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Abstract

This thesis is devoted to the global (as opposed to local) analysis, and synthesis of stable limit cycle
oscillations in dynamical systems described by differential equations. Dynamical systems that exhibit stable
limit cycle oscillations are called oscillators. The main contribution is the development of a theory for oscillators
seen as open systems, that is, as systems that can be interconnected to other systems through their inputs
and outputs. The results are obtained by considering an input-output characterization of oscillators based on
dissipativity theory. The use of a dissipativity characterization opens the way to limit cycle global convergence
analysis and synthesis in high dimensional and interconnected models of oscillators.

In the first part of the thesis, we define a class of dynamical systems exhibiting globally attractive limit
cycle oscillations, and study the fundamental mechanisms responsible for these oscillations. We name elements
of this class “passive oscillators”. Passive oscillators consist in the feedback interconnection of a passive system
with a static nonlinearity which is “locally active” and “globally dissipative”. For this nonlinearity, the slope
at the origin is treated as a bifurcation parameter. For values of the parameter in the vicinity of a critical
bifurcation value, we give sufficient conditions for the existence, unicity, and globally attractivity of a limit
cycle oscillation. Central to these results is the characterization of passive oscillators by a specific dissipation
inequality. This dissipation inequality provides an external characterization of oscillators which allows a
rigorous global stability analysis of limit cycles in high dimensional systems.

In the second part of the thesis, we show the usefulness of the dissipativity characterization for the global
analysis of networks of interconnected passive oscillators. In particular, we give sufficient conditions that
allow straightforward extensions of the results obtained for an isolated passive oscillator to networks of passive
oscillators. These extensions rely on a multivariable version of the dissipation inequality used to characterize
the network. We also introduce an incremental version of this dissipation inequality and show its usefulness
for proving existence, and global stability of synchrone oscillations in networks of identical passive oscillators.

Finally, we show the usefulness of the considered approach for the synthesis of oscillations. We show that a
natural oscillation mechanism is induced when a passive system is put in feedback with a specific proportional-
integral controller for which the sign of the proportional part is locally reversed. The main advantage of
this controller is that it relies on existing energy-based stabilization theory for equilibrium points: once a
stabilizing, passive output has been designed for the system, it is used to close the loop with the controller in
order to generate limit cycle oscillations in the closed loop system.
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Chapter 1

Introduction

This thesis is devoted to the global analysis and synthesis of stable limit cycle oscillations. Dy-
namical systems that exhibit stable limit cycle oscillations are called oscillators. They are ubiquitous
in physical and biological systems (see [Gol96, Mos97, Str03| for numerous examples of oscillators).
Detailed models of oscillators abound in the literature, most frequently in the form of a set of nonlin-
ear differential equations whose solutions robustly converge to a limit cycle oscillation. Local stability
analysis is possible by means of FLOQUET theory [Far94, BM94| but global stability analysis is usually
restricted to second order models. For these models, global analysis is performed by using specific low
dimensional tools (phase plane methods, POINCARE-BENDIXON theorem, etc.) which do not easily
generalize to higher dimensions. The lack of analytical tools in higher dimensions generally forces
high dimensional models of oscillators to be studied through numerical methods thereby giving no
insight into the fundamental oscillation mechanisms involved. Moreover, when considering intercon-
nection, the methods used for the analysis of an isolated oscillator do not generalize to the network.
These considerations show the need for developing general analysis methods for oscillators. These
methods should allow the analysis of oscillators independently from their dimension and provide an
interconnection theory for oscillators.

From an analysis point of view, the aim of this thesis is to develop a global analysis method. We
characterize a class of high-dimensional feedback systems exhibiting globally asymptotically stable
limit cycle oscillations and study the mechanisms responsible for these oscillations. To this end,
we consider an external characterization of oscillators which fits their description by physical state
space models but, at the same time, has important implications for the stability and synchrony
analysis of their interconnections. This external characterization of oscillators follows the fundamental
characterization of open systems by a dissipation inequality, which opens the way for the development
of an interconnection theory for oscillators.

From a synthesis point of view, the aim is to provide a simple feedback mechanism that allows
for the generation of stable limit cycle oscillations in stable systems. In other words, we study the
design of a simple controller that yields stable limit cycle oscillations in stable systems.

1.1 Thesis main contributions and related publications

The main contribution of this thesis is the analysis of oscillators by a dissipativity theory. In
particular, we show the implications of this dissipativity theory for (i) the global stability analysis of
an isolated oscillator, (ii) the global stability analysis of interconnections of oscillators, and (iii) the
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global synchrony analysis of interconnections of N identical oscillators. Regarding the synthesis of
oscillations, the main contribution concerns the design of a proportional-integral controller to generate
oscillations in stabilizable systems.

To give the reader a flavor of the results, we introduce hereafter the main ideas that will be
developed in details in the next chapters.

1.1.1 Global stability analysis of an isolated oscillator

This research started with the analysis of two low dimensional systems which are well-known for
their global limit cycle oscillations: the celebrated VAN DER Por and Fi1zHUGH-NAGUMO models.
Each of these systems is a reference model for nonlinear oscillations in physical and biological sys-
tems. On the one hand, the VAN DER POL model is a basic example of oscillator in the framework
of electromechanical systems. On the other hand, the FITZHUGH-NAGUMO model, which is a sim-
plification of the HODGKIN-HUXLEY model for voltage oscillations in the neuron cell membrane, is
a basic example of oscillator in biology. Starting from these two models, we characterize a common
feedback structure in which the forward block is filled with a linear system and the feedback block
with a static nonlinearity. This feedback interconnection structure is represented in Figure 1.1. It is
commonly referred to as a LURE feedback interconnection.

u Y
O passive

static nonlinearity
HES

Figure 1.1: Block diagram of the LURE nonlinear system studied in this thesis.

The static nonlinearity in both models is characterized by a negative slope at the origin and a cu-
bic behavior far from the origin, that is a nonlinear function of the form —ky +1%2. To understand the
feedback mechanisms involved and, at the same time, obtain an interconnection theory for oscillators,
we searched for an external characterization for both the dynamic and the static block. Passivity
rapidly emerged as a natural external characterization. Passivity is a particular case of the general
dissipativity theory introduced by WILLEMS [Wil72]. It provides a dimension-independent, inter-
connection theory for open systems described by state-space models. Open means that the system
dynamics depend on external variables which describe the interaction with the environment. Passiv-
ity of an open system expresses that the rate of change of its internal energy is bounded by the rate
at which the system can exchange energy with its environment through its external variables. The
mathematical characterization of this physical property is the existence of a scalar, positive semidef-
inite function of the state S(x), called the storage function, which is such that its time derivative
satisfies the dissipation inequality S < uy where u and y represent the input and output of the system
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respectively. For the feedback static nonlinearity, passivity amounts to satisfy a positivity condition:
a static nonlinearity ¢(-) is passive if its graph belongs to the first and third quadrants, that is, if
yo(y) > 0 for any y. Furthermore, if the nonlinearity ¢(-) is such that limy .+ % = o0, it is
said to be stiffening. The common static nonlinearity of the VAN DER PorL and FITZHUGH-NAGUMO
oscillators has two terms: the first one 43 is stiffening, passive and the second one —ky is anti-passive
or active. Since the feedback interconnection of two passive systems is passive, the active term nec-
essarily plays a determinant role for the generation of limit cycle oscillations. We observed that,
considering k as a parameter, a bifurcation occurs in both models at a certain critical value k*. In
the VAN DER PoL model, a supercritical HOPF bifurcation occurs at £ = 0: two complex conjugate
eigenvalues cross the imaginary axis at k = 0, giving rise to a globally stable limit cycle surrounding
the unique unstable equilibrium point z = 0 for k£ > 0. The supercritical HOPF bifurcation is directly
responsible for the global oscillation. The corresponding feedback oscillation mechanism is an energy
exchange between the storage variables of the forward passive system. This energy exchange is reg-
ulated by the static nonlinearity: when the internal energy of the system is too low, the active part
of the nonlinearity forces its increase whereas the passive part forces its decrease when it is too high.
In the FITzZHUGH-NAGUMO model, the feedback oscillation mechanism can be seen as the addition
of a slow feedback adaptation dynamic to a globally bistable system. This slow adaptation dynamic
perpetually forces a switch from one equilibrium point to the other one, thereby transforming the
globally bistable behavior into a global relaxation oscillation. The globally bistable system results
from a supercritical pitchfork bifurcation occurring in a subpart of the FITZHUGH-NAGUMO dynam-
ics. This subpart consists in a LURE feedback interconnection similar to the one sketched in Figure
1.1.

The passivity characterization of these two low dimensional oscillators raised the question if such
global oscillation mechanisms still hold for a high dimensional, nonlinear system in the forward block
and a more general static nonlinearity in the feedback block. The answer to this question constitutes
the first main result presented in Chapter 3: under some technical assumptions, the LURE feedback
interconnection of a passive system with a static nonlinearity possessing a parametrized active part
(—ky) and a stiffening, passive part (¢(y)) forces one of two bifurcation scenarii (Theorems 3.8
and 3.12). The first one corresponds to a supercritical HOPF bifurcation: two complex conjugate
eigenvalues cross the imaginary axis at k = k*, giving rise to a stable limit cycle surrounding the
unique unstable equilibrium point = 0 for k£ 2 k* (the notation k& 2 k* is used to denote a value of
the parameter k near the critical value £*, i.e. k € (k*, E] for some k > k*). The second bifurcation
scenario is a supercritical pitchfork bifurcation: the stable equilibrium x = 0 becomes a saddle point
beyond the bifurcation value k = k£* and two new stable equilibria appear for k& 2 k*. This second
bifurcation scenario can be transformed into a global oscillation by addition of a slow adaptation
dynamic (Theorem 3.9). As meant by the notation k > k* the results are local in the parameter
space (they hold for values of the parameter in the vicinity of the critical bifurcation value) but
they are global in the state-space, i.e. convergence to the stable limit cycle is proved for all initial
conditions that do not belong to the stable manifold of the (unstable) equilibrium at the origin. Since
passivity is the driving line and main assumption, we name the global oscillators corresponding to
this first result passive oscillators. The results of Chapter 3 have been presented in [SS03], [SS04b]
and in [SS05a].
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1.1.2 Global stability analysis of interconnections of oscillators

A fundamental property of passivity is the analysis of interconnections. In the first part of Chapter
4 we show that the results obtained for an isolated passive oscillator extend to networks of passive
oscillators when the static coupling between the oscillators satisfies a passivity (positivity) condition.
To this end, we consider a MIMO representation of the network which is the multivariable analogue
of the LURE feedback structure presented in Figure 1.1. As such, extension of the preceding results to
a network of passive oscillators becomes straightforward (Theorems 4.5, 4.9, and 4.12). These results
show that our approach not only provides results for isolated oscillators, but also for interconnections
of oscillators. This is fundamental to the development of a system theory for oscillators and allows for
the following analogy between passivity theory and passive oscillators theory: the building blocks of
complex passive systems are their storage elements whereas the building blocks of complex oscillating
networks are their passive oscillators.

1.1.3 Global synchronization analysis of interconnections of identical oscillators

After having determined the existence and stability of limit cycle oscillations in a network of
interconnected passive oscillators, the important question of their relative oscillating behavior arises.
Global synchronization among identical passive oscillators is studied in the second part of Chapter
4. In this part, we show that dissipativity not only provides an interconnection theory for oscillators
but also, in its incremental form, a global synchronization theory. Synchronization refers to the
tendency of interconnected oscillators to produce ensemble phenomena, that is, to phase lock as
if an invisible conductor was orchestrating them. Synchronization is a convergence property for
the difference between the solutions of different systems. Convergence properties for the difference
between solutions of a closed system are characterized by notions of incremental stability. For open
systems, the corresponding notion is incremental passivity. The main result (Theorem 4.15) concerns
the implications of incremental passivity for the global stability of synchrone oscillations in networks
of identical passive oscillators.

The results of Chapter 4 have been presented in [SS04a], [Sep04] and in [SS05b].

1.1.4 Synthesis of oscillations in stable systems

Our last contribution concerns the synthesis of oscillations in stabilizable systems. More specifi-
cally, we examine how to design a simple controller that yields stable limit cycle oscillations in a sta-
bilizable system. To answer this question, we propose, in Chapter 5, a simple nonlinear proportional-
integral feedback controller. The design of this controller is directly inspired from the analysis of the
LURE feedback structure presented in the previous sections. Under some technical assumptions, it
allows to generate oscillations in any stabilizable system. The main advantage of this controller is
that it relies on stabilization theory for equilibrium points: once a stabilizing, passive output has been
designed for the system, it is used to close the loop with the controller in order to generate limit cycle
oscillations with large basins of attraction. The design of a stabilizing, passive output is a central
topic in nonlinear control theory and many methods already exist to solve this problem (feedback
passivation designs, controlled Hamiltonian and Lagrangian theory, energy shaping methods, etc.).
Even in the case when the required technical assumptions are not satisfied, the proposed controller is
expected to yield stable limit cycle oscillations thus providing a simple method to force oscillations by
feedback. Application of this controller to benchmark underactuated mechanical systems such as the
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cart-pendulum, the pendubot, the acrobot, or the balancing control of the bipedal robot RABBIT is
part of ongoing research. In Chapter 5, we present simulation results obtained for the cart-pendulum.
Real implementation of this controller for the balancing control of RABBIT is the subject of a current
joint project in collaboration with the Laboratoire d’Automatique de Grenoble.

1.2 Bibliographical state of the art

1.2.1 Analysis of oscillations

The analysis of the fundamental mechanisms responsible for limit cycle oscillations in feedback
systems is a longstanding problem. Farlier results in the literature have exploited the structure
of LURE systems for the study of nonlinear oscillations. This structure was first investigated in
the works of YAKUBOVICH |Yak73| and TOMBERG |[TY89| which provided sufficient conditions for
the ezistence of “auto-oscillations”. Auto-oscillation is there understood as [TY89] "stable, non-
decaying oscillatory regimes that arise in nonlinear systems... it is not necessarily connected, as
is sometimes done, with periodic movement". The results presented in [Yak73, TY89| concern the
existence of auto-oscillation but do not predict towards which auto-oscillatory regime the solution
will converge nor its uniqueness. The mathematical concepts of auto-oscillation and self-oscillating
system go back to the works of the A. A. ANDRONOV school [AVK66, AVK65]. This theory has
been followed by many developments by the Russian school summarized in the survey book [LBS96|
by LeEoNov. In [LBS96], frequency conditions for the existence and local stability of limit cycle
in high dimensional systems are presented. The main assumption of these frequency criteria is the
LEVINSON dissipativity [Lev44, CL55| of the feedback system which implies that all the solutions are
ultimately bounded. LEVINSON dissipativity may be proved with the help of the concept of semi-
passivity introduced by POGROMSKY and NIJMELJER in [Pog98, PGN99|. The presented existence
conditions are based on high-dimensional generalizations of the annulus principle (i.e. the POINCARE-
BENDIXON theorem) initiated in the work of SMITH [Smi79, Smi86]. The local stability conditions
are mainly based on the geometrical construction and linear stability analysis of POINCARE maps.
Unfortunately, no periodicity, uniqueness or global convergence result is provided. Furthermore, the
physical interpretation of the underlying feedback mechanisms responsible for the oscillations is not
discussed.

The analysis of feedback induced oscillations has also been investigated by MEES [MC79| where
nonlinear feedback systems exhibiting supercritical HOPF bifurcations are considered. In [MCT79],
MEES presents a “frequency-domain” HOPF bifurcation theorem and graphical conditions correspond-
ing to rigorous versions of the describing functions method (also known as the harmonic balance
method) to conclude about local stability of limit cycles in feedback loops. If one is only interested in
local stability properties of the limit cycle, then the results of MEES are well suited to draw conclu-
sions for any particular feedback loop system consisting of a linear feedforward path and a nonlinear
feedback path. For the particular case of HOPF induced bifurcation, a simple application of MEES
results to our class of systems shows that, generically, a supercritical HOPF bifurcation arises (see
Appendix C). Nevertheless, in [MC79], the fundamental properties of the feedforward and feedback
path leading to global stability properties of the limit cycle are not discussed. Moreover, the extension
of MEES results to several identical interconnected systems is not obvious and the procedure has to
be restarted ab initio for the whole network.

Another way of analyzing limit cycle oscillations is to extend existing equilibrium point analysis
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methods. In [HC94, CH95, CH97, CH98|, HAUSER and CHUNG present an analysis framework for
the computation of LYApPUNOV functions allowing to determine if a given limit cycle is locally ex-
ponentially stable. This framework is based on the definition of a local change of coordinates (6, p)
highlighting the n —1 dimensional transverse dynamics of a periodic orbit. It allows to draw analogies
from the equilibrium point stability analysis (transverse linearization instead of equilibrium point lin-
earization, periodic LYAPUNOV equation instead of LYAPUNOV equation, £, stability and Lo gain of
a periodic orbit). However, no condition allowing to conclude about existence, uniqueness or global
stability of a limit cycle is given.

For the analysis of piecewise linear systems, GONCALVES [GMDO01, GMDO03] recently developed
numerical tools to prove existence and global asymptotic stability of limit cycles. In his approach,
GONCALVES reduces the problem of stability analysis of the limit cycle in piecewise linear systems to
that of the (numerical) construction of a set of quadratic LYAPUNOV functions defined on the switching
surfaces of the piecewise linear system. These LYAPUNOV functions are found by numerically solving a
finite set of linear matrix inequalities. At the end of Chapter 3, we adapt the method of GONCAILVES
to the analysis of limit cycle oscillations in piecewise linear version of passive oscillators.

1.2.2 Analysis of oscillations in networks

Over the last decade, the analysis of networks of oscillators has been a very active research area in
biology, chemistry, physics, control and applied mathematics (see [HI97, Mos97, NRA03, GS02, SS93,
Kri97, Pog98, VGO01, DM01, KE02, PSN02a, SW03, SWR04, RANO04] to cite just a few). The lack of
an interconnection theory for oscillators generally forces an oversimplification of the models of each
oscillator of the network. Two important networks models, extensively studied in the literature, are
those of HOPFIELD [Hop82] and KurRAMOTO [Kur84]. In HOPFIELD models, the dynamic of oscillator
k in the network is described by a single scalar variable p; which models an awverage activity of the
oscillator (as a model for networks of neurons, this average activity is often thought of as the average
firing rate of the neuron). HOPFIELD models abound in neuroscience and have been used to describe
the dynamics of a number of computational tasks (see for instance [Wil99b] for several illustrations in
vision). In these examples, the oscillatory behavior of the neuron is unimportant. The state pg only
models the storage capacity of the neuron. Storage models of oscillators neglect the phase variable of
periodic solutions. As a consequence, they are inadequate for phase-locking or synchrony analysis. In
contrast, in KURAMOTO phase models [Kur84, HI97|, the dynamic of the oscillator & is described by
a single scalar variable @ on the circle. These models neglect the radial variable of periodic solutions
and thus disregard the dynamical behavior of the oscillator away from its limit cycle solution. They
are inadequate for (global) orbital stability analysis. Several authors have studied how to reduce
general models of oscillators to phase models in the limit of weak coupling, that is, when the coupling
between the oscillators does not affect the convergence of each oscillator to a limit cycle solution. For
more details about this reduction procedure and the stability analysis of interconnected phase models
of oscillators, we refer the reader to the recent papers [BMH04, RA03] and references therein. In our
approach, we do not make such simplifications. We characterize sufficient input-output properties that
enable (global) limit cycle oscillations for an isolated oscillator. These input-output properties are
then generalized to interconnections of oscillators, thereby providing sufficient conditions for (global)
limit cycle oscillations in networks.
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1.2.3 Analysis of synchronization in networks

The growing interest for synchronization in engineering applications is due to the robustness of
collective phenomena, making an ensemble phenomenon insensitive to individual failures. The mani-
festations of synchronization are numerous both in nature and in engineered devices. The interested
reader will find several compelling illustrations in [Str03] and [NRAO3].

