

(
ΓT
) and Y = Yker + Yker⊥ where Yker ∈ ker (Γ) and Yker⊥ ∈

(ker (Γ))⊥, then Y T ΓY = Y T
ker⊥

ΓsYker⊥.ProofObvious from proposition A.3.We are now ready to prove the main result. This result is summarized in Proposition A.5.122



A.3. INVARIANCE OF THE KERNEL DYNAMICSProposition A.5 If Γ is a real, positive semide�nite matrix su
h that ker (Γ) = ker
(
ΓT
)

=range (1) and Y = Yker + Yker⊥ where Yker ∈ ker (Γ) and Yker⊥ ∈ (ker (Γ))⊥, then Y T
ker⊥

ΓYker⊥ ≥
λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2 where λmin 6=0

(Γs) denotes the smallest nonzero eigenvalue of (Γs).Proof
Y T

ker⊥
ΓYker⊥ = Y T

ker⊥
ΓsYker⊥ where Γs = 1

2

(
Γ + ΓT

). Sin
e Γs is symmetri
, there always existsan orthogonal matrix L that diagonalizes Γs, i.e. LΓsL
T = Λ where Λ = diag (0, λ2, . . . , λN ) with

0 < λ2 ≤ · · · ≤ λN . We thus have
Y T

ker⊥
ΓsYker⊥ = Y T

ker⊥
LT ΛLYker⊥

= λ2z
2
2 + · · · + λNz

2
N

≥ λ2

(
z2
2 + · · · + z2

N

)

= λ2

∣
∣LYker⊥

∣
∣2

= λ2

∣
∣Yker⊥

∣
∣2 ,where zi, i = 1, . . . , N denotes the ith 
omponent of LYker⊥ . The third equality 
omes from z1 = 0whi
h results from the de�nition of Yker⊥ .Finally, we give two propositions allowing to 
ompare ker (Γ) and ker (Γ ⊗ In).Proposition A.6 If w ∈ ker (Γ), then (IN ⊗B)w ∈ ker (Γ ⊗ In), ∀B ∈ R

n×1.Proof
(Γ ⊗ In) (IN ⊗B)w = (IN ⊗B) Γw = 0, ∀w ker (Γ).This proposition dire
tly implies that Yker⊥ = (IN ⊗ C)Xker⊥ ∈ (ker (Γ))⊥, ∀Xker⊥ ∈
(ker (Γ ⊗ In))⊥ sin
e ∀w ∈ ker (Γ) we have (Yker⊥

)T
w =

(
Xker⊥

)T (
IN ⊗ CT

)
w = 0.Proposition A.7 If X ∈ ker (Γ ⊗ In), then (IN ⊗ C)X ∈ ker (Γ), ∀C ∈ R

1×n.Proof
Γ (IN ⊗ C)X = (IN ⊗ C) (Γ ⊗ In)X = 0, ∀X ∈ ker (Γ ⊗ In).This proposition dire
tly implies that Yker = (IN ⊗ C)Xker ∈ (ker (Γ)), ∀X ∈ (ker (Γ ⊗ In)).A.3 Invarian
e of the kernel dynami
sIn this se
tion, we prove invarian
e of the kernel dynami
s 
orresponding to equation (4.19).Let Xker belong to the kernel of Γ ⊗ In. A

ording to (4.19), Xker satis�es the dynami
s

{
Ẋker = (IN ⊗A)Xker − (IN ⊗B)Φk (Yker) + (IN ⊗B)U
Yker = (IN ⊗ C)Xker

(A.5)Assume linear 
oupling, i.e. U = −ΓYker. Sin
e, by de�nition, (Γ ⊗ In)Xker = 0, we obtain U =
−Γ (IN ⊗ C)Xker = − (IN ⊗ C) (Γ ⊗ In)Xker = 0. It is now easy to see that the kernel dynami
s(A.5) are invariant sin
e

(Γ ⊗ In) Ẋker = (IN ⊗A) (Γ ⊗ In)Xker − (IN ⊗B) ΓΦk (Yker) = 0,123



APPENDIX A. COMPLEMENT TO CHAPTER 4for any Xker ∈ ker (Γ ⊗ In).A.4 Impli
ation of observability for linear systemsProposition A.8 For linear systems satisfying the state-spa
e model
{
ẋ = Ax+Bu

y = Cx
(A.6)observability of the pair (A,C) implies ∃β1 > 0, β2 > 0 su
h that ∀t̄ > 0