In [PNO1, PSN0O2b, PSN02a], POGROMSKY and NIJMEIJER show that the existence of symmetry
in the network implies the existence of linear invariant manifolds. This corresponds to so-called partial
synchronization, or clusterization, a phenomenon occurring when some subsystems from the network
operate in a synchronous manner. The authors present sufficient conditions guaranteeing global
asymptotic stability of the partial synchronization manifolds. These conditions are based on the
assumption that the systems in the network are convergent. In [LS98, WS|, SLOTINE uses nonlinear
contraction theory to derive results on global synchronization. Both convergence and contraction are
incremental stability notions (see [Ang02, LS98, PPvdWNO04]|) that are defined specifically for closed
systems. In these approaches, synchronization is thus not studied from an input-output perspective.
In this thesis, we consider an input-output approach for the analysis of synchronization. Moreover,
we put the emphasis on synchronization as a design principle, that is on the use of synchronization to
achieve stable limit cycle oscillations in networks of identical systems. Most of the literature results
on synchrony and phase-locking are based on the assumption that each isolated system of the network
is characterized by a stable limit cycle. In our approach, we first prove that each isolated system is
characterized by a globally stable limit cycle and then use synchronization to extend this property to
a network of identical oscillators.

1.2.4 Synthesis of oscillations

The problem of synthesis of oscillations in control systems finds many applications. In the field of
robotics, it plays an important role for the control of (underactuated) rhythmic tasks robot such as
walking robots (J[CAA103, WGC02, TYS91]), juggling robots (|[SA93, SA94, BKK94, ZRB99, LB01,
GS04, RLS04]) or general dexterous robots (see e.g. [Wil99a]). Several paths to solve this problem
have been investigated.

In [BM94, BM95a, BM95b, BMS96|, BACCIOTTI and coworkers address the important problems
of limit cycle generation by feedback and local stabilization of a preassigned limit cycle. For the
limit cycle generation by feedback, they prove the existence of a polynomial feedback u = u(z) for
linear controllable systems ensuring the existence, uniqueness, and local asymptotic stability of a
limit cycle. For the second problem, their results consist in the extension of the ARTSTEIN-SONTAG
and JURDJEVIC-QUINN methods to guarantee stabilization of limit cycles under the assumption of
the existence of a LyApUNOV function for the limit cycle.

Another trend in the generation of stable limit cycle oscillation is due to ARACIL, GOMEZ-ESTERN
and coworkers (see [GGEOA(02, GAGE03, BAGGE04, GEBAGO5]). Their method consists in two
steps. First, a globally attractive oscillation is induced in a nominal second order subsystem by a
particular controller. Then, the nominal stabilizing controller is extended to systems of arbitrary
order via a method in the essence of backstepping.

The problem of forcing oscillations by feedback in underactuated mechanical systems is quite re-
cent. In [BAGGEO04|, the method described in the preceding paragraph has been applied to generate
locally stable oscillations in underactuated mechanical systems such as the ball and beam or the
inverted pendulum on a cart. In [SC04|, SHIRIAEV and CANUDAS-DE-WIT propose a constructive
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method for generation and local orbital stabilization of pre-specified periodic solutions in underactu-
ated mechanical systems with one degree of underactuation. Their results are based on a feedback
structure that explicitly uses the general or full integral of the zero dynamics. Their method provides
a control law that generates a limit cycle and makes it locally exponentially stable in the closed-
loop system. This work was initiated by CANUDAS-DE-WIT in [CEU02| where a method to match a
particular oscillatory exo-system, or a given closed curve was introduced.

Finally, the synthesis of oscillations can be seen as a particular case of the output regulation
problem (see e.g. [Isi95, Chapter 8|, [Pav04]|). Output regulation methods deals with asymptotic
tracking of prescribed reference signals. The class of reference signals consists of solutions of some
external autonomous system called the ezosystem. Reference signals generated by the exosystem are
called ezosignals. The output to regulate is called the regulated output (e.g. the tracking error in
the tracking problem). The output available for measurement is called the measured output. The
idea is to find a measured output feedback controller such that the closed loop system is internally
stable and the regulated output tends to zero along solutions of the closed loop system. The internal
stability requirement roughly means that all solutions of the closed loop system “forget” their initial
conditions and converge to some limit solution which is determined only by the exosignal. To generate
oscillations, the exosystem is designed to produce a specific oscillating exosignal. The use of output
regulation methods to produce stable limit cycle oscillations is generally not easy because of the need
to find specific output and controller that renders the closed loop system internally stable and at
the same time allows to solve the regulation problem. Their advantage is that they allow to track a
specific orbit in the state space.

1.3 Organization of the thesis

Chapter 2 contains mathematical preliminaries to the other chapters of the thesis. It recalls stan-
dard definitions about stability, passivity, absolute stability, bifurcations, and other concepts used in
the thesis. Chapter 3 concerns the first main result of the thesis: global limit cycle oscillation analysis
for passive oscillators. At the end of Chapter 3, we present an adaptation of the numerical method
recently proposed in [GMDO03] that allows the extension of our stability results in the parameter
space. Chapter 4 contains the other two main results of the thesis: first, the extension of the results
of Chapter 3 to networks of passive oscillators, and second, the study of global synchrone oscillations
in networks of identical passive oscillators. Finally, in Chapter 5 we adopt a synthesis point of view
for the generation of stable oscillations. Conclusion and future work are given in Chapter 6.



Chapter 2

Preliminaries

In this chapter, we recall some fundamental concepts and definitions that constitute the main
mathematical prerequisites for the thesis. Most of the definitions are directly taken from popular
reference books on differential equations and nonlinear systems. The interested reader is referred to
these books for further details and comments. The proofs of the cited Lemmas and Theorems are not
given since they can be found in the cited references.

2.1 Passivity

Passivity is a useful tool for the analysis of nonlinear systems, which relates nicely to LYAPUNOV
stability. Very few system theory concepts can match passivity in its physical and intuitive appeal.
This explains the longevity of the passivity concept from the time of its first appearance some 30
years ago (see [Wil72|), to its current use as a powerful tool for nonlinear feedback design (see
[STK97, vdS00]). The main passivity theorem states that the (negative) feedback interconnection
of two passive systems is passive. Under additional zero-state detectability conditions, the feedback
interconnection is also asymptotically stable. The passivity theorems and the small-gain theorem
provide a conceptually important generalization of the fact that the feedback interconnection of two
stable linear systems will be stable if the loop gain is less than one or the loop phase is less than
180 degrees. The connection between passivity and the phase of a transfer function comes from the
frequency-domain characterization of positive real transfer functions. The phase of a positive real
transfer function cannot exceed 90 degree. Hence, the loop phase cannot exceed 180 degrees. If one
of the two transfer functions is strictly positive real, the loop phase will be strictly less than 180
degrees. Passivity results can be broadened with the help of loop transformations and multipliers
which allow, in certain cases, to transform the feedback interconnection of two systems that may not
be passive into an equivalent feedback interconnection of two passive systems.

2.1.1 General passivity definition

We begin by defining the concepts of storage function, supply rate, dissipativity, and passivity.
Dissipativity theory, introduced by WILLEMS [Wil72], is an interconnection theory for open systems.
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2.1.1.1 Class of systems

Although the dissipativity and passivity concepts apply to wider classes of systems, we restrict
our attention to dynamical systems modeled by ordinary differential equations with an input vector
u and an output vector y:

z = f(z,u) (2.1)
y = h(z,u) 2.2

We will be concerned with the case when the state x(t), as a function of time, is uniquely determined by
its initial value z(0) and the input function u(¢). Throughout the thesis, we assume that v : R>g — RP
belongs to an input set U of functions which are bounded on all bounded subintervals of R>g. In
feedback designs u becomes a function of z, so the assumption u € U cannot be a priori verified.
The satisfaction of this assumption for initial conditions in the region of interest will have to be a
posteriori guaranteed by the design.

Another restriction is that the system (2.1)-(2.2) is “square”, that is, its input and output have
the same dimension p. We also assume that f : R” x R? — R" is continuous, and locally LipscHITZ!,
h : R" x RP — RP is continuous. These assumptions imply that the system (2.1)-(2.2) has the
local existence and uniqueness property of trajectories (see [Kha02] for definition of local existence
and uniqueness of trajectories). Finally, an assumption made for convenience is that the system
(2.1)-(2.2) has an equilibrium point at the origin, that is, £(0,0) = 0, and h(0,0) = 0.

We will find it helpful to visualize the system (2.1)-(2.2) as the input-output block diagram
depicted in Figure 2.1. In such block diagram the dependence on the initial condition z(0) will not
be explicitly stressed, but must not be overlooked.

u )
H

Figure 2.1: Input-output representation of (2.1)-(2.2).
The system description (2.1)-(2.2) includes as special cases the following three classes of systems:

e Nonlinear input-affine systems

i o= f(2)+gla)u
y = hiz)+ja)u

YA function f(z) is said to be locally LipscuiTz on a domain (open and connected set) D C R™ if each point of D
has a neighborhood Dy such that f satisfies the L1PscHITZ condition

|f(a) = f(b)] < Lfa 10| (2.3)

for all points in Dy with some L1PSCHITZ constant Lo. We say that f is LIPSCHITZ on a set W if it satisfies the
LipscHITZ condition (2.3) for all points in W, with the same L1PSCHITZ constant L. A locally L1PSCHITZ function on
a domain D is not necessarily L1PSCHITZ on D, since the LipscHITZ condition may not hold uniformly (with the same
constant L) for all points in D. However, a locally LipscHITZ function on a domain D is LIPSCHITZ on every compact
(closed and bounded) subset of D . A function f(z) is said to be globally LipscurTz if it is L1PSCHITZ on R". The
LipscHITZ property of a function is stronger than continuity and weaker than continuous differentiability (see [Kha02]).
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e Linear systems

Tt = Ax+ Bu
= Cx+ Du

e Memoryless (or static) nonlinearity

Yy = ¢(t, u)

In the case of linear systems, we will let the system be represented by its transfer function H(s) =
C(sI — A)7'B + D where s = 0 + jw is the complex variable.

2.1.1.2 Basic concepts

For an easy understanding of the concepts of dissipativity and passivity it is convenient to imagine
a physical system with the property that its energy can be increased only through the supply from
an external source. As an example, let us think of baking a potato in a microwave oven. As long as
the potato is not allowed to burn, its energy can increase only as supplied by the oven. A similar
observation can be made about an RLC-circuit connected to an external battery. The definitions
given below are abstract generalization of such physical properties.

Definition 2.1 [SJK97] Assume that associated with the system (2.1)-(2.2) is a function w : RP x
RP — R, called the supply rate, which is locally integrable for every w € U, that s, it satisfies
ft';l lw(u(t),y(t))| dt < oo for all tg < t1. Let X be a connected subset of R" containing the origin. We
say that the system is dissipative in X with the supply rate w(u,y) if there exists a function S(z),

S(0) =0, such that for all z € X
T
S(x)>0 and S(x(T))—S(x(0)) < /0 w(u(t),y(t))dt (2.4)

for all w € U and all T > 0 such that x(t) € X for all t € [0,T]. The function S(x) is then
called a storage function. If the dissipativity inequality (2.4) is satisfied with the equality sign, i.e.

S(x(T)) — S(x(0)) = fOTw(u(t), y(t)) dt, the system is said to be conservative or lossless.

In our RLC-circuit example, the storage function S is the energy, w is the input power, and
fOTw(u(t),y(t)) dt is the energy supplied to the system from the external sources. The system is
dissipative if the increase in its energy during the interval (0,7") is not bigger than the energy supplied
to the system during that interval.

Definition 2.2 [SJK97] Passivity is dissipativity with the supply rate w(u(t),y(t)) = ul (t)y(t).
If the storage function S(z) is differentiable, the dissipation inequality (2.4) is equivalently written as
S(x(t)) < w(ult), y(t))

Again, the interpretation is that the rate of increase of energy is not bigger than the input power.
Throughout the thesis, we will assume that the storage function is differentiable. Under the
assumption of a differentiable storage function S(x), the following terminology is used:

11
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Definition 2.3 [Kha02] The dissipative system (2.1)-(2.2) with differentiable storage function S(z)
15 said to be

Tv(u) for some function v(-).

e input-feedforward passive if S < uly — u

e input strictly passive if S < uly —uTv(u) and uTv(u) > 0, Yu # 0.

e output-feedback passive if S < uTy — yTp(y) for some function p(-).

e output strictly passive if S < uTy — yTp(y) and y* p(y) > 0, Vy # 0.

o strictly passive if S < uTy — ((x) for some positive definite function C(-).
In all cases, the inequality should hold for all (z,u).

We also introduce the notion of strong passivity that will be used throughout the thesis.

Definition 2.4 (Strong passivity) We say that the system (2.1)-(2.2) is strongly passive if it is
passive and its storage function additionally satisfies the following assumptions:

1. (smoothness) S(x) is continuously differentiable (C') in R and twice continuously differentiable
(C?) in a neighborhood of the origin.
2. (LyapuNov) S(z) is positive definite, S(x) > 0, and radially unbounded, i.e. S(x) — oo as

|z| — oo.

25 ()

3. (locally quadratic) The Hessian of S(x) evaluated at zero BE)T . is a symmetric positive
o=

definite matrix P = PT > 0.

As it is well-known, these assumptions are always satisfied in the (detectable) linear case because
linear passive systems have quadratic positive definite storage functions [Wil72]|. In general, these
assumptions are convenient to link the passivity of the system to the stability properties of the zero
input system since S(x) then serves as a (global) LyApuNOV function.

Example 2.5 An integrator is the simplest ezample of a dynamic passive system. Consider system

——

This system is strongly passive with S(x) = %x2 as a storage function.

2.1.2 Passivity of memoryless nonlinearities

We consider memoryless nonlinearities of the form y = ¢(¢,u), where ¢ : [0,00) x RP — RP.
Since their state space is void, Definitions 2.2 and 2.3 directly apply to the special case of (possibly
time-varying) memoryless nonlinearities by considering that their storage function is identically zero
(S = 0). Passivity for a single input - single output (SISO) memoryless nonlinearity geometrically
means that the v — y curve must lie in the first and third quadrants, as shown in Figure 2.2 (a)
and (b). When this condition is respected, we also say that the nonlinearity belongs to the sector

12
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[0, 00], where zero and infinity are the slopes of the boundaries of the first-third quadrant region.
The graphical representation is valid even when ¢ is time varying. In this case, the u — y curve will
be changing with time, but will always belong to the sector [0,00]. For a vector function, we can
give a graphical representation in the special case when ¢(t,u) is decoupled in the sense that ¢;(t, u)
depends only on w;. In this case, the graph of each component belongs to the sector [0,00]. In the
general case, such graphical representation is not possible.

Y Y Y

(a) (b) ()

Figure 2.2: (a) and (b) are examples of passive nonlinearities; (c¢) is an example of a non-passive
nonlinearity.

2.1.3 Loop transformations

In this section we present loop transformations which extend the utility of passivity theorems.
Starting with a feedback interconnection in which one of the two feedback components is not passive
or does not satisfy a condition that is needed in one of the passivity theorems, we may be able
to reconfigure the feedback interconnection into an equivalent interconnection that has the desired
properties. We illustrate the process for loop transformations with dynamic multipliers, as show in
Figure 2.3.

— H, M-

H, ~

Figure 2.3: Loop transformation with dynamic multipliers.

Pre (resp. post) multiplying H; by a specific transfer function can be nullified by post (resp. pre)

13
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multiplying Hs by the inverse of this transfer function, provided that this inverse exists. This leads to
an equivalent feedback system that is represented in its general form in Figure 2.3. The interest of such
loop transformation is the ability to transform a feedback system that does not satisfy the conditions
needed by one of the passivity theorem into an equivalent one that does it, thereby extending the
utility of passivity theorems.

2.1.4 Passivity versus LYAPUNOV stability

In this section, we recall the important links that exist between passivity and LYAPUNOV stability.
For the proofs of the different lemmas and theorems, the reader is referred to [Kha02]. We first recall
the definitions of LYyAPUNOV and asymptotic stability.

2.1.4.1 LyAapPuNoOV stability

LyApuNoOV stability and asymptotic stability are properties not of a dynamical system as a whole,
but rather of its individual solutions.
Consider the time-invariant system

i = f(z) (2.5)

where z € R™ and f : R™ — R" is locally LiPSCHITZ continuous. The solution of (2.5) which starts
from z( at time ¢ty € R is denoted as z (¢; xo,tp), so that x (to;xo,to) = xo. Because the solutions
of (2.5) are invariant under translation of ¢o, that is, z (¢t + T;xo, to + 1) = x (t; zo, to), the stability
properties of x (t; zg, o) are uniform, that is they do not depend on to. Without loss of generality, we
assume to = 0 and write x (¢; xo) instead of x (t; ¢, 0). LYAPUNOV stability is a continuity property of
x (t; xo) with respect to xg. If the initial state xq is perturbed to Zg, then, for stability, the perturbed
solution z (t; Zg) is required to stay close to x (t; xg) for all ¢ > 0. In addition for asymptotic stability,
the error z (t; Zg) — = (t; xo) is required to vanish as ¢ — oo.

Definition 2.6 [SJK97] The solution x (t;xq¢) of (2.5) is
e bounded, if there exists a constant K (xo)such that
|z (t; )| < K (x0), Vt > 0;
e stable, if for each € > 0 there exists 6(e) > 0 such that
|Zo — x| < d(€) = |z (t;T0) —  (t;m0)| < €, VE > 0; (2.6)
o attractive, if there exists an r (xo) > 0 such that

|Zo — xo| < 7 (x0) = 1tlim |z (t;To) — x (t;20)| = 0; (2.7)
—00

e asymptotically stable, if it is stable and attractive;

e unstable, if it is not stable.

14
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Some solutions of a given system may be stable and some unstable. In particular, (2.5) may have
stable and unstable equilibria, that is, constant solutions z (¢;x.) = . satisfying f(x.) = 0. The
above definitions of stability properties of an equilibrium z. involve only initial states close to x,
that is, they are local. If an equilibrium is attractive, then it has a region of attraction, i.e. a set €2
of initial states x¢ such that x (¢;29) — x. as t — oo for all zy € Q. In this thesis, our attention will
be focused on global stability properties.

Definition 2.7 [SJK97] An equilibrium point of (2.5) is
e globally stable (GS) if it is stable and if all the solutions of (2.5) are bounded.

e globally asymptotically stable (GAS) if it is asymptotically stable and its region of attraction is
R™.

Any equilibrium under investigation can be translated to the origin by redefining the state as z =
x — x.. For simplicity, we will assume that the translation has been performed, that is f(0) = 0, and
thus the equilibrium under investigation is z = 0. When, for brevity, we say that “the system (2.5)
is GS or GAS”, we mean that its equilibrium z = 0 is GS or GAS. While GAS of z = 0 prevents the
existence of other equilibria, the reader should keep in mind that it is not so with GS.

The most often used method to establish stability of equilibrium points of nonlinear systems is
the direct method of LyAPUNOV. The direct method of LYAPUNOV aims at determining the stability
properties of x (t; zp) from the properties of f(z) and its relationship with a positive definite function
V(z). Global results are obtained if this function is radially unbounded, i.e. V(z) — oo as |z| — oc.

Theorem 2.8 (LYAPUNOV stability Theorem) [SIK97] Let x = 0 be an equilibrium of (2.5) and
suppose f is locally LIPSCHITZ continuous. Let V : R™ — Rsq be a C' positive definite and radially
unbounded function V(x) such that

oV

V= B?(CC)f(x) <0, VzreR"

Then x = 0 is GS and all solutions of (2.5) converge to the set E where V(:):) =0. If V is negative
definite, then x =0 is GAS.

For a sharper characterization of convergence properties we employ the concept of invariant sets.