β1 |x0|2 ≤
∫ t̄

0
|ỹ(τ)|2 dτ ≤ β2 |x0|2 .ProofObservability of the pair (A,C) implies

∀t̄, Wo(0, t̄) =

∫ t̄

0

(
eAt
)T
CTCeAt dt > 0,where Wo(0, t̄) denotes the observability Grammian (see [AM97, p. 253℄). Thus, for an observablelinear time-invariant system, Wo(0, t̄) is a symmetri
 positive de�nite matrix, for any t̄ > 0. Thismeans that for any t̄ > 0, there exists β1 > 0 and β2 > 0 su
h that

β1I ≤Wo (0, t̄) ≤ β2I (A.7)The output of the linear system is given by
y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ) dτwhere x0 = x(0). Consider the �input-free� output ỹ(t) = y(t) −

∫ t

0 Ce
A(t−τ)Bu(τ) dτ = CeAtx0.This yields xT

0Wo (0, t̄)x0 =
∫ t̄

0 x
T
0 e

AT τCTCeAtx0 dτ =
∫ t̄

0 |ỹ(τ)|
2 dτ . Now, the 
ondition (A.7)equivalently writes

β1 |x0|2 ≤
∫ t̄

0
|ỹ(τ)|2 dτ ≤ β2 |x0|2 (A.8)for any t̄ > 0. In parti
ular, for an unfor
ed linear time-invariant system (u ≡ 0), we have ỹ(t) = y(t)and inequalities (A.8) express bounds on the output energy as fun
tions of the initial 
ondition energy.
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Appendix BDegenerate bifur
ation in linear,
onservative and dete
table systemsIn this appendix, we 
hara
terize the 
omplex plane position of poles and zeros for a linear 
on-servative system. Furthermore, we show that, the feedba
k inter
onne
tion of a 
onservative systemwith a proportional gain is su
h that generi
ally, all the poles 
ross the imaginary axis simultaneously.This shows that the bifur
ation is generi
ally degenerate for 
onservative systems.B.1 Poles/zeros map of linear 
onservative systemsIn this se
tion we 
onsider the feedba
k inter
onne
tion of Figure 5.1 where the forward blo
k,denoted by Σ, is linear, strongly 
onservative, and dete
table. We denote by Ξ, the feedba
k inter-
onne
tion of Σ with the integral part of the 
ontroller. Being the feedba
k inter
onne
tion of two
onservative systems, Ξ is 
onservative w.r.t. its input w and its output y. It is also easy to provethat Ξ is dete
table.We now show that the 
riti
al bifur
ation value of the feedba
k system is k∗ = 0 and thatgeneri
ally a degenerate bifur
ation appears at k∗ = 0.The dynami
s of the linear system Ξ are given by
ż = Az +Bw (B.1)
y = CzFrom the assumption that Ξ is a 
onservative system, there exists a matrix P = P T > 0 su
h thatthe Hill-Moylan 
onditions

ATP + PA = 0 (B.2)
C = BTP (B.3)are satis�ed. From the �rst Hill-Moylan 
ondition (B.2), we may dedu
e that all the eigenvaluesof A lie on the imaginary axis.Proposition B.1 The poles of a linear, 
onservative system are all lo
ated on the imaginary axis.125



APPENDIX B. DEGENERATE BIFURCATION IN LINEAR, CONSERVATIVE ANDDETECTABLE SYSTEMSProofLet e be an eigenve
tor of A and λ the 
orresponding eigenvalue i.e. Ae = λe with λ = σ + jω. Wehave thus e∗ (A∗P + PA) e = λ̄e∗Pe + λe∗Pe = 2σe∗Pe where ∗ denotes the 
onjugate transposeoperator and λ̄ the 
onjugate of λ. Sin
e A is a real matrix we have A∗ = AT . This proves that σ = 0sin
e P = P T > 0. Thus every eigenvalue of A has a zero real part.Moreover, Ξ being a 
onservative system we know that it is weakly minimum phase (see Se
tion2.1.7). Thus the zeros of Ξ are lo
ated in the 
losed left-half 
omplex plane. In fa
t all zeros of Ξ lieon the imaginary axis. We prove this statement hereafter.Proposition B.2 The zeros of a linear, 
onservative system are all lo
ated on the imaginary axis.ProofFrom the se
ond Hill-Moylan 
ondition (B.3) it follows that the matrix CB = BTPB is positivede�nite; hen
e system (B.1) has relative degree one. A linear 
hange of 
oordinates
(
ξ0
Y