Definition 2.9 [SJK97] A set M is called an invariant set of (2.5) if any solution x(t) that belongs
to M at some time t1 belongs to M for all future and past time, i.e.

z(t1) e M = x(t)e M,VteR

Definition 2.10 [SJK97] A set P is positively invariant if this is true for all future time only, i.e.
x(tl) 6P2>x(t) GP, Yt >t
An important result describing convergence to an invariant set is LA SALLE’s Invariance Principle.
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Theorem 2.11 (LA SALLE’s Invariance Principle) [STK97] Let Q2 be a positively invariant set
of (2.5). Suppose that every solution starting in Q converges to a set E C Q and let M be the largest
imwvariant set contained in E. Then, every bounded solution starting in  converges to M as t — oo.

An application of the Invariance Principle is the following asymptotic stability condition.

Corollary 2.12 (Asymptotic stability) [STK97] Under the assumptions of Theorem 2.8, let E =
{x eR"|V(z) = 0}. If no solution other than x(t) =0 can stay for all t in E, then the equilibrium
x =0 1s GAS.

While the LyApuNOV stability theorem (Theorem 2.8) establishes that the solutions are bounded and
converge to the set E where V = 0, Theorem 2.11 sharpens this result by establishing the convergence
to a subset of E. Thanks to its invariance, this subset can be found by examining only those solutions
which, having started in F, remain in E for all ¢.

In control systems, such invariance and convergence results are made possible by system’s observ-
ability properties. Typically, the convergence of the system output y to zero is established first, and
then the next task is to investigate whether some (or all) of the states converge to zero. For this task
we need to examine only the solutions satisfying y(¢) = 0. If it is known beforehand that y(¢) = 0
implies z(t) = 0, then the asymptotic stability of = = 0 is established, as in Corollary 2.12.

2.1.4.2 Passivity and LYAPUNOV stability

The definitions of dissipativity and passivity do not require that the storage function S(z) is
positive definite. They are also satisfied if S(z) is only positive semidefinite. As a consequence, in
the presence of an unobservable unstable part of the system, they allow z = 0 to be unstable. For
instance, the unstable system

rT = X
i’g = u
Yy = 22

is passive with the storage function S = %IE%

For passivity to imply LYAPUNOV stability, we must exclude such situations. In linear systems
this is achieved with a detectability assumption, which requires that the unobservable part of the
system is asymptotically stable. Zero-state detectability defines an analogous concept for nonlinear
systems (see [SJK97]| or [vdS00]).

Definition 2.13 [SJK97] Consider the system (2.1)-(2.2) with zero input, that is © = f(x,0) and

y = h(x,0), and let Z C R™ be its largest positively invariant set contained in {z € R™ |y = h(z,0) = 0}.
We say that the zero input system is zero-state detectable (ZSD) if x = 0 is asymptotically stable

conditionally to Z, that is if (2.6) and (2.7) hold for any xo € Z. If Z = {0}, we say that the zero

input system is zero-state observable (ZSO).

For a linear system, the notions of detectability and zero-state detectability are equivalent.

Whenever we use the ZSD property to establish a global result, we assume that x = 0 is GAS
conditionally to Z. Omne of the benefits from the ZSD property is that passivity and stability are
connected even when the storage function S(x) is only positive semidefinite.
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Lemma 2.14 [SJK97] Consider the system (2.1)-(2.2). Suppose that this system is passive with a
C! storage function S(x) and h(z,u) is C' in u for all x.

Then,

(1) the origin of & = f(x,0) is stable if

e the storage function S(x) is positive definite , or
e the system is ZSD.
(2) the origin of & = f(x,0) is asymptotically stable if the system is
e sirictly passive, or
e output strictly passive and ZSD.

(3) when there is no throughput, y = h(x), then the feedback uw = —y achieves asymptotic stability of
x = 0 if and only if the system is ZSD.

Furthermore, if the storage function is radially unbounded, the origin will be globally asymptoti-
cally stable.

2.1.5 Interconnections of passive systems

Consider the feedback interconnection of Figure 2.4 where each of the feedback components H;
and Hj is either a time-invariant dynamical system represented by the state model

yi = hi(zie), 2.9
with f;(0,0) = 0 and h;(0,0) = 0, i € {1,2}, or a (possibly time-varying) memoryless function
represented by

yi = ¢i(t,ei), (2.10)
ie{l,2}.

We are interested in using passivity properties of the feedback components H; and Hs to analyse
stability of the parallel and feedback interconnections. Assuming that both H; and Hs are in the
form (2.8)-(2.9), we first must make sure that the interconnection is also in the form (2.8)-(2.9). This
is obviously true for the parallel interconnection. However the feedback interconnection may not be in
the form (2.8)-(2.9) and may fail to have a well-defined solution. Let us consider the two possibilities
(2.8)-(2.9) and (2.8)-(2.10) separately.

When both components H; and Hs are dynamical systems, the closed-loop state model takes the
form

T = f(z,u) (2.11)

= h(z,u) (2.12)

where z = (a:r{, mg)T, U = (u{, ug)T, and y = (y{, y2T)T We assume that f is locally LipscHITZ, h

is continuous, f(0,0) = 0, and h(0,0) = 0. It can be verified that the feedback interconnection will
have a well-defined state model if the equations

€1 = U1 — h2 (33‘2, 62) (2.13)

es = us+ hy (1‘1, 61) (2.14)
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(a) (b)

Figure 2.4: (a) Feedback interconnection of Hy and Hs. (b) Parallel interconnection of Hy and Hy.

have a unique solution (ey, e9) for every (1,22, u1,us). The properties f(0,0) = 0 and h(0,0) =0
follow from f;(0,0) = 0 and h;(0,0) = 0. It is also easy to see that (2.13)-(2.14) will always have a
unique solution if hA; is independent of e; or hs is independent of es. In this case, the functions f
and h of the closed-loop state model inherit smoothness properties of the functions f; and h; of the
feedback components. In particular, if f; and h; are locally LipSCHITZ, so are f and h. For linear
systems, requiring h; to be independent of e; is equivalent to requiring the transfer function of H; to
be strictly proper.

When one component, say Hi, is a dynamical system, while the other one is a memoryless function,
the closed-loop state model takes the form

x = f(t,x,u) (2.15)

_ htou) (2.16)

where x = 1, u = (u{, UQT)T, and y = (le, y2T)T We assume that f is piecewise-continuous in ¢ and
locally LIPSCHITZ in (z,u), h is piecewise continuous in ¢ and continuous in (x,u), f(¢,0,0) = 0, and

h(t,0,0) = 0. The feedback interconnection will have a well-defined state model if the equations

er = up— P2 (t,ea)

e = ug+hy(z1,€1)

have a unique solution (e, eq2) for every (z1,t,ui,u2). This will be always the case when h; is
independent of e;. The case when both components are memoryless functions is less important
and follows directly as a special case when the state x does not exist. In this case, the feedback
interconnection is represented by y = h(t,u). Theorem 2.15 constitutes the main property for parallel
and feedback interconnections of passive systems.

Theorem 2.15 [Kha02] The feedback and parallel interconnection of passive systems is passive.

The proof is straightforward by taking as storage function for the interconnection system the sum of
the storage functions of each system and taking into account the interconnection rules.

Using Theorem 2.15 and the results on stability properties of passive systems, we can arrive at
some straightforward conclusions on stability of the feedback interconnection. We are interested in
studying stability and asymptotic stability of the origin of the feedback closed-loop system when
u = 0. Stability of the origin follows trivially from Theorem 2.15 and the first part of Lemma 2.14.
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Therefore, we focus out attention on studying asymptotic stability. The next theorem is an immediate
consequence of Theorem 2.15 and Lemma 2.14.

Theorem 2.16 [Kha02] Consider the feedback interconnection of two time-invariant dynamical sys-
tems of the form (2.8)-(2.9). The origin of the closed-loop system (2.11) (when uw = 0) is asymptoti-
cally stable if

e both feedback components are strictly passive, or
o both feedback components are output strictly passive and ZSD, or

e one component is strictly passive and the other one is output strictly passive and ZSD.

Furthermore, if the storage function for each component is radially unbounded, the origin is globally
asymptotically stable.

The proof uses a simple idea, namely, that the sum of the storage functions for the feedback compo-
nents is a LyApUNOV function for the feedback interconnection. In fact, this is too restrictive since
to show that S = 51 + 52 < 0, we insist that both 51 <0 and 52 < 0. Clearly, this is not necessary.
One term, say Sl, could be positive over some region as long as S < 0 over the same region. This is
a manifestation of the idea that shortage of passivity of one component can be compensated for by
the excess of passivity of the other component.

When the feedback interconnection has a dynamical system as one component and a memoryless
function as the other component, we can perform LYAPUNOV analysis by using the storage function
of the dynamical system as a LYAPUNOV function. It is important, however, to distinguish between
the time-invariant and the time-varying memoryless functions, for in the latter case the closed-loop
system will be nonautonomous and we cannot apply LA SALLE invariance principle. We treat these
two cases separately in the next two theorems.

Theorem 2.17 [Kha02] Consider the feedback interconnection of a strictly passive, time-invariant,
dynamical system of the form (2.8)-(2.9) with a passive (possibly time-varying) memoryless function
of the form (2.10). Then, the origin of the closed-loop system (2.15) (when u = 0) is uniformly asymp-
totically stable. Furthermore, if the storage function for the dynamical system is radially unbounded,
the origin will be globally uniformly asymptotically stable.

Theorem 2.18 [Kha02] Consider the feedback interconnection of a time-invariant dynamical system
H;y of the form (2.8)-(2.9) with a time-invariant memoryless function Hy of the form (2.10). Suppose
that Hy is ZSD and has a positive definite storage function, which satisfies
Si<etyr—yip (n)
and that Ho satisfies
e3v2 (e2) < ejyn
Then, the origin of the closed-loop system (2.15) (when w = 0) is asymptotically stable if
v" (p1(v) + va(v)) >0, Vo #£0
Furthermore, if V1 is radially unbounded, the origin will be globally asymptotically stable.

Theorem 2.18 is once again a manifestation of the idea that shortage of passivity in one component
can be compensated for by excess of passivity in the other component.
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2.1.6 Characterization of input-affine passive systems
Consider the input-affine system

t = f(z)+g(x)u (2.17)
y = h(z) (2.18)

The passivity condition amounts to § = %gf)(f(:n) + g(z)u) < ul'h(x),Vz € R*, Vu € RP, or
equivalently (set first u = 0, and then use linearity in u) to the HILL-MOYTLAN passivity conditions
[HIM76]

LiS(z) < 0 (2.19)
L,S(z) = hl(x) (2.20)
where we have used the notation L;S(x) = 8?;75;:) (x). If the system is linear

Tt = Ax+ Bu
y = Cx

then there exists a quadratic storage function S(x) = 2’ Pz, with P = PT > 0, and the HILL-
MOYLAN passivity conditions become algebraic

PA+ATP < 0 (2.21)
B'P = C (2.22)

The equivalence of the conditions (2.21)-(2.22) with the frequency-domain characterization of pas-
sivity was established by the celebrated KALMAN-YAKUBOVICH-POPOV lemma. Before the statement
of the KYP lemma, we introduce the definition of a positive real transfer function.

Definition 2.19 [Kha02] A px p proper rational transfer function matriz G(s) is called positive real
if

e poles of all elements of G(s) are in R{s} <0,

e for all real w for which jw is not a pole of any element of G(s), the matriz G(jw) + G (—jw)
18 positive semidefinite, and

e any pure imaginary pole jw of any element of G(s) is a simple pole and the residue limg_, ., (s —
Jjw)G(s) is positive semidefinite Hermitian.

The transfer function G(s) is called strictly positive real if G(s — €) is positive real for some € > 0.

When p = 1, the second condition of Definition 2.19 reduces to R {G(jw)} > 0, Yw € R, which holds
when the NYQUIST plot of G(jw) lies in the closed right-half complex plane. This is a condition that
can be satisfied only if the relative degree of the transfer function is zero or one.

Lemma 2.20, presented hereafter, states the KALMAN-YAKUBOVICH-POPOV (KYP) lemma in the
particular case when (A, B, C) is a minimal realization. Extensions of the KYP lemma to non-minimal
realizations can be found in [IT87, TI8Y.
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Lemma 2.20 (KALMAN-YAKUBOVICH-POPOV lemma) [Kha02] Let G(s) = C(sI—A)"'B+D
be a p X p transfer function matriz, where (A, B) is controllable and (A, C) is observable. Then, G(s)
is strictly positive real if and only if there exists P = PT > 0, L, and W, and a positive constant e
such that

PA+ATP = —LTL—¢P
rPB = ot -L'w
w'w = D+D"
For linear, throughput-free (D = 0), passive systems, possessing a minimal realization, the link with

the HILL-MOYLAN conditions (2.21)-(2.22) is obvious. In the general case when D # 0, this link is
expressed in Lemma 2.21.

Lemma 2.21 [Kha02] The linear time-invariant minimal realization

t = Ax+ Bu
= Cx+ Du

with G(s) = C(sI — A)"'B+ D is
e passive if G(s) is positive real,

o strictly passive if G(s) is strictly positive real.

2.1.7 Structural properties of input-affine passive systems

In this section, we consider two structural properties of input-affine passive systems. By structural
we mean that they are invariant under feedback transformations of the form v = a(x)+ (x)v. These
two structural properties are the relative degree of input-affine passive systems and their weakly
minimum phaseness.

2.1.7.1 Relative degree

The relative degree of a system is an integer that quantifies the number of times that the output
must be differentiated w.r.t. time for the input to appear explicitly. The statement “the system has
relative degree 7" means that the input appears explicitly for the first time in the 7 time derivative
of the output. For SISO linear systems, the relative degree is the difference between the number of
poles and zeros in the transfer function.

Consider the (MIMO) nonlinear input-affine system (2.17)-(2.18). This system has relative degree
one at x = 0 if the matrix Lyh(0) is invertible.

Lemma 2.22 [SJK97] If the system (2.17)-(2.18) is passive with a C? storage function S(x) then it
has relative degree one at x = 0.

For a proof the reader is referred to [SJK97].
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2.1.7.2 Weakly minimum phaseness

The remaining dynamics when we impose the constraint y(t) = h(z) = 0 is called the zero
dynamics. If the zero dynamics is asymptotically stable, the initial system is said to be minimum
phase. 1f the zero dynamics is only LYAPUNOV stable with a C? positive definite LyAPUNOV function,
then the system is said to be weakly minimum phase.

Lemma 2.23 [SJK97] If the system (2.17)-(2.18) is passive with a C* positive definite storage func-
tion S(x) then it is weakly minimum phase.

For a proof the reader is referred to [SJK97].

2.2 Absolute stability

Consider the feedback interconnection of Figure 2.5 where G(s) represents a linear system and
¢(-) a memoryless nonlinearity. We assume that the external input v = 0. The unforced system is
said to be absolutely stable if it has a globally (uniformly) asymptotically stable equilibrium point at
the origin for all nonlinearities in a given sector. The problem was originally formulated by LURE
and is sometimes called LURE’s problem. The LURE problem has a very concrete motivation since
it represents a basic feedback loop in automatic control. This (hard) problem motivated central
developments of system theory. It has led to the emergence of several stability criteria which make
use of the input-output properties of the linear block G(s), and characterize classes of nonlinearities
which ensure stability.

@) G(s)

()

Figure 2.5: LURE feedback interconnection.

Passivity is useful for solving the LURE problem. A LYAPUNOV function can be chosen by using the
passivity tools of the previous sections. In particular, if the closed-loop system can be represented as a
feedback interconnection of two passive systems, then the sum of the two storage functions can be used
as a LYAPUNOV function candidate for the closed-loop system. The use of loop transformations allows
to cover various sectors and LYAPUNOV function candidates, leading to the circle [San64a, San64b|
and Popov [Pop62, Pop73] criteria which give frequency-domain sufficient conditions for absolute
stability in the form of strict positive realness of certain transfer functions. In the single input -
single output (SISO) case, both criteria can be applied graphically rendering them very easy to use
in practice. Nowadays, numerical methods based on Integral Quadratic Constraints theory (IQC) are
used to prove absolute stability of LURE feedback systems (see [MR97]).
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2.3 Semi-global practical asymptotic stability

In this section, we present the notion of semi-global practical asymptotic stability for systems
depending on a small parameter. This section is inspired by the results of MOREAU, summarized in
[MAQOO]. The results of MOREAU show that if the reference system & = g(x) is globally asymptot-
ically stable then, starting from an arbitrarily large set of initial conditions, the trajectories of the
parameterized system & = f¢(x) converge to an arbitrarily small residual set around the origin when
€ > 0 is taken sufficiently small, under the assumption that trajectories of the parametrized system
converge (uniformly on compact time intervals) to trajectories of the reference system. We restrict
the presented results to the case of time-invariant dynamics. Nevertheless, the results presented in
[MAOO] hold for the general case of time-varying dynamics.

Consider two systems:

e a system that depends on a (small) parameter € € (0, €] (ep € (0,00))

i = f(x) (2.23)

e and a system
T =g(x) (2.24)

We assume that f¢: R™ — R™ and g : R™ — R are continuous and locally LipscHIiTZ. We do not
assume forward completeness of the solutions, i.e. we do not exclude finite escape times. We denote
by @ e (t;20) (resp. x4 (t;20)) the solution of (2.23) (resp. the solution of (2.24)) that starts from xq
at t = 0.

The main result of MOREAU relies on the assumption that trajectories of (2.23) converge to those
of (2.24) in the following sense:

Convergence of trajectories? [MA(00]: For every T' € (0, 00) and compact set K C R satisfying
{(t;20) e Rx R™ |t € [0,T], z9p € K} C Dom (), for every d € (0,00), there exists € € (0, €] such
that for all g € K and for all € € (0, €*)

xpe (t;20) exists
{ [ pe (£ 20) — 24 (£ 20)| < d vt € [0,T] (2.25)

In other words, it is required that trajectories of (2.23) converge on compact time intervals to
trajectories of (2.24) as € — 0, and furthermore we assume that this convergence occurs for all
belonging to compact sets. It is important to notice that the assumed convergence is not stated in
terms of vector fields, but in terms of trajectories; it is not assumed that f¢ converges point-wise to
gase— 0.

Under the assumption of convergence of trajectories, GAS for (2.24) implies semi-global practical
asymptotic stability for (2.23). We first recall the definition of semi-global practical asymptotic
stability given by MOrREAU [MAO0O].

Definition 2.24 [MA00] Consider system (2.23). Assume that the assumptions on f€ are satis-
fied. We call the origin of this system semi-globally practically asymptotically stable (SGPAS) if the
following three conditions are satisfied:

?In this definition Dom (4) denotes the domain of definition of the function (¢; o) — 4 (t; o) that defines the flow
of the vector field g.
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1. For every c2 € (0,00), there exists ¢y € (0,00) and é € (0,¢€p] such that for all zy € R™ with
|zo| < c1 and for all € € (0, ¢€)

xpe (t;0) exists
{ ’(L‘fe (t; .’L‘o)‘ < Co vt € (07 OO]

2. For every ¢y € (0,00), there exists ca € (0,00) and € € (0, €] such that for all xo € R™ with
|zo| < ¢1 and for all € € (0, €)

xpe (t;0) exists
{ ape (bao) <o ' C (0,00

3. For every c1,co € (0,00), there exists T € (0,00) and € € (0, €] such that for all zo € R™ with
|zo| < ¢1 and for all € € (0,¢)

xfe (t;x0) emists YVt € (0,00],
|z pe (t;20)| < €2, VYt € (T, ]

The notion of SGPAS may be interpreted as follows. Condition 1 of Definition 2.24 defines a practical
version of stability of the origin. Condition 2 defines a practical version of boundedness. Condition
3 defines a practical version of global attractivity: all trajectories starting in an arbitrarily large ball
centered at the origin end up in an arbitrarily small ball centered at the origin for appropriate
depending on the radii of the considered balls — values of the parameter e. Notice that the origin is
not required to be an equilibrium point in Definition 2.24, nor that the solution be forward complete.