)

=

(
T

C

)

zexists su
h that TB = 0. In these 
oordinates, system (B.1) is expressed in normal form:
ξ̇0 = Q11ξ0 +Q12y

ẏ = Q21ξ0 +Q22y + CBwThe system Ξ expressed in the new 
oordinates (ξ0, y) is still 
onservative sin
e passivity is a
oordinate independent property. The zero dynami
s are ξ̇0 = Q11ξ0. Partitioning the 
orrespondingpassivity matrix P̃ = P̃ T > 0 a

ording to the state partition (ξ0, y) the se
ond Hill-Moylan
ondition ( 0T (CB)T
)
P̃ =

(
0T 1

) yields
P̃12 = P̃ T

21 = 0

P̃22 = (CB)−Twhereas the �rst Hill-Moylan 
ondition P̃ ( Q11 Q12

Q21 Q22

)

+

(
QT

11 QT
21

QT
12 QT

22

)

P̃ = 0 redu
es to
P̃11Q11 +QT

11P̃11 = 0, P̃11 = P̃ T
11 > 0.This equality shows that all eigenvalues of Q11 are lo
ated on the imaginary axis.We thus have proved that the (MIMO) transfer fun
tion of a linear 
onservative system has allits zeros and poles on the imaginary axis.Remark B.3 The poles/zeros position of a linear, 
onservative, and dete
table system may be further
hara
terized: poles and zeros alternate on the imaginary axis. This is proved hereafter.126



B.2. DEGENERATE BIFURCATIONDenote by Ξk the (positive) feedba
k inter
onne
tion of Ξ with the stati
 gain k. Being the feedba
kinter
onne
tion of a 
onservative, and dete
table system (Ξ) with a stati
, stri
tly input passive system(w = −ky), Ξk must be asymptoti
ally stable for k < 0 sin
e it is output stri
tly passive and dete
table(Lemma 2.14). Analyzing the poles/zeros 
on�guration leading to an asymptoti
ally stable system fornegative values of k, a root lo
us argument shows, that the only possibility is to have a simple alternan
eof zeros and poles on the imaginary axis. To illustrate this, 
onsider the three following systems
Ξa =

s
(
s2 + 4

)

(s2 + 1) (s2 + 9)

Ξb =
s
(
s2 + 1

)

(s2 + 4) (s2 + 9)

Ξc =
s
(
s2 + 9

)

(s2 + 1) (s2 + 4)The 
orresponding root lo
i of their (positive) feedba
k inter
onne
tion with the stati
 gain k, i.e. Ξik ,
i = a, b, c, are represented on Figure B.1. On this Figure we 
learly see, that only Ξak

is asymptoti
allystable for any negative value of k.
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(a) (b) (
)Figure B.1: Root lo
us. (a) Ξak
, (b) Ξbk

, (
) Ξck
. Legend: × represent a pole, ◦ represents a zero.The solid 
urves represents the root lo
us.B.2 Degenerate bifur
ationNow that we know the normal position of the zeros and poles of a 
onservative system in the
omplex plane, we perform the bifur
ation analysis for Ξk. We show that generi
ally the bifur
ationat k = 0 is degenerate, i.e. all eigenvalues 
ross the imaginary axis simultaneously at k = 0.Proposition B.4 The positive feedba
k inter
onne
tion of a linear, 
onservative, and dete
table sys-tem Ξ with the proportional gain k is 
hara
terized by a degenerate bifur
ation at k = 0.ProofConsider two systems. The original system Ξ

ż = Az +Bw

y = Cz127



APPENDIX B. DEGENERATE BIFURCATION IN LINEAR, CONSERVATIVE ANDDETECTABLE SYSTEMSand its anti-stable 
ounterpart Ξ̃ whose dynami
s are given by
ż = −Az +Bv