Consider systems (2.23) and (2.24) introduced above satisfying the convergence of trajectories
assumption. Assume that the origin is a GAS equilibrium of (2.24). It is well known that this does
not imply that the origin is a GAS equilibrium point of (2.23) even if € is small. Tt seems however
reasonable to expect that (2.23) inherits some weaker notion of stability: the SGPAS. The following
theorem asserts that this weaker stability property is indeed inherited by (2.23) if the origin is a GAS
equilibrium of (2.24).

Theorem 2.25 (SGPAS theorem) [MA00] Given systems (2.23) and (2.24) satisfying the conver-
gence of trajectories assumption. If the origin is a GAS equilibrium point of (2.24), the origin of

(2.23) is SGPAS.

For a proof, the reader is referred to [MAOQ0].

In Chapter 3,the SGPAS theorem will be very useful for the proving that the global stability of the
equilibrium point at criticality is transmitted to the bifurcated solution for values of the parameter
'slightly larger’ than the critical value.

2.4 Limit cycles and nonlinear oscillations

Oscillation is one of the most important phenomena that occur in dynamical systems. A system
oscillates when it has a nontrivial periodic solution

x(t+T)=z(t),Vt >0
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for some T' > 0. The word “nontrivial” is used to exclude constant solutions corresponding to equilib-
rium points. The image of a periodic solution in the state space is a closed trajectory, which is usually
called a periodic orbit or a closed orbit. The simplest example of nontrivial periodic solution is given
by the solutions of a second-order linear system with eigenvalues +j3. It is usually referred to as
the harmonic oscillator. If we think of the harmonic oscillator as a model for a linear LC electrical
circuit (see Figure 2.6), then we can see that the physical mechanism leading to these oscillations is a
periodic exchange (without dissipation) of the energy stored in the capacitor’s electric field with the
energy stored in the inductor’s magnetic field.

Ay
/1

Figure 2.6: A linear LC circuit for the harmonic oscillator.

There are, however, two fundamental problems with this linear oscillator. The first problem is
one of robustness. Infinitesimally small perturbations (linear or nonlinear) of the linear vector field
will destroy the oscillation, i.e. the linear oscillator is not structurally stable. The second problem is
that the amplitude of the oscillations is dependent on the initial conditions. These two fundamental
problems can be eliminated in nonlinear oscillators. The VAN DER POL oscillator that we will consider
in more details in Chapter 3 is the simplest example of such nonlinear oscillators. In the case of the
harmonic oscillator, there is a continuum of closed orbits around the equilibrium point, while in the
VAN DER PoL oscillator, there is only one isolated periodic orbit. Such isolated periodic orbit is
called a limit cycle. Isolated means that neighbouring trajectories are not closed; they spiral either
toward or away from the limit cycle. Stable limit cycles are very important scientifically they model
systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the
absence of external periodic forcing. Of the many examples that could be given, we mention only a
few: the beating of a heart, the periodic firing of a pacemaker neuron, daily rhythms in human body
temperature and hormone secretion, and chemical reactions that oscillate spontaneously. In each
case, there is a limit oscillation of some preferred period, waveform, and amplitude. If the system is
perturbed slightly, it always returns to the limit cycle. This leads us to the definition of stability of
periodic solutions.

2.4.1 Stability of periodic solutions

Consider the autonomous system
&= f(x) (2.26)

where f : D — R" is continuously differentiable and D C R" is a domain included into R™. Let
M C D be a closed invariant set of (2.26). Define an e-neighborhood of M by

Ue = {z € R"|dist(z, M) < €}
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where dist(x, M) is the minimum distance from z to a point in M, i.e.

dist(x, M) = inf |z —
ist(@, M) = inf o ]

Definition 2.26 [Kha02] The closed invariant set M of (2.26) is

e stable if, for each € > 0, there is § > 0 such that

z(0) e Us = z(t) e U, ¥t>0

e asymptotically stable if it is stable and 0 can be chosen such that

z(0) € Us = tlim dist(z(t), M) =0

In particular, we will apply these concepts to the specific case when the invariant set M is the closed
orbit associated with a periodic solution. Let u(t) be a nontrivial periodic solution of the autonomous
system (2.26) with period T, and let v be the closed orbit defined by

y={zeR"|z=u(t),0<t<T}

The closed orbit v is the image of u(t) in the state space. It is an invariant set whose stability
properties are characterized by Definition 2.26. Having defined the stability properties of closed
orbits, we can now define the stability properties of periodic solutions.

Definition 2.27 [Kha02] A nontrivial periodic solution u(t) of (2.26) is
e orbitally stable if the closed orbit vy generated by u(t) is stable.

e asymptotically orbitally stable if the closed orbit v generated by u(t) is asymptotically stable.

2.5 Center manifold theory and bifurcations

The local asymptotic stability of an equilibrium point of a nonlinear system can be deter-
mined through the stability analysis of the linearized system if this equilibrium point is hyperbolic
(HARTMAN-GROBMAN Theorem |Wig90, Theorem 2.2.6]). When the equilibrium point is not hyper-
bolic (i.e. the Jacobian matrix of the system linearized around this equilibrium point possesses at
least one eigenvalue on the imaginary axis), the stability analysis of the equilibrium point depends
on the nonlinear terms neglected through the linearization process.

For systems depending on a parameter pu, the topological character of equilibria can change at a
critical value of the parameter, e.g. perhaps two branches of equilibria cross or a branch loses or gains
stability. Such a state and parameter is called a bifurcation point of the parametrized vector field.
A local bifurcation takes place at a parameter value where the system loses structural stability with
respect to parameter variations, i.e. the phase portrait around the equilibrium point at the critical
parameter value is not locally topologically conjugate? to the phase portrait around the equilibrium

31f the local linearizations at two equilibria have no poles on the imaginary axis, the same number of strictly stable
and the same number of strictly unstable poles then the local phase portraits are topologically conjugate.
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at nearby parameter values. Therefore a local bifurcation is mathematically characterized by one or
more eigenvalues of the linearized system crossing the imaginary axis.

A standard approach to analyzing the behavior of parametrized ordinary differential equations
around a bifurcation point is to treat the parameter as an additional state variable with dynamic =0
and to compute the center manifold of the extended dynamics through the bifurcation point and the
dynamics restricted to this manifold (see [Wig90|). The center manifold is an invariant manifold of
the differential equation which is tangent at the bifurcation point to the eigenspace of the neutrally
stable eigenvalues. In practice, one does not compute the center manifold and its dynamics exactly.
In most cases of interest, an approximation of degree two or three suffices. If the other eigenvalues
are in the open left-half plane, then this part of the dynamics is locally asymptotically stable and
therefore can be neglected in a local stability analysis around the bifurcation point.

2.5.1 The center manifold theorem

Consider the autonomous system
T = f(x) (2.27)

where f : D — R" is twice continuously differentiable and D C R" is a domain that contains the
origin x = 0. Suppose that the origin is a non-hyperbolic equilibrium point of (2.27). The center
manifold theorem states that the stability properties of the origin can be determined by analyzing a
lower order nonlinear system.

Equation (2.27) can be represented as

i = Az + (f(z) — Az) = Az + f(x), (2.28)
where A = % and f(z) = f(z) — Az. f(z) is twice continuously differentiable and f(0) = 0,
B =0
A= = 0. Since the origin « = 0 1s assumed to be a non-hyperbolic equilibrium point o 27), let
ol 0. Since the origi 0i dtob hyperbolic equilibri int of (2.27), 1
e

=0
k be the number of eigenvalues with zero real parts and m = n — k the number of eigenvalues with
negative real parts. We can always find a similarity transformation matrix 7' that transforms A into

a block diagonal matrix, i.e.
A 0
-1 _ 1
TAT " = < 0 A )

where all the eigenvalues of Ay have zero real parts and all the eigenvalues of Ao have negative real
parts. Clearly, Ay is k x k and As is m x m. The change of variables

(y>:Ta:, yeRF, zeR"

z

transforms (2.28) into the form

y = Aw+ay,z)
. 2.29
2 = Asz+ g2y, 2) (2:29)

where g1 and go inherit the properties of f . In particular, they are twice continuously differentiable
and

dg; —0, dg;

9i(0,0) =0, =0 (2.30)

9 |(y,2)=0 92 |(y,2)=0
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for i = 1,2. If z = h(y) is an invariant manifold of (2.29) and h is smooth, then it is called a center
manifold if

Oh

h(0) =0, —
=0 5| _

=0.

Theorem 2.28 (Center manifold theorem) [Kha02] If g1 and go are twice continuously differen-
tiable and satisfy (2.80), all eigenvalues of Ay have zero real parts, and all eigenvalues of Ay have
negative real parts, then there exists a constant 6 > 0 and a continuously differentiable function h(y),
defined for all ly| < 9, such that z = h(y) is a center manifold for (2.29).

If the initial state of the system (2.29) lies in the center manifold, i.e. z(0) = h(y(0)), then the
solution (y(t), z(t)) will lie in the manifold for all ¢ > 0, i.e. z(t) = h(y(t)). In this case, the motion
of the system in the center manifold is described by the k-th order differential equation

v = A1y + g1 (y, h(y)) (2.31)

which we refer to as the reduced system. Even if z(0) # h(y(0)), it can be shown (see [Kha(02]) that
the stability properties of the origin are determined by the reduced system (2.31). This is summarized
in the next theorem, known as the reduction principle.

Theorem 2.29 (Reduction principle) [Kha02] Under the assumptions of Theorem 2.28, if the
origin y = 0 of the reduced system (2.81) is asymptotically stable (respectively, unstable) then the
origin of the full system (2.29) is also asymptotically stable (respectively, unstable).

To use Theorem 2.29, we need to find the center manifold z = h(y). The function & is a solution of
the partial differential equation

N (h(y)) = (;Z(y) (A1y + 91 (v, h(y))) — A2h(y) — 92 (v, h(y)) = 0,

with boundary conditions

Oh

h(0) =0, —
(0) 7,

=0.

This equation for h cannot be solved exactly in most cases (to do so would imply that a solution of
the full system (2.29) has been found), but its solution can be approximated arbitrarily closely as a
TAYLOR series in y. This result is summarized in Theorem 2.30.

Theorem 2.30 [Kha02] If a continuously differentiable function ¢(y) with $(0) =0 and %) =0
y=0
can be found such that N (¢(y)) = O (|y|P) for some p > 1, then for sufficiently small |y|,

h(y) — o(y) = O (ly*),

and the reduced system (2.31) can be represented as

v =A19+91(y,0(y) + O (!yl”“) :

Remark 2.31 In Theorem 2.30, the order of magnitude notation f(ly|) = O (Jy|’) is used as a
shorthand notation for |f(y)| < k|y|’ for sufficiently small |y|.
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2.6 The HoOPF bifurcation theorem

In this section, we state (a version of) the HOPF bifurcation theorem and point out the important
hypotheses required for the appearance of a limit cycle. Loosely, HOPF’s theorem says that if an
n-dimensional ordinary differential equation & = f(x, ) depends on a real parameter p, and if on
linearizing about an equilibrium point we find that pairs of complex conjugate eigenvalues of the
linearized system cross the imaginary axis as p varies through certain critical values, then for near-
critical values of p there exist limit cycles close to the equilibrium point. Just how near to criticality
u has to be is not determined, and indeed unless a certain rather complicated expression (we shall
call it the curvature coefficient) is nonzero, the usual statement of the theorem does not guarantee
existence at all. The sign of the curvature coefficient determines the stability of the limit cycle, and
whether the limit cycle exists for subcritical (u < pg) or supercritical (u > pg) parameter values. (We
shall adopt the convention that near y = pg the real parts or the eigenvalues increase as p increases.)

HoprF first proved the theorem for analytic f by series expansion [Hop42]. The more recent
geometrical approach presented in [MM76, HKW81] is less restrictive and more intuitive, though
extremely heavy algebra is required in the detailed proof. In [Far94|, another version of the HOPF
bifurcation theorem based on the notion of h-asymptotic stability* is given. This version of the
HopPF bifurcation theorem is useful in order to avoid the computation of the curvature coefficient
since h-asymptotic stability can be verified through the construction of an appropriate LYAPUNOV
function. A graphical interpretation of the HOPF bifurcation theorem based on a rigorous version of
the describing function method has been given by MEES in [Mee81]. The application of the graphical
HoPF bifurcation theorem of MEES to the class of passive oscillators (defined in Chapter 3) is done
in Appendix C.

The HOPF bifurcation theorem is an important tool for understanding systems described by
ordinary differential equations because it is one of the few reliable methods for establishing the
existence of limit cycles in high-dimensional systems. To use it effectively, one must be aware of both
its advantages and its disadvantages. The principal advantage of the HOPF theorem in ’real-world’
problems is its ability to handle high-dimensional systems; its principal disadvantage is the fact that
the range of allowed values of p is unknown, so one never knows if a given value of u corresponds
to the existence of a limit cycle. The HOPF theorem is thus 'local’ in the sense that it only makes
predictions for unspecified regions of parameter space and state space. These predictions may be
valid over regions which are very big or very small, and the usual form of the theorem gives little help
in determining their size. Nevertheless, we can reasonably expect the parameter region to be large
as emphasized by MEES [MEE81] : “The HOPF theorem only makes predictions for an unspecified,
probably small range of values of the bifurcation parameter. Nevertheless, experience tends to confirm
that predictions often remain qualitatively correct even when the system is very far from bifurcation.
This is not surprising if one imagines how the limit cycle grows out from equilibrium in the state space:
even if the limit cycle bifurcates repeatedly, there will always be at least one limit cycle present (not
necessarily stable). If it does not grow to infinite amplitude it can only disappear completely either by
collapsing back into the equilibrium or by coalescing with another limit cycle having complementary
stability properties: this other limit cycle would have to have been generated by an independent
bifurcation process.”

To introduce the HOPF bifurcation, consider a two-dimensional ordinary differential equation.

1A system is said to be h-asymptotically stable if its asymptotic stability is robust to perturbations of its vector
field by term of order h + 1.
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Figure 2.7: As p increases, a sink changes to a source, expelling or absorbing a limit cycle. Line (a):
supercritical bifurcation; Line (b): subcritical bifurcation.

Figure 2.7 shows how the phase portrait might alter as a parameter is varied, causing a spiral sink
to become a spiral source. At a critical parameter value g, the equilibrium point is a center, i.e.
the local linearization is equivalent to undamped simple harmonic motion of period %”, where +jw
are the eigenvalues of the Jacobian at criticality. When p # po, the system behaves as if it is linear
very close to the equilibrium, but a little further out the effects of nonlinearity sometimes manifest
themselves in the appearance of a limit cycle. In Figure 2.7 (a) the limit cycle grows outwards from
the center as p increases through pg, and so the period is likely to be not far from %” Figure 2.7 (b)
shows another possibility in which the stability behavior of the equilibrium point (and therefore the
behavior of the eigenvalues of the linearization) is indistinguishable from that of Figure 2.7 (a), but
in which an unstable limit cycle collapses into the sink instead of a stable one growing out. Figure
2.8 represents what is happening in the (x1,x2, ) space. Here the slices u = constant are phase
portraits. The “bowl” in each case represents a locus of limit cycles. In Figure 2.8 (a) corresponding
to Figure 2.7 (a), an attracting limit cycle appears as p reaches criticality, and grows as u increases
further, while in Figure 2.8 (b), corresponding to Figure 2.7 (b), a repelling limit cycle gets smaller as
w increases, disappearing as p reaches criticality. In both cases, the equilibrium itself is attracting for
1 < po and repelling for p > pg. We can distinguish between the two cases by whether the bowl is the
right way up or upside down, and in fact the curvature coefficient mentioned earlier is just a constant
factor times the curvature coefficient of the bowl at the critical point. Note that if the curvature is
non-vanishing the bowl is parabolic, so the radius of the limit cycle grows as +/|u — po| (i.e. much
faster than |u — po| at first). If the curvature vanishes, it is possible, though not certain, that the
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bowl is flat out to infinity, in which case the periodic orbits exist only at the critical parameter value.
An example of this case is given by the linear system

TH+pr+x=0

and an example where the curvature coefficient vanishes but the bowl is nevertheless not flat is given
by

i+ pt+z=g(z )

where all partial derivatives of g at the origin vanish up to the 4** order, but there is a non-vanishing
5! partial derivative.

Global theorems do not transfer easily from 2 to n dimensions. The HopF bifurcation theorem,
however, is local and the transition is comparatively painless thanks to the invariant manifold theorem
(see [Kha02]) which lets us take the eigenspace of the bifurcating eigenvalues as an approximation to
a two dimensional manifold — the center manifold — that contains the limit cycle if there is one. The
HopPrF bifurcation theorem for two dimensions can thus be used to establish existence of a limit cycle
in the center manifold, which of course implies existence in the whole space. The curvature coefficient
has an extra contribution from the curvature of the center manifold relative to the eigenspace used
to approximate it, and the limit cycle may, of course, attract some trajectories and repel others.

A Spiral sources = po /?\LSD)] sources
' I
\ |

loci of stable loci of unstable

limit cycles P limit cycles
/ - - h N /
7 N
7/ N
7/

Ve \ T2

Spiral sinks

0 I 0 I
1 1
@ (b)

Figure 2.8: Figures 2.7 (a) and (b) in (z1, 22, ) space. Dashed lines are repellers and solid lines are
attractors.

We shall now state a theorem which, though not the most general statement of the HOPF bifur-
cation, is adequate for the majority of problems. A continuity condition is imposed to ensure that,
in spite of possible losses of differentiability, the bowl is smooth enough so that its curvature can be
calculated.

Theorem 2.32 (HOPF bifurcation theorem) [Mee81]

Let f* be a vector field on R™ (n > 2), parametrized by pn € R and C* (k > 4) jointly in x € R™ and
w. Suppose fF(z(p)) = 0 for a locally unique point () and write J* for the Jacobian %L: |3(u)-
Suppose
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(a) J* has a pair of complex conjugate eigenvalues A(i1), M) for which R{\(p)} = 0 at u = g
and

d x
@%{A(u)} >0, S{Aw}>0
at p = fio;
(b) Every eigenvalue v(i) of J* except A(i) and N(u) satisfies
R{v (o)} # 0;

(c) The curvature coefficient a given in (2.32) is nonzero.

Then there is a range either of positive or of negative values of Ap = p — po in which every value of
1 corresponds to a unique limit cycle at a distance O («/|Au|> from &(u), and of period % +
O (Ap). Furthermore,

(d) Ifa<0andR{v (o)} <0, Y, the limit cycle is attracting, while ifa > 0 and R{v (no)} >
0, the limit cycle is repelling.

The curvature coefficient a is given by (see [Mee81, eq. (6.1.4)])

a = R{Y}, where
Y = upvjup (ffkl -2 fmJn_z;f,Zl —fh(J— 2iw);1}1 qu) (2.32)

where J = JH0 and u” and v are respectively left and right eigenvectors of J belonging to A (ug),

ofp ()
Oxy,0x;

normalized so that u”v = 1. Repeated subscripts imply summation from 1 to n and ffk means

(where f§ is the p'" component of f#) evaluated at = & (ju0). For two-dimensional systems, it can
be shown (see [Mee81, eq. (6.2.9)]) that the expression of the curvature coefficient is

1
a = 16 (f1111 + flag + f1212 +f2222)

o (b (h + fb) = 7 (3 + 73) = S s+ Fhath). (239

where wp = w (9) = S {\ (o)} and all derivatives are evaluated at x = Z (uo) and u = po.

The conditions (a) and (b) of the theorem are natural and are satisfied typically. If the equilibrium
Z(p) is linearly asymptotically stable for p’s in an interval, i.e. all the eigenvalues of J# have negative
real parts, then as pu is increased (or decreased) one may expect that at a certain value of y either a
negative eigenvalue crosses the imaginary axis or a pair of complex conjugate eigenvalues crosses into
the right-hand half plane. It is “unlikely” and generically does not happen in a one parameter family
of systems that two pairs of complex eigenvalues or a pair and a real eigenvalue cross simultaneously
into the positive half of the complex plane resulting in the destabilization of the equilibrium point.
(In the case the family depends on two or more parameters, such a situation may generically occur,
giving rise to so-called “codimension two or higher bifurcations”; see e.g., LANGFORD [LANT79]| and
GOLUBITSKY-SCHAEFFER [GSS85|). Condition (a) insists that the eigenvalues cross the imaginary
axis with nonzero speed, while condition (b) is stronger than necessary, but simplifies the uniqueness
statement following (c). Unfortunately, condition (c) is not so easy to check because of the need
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to find n? third partial derivatives and n? second partial derivatives when calculating a. This is
unavoidable, since the whole point of the HOpF bifurcation is that it deals with the case when first
derivatives do not determine behavior. If the curvature coefficient a is nonzero, its sign determines
the local stability of the bifurcated limit cycle. The calculation of a quickly becomes tedious for high
dimensional systems. In Chapter 3 we will show that for the class of feedback nonlinear system we
consider, explicit computation of the curvature coefficient is unnecessary: the passivity properties of
our systems imply that the limit cycle is attracting.

2.7 The KRONECKER product

The use of the KRONECKER product is very useful when considering interconnection of identical
systems (see Chapter 4). In this section, we recall its definition and main properties. We refer the
reader to |Gra81| for more details on the use and applications of the KRONECKER product.

For matrices A and B the notation A ® B (the KRONECKER product of A and B) stands for the
matrix composed of sub-matrices A;; B, i.e.

AnB ApB --- AB
AmlB Am2B e AmnB
where A;j,i=1,...,m, 7 =1,...,n, stands for the ¢j-th entry of the m x n matrix A.

The main properties of the KRONECKER product are summarized hereafter. In the following, we
assume that A, B, C, and D are real valued matrices. Some identities only hold for appropriately
dimensioned matrices.

e The KRONECKER product is a bi-linear operator. Given « € R,
A® (aB) = «a(A® B)
(@kA)® B = a(A®B)

e The KRONECKER product distributes over addition

(A+B)®C = (AC)+(B®()
A®(B+C) = (A9B)+(A®C)

The KRONECKER product is associative

(A®B)@C=A® (B®C)

e The KRONECKER product is not commutative

A®B#B®A

Transpose distributes over the KRONECKER product

(Ao B)' = AT @ BT
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e When dimensions are appropriate, matrix multiplication satisfies
(A® B)(C® D)= AC ® BD
In particular, we have

1. (A®I,) (In®B)=(A®B) = (I, ® B) (A® I,) for A € R™*™ and B € R,
2. (A® 1) (I, ® B) = (I, ® B) A for A € R™*™ and B € R"*},
3. (In®@C)(A® I,) = A(I,, ® C) for A € R™*™ and C € RI*".

e When A and B are square and full rank

(A®B)'=(A"'®B™)

e The determinant of KRONECKER product is

det (Amxm ® Buxn) = det(A)" det(B)™

e The trace of KRONECKER product is

trace (A ® B) = trace (A) trace (B)
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Chapter 3

(Global results for one oscillator

Oscillators are dynamical systems that exhibit stable limit cycle oscillations. The emphasis in
this chapter is on oscillators as open systems, that is, as systems that can be interconnected to
other systems through their inputs and outputs. The aim is to show that dissipativity theory can be
usefully applied to study the existence of limit cycle oscillations and their global stability properties
and also to give simple explanations for the feedback mechanisms responsible for these oscillations.
An obvious benefit of this dissipativity approach for the characterization of limit cycles is that it is
not restricted to low-dimensional systems. A further benefit is that it is well-suited to the analysis of
interconnections. The important topic of networks of oscillators will be treated in Chapter 4.

Starting from two of the most simple examples of nonlinear systems exhibiting globally attrac-
tive limit cycles oscillations, namely the VAN DER POL oscillator (Section 3.1) and the FITZHUGH-
NAGUMO oscillator (Section 3.2), we present two different feedback oscillation mechanisms responsible
for global limit cycle oscillations in (generalized) LURE feedback systems (Section 3.3). The limit cycle
either results from a supercritical HOPF bifurcation or from the addition of a slow adaptation dynamic
to a globally bistable system created through a supercritical pitchfork bifurcation. The first scenario
provides a high-dimensional generalization of the VAN DER POL oscillator. Its energy interpretation
fits the qualitative description of many physical oscillations, described as the lossless exchange of
energy between two storage elements, regulated by a locally active but globally dissipative element.
The second scenario provides a high-dimensional generalization of FITZHUGH-NAGUMO oscillators.
Its energy interpretation fits the qualitative description of many oscillation mechanisms in biology,
viewed as periodic switches between two quasi-stable steady-states. Since the central assumption for
these results is passivity, we name the resulting global oscillators, passive oscillators. Central to the
results of this chapter is the characterization of passive oscillators by the dissipation inequality

S < (k—K)y® —yd(y) + uy. (3.1)

Beyond the stability results, the dissipation inequality (3.1) provides an external characterization
of oscillators which opens the way to a rigorous stability analysis of limit cycles in possibly high-
dimensional systems and interconnections of such systems.

3.1 The VAN DER PoL oscillator

In the early days of nonlinear dynamics, say from about 1920 to 1950, intensive research was done
on nonlinear oscillations. One of the very first to propose a model for global limit cycle oscillations
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was the Dutch electrical engineer BALTHAZAR VAN DER PoOr. VAN DER POl is nowadays considered
as the pioneer engineer in the fields of radio and telecommunications. In an era when these topics were
much less advanced than they are today, vacuum tubes were used to control the flow of electricity in the
circuitry of transmitters and receivers. Contemporary with LORENZ, THOMPSON, and APPLETON,
VAN DER PoOL experimented with oscillations in a vacuum tube triode circuit and concluded that
all initial conditions converged to the same periodic orbit of finite amplitude. Since this behavior
is different from the behavior of solutions of linear equations, VAN DER POL proposed a nonlinear
differential equation, commonly referred to as the VAN DER POL equation, as a model for the behavior
observed in the experiment. Since its introduction in the 1920’s, the VAN DER POL equation has
been a prototype for systems with self-excited limit cycle oscillations.

In this section, we will show that the VAN DER POL oscillator can be seen as a particular LURE
feedback system and that the main feedback mechanism responsible for global oscillations in the VAN
DER PoOL oscillator is the HopF bifurcation.

3.1.1 VAN DER PoL dynamics - Global results

Oscillations in physical systems generally result from a sustained energy exchange between two
or several storage elements. In the VAN DER POL oscillator the two storage elements are a capacitor
and an inductor, whereas the dissipation is regulated by means of a nonlinear static element. Figure
3.1 shows a sketch of the “tetrode multivibrator” circuit used in the earliest commercial radios and
analyzed by VAN DER PoOL. The inductor and the capacitor are assumed to be linear, time invariant
and passive, that is, L > 0 and C > 0. In VAN DER PoL’s day, the nonlinear static element was
a vacuum tube; today it would be a semiconductor device implementing a twin-tunnel-diode circuit.
This nonlinear element acts like an ordinary resistor for high currents, but like a negative resistor for
low currents. Its current-voltage characteristic i = ¢r(v) resembles a cubic function with a negative
slope at the origin, as represented on Figure 3.1. The function ¢r(-) satisfies the conditions

and
lim ¢R(U) = +00, lim d)R(U) = — 09,
V—+400 V——00
where ¢,(v) and ¢ (v) are the first and second derivative of ¢r(v) with respect to v respectively.

For the VAN DER POT1, equation,
1
¢r(v) = §U3 —Rv (3.2)
where R parameterizes the slope at the origin.

Using KIRCHHOFF’s laws, the second order dynamics of the VAN DER POL circuit of Figure 3.1

are )
d*v dv
LC—— +L(v*—R) — +v=0.
PR G
The foregoing equation can be written in a form that coincides with some well-known equations
in nonlinear systems theory. To do that, let us change the time variable from ¢ to 7 = ——. Denoting

VLC
the derivative of v with respect to 7 by ©, we can rewrite the circuit equation as

i}+\/g(v2—R)i)+v:0. (3.3)
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L i = dp(v)
Nonlinear
I, —C resistive v
element
11, ic 1= gbR(rU)
- / / v
sl

ope at origin = —R

Figure 3.1: The VAN DER PoOL “tetrode multivibrator” circuit.

This last equation is known as the VAN DER POL equation and is a special case of LIENARD’s
equation

v+ f(v)v 4 g(v) =0, (3.4)

where f(v) = \/%%%(v) = % (v* — R) and g(v) = v. It can also be interpreted mechanically as
the equation of motion for a unit mass subject to a nonlinear damping force — f(v)0 and a nonlinear
restoring force —g(v). LIENARD systems are well known in the literature for their nonlinear oscillations
properties. The following theorem states that LIENARD systems have a unique, stable limit cycle under
appropriate hypotheses on f(-) and g(-). For a proof, see [JS87], [Gri90], or [Per91].

Theorem 3.1 (LIENARD’s Theorem) [Str00] Suppose that f(v) and g(v) satisfy the following
conditions:

1. f(v) and g(v) are continuously differentiable for all v € R;
2. g(—v) = —g(v) for allv € R;

3. g(v) >0 forv>0;

4. f(=v) = f(v) for all v;

5

. The odd function F(v) = fovf(u) du has ezxactly one positive zero at v = a, is negative for
0 < v < a, is positive and nondecreasing for v > a, and F(v) — o0 as v — 0.

Then the system (3.4) has a unique, stable limit cycle surrounding the origin in the phase plane.

The assumptions on g(v) mean that the restoring force acts like an ordinary spring, and tends to
reduce any displacement, whereas the assumptions on f(v) imply that the damping is negative at
small |v| and positive at large |v|. Since small oscillations are pumped up and large oscillations are
damped down, it is not surprising that the system tends to settle into a self-sustained nonlinear
oscillation at some intermediate amplitude.

3.1.2 The VAN DER PoL model as a LURE feedback system

The VAN DER PoL oscillator may be seen as a particular LURE feedback system that admits
the block diagram representation of Figure 3.2, which is the feedback interconnection of a dynamical
passive system with a static nonlinearity characterized by a negative slope at the origin.
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passive
)y

K

Figure 3.2: Block diagram corresponding to the LURE SISO nonlinear system interpretation of the
VAN DER POL equation.

This is easily seen by choosing the state variables as the voltage across the capacitor and the
current through the inductor. Denoting the state variables by z; = iy, and 2o = v, the state model is
given by

le - 1
i~ L7
dzg . 1 1 3
E = _C <Zl+(322—RZQ>>
Since the first model (3.3) has been written with respect to the time variable 7 = ——, let us write

VLC’
this model with respect to 7. We obtain

o= \/%ZQ (3.5)

2= =g (s + (34 - R=))

Let us assume, without loss of generality, that L = C' = 1. We then get the VAN DER POL state
model
2:’1 = Z9

22 = —21 — (%Z% - RZQ) (36)

The state model (3.6) admits the block diagram representation depicted in Figure 3.3. Since an
integrator is the most simple example of a passive dynamical system and the feedback interconnection
of passive systems is passive (see Theorem 2.15), the block diagram representation given in Figure
3.3 clearly corresponds to the LURE feedback system of Figure 3.2. In Section 3.3, we will prove that
the class of LURE feedback systems depicted in Figure 3.2 extends the fundamental properties of the
VAN DER PorL oscillator to high-dimensional systems, i.e. to feedback systems characterized by a
unique limit cycle which is (almost) globally attractive.

The feedback mechanism responsible for global oscillations in the VAN DER POL model (3.6) is the
Hopr bifurcation. This is easily seen by considering R as a parameter and performing a bifurcation
analysis on the linearized system. The Jacobian matrix of the linearized system is

(%)
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z9

21

1
S
1
S
575 — Rz
Or(")
Figure 3.3: Block diagram representation of the VAN DER POL state model (3.6).

For negative values of R, the origin (21, 2z2) = (0, 0) is asymptotically stable whereas for positive values
of R, the origin is unstable. For R = 0, the origin of the linearized system is marginally stable with
two eigenvalues (+4) on the imaginary axis. Moreover, as R is increased through 0, the corresponding
eigenvalues cross the imaginary axis with nonzero speed. The assumptions of the HOPF bifurcation
in Theorem 2.32 are thus satisfied. The type of HOPF bifurcation is determined by the sign of the
curvature coefficient a given in (2.33), i.e.

1

1
_ 1 2 2
a = = ( 212121 + 212222 + 212122 + 22Z232)

16
1
_E (f;lzz (fz11z1 + f?}gzg) - fz?lzz (f221z1 + fz?gzz) - lelzlfglzl + fz1222f3222) )

, 1
where f? denotes the i component of the vector field at the critical value R = 0, i.e. < ;2 > =

1
f2 (21,22,0) = = 1_3 | and all partial derivatives are evaluated at the bifurcation point,
f? (21, 22,0) —21 — 323
i.e. (21,22, R) = (0,0,0). In the VAN DER POL model, we obtain a = —1 < 0. Since a is negative,

we deduce that the HOPF bifurcation is supercritical and gives rise to a locally stable limit cycle for
R > 0. Furthermore, from the LIENARD Theorem 3.1, we know that this limit cycle is unique and
globally asymptotically stable for R > 0. It can also be shown that the origin of the VAN DER PoOL
state model (3.6) is globally asymptotically stable for R < 0 (see [Kha02|). In Section 3.3, we will
see that the global asymptotic stability of the origin before the critical bifurcation value R = 0 (i.e.
for R < 0) is an important condition for obtaining a globally attractive limit cycle for values of R
greater than 0.

3.2 The FirzHUGH-NAGUMO oscillator

Oscillations in biological systems generally result from a relaxation oscillation characterized by
rapid switches between two quasi steady states (see [Mur02]). Most of the time, this relaxation
oscillation is the result of the feedback addition of a slow adaptation mechanism to a globally bistable
system. In this section, we are interested in one of the most simple models for voltage oscillations in the
neuron cell membrane, the F1TZHUGH-NAGUMO model. We will show that, under certain assumptions,
this model admits the LURE feedback representation of Figure 3.2, plus a feedback adaptation loop.
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In the FrrzHUGH-NAGUMO model, the LURE feedback system is globally bistable. The oscillation
mechanism consists in the transformation of this globally bistable system into a relaxation oscillation
through the addition of a slow adaptation dynamic.

3.2.1 FI11ZHUGH-NAGUMO dynamics - Global results

The simplest model that has been proposed for spike generation is the F1TZHUGH-NAGUMO model.
This model is a simplification of the HODGKIN-HUXLEY model for voltage oscillations in the neuron
cell membrane [HH52].

In 1952, HopGKIN and HuXLEY [HH52] proposed a mathematical model to explain pulse gen-
eration by neurons. According to their analysis, the electrical pulses arise because the neuron cell
membrane is preferentially permeable to various chemical ions with the permeabilities affected by
the currents and ions present. The key elements in the system are potassium ions (K) and sodium
ions (Nat). The HODGKIN-HUXLEY equations are characterized by a threshold for generating limit
cycles and thus provide a qualitative approximation to spike generation thresholds. Simplifications
of the model of HODGKIN and HUXLEY lead to the well-known second order FITZHUGH-NAGUMO
model which qualitatively preserves its important properties.

The F1TzHUGH-NAGUMO dimensionless model is (see [Mur02|)

o= f)—wtla (3.7)
w = bv — yw,
where I, models the external excitation current, f(v) = —v(v—a)(v—1), 0 < a < 1, and b and - are

positive constants. The corresponding nullclines are w = %v and w = f(v) + I,.

With I, = 0, the possible phase portraits, as illustrated in Figure 3.4, show that there can be no
periodic solutions since we either have a unique, asymptotically stable equilibrium point or a bistable
system, i.e. two stable equilibrium points with a saddle point in between.

w

w

Figure 3.4: Nullclines for the original F1TzHUGH-NAGUMO model (3.7) when I, = 0. As the param-
eters b and «y vary there can be (a) one stable equilibrium point or, (b) three equilibrium points, one
unstable, namely, S, and two stable, namely, (0,0) and Ss.

Suppose now that there is an applied current I, > 0. The effect on the nullclines is simply to
move the v nullcline, with I, = 0, up the w-axis. The corresponding nullclines are illustrated in
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3.2. THE FITZHUGH-NAGUMO OSCILLATOR

Figure 3.5 (a) to (d) for several I, > 0. With parameter values such that the nullclines are as in
Figure 3.4-(a), we can see that by varying only I, there is a range of applied currents (Iy, I3) where
the steady state can be unstable and limit cycle oscillations possible, that is, a nullcline situation
like that in Figure 3.5-(b). The algebra to determine the various parameter ranges for a, b, v and I,
for each of these various possibilities to hold is straightforward [Mur(02|. Finally, with the situation
exhibited in Figure 3.5-(d) limit cycle solutions are not possible. On the other hand this form can
exhibit equilibria switch properties.

O<Ia<ll ]1<[a<12
1,

1,

w=f(v)+ 1,

(a) (b)
Ia > IQ
S
1,
S
0 Sy

(c) (d)

Figure 3.5: Nullclines for the original FITZHUGH-NAGUMO model (3.7) with different applied currents
I,. Cases (a), where I, < I, and (c), where I, > I3, have linearly stable steady states, while in
(b), where I} < I, < I, the steady state can be unstable and limit cycle periodic solutions are
possible. With the configuration (d), the steady states Sy, S are stable whereas Sy is unstable. In
the configuration (d), a perturbation from either S or Ss can effect a switch to the other.

Since we are interested in the situation where a limit cycle oscillation occurs in the FITZHUGH-
NAGUMO model (3.7), the positive constants a, b, 7, and I, are chosen such that the system possesses
a unique unstable equilibrium point as in Figure 3.5-(b). For nullclines to be as in Figure 3.5-(b), we
must impose that the slope at the inflexion point (v = 2%2) of the nullcline w = f(v) + I, is less than
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% (the slope of the nullcline w = %v). This leads to the condition
b 1
S>3 (a*> —a+1) (3.8)

which guarantees uniqueness of the equilibrium point of the state model (3.7).

Suppose now that for a particular value I, of I,, the equilibrium point is the inflexion point of
the nullcline, i.e. w = f(v) + I, = %1‘) with v = “T‘H Then for the inflexion point to be unstable we
must further impose the condition

7<%(a2—a+1). (3.9)

It may be similarly showed that the equilibrium point is unstable in the range of values

Vi <o < Va, (3.10)

where V] = “T‘H - —W and V5, = a31 + Vi{@?zatl)=3y with (aQ—a—i—l) — 3y > 0 from
condition (3.9).

From condition (3.10) we may approximate the range of values for the excitation current I,
(leading to a situation similar to that described in Figure 3.5 (b)) by

I <1, < Iy, (3.11)

where I = 2V, — f (\71) and Iy = 2V, — f (Vg)

b b

8! 8!

3.2.2 The FITzHUGH-NAGUMO model as a LURE feedback system plus a feedback
adaptation loop

In this section we perform several changes of coordinates in order to obtain a state model of the
F1TZHUGH-NAGUMO equations (3.7) that admits the LURE feedback representation of Figure 3.2,
plus a feedback adaptation loop.

In order to center the origin of the axes in Figure 3.5-(b) at the inflexion point of the function
f(v), we perform the following change of coordinates

T w—f(a+1>—fa

3
a+1
Z2 = UV— 5

which leads to the equivalent model
1 b b 1 1
—Z = 22—21+(a+ —f(a+ >_Ia)
v v v 3 3
1
Z9 = —zl—<z§’—3(a2—a—|—l)z2>.