y = CzBoth Ξ and Ξ̃ are 
onservative sin
e they satisfy the Hill-Moylan 
onditions (B.2)-(B.3) for thesame matrix P = P T > 0. For k < 0, Ξk and Ξ̃k are output stri
tly passive and dete
table. FromLemma 2.14, they are both asymptoti
ally stable for k < 0. This means that the matri
es A+kBBTPand −A+kBBTP are both Hurwitz for k < 0, or that A−kBBTP is anti-Hurwitz and A+kBBTPis Hurwitz for k < 0. Thus, we have proved that a degenerate bifur
ation appears at k∗ = 0 sin
eall the eigenvalues 
ross the imaginary axis simultaneously at k = 0.
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Appendix CAppli
ation of Mees results to our 
lassof systemsThe approa
h we present in Chapter 3 is related to the work of Mees [MC79, Mee81℄. In hiswork Mees presents a �frequen
y-domain� Hopf bifur
ation theorem and graphi
al 
onditions 
or-responding to rigorous versions of the des
ribing fun
tions method to 
on
lude about lo
al stabilityof limit 
y
les in feedba
k loops. In this appendix, we re
all the graphi
al interpretation of the Hopfbifur
ation theorem given by Mees and use it to prove that if a Hopf bifur
ation o

urs in systemssatisfying the assumptions of Theorem 3.8 then this bifur
ation is super
riti
al and leads to a lo
allyasymptoti
ally stable limit 
y
le.C.1 The frequen
y domain Hopf bifur
ation theoremThe results of Mees are an extension of Allwright's proof of the Hopf bifur
ation theorem[All77℄ whi
h is based on an appli
ation of the method of harmoni
 balan
e. This approa
h providesa des
ribing fun
tion-like graphi
al interpretation of the Hopf bifur
ation theorem. This graphi
alinterpretation is based on the 
hara
teristi
 lo
us idea1. For a system parametrized by a real number
µ, the graphi
al Hopf theorem shows how harmoni
 balan
e with harmoni
s zero to two is enoughto determine whether the system undergoes a Hopf bifur
ation, and to say whether the limit 
y
leis stable or unstable. It shows how to 
onstru
t estimates of the frequen
y and amplitude of thelimit 
y
le, the error in frequen
y being O

(

|µ− µ0|2
) and that in amplitude being O

(

|µ− µ0|
3
2

).The estimates of frequen
y ω and �rst harmoni
 amplitude θ may be read dire
tly from a graph. Inthis appendix, we apply Theorem C.1 to the feedba
k system represented in Figure 3.8 and 
on
ludeabout the existen
e of a super
riti
al Hopf bifur
ation for values of k & k∗.The main result of Mees is summarized in Theorem C.1.Theorem C.1 (Frequen
y domain Hopf bifur
ation theorem) [Mee81℄Let S be an autonomous feedba
k system des
ribed by
gf(e) + e = 0,1A 
hara
teristi
 lo
us 
orresponds to the (generalized) Nyquist lo
us of a 
hara
teristi
 fun
tion. The de�nitionand theory of 
hara
teristi
 fun
tions is given in [Mee81, page 76℄. In the SISO 
ase, the 
hara
teristi
 lo
us simply
orresponds to the Nyquist lo
us. 129



APPENDIX C. APPLICATION OF MEES RESULTS TO OUR CLASS OF SYSTEMSwhere g is a linear operator with proper rational transfer fun
tion G su
h that G(s) ∈ C
l×m and

f : R
l → R

m is C4 in e. Suppose ê is a solution of G(0)f (ê) + ê = 0, and write D1 for (Df)ê.Let G(s)D1 have 
hara
teristi
 fun
tions λk(s) (k = 1, . . . , p) and suppose g and f depend ona real parameter µ in su
h a way that as µ passes through µ0, the lo
us of a single 
hara
teristi
fun
tion λ̂(jω) passes through −1 at a unique frequen
y ω0, and the derivative ∂λ̂
∂ω

and ∂λ̂
∂µ

exist at
(µ0, ω0), where they are nonzero and are not parallel.De�ne L1(θ, ω) as below (Table C.1) and suppose that when µ = µ0, the lo
us of L1 (θ, ω0) as θvaries is transverse to the λ̂ lo
us where they interse
t at −1.Then for µ = µ0 +χδ2, where χ = −1 or χ = +1 and δ > 0 is small, the L1 (θ, ω0) lo
us interse
tsthe λ̂(jω) lo
us transversely at, say λ̂(iω1), when θ = θ1. If δ is su�
iently small the nonlinear system
an support os
illations of the form

e(t) = ê+ ℜ
2∑

k=0

ake
jkvt + O

(
δ3
)
,where

v = ω1 + O
(
δ3
)
,

a0 = θ2
1v0 + O

(
δ3
)
,

a1 = θ1v1 + O
(
δ2
)
,

a2 = θ1v2 + O
(
δ3
)
,and ea
h vk, de�ned below (Table C.1), is O(1) in δ as δ → 0. Moreover, e(t) is the unique periodi
solution in a neighbourhood of ê.Suppose the linearized feedba
k system (with D1 repla
ing f) has two more poles in the right half-plane when µ = µ0+ψδ