If we assume that I, = %a L f(
model becomes

S
W+
_

) (which belongs to the current range (3.11)), the state

« ‘

Ti’l = bTZQ—Zl,

iy = —z— (8- (> —a+1)2), (3.12)
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where 7 = %, and admits the feedback representation of Figure 3.6 where ¢, (20) = 25 —

%(a2 —a+1) z9. In the model (3.12), the uniqueness of the equilibrium point is guaranteed

by the condition % (a2 —a+ 1) < br and its unstability by the condition % (a2 —a+ 1) > % We
clearly see that both conditions are simultaneously satisfied for 7 large enough.

o ~ 1 22

SR

¢a<')

~—

1 bt
T75+1

Figure 3.6: Block diagram representation of the FITZHUGH-NAGUMO state model (3.12).

We are now ready to interpret the oscillation mechanism of the FITZHUGH-NAGUMO oscillator.
The inner-loop dynamic
22 = k‘aZQ - Z%, (313)

where we have posed k, = % (a2 —a+ 1) > 0, constitutes a globally bistable system. The most

natural way to obtain a bistable system from a scalar parameterized system is through a pitchfork
bifurcation. The FITZHUGH-NAGUMO oscillator exploits this idea. Consider exclusively the inner
loop dynamic (3.13) of the FITZHUGH-NAGUMO model parameterized by k € R, we obtain

22 = k‘Zz — Zg (3.14)

It is easy to see that this first order system undergoes a supercritical pitchfork bifurcation at £ =0
since for k < 0, the origin of (3.14) is globally asymptotically stable, whereas for k£ > 0, the origin is
a saddle point and there exists two other asymptotically stable equilibrium points located at +v/k.
Considering only the inner loop dynamic (3.14), one thus obtains the phase portrait shown in Figure
3.7-(a) for k = k, > 0.

The outer-loop in Figure 3.6 or equivalently the adaptation equation
TZ = —21 + btz (3.15)

converts the bistable behavior into a limit cycle in the phase plane (21, z2) as shown in Figure 3.7-(b).
The limit cycle is guaranteed to be globally asymptotically stable provided that the time constant 7
is large enough, i.e. the adaptation is slow enough to let the “fast" dynamics converge to quasi steady
state (this is easily seen by applying singular perturbation theory see [Kha02]).

The global bistability of the inner loop combined with the slow adaptation of the outer loop thus
provides a second feedback mechanism for global oscillations. The resulting relazation oscillation is
characterized by rapid switches between two quasi steady states.
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. 21 zZ1 = bTZQ
Unique, unstable

equilibrium point 21 = kazo — Z%

kozo — z%, ko >0

/ Relaxation Oscillation
stable \ \ /
22 \ \ 2

(a) Without adaptation (b) With adaptation
Globally bistable system Relaxation oscillation

unstable

Figure 3.7: The hysteresis associated to a bistable system.

3.3 First result of this thesis - Passive oscillator definition

The aim of this section is to construct a class of high-dimensional systems that generalizes the
global limit cycle oscillation mechanisms of the VAN DER PoL and FITZHUGH-NAGUMO oscillators.
In the VAN DER POL example (3.6), the feedback mechanism responsible for the generation of global
limit cycle oscillation is the supercritical HOPF bifurcation that occurs at R = 0. In the F1TZHUGH-
NAGUMO example (3.12), the global oscillation feedback mechanism consists in the addition of a slow
adaptation dynamic to a globally bistable system.

Both in the VAN DER PoOL and the FITZHUGH-NAGUMO models, the bifurcations occur in a
structure that corresponds to the feedback interconnection of a conservative system with a static
nonlinearity of the form ¢(y) = —ky + %>, i.e. a nonlinearity ¢(y) = y> that satisfies the sector
condition y¢(y) > 0, Vy € R plus a parameterized slope at the origin —ky. In the VAN DER POL ex-
ample (3.6), the conservative system consists in the feedback interconnection of two simple integrators
whereas in the FITZHUGH-NAGUMO situation (3.12), the conservative system is a single integrator.

To generalize the VAN DER PoL and FITZHUGH-NAGUMO global oscillation properties to higher-
dimensional systems, the ideal situation would be to replace the integrator appearing in the forward
path of Figures 3.3 and 3.6 directly by a general passive system. This is a sufficient condition for
proving global boundedness of the solutions of the feedback system as we will see in Section 3.3.2.
However, it is a too general assumption that cannot reasonably lead to global oscillations in the
general case. In Section 3.3.3, we will prove that in order to obtain global stability properties through
a supercritical bifurcation, it is essential that the system under consideration possesses a unique,
globally asymptotically stable equilibrium point before the bifurcation. In other words, the system
must be absolutely stable for values of the bifurcation parameter less or equal to the critical value.
This will allow the global stability property of the equilibrium point to be transmitted to the bifurcated
solution, at least in the vicinity of the critical bifurcation value. Replacing the forward integrator in
Figures 3.3 and 3.6 by a passive system does not lead to a situation where this condition is satisfied
generically. As we will see, for a general LURE system of the form represented in Figure 3.8, passivity
of the parameterized system X is generically lost before its stability as the parameter k is increased
(i.e. before the bifurcation), leading to a situation where the feedback system is not necessarily
globally asymptotically stable before the bifurcation. Stronger assumptions are to be imposed to the
forward system 3 if one is interested in global oscillations. These assumptions will be discussed in
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Section 3.3.3.

3.3.1 Class of systems studied

Consider the LURE system shown in Figure 3.8 which represents the feedback interconnection
of the nonlinear system ¥ with a static nonlinearity ¢ (-). Throughout this chapter, we make the
following assumptions. We assume that the (SISO) system ¥ is described by the state-space model

&t = f(x)+gx)v, ze€R" wvelk
(E){ y = h), gyeR (3.16)

where the vector fields f and ¢ and the scalar function h are smooth!. We assume that the origin z = 0
is an equilibrium point, i.e. f(0) = 0, and that h(0) = 0 and g(0) # 0. We also assume zero-state
detectability of the pair (f, h), i.e. that every solution x(t) of & = f(x) that verifies y(t) = h(x(t)) =0
asymptotically converges to the zero solution z = 0 as t — oo.

The static nonlinearity ¢g(-) : R — R is described as

or(y) = —ky + o(y), (3.17)

where ¢() is a smooth sector nonlinearity in the sector (0,00), which satisfies ¢'(0) = ¢”(0) = 0,
¢"(0) = Kk > 0 and lim|y %‘9) = 400 (“stiffening” nonlinearity). The parameter k regulates the
level of “activation” near the equilibrium z = 0.

The feedback interconnection is defined by

v=—6n(y) +u, (3.18)

where u € R represents the external input of the feedback nonlinear system. Since, in this chapter,
we are interested in self-oscillating systems, the external input w is considered to be equal to zero. In
Chapter 4 it will be used to interconnect several systems (oscillators) into a network.

We denote by G(s) the transfer function of the linearization of ¥ at x = 0 and by X, the (positive)
feedback interconnection of ¥ with the feedback gain k. Similarly, we denote by Gi(s) = % the
transfer function of the linearization of ¥; at x = 0. The feedback system is equally described as the

feedback interconnection of ¥j and the nonlinearity ¢(-) (see Figure 3.8).

u v 3 Y u A N Y

)
N

Ok (-) ()

Figure 3.8: Equivalent representations of the LURE SISO nonlinear system.

We assume that the system X is strongly passive with storage function S(z) (see Definition 2.4).
For clarity, we recall here the three additional assumptions characterizing the storage function S(x)
of a strongly passive system.

!By smooth, we mean continuously differentiable up to order k (C*) with k large enough to satisfy our needs (i.e.
to fulfil the requirements of the theorems we are using, such as the theorem on existence and uniqueness of solutions,
the theorem on continuous dependence of a solution on the initial condition (see [KhalilBook2, Sections 3.1 and 3.2]),
the HopF bifurcation theorem, etc.).
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1. (smoothness) S(x) is continuously differentiable (C') in R and twice continuously differentiable

-
(C?) in a neighborhood of the origin.
-

2. (LyApuNoOVv) S(z) is positive definite, S(x) > 0, and radially unbounded, i.e. S(z) — oo as

|z| — oo.

3. (locally quadratic) The Hessian of S(x) evaluated at zero %

definite matrix P = PT > 0.

is a symmetric positive
=0

As it is well-known, these assumptions are always satisfied in the (detectable) linear case because
linear passive systems have quadratic positive definite storage functions [Wil72]. In general, these
assumptions are convenient to link the passivity of ¥ to the stability properties of the zero input
system since S(z) then serves as a (global) LyApuNov function. The locally quadratic assumption
further ensures that the linearization of X is passive, with the quadratic approximation of S(x) as a
storage function. It also implies that the system has a relative degree one?, i.e. g—’;(x)g(x) > 0 for all
x in a (small) neighborhood of the origin x = 0, and that it is weakly minimum phase, i.e. its zero
dynamics are LYAPUNOV stable [BIW91].

The first question if we are interested in global results concerns the global boundedness of the
solutions of the feedback system (3.16),(3.17),(3.18) with v = 0. To this end, we introduce an extra
property for the feedback system in Figure 3.8. The feedback interconnection of ¥ and ¢(-) is called
ultimately bounded® if all solutions enter in finite time a compact set Q = Q(k). The main result
of this chapter (see Section 3.3.3) states ultimate boundedness as an extra assumption to strong
passivity and zero-state detectability of ¥. Following the argument of ARCAK and TEEL in [AT02],
we observe that this extra assumption is always satisfied when the feedback interconnection of X
with a stiffening, strictly passive nonlinearity is input-to-state stable. This is because the stiffening
nonlinearity ¢g(-) always admits the decomposition

br(y) = () + xx(y),

with ¥ (y) strictly passive and xx(y) uniformly bounded by a constant C' = C(k). If ¥ is passive,
the feedback interconnection of ¥ and ¢g(-) is thus equivalent to the feedback interconnection of ¥
with 1 (+), which is strictly passive, forced by the bounded input y(y). Ultimate boundedness is thus
implied by input-to-state stability (see [Son89|) of the strictly passive interconnection of ¥ and 9 (-),
whereas strict passivity only implies a finite £ gain when ¥ is nonlinear. In the particular case of
Y linear, ARCAK and TEEL [AT02| have proved that weakly minimum phaseness and detectability
of the linear system 3 necessarily implies ultimate boundedness of the feedback interconnection of X

*This can be easily seen from the second HiLL-MoyLAN condition (2.20). Condition (2.20) implies

i (f@) (%) )g@s) = 20 o)

By definition of the storage function S(z), 22 »—o = 0, and we obtain g (0) 3275 o 9(0) = Lgh(z)|,_,- Since, by
assumption, 227‘3 is a symmetric, positive definite matrix, and g(0) # 0, this implies, Lgh(x)|,_, > 0, which means
=0

that the system has relative degree one around the origin (see [SJK97, Appendix A.1]).

3In the literature, this property is often called dissipativity (or LEVINSON dissipativity) which should not be confused
with the dissipativity notion in this document. In [Pog98, PGN99] this ultimate boundedness property is proved using
the concept of semi-passive system.
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with the stiffening, static nonlinearity ¢ (-). For the seek of completeness, we summarize the results
of ARCAK and TEEL for X linear in the following section. For proofs of the cited theorems, the
interested reader is referred to the paper [AT02].

3.3.2 Global boundedness results for > linear

ARrcAK and TEEL [AT02] have given sufficient conditions for input-to-state stability (ISS?) of the
feedback interconnection of a linear, passive, and detectable block with a static nonlinear element. In
the absolute stability framework, they prove ISS from the passivity of the linear block, by restricting
the sector nonlinearity to grow unbounded as its argument tends to infinity. When this growth
property is violated, examples show that the ISS property is lost. The ISS result of ARCAK and
TEEL can be used to give a simple proof of boundedness for negative resistance oscillators, such as
the VAN DER PoOL oscillator. Their main result is recalled in Theorem 3.2.

Theorem 3.2 (ARCAK'’s Theorem [AT02]) Consider the system

& = Ax+ B[—¢(y) +d] (3.19)
= Cz (3.20)

where x € R™, ¢(-) : R™ — R™, and (C, A) is detectable. If there exists a matriz P = PT > 0
satisfying the HILL-MOYLAN conditions

ATP+PA < 0, (3.21)
c = BTP (3.22)

a constant p > 0, and a class Koo function ¢;(-), such that

19lloo &1 (191l )
1Y)l oo

then the system is ISS with respect to d.

qub(y) for all y € R™, (3.23)

<
<yl o(y) when |yl = p, (3.24)

Remark 3.3 [AT02] When (A, B,C) is a minimal realization, a straightforward modification of the
KALMAN-YAKUBOVICH-POPOV lemma 2.20 for P > 0 shows that assumptions (3.21), (3.22) are
equivalent to the positive realness of H(s) = C(sI — A)~'B. For a more general result, in Theorem
3.2, ARCAK and TEEL allow non-minimal realizations and only restricts (C, A) to be detectable.

Remark 3.4 [AT02] For scalar nonlinearities ¢(-) : R — R the condition (3.23) is equivalent to the
sector property

yo(y) > 0, Yy # 0, (3.25)

*A dynamical system of the form & = f(z,u), y = h(z) is input-to-state stable (ISS) if there exist v € K,3 € KL
such that for all 2o, v and ¢ > O:

|z (t, w0, w)] < B (Jzo| , 1) + 7 (Ilull)
A function v : R>0 — R0 is of class K if it is continuous, positive definite, and strictly increasing. It is of class Ko
if it is also unbounded.
A function 8 : R>o x R>¢g — Rx( is of class KL if, for each fixed ¢ > 0, 5(-, ) is of class K and, for each fixed s > 0,
B(s,t) decreases to 0 as t — oo.
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and the growth condition
|yl = 00 = |¢(y)| — oo (3.26)

For scalar nonlinearities, the condition (3.24) is redundant because (3.23) implies yp(y) =
lyl|o(y)| and, thus, (3.24) holds with pn = 1. For multivariable nonlinearities, (3.23) does not imply
(5.24). A counterezample is

oly) =y +y|> Ty,

where J satisfies J+JT =0 and JTJ = I. In this example, y" ¢(y) = |y|* and |6(y)| = \/|y|* + |y|°,
which means that (3.23) is satisfied with ¢y (|y]) = |y|, but (3.24) is violated.

The ISS result of Theorem 3.2 can be used to prove boundedness for negative resistance oscillators
such as the VAN DER PoL oscillator as well as for the larger class (3.19),(3.20), which includes higher
order systems and bounded disturbances. This second result of ARCAK and TEEL is summarized in
Theorem 3.5.

Theorem 3.5 [AT02] Consider the system (3.19),(3.20) where x € R", ¢(-) : R — R, (C, A) is
detectable, and d is a bounded disturbance. If there exists a matriz P = PT > 0 satisfying conditions
(8.21) and (3.22), and if the nonlinearity ¢(-) satisfies ¢(y) — —o0 as y — —oo and ¢(y) — oo as
y — 00, then all the trajectories are bounded.

This result can be further generalized: Theorem 3.5 can be used to establish boundedness of trajec-
tories for a relative degree one, weakly minimum phase, linear block, in feedback with a stiffening
nonlinearity, defined by the property

lim M — 4-00. (3.27)
[yl—oo Y

Using the ISIDORI normal form [Isi95] for relative degree one systems, this feedback interconnection
is expressed as

z = Agz+ Byy (3.28)
y = —Coz—ay—¢(y) +d, (3:29)

where the z-subsystem represents the zero dynamics of the linear block. This third result of ARCAK
and TEEL is summarized in Theorem 3.6.

Theorem 3.6 [AT02] Consider the system (3.28),(3.29), where d is a bounded disturbance, (Cy, Agp)
15 a detectable pair, and there exists a matriz Py = P(;f > 0 such that

ATPy+ PyAg <0, PyBy=Cl (3.30)

If the nonlinearity ¢(-) : R — R satisfies the stiffening property (3.27), then the trajectories are
bounded.

This last result is useful to prove boundedness for systems with imaginary axis zeros. To illustrate
Theorem 3.6, we consider the following example:
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5241
53—524+25—1
with the stiffening nonlinearity ¢(y) = y>. To apply Theorem 3.6, we note that H(s) is relative degree

one, and rewrite the system as in (3.28)-(3.29) with d =0 and

0 1 0
A0:<_1 0), B0:<1>, Co=(0 1), a=-1

The origin is unstable from the Jacobian linearization. However, because (3.30) holds with Py = I,
Theorem 3.6 ensures boundedness. Numerical simulations indicate that the trajectories converge to
one of the two stable equilibria (x1,x2,x3) = £(0,0,1) (Figure 3.9-(a)), or to a limit cycle as shown
(Figure 3.9-(b)).

Example 3.7 Consider the negative feedback interconnection of the linear system H(s) =

State-space of the example of Arcak State-space of the example of Arcak

Figure 3.9: Example of ARCAK [AT02|. (a) The initial condition belongs to the basin of attraction
of the equilibrium point (z1,z2,23) = (0,0,—1); (b) The initial condition belongs to the basin of
attraction of the limit cycle.

As a consequence of the results of ARCAK and TEEL, we may conclude that for linear systems X,
weakly minimum phaseness® and detectability seem to be important sufficient conditions for ultimate
boundedness of the LURE feedback interconnection represented in Figure 3.8. Nevertheless, as we
have seen in example 3.7, these conditions are not sufficient to guarantee existence, uniqueness and
global asymptotic stability of the limit cycle. In the next section, we give sufficient conditions for
the existence, uniqueness and global asymptotic stability of a limit cycle in LURE feedback systems
satisfying the representation given in Figure 3.8.

3.3.3 Bifurcations in absolutely stable LURE feedback systems

In this section, we present the main results of this chapter, i.e. Theorems 3.8, 3.9, and 3.12.
These results concern the high dimensional extension of the feedback (global) oscillation mechanisms
present in the VAN DER PoL and FITZHUGH-NAGUMO models introduced in Sections 3.1 and 3.2.
Theorem 3.8 presents the typical bifurcation scenarii that occur in LURE feedback systems satisfying

®We recall that weakly minimum phaseness is a structural property of input-affine passive systems (see Section
2.1.7).
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the representation given in Figure 3.8, i.e. supercritical HOPF and supercritical pitchfork bifurcations.
Theorem 3.12 extends the results presented in Theorem 3.8 by weakening its assumptions through
the use of multipliers. Finally, Theorem 3.9 shows that the global bistability behavior that appears
through the supercritical pitchfork bifurcation scenario can be transformed into a global relaxation
oscillation by addition of a feedback adaptation loop to the LURE system.

The feedback system (3.16),(3.17),(3.18) with u = 0 is absolutely stable when the equilibrium x = 0
is globally asymptotically stable (GAS) for any nonlinearity ¢(-) in the sector (0, +00). Because the
sector memoryless nonlinearity v = ¢(y) is strictly input passive, a sufficient condition for absolute
stability is that X, is strongly passive and zero-state detectable. This results from Theorem 2.18.

Assuming that ¥ is strongly passive and zero-state detectable, the feedback system (3.16),(3.17),(3.18)
with u = 0 is absolutely stable for £ = 0. As k increases, a root locus argument shows that the
feedback system must loose stability at some critical value k*5. The following result characterizes the
possible bifurcations under a passivity assumption for Gg«. The notation k 2 k* is used to denote a
value of the parameter near the bifurcation, i.e. k € (k‘*, lﬂ for some k > k*.

Theorem 3.8 Consider the system shown in Figure 3.8 and characterized by (3.16),(3.17),(3.18)
with v = 0. Assume that X is strongly passive, that both X and its linearization are zero-state
detectable and that the feedback interconnection of ¥ and ¢y(-) is ultimately bounded. Let k* > 0 be
the minimum value for which the transfer function Gi(s) has a pole on the imaginary azis.

If G+ (s) has a unique pole on the imaginary azis and if Yy« is strongly passive, then the bifurcation
18 a supercritical pitchfork bifurcation; for k 2 k* the system is globally bistable, that is, the equilibrium
x = 0 is a saddle and its stable manifold E4(0) separates the state space in two open sets, each of
which is the basin of attraction of a stable equilibrium.

If Gi«(s) has a unique pair of conjugated poles on the imaginary azis and if Xy~ is strongly passive,
then the bifurcation is a supercritical HOPF bifurcation; for k 2 k* the system has a stable limit cycle
which is globally asymptotically stable in R™\ E5(0).

Proof
The proof is divided into a local argument and a global argument. Both arguments rely on the
dissipation inequality

S < —yo(y) (3.31)

at the bifurcation point, where S(x) denotes a storage function for ¥x«. The local argument will
show the existence of a supercritical HOPF (respectively, pitchfork) bifurcation at e = k — k* = 0.
This implies the existence of a constant €, > 0 and a neighborhood U of x = 0 such that for each
e € (0,&], all solutions with initial condition in U either converge to the unstable equilibrium x =0
or to a unique stable limit cycle of radius O (1/€) (respectively, one of two stable equilibria located
at a distance O (y/e) of the origin). The global argument will show that there exists a constant
0 < é < €, such that for each € € (0, €], all solutions enter the set U in finite time (which means

SFor the positive feedback interconnection of G(s) with the static gain k, the root locus is such that parts of the real
axis located at the left of an even number of real singularities (poles or zeros) and at the right of the rightmost real
singularity belong to the root locus. As the transfer function of a strongly passive system, G(s) has a relative degree
equal to one and all its poles and zeros belong to the closed left-half complex plane. As a consequence, one branch
(at least) of the root locus must enter the right-half complex plane since the positive part of the real axis necessarily
belongs to the root locus.
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that the local argument eventually applies to each solution).

We first prove the global argument. Ultimate boundedness implies that for each ¢ € (0,¢€3], all
solutions enter in finite time an invariant compact set @ = (e). Furthermore, the robustness of
global asymptotic stability at e = 0 implies semi-global practical asymptotic stability of the solution
x = 0 (see Theorem 2.257), i.e. the existence of €& < €3 such that, for each € € (0, &)], all solutions
with initial condition in €2 enter in finite time the set U.

Next we turn to the local argument. At the bifurcation, i.e. for k = k*, the system possesses a center
manifold. In a neighborhood of the origin = 0, the dissipation inequality (3.31) writes

S<—ry*+0 (%), K=4¢"(0)>0 (3.32)

with S(z) being locally quadratic positive definite. In particular, this last inequality holds valid on
the center manifold as well. The restriction of S(x) on the center manifold is thus a locally quadratic
LyapuNOv function that satisfies (3.32). Moreover, detectability of the linearization of ¥ implies
observability of the linearized center manifold dynamics®.

Case (1): If Gi«(s) has a unique pole on the imaginary axis, the center manifold is one-dimensional.

For a one dimensional manifold, the assumption h(0) = 0 implies that the output of the system is
y=c£+ 0O (].{\2) with & € R. Since the linearization of the center manifold dynamic is observable,

¢ is nonzero. This implies that y qualifies for a local coordinate in the center manifold. In normal
form, the center manifold dynamic thus writes [Wig90)|

g=a3y® +0(y"), yeR (3.33)

The restriction of the storage function on the center manifold is a locally quadratic function of the
form Scenter manifold = %P1y2 + 0 (y3) (with P; > 0 from the strong passivity assumption of ¥j«)
that satisfies the dissipation inequality

Scenter manifold — Plyy < _Hy4 + 0 (yS) : (3'34)

We thus obtain

asPiy* + 0 (y°) < —ry* + O (y°),

which in turn implies that ag < 0. As a consequence, the pitchfork bifurcation is supercritical
pitchfork, that is, there exists one unstable equilibrium at y = 0 and two asymptotically stable
equilibria y = 0O (y/€) for small € > 0.

Case (2): If Gg-(s) has two conjugated poles at s = +jw, the center manifold is two-dimensional.

"With the notations of Theorem 2.25, f¢ corresponds to the vector field of ¥, with k& > k* and g to the vector
field of ¥j+. This implies that the convergence assumption is necessarily satisfied since f° converges point-wise to g as
e — 0.

8If a linear system is (zero-state) detectable then its unobservable modes are asymptotically stable. This can also
be formulated as follows: If a linear system is (zero-state) detectable then its non asymptotically stable modes are
observable.
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The normal form of the center manifold dynamics is [Wig90|

:_ 2 [ as&i — b3l 4 (0 w
€= A&+ (b3€1+a3§2 ) +0 ("), A= ( e ) (3.35)

which, in polar coordinates, yields

{ g = @+ 0 (3.36)

= w+(’)(p2)

The restriction of S on the center manifold is a locally quadratic LyApuNov function S =
ErQe+0 (\5]3) which satisfies

§=€"(QA+ATQ) ¢+ 0 (&) < —ry* + 0 (4). (3.37)

Up to a scaling factor, the only positive definite solution Q of QA. + AT'Q < 0is Q = %I, which
implies S = %pQ + O (,03). For initial conditions in the center manifold, the dissipation inequality
(3.37) thus satisfies

S=asp* +0(p°) < —ry* + O (y°) .
Integration on both sides over an arbitrarily chosen time interval 7" > 0 yields

T T
as /O (p) dt < —k /O (y()" dt + O (y°)

which, from the observability of the linearized center manifold dynamics, forces a3 < 0. This implies
that the bifurcation is a supercritical HOPF bifurcation, that is, for small € > 0, all solutions in U
either converge to the unstable equilibrium z = 0 or to a unique stable limit cycle of radius O (/).
This concludes the proof. [

The HoPF bifurcation scenario of Theorem 3.8 provides a high dimensional generalization of the
global limit cycle oscillation mechanism satisfied by the VAN DER POL oscillator. It has the following
energy interpretation: passivity at the bifurcation point allows for a lossless exchange of energy
between at least two storage elements”. The static nonlinearity ¢, “regulates the dissipation in the
LURE feedback system, restoring energy when it is too low and dissipating it when it is too high.

On the other hand, the pitchfork bifurcation scenario provides a high dimensional generalization of
the global bistability behavior occuring in the inner loop of Figure 3.6. The following result transforms
this global bistability behavior into a feedback mechanism for global oscillations.

Theorem 3.9 Under the assumptions of Theorem 3.8, suppose that the feedback interconnection of
Y and ¢(-) undergoes a supercritical pitchfork bifurcation at k = k* and that the feedback system
shown in Figure 3.10 is ultimately bounded. Then there exists constants € > 0, and T > 0 such that
forall k € (K*,k* +€) and 7> (k — k*)_l, the feedback system shown in Figure 3.10 is characterized
by a globally asymptotically stable limit cycle in R"1\ E4(0).

°In the VAN DER PoL oscillators these two elements are the two integrators appearing in Figure 3.3.
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O O Y

Or(+)

R 1
Ts+1

Figure 3.10: Converting the global bistability scenario into a relaxation oscillator with a slow adapta-
tion mechanism (7> (k — k*)™"). The case & = 1 corresponds to the F11zHUGH-NAGUMO oscillator.

Proof
The proof is similar to the proof of Theorem 3.8. Let € = (k — k*). Consider the system represented
on Figure 3.10. By assumption, the feedback interconnection of ¥ and ¢ (-) possesses a one dimen-
sional center manifold at e = 0. For u # 0, strong passivity of 3 implies that the center-unstable
manifold dynamic writes!?

J=ey+azy’ +bu+0(y'), a3<0, b>0.

Thus, if we augment the one-dimensional center-unstable manifold of the original system (without
adaptation) with the adaptation equation, we obtain

g = ey+a3y3—bR+0(y(y,R)y4), a3 <0, b>0,

R = 6(-R+y), (3.38)
(6 = 0,
5 = 0),

where treating § = 77! as a state variable makes the adaptation equation part of the center-unstable

manifold locally defined around (z, R,¢€,d) = (0,0,0,0) (see [Wig90, Section 2.1b]). The equilibrium
(y, R) = (0,0) of (3.38) is stable for e < 6 > 0 and unstable for e > § > 0. Standard arguments based
on singular perturbation theory (see [Kha02, pp. 445-448|) prove that there exists a constant € > 0
and a neighborhood U of the equilibrium (y, R) = (0,0) of (3.38) such that for any fixed 0 < § < e,
e € (0, €], all solutions with initial condition in U\{0} converge to a unique limit cycle. Because of
the time-scale separation, this limit cycle corresponds to a relaxation oscillation.

The global part of the proof is as in Theorem 3.8: for § > 0 and € = 0, the equilibrium (z, R) = (0,0)
is globally asymptotically stable because the augmented storage V = 5S+%R2 satisfies the dissipation
inequality V = 65+ RR = —0y¢(y) —dyR+0R (—R + y) < —dy¢(y), which is analogous to (3.31). m

0The strong passivity of ¥ and the assumption g(0) # 0 imply that 3 has relative degree one at = 0. This,
in turn, implies that for z in a neighborhood of the origin, the input v of ¥ directly enters the y dynamics, i.e.

§=5ti = Lyh(z) 4 Loh(x)v with Lyh(0) = | _ g(0) =b> 0.
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Remark 3.10 If the forward system X is linear, strongly passive and detectable, then ultimate bound-
edness results from Theorem 3.6 since the adaptation dynamic is passive.

Theorems 3.8 and 3.9 provide high dimensional extensions of the fundamental global oscillation mech-
anisms present in the VAN DER PoOL and FITZHUGH-NAGUMO models thus allowing for the definition
of high dimensional, global nonlinear oscillators. Since the main property of the system 3 is its
strong passivity, we name such oscillators passive oscillators. In the next section, we give the general
definition of a passive oscillator.

3.3.4 Passive oscillator definition

We define a passive oscillator as a system that admits the feedback representation in Figure 3.8,
is characterized by (3.16), (3.17), and (3.18), and satisfies the two following conditions:

1. the feedback system satisfies the dissipation inequality S < (k — k;assive) y? —yd(y) +uy where

* > (0 is the critical value of & above which

S(x) represents the storage function of 3 and k...

the system X loses passivity;

2. when unforced (u = 0), the feedback system possesses a global limit cycle, i.e. a stable limit
cycle which attracts all solutions except those belonging to the stable manifold of the origin.

The first condition necessarily holds if we assume that the forward block X is strongly passive. In
Theorems 3.8 and 3.9, we provided sufficient conditions for the second condition to be satisfied as
well. The most restrictive assumption of Theorem 3.8 is the strong passivity assumption of . It
amounts to impose that, increasing k, 3 remains passive until it loses stability, i.e. to impose that

passive — k- In the next section, we show that this assumption can be weakened through the use of
multipliers.

The external characterization of our — possibly high-dimensional — passive oscillators by a dis-
sipation inequality plays a role both in the supercritical character of the bifurcation and in the
preservation of global convergence properties beyond the bifurcation value. In Chapter 4, we show
that this external characterization also plays an important role in the study of oscillations in networks

of interconnected passive oscillators.

3.4 Relaxation of the assumptions of Theorem 3.7 - Use of multipli-
ers

The important property used in the proof of Theorem 3.8 is the absolute stability of the system
at criticality (i.e. when k = k*). As we have seen, this property is satisfied under the assumption
that X~ is strongly passive. The assumption that ¥~ is strongly passive is rather restrictive. It
requires that X, loses stability and passivity for the same value of the parameter k. In general,
this is not the case. As the parameter k increases, passivity of Y is generally lost before stability.
Special cases where passivity and stability are lost simultaneously include lossless systems, e.g. the
simple integrator % or general Output Feedback Lossless (OFL) systems, i.e. systems that can be
rendered lossless by feedback. This quite restricts the applicability of Theorem 3.8. Fortunately, the
assumptions of Theorem 3.8 can be relaxed with the help of multipliers (see [MR97| for a recent and
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general treatment of multipliers). In this section, we will see how multipliers can be used to relax the
Y+ strong passivity assumption but still guarantee the absolute stability at k = k*.

For the results of the present chapter, the main observation is that, when Hj(s) and Ha(s)
are two transfer functions with both poles and zeros in the open left-half complex plane, then the
feedback interconnection of ¥ and ¢ in Figure 3.8 is equivalent to the feedback interconnection
of ¥ = Hi%Hy, ' and ¢ = HypH; ' showed in Figure 3.11. If H; and Hs are such that ¢ is
strictly passive, then strong passivity of ¥, becomes sufficient for absolute stability, yielding relaxed
conditions for the stability of the feedback system.

P
u Y LY
Ek Hl(s) ;
Co M(s) = Hyi(s)Ha(—5)
} H, and H, are invertible
o(y) y ! Hy, H', Hy and Hy ' are
o(+) HY(s) ; causal and stable with finite gains

Figure 3.11: Equivalent feedback loop with multipliers.
For the sector nonlinearity ¢, the simplest example of multiplier is the POPOv multiplier
M(s)=Hyi(s)=1+~s, ~v>0.

Requiring strong passivity of the system (1 + ys)X for absolute stability of the feedback system
(3.16),(3.17),(3.18) with u = 0 is Popov criterion [Kha02]. For monotone increasing static nonlin-
earities, a broad class of multipliers was introduced by ZAMES and FALB [ZF68] in the form

“+00 0

M(jw) =1-Z(jw) =1 —/ z(t)e ¥t at, / |z(t)| dt < 1. (3.39)

—0o0 —00

The additional assumption z(¢) > 0 is also needed unless ¢(-) is odd. ZAMES and FALB [ZF68| showed
that multipliers of the form (3.39), which are not necessarily causal, can always be factored in the
form

M(s) = Hi(s)Ha(—s)

with Hj, Hs, and their inverses being causal and stable and with the operator q~5 = H2¢H1_1 being
strictly passive. As a consequence, strong passivity of Y is sufficient for absolute stability of the
feedback system. Note that when Y is a linear system, (strong) passivity of Y is equivalent to
positive realness of the transfer function Gy(s)Hy(s)Hy '(s) (see Lemma 2.21).

We summarize the following sufficient conditions for absolute stability of the feedback system in
Figure 3.8.
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Theorem 3.11 Consider the system shown in Figure 3.8 and characterized by (3.16),(3.17),(3.18)
with u = 0. Assume that 3 and its linearization are zero-state detectable and that all solutions of the
feedback system are bounded. Then each of the following conditions is sufficient for global asymptotic
stability of the equilibrium x = 0 of the feedback system.

o ¢ is in the sector (0,00) and there exists v > 0 such that Xj, = (14 vs)Xy, is strongly passive;

e ¢ is monotone increasing in the sector (0,00) and there exists M (s) = Hi(s)Ha(—s) in the form
(3.89), z(t) > 0, such that X = lekHz_l is strongly passive;

e ¢ is odd, monotone increasing in the sector (0,00) and there exists M(s) = Hi(s)Ha(—s) in the
form (3.89) such that ) = HlEngl is strongly passive.

Proof
Let z be the state of &), and 5’(37) be its the storage function. Strong passivity of ¥ implies

S < ag, (3.40)

where § = Hyy and @ is the output of the operator (—(5)
For the PorPov multiplier, this yields

8 < o)y + 7).
A LyapruNov function for the interconnection is given by V = S + vy foy ¢(s) ds, which satisfies
V =5+ 901)i < —yd(y).
For ZAaMES-FALB multipliers, the operator (—&) is of the form

(_ ) { in= A+ By, -y =Cuwn+ Di (3.41)

¢ oy = Aswa + Bad(y), U = —Cowa — Dag(y)

with (A;, B;, Cy, D;), i = 1,2, being minimal realizations of the (stable) filters Hfl and H, respec-
tively. For a given g(t), t > 0, we denote by —¢ (§(t)) the (unique) output @(t) of (3.41) for the

initial condition w(0) = (w1(0),w2(0)) = (0,0). Strict passivity of the operator ¢ is established in
[ZF68]. It implies

T
/0 313 (G(t)) dt >0

for all T' > 0, which in turn implies that the integral monotonically increases as a function of T'.
For an arbitrary initial condition w(0), the difference a(t) + ¢ (y(t)) is exponentially decaying, and
because g(t) is bounded for all ¢ > 0, we have



3.4. RELAXATION OF THE ASSUMPTIONS OF THEOREM 3.7 - USE OF MULTIPLIERS

where the constant C' continuously depends on the initial condition and satisfies C'(0) = 0. Integrat-
ing the dissipation inequality (3.40), we obtain

This yields
T ~ ~
VI >0 : /O y(t)¢ (4(t) dt < S (x(0)) + C (w(0)).

Because the integral in the left hand side monotonically increases as a function of 7', the finite upper
bound in the right hand side forces asymptotic convergence of §(t) to zero as t — oo. Convergence
of the state follows from the zero-state detectability of ¥j. Finally, LYAPUNOV stability of the origin
follows from the continuous dependence of S (z(0)) + C (w(0)) on the initial condition and from the
detectability of the linearized system. Global attractivity and LYAPUNOV stability of the origin imply
that system resulting from the feedback interconnection of ¥ and ¢~5 is globally asymptotically stable.
This concludes the proof. [

Using Theorem 3.11, the assumptions of Theorem 3.8 can be weakened. Theorem 3.12 constitutes
the multiplier version of Theorem 3.8.

Theorem 3.12 The statements of Theorem 3.8 hold if the strong passivity assumption on Xy« s
replaced by one of the following conditions:

o ¢(-) is in the sector (0,00) and there exists v > 0 such that (14 vs)Zg~ is strongly passive;

 ¢(-) is monotone increasing in the sector (0,00) and there evists M(s) = Hi(s)Ha(—s) in the
form (8.39), z(t) > 0, such that Xy = lek*Hgl 1s strongly passive;

e ¢(-) is odd, monotone increasing in the sector (0,00) and there exists M(s) = Hy(s)Ha(—s) in
the form (3.39) such that ¥y = Hle*HQ_I 18 strongly passive.

Proof
The global argument of the proof of Theorem 3.8 is unchanged because it relies on the absolute
stability of the system when € = k — k* = 0. Conditions of Theorem 3.11 still guarantee absolute
stability when ¢ = 0. For the local argument, in the case of Porpov multiplier, the dissipation
inequality (3.31) is recovered with the new storage S + 7f0y ¢(s)ds. In the case of ZAMES-FALB
multipliers, we consider, as in the proof of Theorem 3.11, a C' and locally quadratic storage function
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S for g+, which satisfies the dissipation inequality

S < (3.42)

with § = Hyy and @ the output of (3.41).

From the assumptions of ZAMES and FALB |ZF68|, H; and Hy are invertible and Hj, Hl_l, H>, and
H;l are causal and bounded (i.e. have finite gains) operators. As a consequence, the filters Hy,
Hl_l, H,, and H2_1 do not change the dimension of the center manifold. In normal form, the center
manifold dynamics write [Wig90]

é=Aa+0(l¢P) (3.43)

with £ € R and A, = 0 when G+ (s) has a unique pole at s = 0, and with (3.43) repeated from (3.35)
when Gp«(s) has two conjugated poles at s = +jw.
In order to analyze the dissipation inequality (3.42) on the center manifold, we approximate the

expression of % and § as functions of & up to suitable order. We note @ = a(®(€) + O <|§|4),
wo = hg3)(£) +0 <|§|4), g=c£+0 (|£]2) and w; = &+ O (|£|2> By definition, we have

i3 (&) = —Coh$P(€) = Dok (c€)®, ¢ = Cihy + Dyé.