2 (ψ = ±1) than when µ = µ0−ψδ2. If ψχ = +1 the bifur
ation is super
riti
alwhile if ψχ = −1 it is sub
riti
al; in parti
ular, the periodi
 solution is stable if there are no poles in
ℜ{s} > 0 for µ = µ0 − ψδ2 and ψχ = +1.The statements about derivatives of λ̂ just say that the λ̂ lo
us moves through −1 �in a generi
 way�.In pra
ti
e, one needs only draw the lo
i for a given value of µ as in �gure C.1, and use the frequen
y
ωR at whi
h λ̂(jω) interse
ts the negative real axis near −1 (i.e. ℜ

{

λ̂(jω)
} is 
losest to −1 and

ℑ
{

λ̂(jω)
}

= 0) in pla
e of ω0. Mees shows that |ωR − ω0| = O
(
δ2
) and thus the approximation
onsisting in taking ωR instead of ω0 is valid.The statements about stability are easiest to understand in the 
ase where the linearized systemis stable before bifur
ation, in whi
h 
ase χ = +1 implies a super
riti
al bifur
ation to a stable limit
y
le. This means that the 
losed-loop system has two poles in ℜ{s} > 0 and the L1 lo
us pointsoutwards, towards the region of stable feedba
k gains (see Figure C.1). This is a rigorous version ofa heuristi
 test often used with des
ribing fun
tions [Ath75℄, and there is an obvious generalizationin terms of right half-plane poles and numbers of en
ir
lements of the point L1 (θ, ω0) by all the lo
i.Essentially, Mees is saying that the behavior within the 
enter manifold is des
ribed by the 
hange inthe number of poles with positive real part as µ in
reases through µ0, while the question of whetherthe manifold is itself attra
ting 
an be answered by looking at those poles whi
h do not 
ross theimaginary axis as µ in
reases through µ0. However, the proof of Mees does not depend on 
entermanifold theory. 130



C.1. THE FREQUENCY DOMAIN HOPF BIFURCATION THEOREM
L1(θ, ωR)

ℜ

ℑ

λ1(jωR) = −1 + i0

λ1(jω)

λ2(jω)

Figure C.1: Theorem C.1 in the 
ase when p = 2. The 
hara
teristi
 lo
i are only shown for positive ω.The L1 lo
us is the heavy straight line emanating from −1: if the system was stable before bifur
ation,and the λ1 lo
us moves outwards to engulf −1 after bifur
ation, the bifur
ation is super
riti
al andthe limit 
y
le is stable.Summing up, then, the L1(θ, ω) lo
us behaves very like a des
ribing fun
tion lo
us − 1
N(θ) : itallows us to read o� the values of frequen
y and amplitude of os
illation and to see, very easily how
hanges in the system will a�e
t the limit 
y
le. The general pro
edure to 
ompute the lo
us of points

L1(θ, ω) as θ varies is summarized in Table C.1.Remark C.2 The symbol ⊗ appearing in Table C.1 denotes the tensor produ
t. The formulas givenat point 2 
an be understood in the following way:1. f : R
l → R

m : X → Y = f(X).2. D1f = ∂f(X)
∂X

is a m× l matrix and thus G(s)D1 is a l × l matrix.3. D2f = ∂2f(X)
∂X2 is a m× l× l tensor and thus Q =

(
D2f

)∣
∣
X̂
E = D2E (where E is a l×1 ve
tor)is a m× l matrix s.t. Qjk =

∑l
p=1 f

j
pkEp.4. D3f = ∂3f(X)

∂X3 is a m × l × l × l tensor and thus L =
(
D3f

)∣
∣
X̂
E ⊗ E = D3E ⊗ E is a m × lmatrix s.t. Ljk =

∑l
p=1

∑l
q=1 f

j
pqkEpEq.5. D2E ⊗ Ē = Q.Ē and D3E ⊗ E ⊗ Ē = L.Ē where . denotes the matrix produ
t.The lo
us of L1 for �xed ω is just a straight line emanating from −1 and pointing in the dire
tion

−z1. If z1 = 0 then the lo
us is degenerate, but this is ex
luded by transversality.131



APPENDIX C. APPLICATION OF MEES RESULTS TO OUR CLASS OF SYSTEMSSuppose G(0)f(ê) + ê = 0 and Dk =
(
Dkf

)

ê
for k = 1, 2, 3. Identify λ̂ as in Theorem C.1 and let uTand v be the left and right eigenve
tors of G(jω)D1 belonging to λ̂(jω).Write GD1(jω) = (I +G(jω)D1)

−1G(jω).1. Normalize v so that |v| = 1 and u so that uT v = 1 (so |u| ≥ 1).2. Let
v0 = −1

4
GD1(0)D2v ⊗ v̄,

v1 = v,

v2 = −1

4
GD1(2jω)D2v ⊗ v,where the kth element of D2v ⊗ v̄ is (D2v ⊗ v̄)k =

∑m
r,s=1

∂2fk(e)
∂er∂es

∣
∣
∣
e=ê

vrv̄s where k = 1, . . . ,mand where v̄ denotes the 
omplex 
onjugate of v.3. Let p(ω) = D2

(
v0 ⊗ v + 1

2 v̄ ⊗ v2
)

+ 1
8D3v ⊗ v ⊗ v̄ where the kth element of D3v ⊗ v ⊗ v̄ is

(
v0 ⊗ v + 1

2 v̄ ⊗ v2
)

k
=
∑m

r,s,t=1
∂3fk(e)

∂er∂es∂et

∣
∣
∣
e=ê

vrvsv̄t.4. Let z1(ω) = uTG(jω)p(ω).5. Then L1(θ, ω) = −1 − θ2z1(ω).Table C.1: Cal
ulation of L1(θ, ω) [Mee81℄.In the SISO 
ase where G(s) ∈ C and f : R → R is C4, the only 
hara
teristi
 fun
tion is G(s)D1.Its lo
us 
orresponds to the Nyquist diagram of G(jω)D1. Sin
e G(jω)D1 is a s
alar, the right andleft eigenve
tors for λ̂ (jω0) are given by v = 1 and u = 1.
C.2 Appli
ation of Theorem C.1 to our 
lass of systemsConsider the feedba
k system represented in Figure 3.8 where Σ represents a linear system and
φk(·) satis�es the assumptions of Theorem 3.8. To for
e the Hopf bifur
ation s
enario, we 
onsiderthat Σ is the feedba
k inter
onne
tion of a linear, passive system H with a simple integrator (seeChapter 3). Using the notations of Mees (see Theorem C.1) we have f(·) = φk(·) and G = Σ.Cal
ulating the quantities appearing in Theorem C.1, we get G(s) = sH(s)

s+H(s) ∈ C where H(s) is thetransfer fun
tion of the passive system H and D1 = φ′k(0) = −k, D2 = 0 and D3 = φ′′′k (0) = κ > 0.Thus, 132



C.2. APPLICATION OF THEOREM C.1 TO OUR CLASS OF SYSTEMS
λ(s) = G(s)D1 = −kG(s),

GD1(jω) =
G(jω)

1 − kG(jω)
,

v0 = 0,

v1 = 1,

v2 = 0,

p(ω) =
κ

8
,

z1(ω) =
κ

8
G(jω),

L1(θ, ω) = −1 − κ

8
θ2G(jω).The 
hara
teristi
 lo
us of λ(jω) is the Nyquist diagram of −kG(jω). Sin
e G(s) is the transferfun
tion of a passive system, the Nyquist plot of −kG(jω) lies entirely in the left half-plane for

k > 0. When k in
reases the Nyquist plot of −kG(jω) 
orresponds to that of G(jω) dilated by
−k. Sin
e the feedba
k system be
omes unstable at k = k∗ ≥ 0 we know that the Nyquist plot of
−kG(jω) engulfs the point −1 when k = k∗. Thus, ψ = +1.

ℜ

L1(θ, ω0)

−1

ℑ−k∗G(jω)

Figure C.2: Chara
teristi
 lo
us of −kG(jω) for passive os
illators. The 
hara
teristi
 lo
us (i.e. theNyquist plot) is only shown for positive ω.At k = k∗, the Nyquist plot of −kG(jω) 
rosses the real axis at −1 for ω = ω0 and thus
G (jω0) = 1

k∗ . We 
on
lude that L1 (θ, ω0) = −1 − 3
4k∗ θ

2. Thus, L1 (θ, ω0) is a ve
tor starting at −1and pointing towards −∞ along the real axis (see Figure C.2). We thus have χ = +1. We 
on
ludefrom Theorem C.1 that the Hopf bifur
ation is super
riti
al and leads to a lo
ally stable limit 
y
le.
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