The function hgg) is the solution of the partial differential equation that expresses the invariance of
the center manifold up to terms O (|£\4) (see [Car81]):

(3)
<—02 agz — Do3k (c€)? c) At = —CoAsh) (&) — CoBak (c€)® — Dok (c€)? cAgk (3.44)

(3) onsY

with the boundary conditions hsy”(0) = 0, 5t = 0. Because they satisfy the same partial

£=0
differential equation (see [Isi95, Chapter 8]), the solution @) (£(t)) coincides with the unique steady-

state output of the operator (—QE(?’)), which is the operator (—gg) with ¢(-) replaced by its cubic

approximation, to the (periodic) input §1) = ée4<t¢(0).

Case (1): When & € R, the constant input §(!) = & gives rise to the constant output @ (£) = 3&3.
Strict positivity [ZF68] of the operator #® implies that é8 = —y < 0. The dissipation inequality
thus becomes

§ <a®(©)g V() + 0 (IeF) = —¢* + 0 (i),

which forces the existence of a supercritical pitchfork bifurcation, as in the proof of Theorem 3.8.
Case (2): When ¢ € R?, the periodic input (1) (£(t)) = éeAet€(0) gives rise to the periodic output

a® (&(t)). Strict positivity [ZF68] and homogeneity of the operator ¢(3) implies

Lo (1) 4 5 L
| a® @i €w) it < g + 0 (kOF), 7=

0
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Using the same argument as in the proof of Theorem 3.8, integration of (3.42) over one period yields
for initial conditions in the center manifold

T
$ (@(1)) — § (2(0)) = ag / Pty dt + 0 ((p(0))7) < =7 (p(0))" + O (((0))°) .

This forces asz < 0 in the center manifold dynamics (3.36), which proves the existence of a supercritical
HoPF bifurcation. This concludes the proof. [

3.5 Examples and simulation results

We illustrate the main result of Section 3.4 with the second-order system
0+w20+2€wf=u, 7>0, w,>D0. (3.45)

The choice of the output y = 0 + w26 results in the transfer function

78+ w2
H(s) = B 3.46
() §2 + 2Cwps + w2’ (3.46)
which is passive if
2¢ > 0. (3.47)
T

Such a transfer function is a model for the mechanical system represented in Figure 3.12. The
mass m glides on the ground without friction. It is attached to a spring and a dashpot linked to each
other through a gearing. Denoting by d the damping factor of the dashpot, by r the spring factor,
by lp the natural length of the spring, and by « the gearing ratio, the dynamical equation of this
mechanical system is

mi = —d (& —0) —r(x—u—1),

where u is the input of the system and x — [y its output. Since v = au, the corresponding transfer
function of the system is
das +r dagy r

(5) ms2 +ds +r 524-%54-

L?
m
where the passivity condition (3.47) is satisfied if d* > Zm > 0.

In the next sections, we illustrate the results of Theorems 3.8, 3.9, and 3.12 on this simple
mechanical example. To this end, we consider the LURE feedback system in Figure 3.8 where ¥ =
H(s). ¢(-) is assumed to satisfy the assumptions of Section 3.3.1 and additionally to be odd (this
is useful for the use of ZAMES-FALB multipliers) and monotone increasing (this will be useful for
illustrations used in Chapter 4).
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y

Figure 3.13: Forcing the HOPF bifurcation with an integrator in the feedback loop. The case H(s) = %
corresponds to the VAN DER POL oscillator.

3.5.1 Forcing the HOPF bifurcation

As a first illustration, we force the HOPF bifurcation scenario by considering the feedback system
shown in Figure 3.13. Rewriting the system in the LURE form of Figure 3.8, the HOPF bifurcation is
forced because of the presence of a single zero at s = 0 in the transfer function G(s) = S‘iﬁ}% As we
have seen, in Section 3.3.3, the positive part of the real axis belongs to the root locus. The presence
of a single zero at s = 0 then necessarily forces the HOPF bifurcation scenario.

The system is equivalently described by the feedback interconnection of G(s) = #(ss))[{(s)

with
the static nonlinearity ¢(-). Here, the transfer function Gg(s) is

s (TS + w,%)
$3+ (2Qwn — k1) 2+ (TH+w2(1 —k)) s + w2’

Gk(s) =

A HOPF bifurcation arises at

. (T 4+ w2) + 20w — /71 + 20273 + w3 (wn — 4072 + dwiT(1 — (wn) + 4¢%W8 (3.48)
= 2w2T ’ .

with
sH(s) _ s(Ts + w?)
s+ (1—Fk*s)H(s) (s+a)(s2+02)’

Gk* (8) =

and
a=20w, — k', Q=+/T+w2(l—Fk).
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Furthermore, Gy (jw) is passive (see Lemma 2.21) if k <k .., with
. W\ w
;assive = min (17 (QC - 771) Tn) . (3.49)

If kjyssive = K*, we may directly use Theorem 3.8 to conclude to the existence of a globally

asymptotically stable limit cycle for k 2 k*.

If kfpssive < k¥, we may still obtain the result with the help of Theorem 3.12. Indeed, when
2 . . . . . % n
* pssive < K5 and 0 < or < 2% (which is equivalent to the condition 242 (¢ — “2) < k* < 2¢%2), we

may use a ZAMES-FALB multiplier to prove absolute stability at the critical bifurcation value k = k*.
This ZAMES-FALB multiplier is

M(s) = Hi(s) =1— Z(s), Z(s):w?n_w(j, R,OC:{SE(C\%{S}>—M’%}, (3.50)
s+ == T

-
which, at k = k¥, yields the passive transfer function

S

Gk* (S)Hl (5) = Tm.

By Theorem 3.12, for 7 > 0, w, > 0, and ¢ > 0 satisfying (3.47), and k* given in (3.48) satisfying
2=n (( — “fr—") < k* < 2¢%2, the feedback system in Figure 3.13 with H(s) defined by (3.46), is
absolutely stable for all & < k* and possesses a globally asymptotically stable limit cycle for k = k*.

3.5.1.1 Simulation results

Suppose we chose the parameters values as w, = 1, 7 = 2 and { = 1.25. We thus have H(s) =
%. From these parameters values we can compute the critical value k* of the bifurcation
parameter and the quantity &y, ;. defining the excess of passivity of H (see (3.48) and (3.49)). We
obtain k* =1 and k£ _.. = 1. In this particular case, there is no need of a multiplier to prove the

passive
absolute stability at £ = k* since the system looses passivity and stability simultaneously at £ = 1.
Direct application of Theorem 3.8 allows to conclude to the existence of a globally asymptotically
stable limit cycle for k 2 k*.

For the simulations, we considered the feedback interconnection of G(s) = sifil(fi) with the non-
linearity ¢5(y) = y> — ky. We simulated the system obtained with H(s) = % for different

values of k around the critical value k* = 1 and for different initial conditions. Figure 3.14 illustrates
the simulation results for an arbitrarily chosen initial condition. As can be seen, the origin of the
feedback nonlinear system is GAS for k < 1 whereas a limit cycle appears for values of k£ 2 1. To test
the range of values of k for which the result holds, we have simulated the system with many different
values of £ > 1. In all cases, we obtained an asymptotically stable limit cycle whose amplitude is
proportional to the value of k — k* as predicted by the HOPF bifurcation theorem.

To illustrate a case where the multiplier (3.50) is needed to prove absolute stability at k = k*, we
considered the following parameters values: w, =1, 7 =2 and ( = 1. We thus have H(s) = 5224;9;511'
With these parameters values, we obtain k* = 0.75 and k* = 0.7753. Since the condition

passive
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State-space of a SINGLE oscillator for kp:g.OOUOOOE*Ul State-space of a SINGLE oscillator for kp:l 100000e+00

State-space of a SINGLE oscillator for kp:z State—space of a SINGLE oscillator for kp:lO

Figure 3.14: (a) State-space for k = 0.9. (b) State-space for k = 1.1. (c) State-space for k = 2. (d)
State-space for k = 10

2n ((— “’7”) < k* < 202 is satisfied, we can use the ZAMES-FALB multiplier (3.50) to prove
absolute stability at k = k*.

For the simulations, we considered, once again, the feedback interconnection of G(s) = 81}2(2)
with the nonlinearity ¢y (y) = y® — ky. We simulated the system obtained with H(s) = 32%5;814_1 for
different values of k£ around the critical value k* = 0.7753, and for different initial conditions. Figure
3.15 illustrates the simulation results for an arbitrarily chosen initial condition. As can be seen, the
origin of the feedback nonlinear system is GAS for k < k* whereas a limit cycle appears for values of

k> k.

3.5.1.2 Graphical interpretation of the multiplier effect

In this section, we consider the example given in the previous section and show the effect of the
multiplier on the NYQuUIisT and BODE plots of the transfer function G (jw).
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State-space of a SINGLE oscillator for kp:7.6000005701 State-space of a SINGLE oscillator for kp:l

Figure 3.15: (a) State-space for k = 0.77. (b) State-space for k = 1.
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Figure 3.16: (a) NyQuist plot of G(jw). (b) NyQuist plot of Gy (jw) for k =k, e — 0.1, ke
¥ eeine T 0.1
passwve

As was the case in the multiplier illustrative example of the preceeding section, consider the
transfer function G(s) = ;5;‘2) with H(s) = 5218;511' Figure 3.16 represents the NyYQUIST plots of
G(jw) and Gi(jw) (Gi(jw) is the (positive) feedback interconnection of G(jw) with the static gain
k; it corresponds to the the transfer function of the linearization of ¥ and is used to perform the
bifurcation analysis). Figure 3.16 represents the NyYQUIST plots of G(jw) and Gg(jw). As can be
seen on the NYQUIST plot of G(jw), the point of loss of passivity (intersection of the disk margin!?

with the real axis, see [SJK97|) does not coincide with the point of loss of stability (intersection of

"The disk margin is the smallest disk that entirely contains the NYQUIST plot of G(jw). It corresponds to the open
disk in the complex plane with its center on the real axis and its boundary intersecting the real axis at the points (0, 0)

and (O, %)
passive
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the NYQUIST plot of G(jw) with the real axis). As a result, when k is increased, the system loses
passivity before losing stability. The effect of the ZAMES-FALB multipliers is to transform the initial
feedback loop into an equivalent one (see Figure 3.11) where the forward path Xy is strongly passive
for k < k*. This can be seen in Figure 3.17. In this figure, we see that, without multiplier, G (jw)
loses passivity at k.., = min (1, (2{ — “’?”) wT—”) This is trivially seen on the NyQUIST plot of
G (jw) where the positive realness condition £ (Gg(jw)) > 0, Vw of Lemma 2.21 is not satisfied for
k > kyyssives OF on the BODE phase diagram where the passivity phase condition Z(Gx(jw)) < 5
is not satisfied for k& > &y, ;.- On the contrary, the transfer function G(jw)M (jw) satisfies these

conditions for k < k* which equivalently means that k. = k™ for the system with multiplier.

Gr(jw) (without multiplier) Gr(jw)M (jw) (with multiplier)
k :k;assive - 0‘17 ]\/‘a;;('l.\"ﬂf?,'éﬂ k;assive +0.1 k =k* — 0.1, /\/,‘*, k*+0.1
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Figure 3.17: Effect of the ZAMES-FALB multipliers. Column (a) Without multiplier. Column (b)
With multiplier.
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3.5.2 Not forcing the HOPF bifurcation - pitchfork bifurcation

As a second illustration, we do not force the HOPF bifurcation with an additional integrator. We
analyze bifurcations in the feedback interconnection of H(s) with ¢g(-). Different bifurcation scenarii
are possible. To see this, consider the transfer function
H(s) 75+ w2

= . (3.51)

Hels) = T30 ) ~ 24 @Com —Fr)s + (1 B

The bifurcation in the feedback loop differs according to the relative position of the poles and zero of
H(s). If 2wy, > 7, then a pitchfork bifurcation occurs at k* = 1, and

TS—{—(U%
s(s+2Cw, —7)°

-Hk* (S) =

The (Popov) multiplier M(s) = 14 s (2¢w, —7)" ' makes the transfer function Hy-(s)M(s) =
2

(22:?7?;)5 passive for k < k*. By Theorem 3.12, the feedback interconnection of Hy«(s) with ¢(-) is

absolutely stable for k& < k* and globally bistable for k& 2> k*.

3.5.2.1 Simulation results

To illustrate the global bistability behavior, we have chosen the following parameters values:
wp, =1, 7 =2 and ¢ = 2.5. With these parameters values, we are in the case where 2(w, > T.
We then considered the feedback interconnection of H(s) with the nonlinearity ¢x(y) = v* — ky.
We simulated the feedback system for different values of k around the critical value k* = 1. Figure
3.18 illustrates the simulation results. As can be seen, the origin of the feedback nonlinear system is
GAS for k < 1 whereas it is globally bistable for & 2 1. To clearly see the two stable equilibria we
performed the simulation twice with two opposed sign initial conditions.

State-space for k=1 and kp:9 000000e-01 State-space for k|:1 and kp:1.100000e+00
05 T T T T T 05

T
N | " N‘
031 1 03r

0.2 1 0.2r-

01 B 1 01r

=011 1 =011

-0.2 1 -0.2

03 1 03
—0af 1 —0af N
_ ;

I I . I I
05 1 15 -15 -1 -05

i i
0 05 1 15
XJ

(a) (b)

Figure 3.18: (a) State-space for k = 0.9 without adaptation feedback loop. (b) State-space for k = 1.1
without adaptation feedback loop.

65



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR

To illustrate the results of Theorem 3.9, we then performed simulations of the feedback system
when an additional adaptation loop is present as in Figure 3.10. The system resulting from the
addition of the feedback adaptation loop is of order 3. The adaptation parameter is chosen as
7 =100 (k — k*)~'. The simulation results are shown in Figure 3.19 for k = 2. In Figure 3.19-(b),
we show the projection of the state space on the two dimensional space of the state variables of H.
The relaxation nature of the oscillation is clearly seen in Figure 3.20 which represents the output y
of the system.

State-space for k=1 and kp:Z State-space of a SINGLE relaxation oscillator for k=1 and kp:Z

15 T T T 15 T T T T T
1 4 1 4
051 B 051 B
0 o 1 o i
-05 4 -05 4
1 4 -1 4
35 -1 05 Xo‘ 05 1 15 “3a o2 [ 0.2 o4 06 0.8 1 12

(a) (b)

Figure 3.19: (a) State-space for k = 2, without adaptation feedback loop. (b) Projection of the state
space on the two dimensional space of the state variables of H for k = 2, with adaptation feedback
loop.

Time evolution of the output of a SINGLE relaxation oscillator for k|:1 and kp:Z

25

0 100 200 300 400 500 600 700 800

Figure 3.20: Output of the relaxation oscillator.
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VALUE OF THE BIFURCATION PARAMETER

3.5.3 Not forcing the HoPF bifurcation - HopPFr bifurcation

Consider, once again, the transfer function (3.51). If 2{w,, < 7, then a HOPF bifurcation arises at
k* = Xen and

T
2
TS +wy

20wn, ’
32+(1——<w )w%

Hy+(s) =

T

No valid multiplier could be found to prove absolute stability of the feedback loop for k < k*. The
results of Theorem 3.12 do not apply in this situation and the stability properties of the limit cycle
may depend on the particular nonlinearity ¢(-).

3.6 Numerical analysis of PLS - GAS of the limit cycle for a partic-
ular value of the bifurcation parameter

In Section 3.3.3, we defined a class of parameter-dependent nonlinear systems exhibiting an almost
globally asymptotically stable limit cycle. The results were proved for values of the parameter in the
vicinity of a bifurcation value. Unfortunately, Theorems 3.8 and 3.9 do not give any prediction about
the range of parameter values in which the results hold. In order to be able to conclude about
global asymptotic stability of the limit cycle for a particular value of the parameter, we consider an
equivalent piecewise linear characterization of this class of systems and adapt numerical tools recently
proposed in the literature (see [GMDO03]).

In [GMDO03], GONCALVES developed a constructive numerical method in order to analyse the be-
havior of piecewise linear systems (PLS). These systems are characterized by a finite number of affine
linear dynamical models together with a set of rules for switching among these models. The method-
ology developed by GONCALVES consists in inferring global properties of PLS solely by studying their
behavior at their corresponding switching surfaces. The method allows the global stability analysis
of equilibrium points as well as that of limit cycles through the same concepts. The main idea is to
analyze impact maps, i.e. maps from one switching surface to the next switching surface. These maps
are proved globally stable by constructing quadratic LYAPUNOV functions on the switching surfaces.
The notion of an impact map can be thought as a generalization of a POINCARE map. Proving that
all the impact maps are globally contracting around some specific points is a sufficient condition for
proving that the POINCARE map associated to the PLS is globally contracting. In this way global
asymptotic stability of a limit cycle can be proved by checking global contraction of the impact maps
around the specific switching points that this limit cycle has in common with the switching surfaces.

The key result of GONCALVES concerns a representation of impact maps that allows to use them
to conclude about stability of PLS. Impact maps are known to be “unfriendly” maps in the sense that
they are highly nonlinear, multivalued, and not continuous. Although analysis of nonlinear systems
at switching surfaces has already been studied (e.g. POINCARE), with the exception of very simple
systems, no one really knew how to use impact maps to analyse global properties of PLS. The reason
why GONCAIVES was able to use impact maps in the global analysis of certain classes of hybrid
systems is based on the discovery that an impact map induced by an LTI (linear time-invariant) flow
between two switching surfaces can be represented as a linear transformation analytically parametrized
by a scalar function of the state. This parameter is simply the switching time associated with the
impact map. This representation of impact maps allows the search for quadratic LyAPUNOV functions
on switching surfaces to be done by simply solving a set of linear matriz inequalities (LMIs) using
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efficient computational algorithms. Global asymptotic stability of limit cycles and equilibrium points
of PLS can in this way be efficiently checked.

The algorithms developed by GONCALVES depend on the switching structure imposed by the
particular PLS under consideration. These algorithms have to be adapted to each particular type of
piecewise linear system. This amounts to adapt the definition of the switching surfaces, their position
in the state space and the particular linear dynamics in each region.

In the next sections, we define a piecewise linear version of the passive oscillator. We then show
how the method of GONCALVES may be adapted to numerically prove global asymptotic stability
of the limit cycle for second order piecewise linear passive oscillators. Extension of this numerical
method to high-order piecewise linear passive oscillator is part of ongoing research.

3.6.1 Problem definition

We start by defining a piecewise linear system (PLS) qualitatively equivalent to the class of passive
oscillators. For this, we consider the PLS resulting from the feedback interconnection of a strongly
passive, linear system with a piecewise linear approximation of the nonlinearity ¢ (-) defined by (3.17).
In other words, we consider the feedback interconnection of a linear system H whose dynamics are

(3.52)

& = Ax+ Bu, re€R"(n>2), velk
H:
y = Cz, yeR

with a piecewise linear function fps(y):

—p(y +m) — km for y < —m
v=—fpus(y) = ky for —m<y<m (3.53)
—p(y —m) + km for y>m

The system H is assumed to be strongly passive and detectable. The parameters of the piecewise
linear function fys(-) satisfy & > 0, m = \/g and p > 0. The function f,(-) is a piecewise linear

approximation of the cubic nonlinearity ¢x(y) = —ky + y* that appears in the VAN DER PoL and
Fi1zHUGH-NAGUMO oscillators, as can be seen in Figure 3.21. This cubic nonlinearity is one of the
most simple example of nonlinearity that satisfies the assumptions made in Theorems 3.8 and 3.9.
The method presented here can be applied to any other kind of nonlinearity. For more complicated
nonlinearities, the complexity of its piecewise approximation (i.e. the number of piecewise linear
regions) increases and so does the complexity of the corresponding algorithm.

Since fp5(+) is odd, the resulting system is symmetric in the sense that if z(t) is a solution starting
at xo then —x(t) is another solution starting at —xg. As we will see shortly, this symmetry property
helps in reducing the complexity of the numerical algorithm.

The piecewise linear system resulting from the feedback interconnection of (3.52) and (3.53) con-
sists of three regions, (R;), (R2), and (R3) in the state space delimited by two switching surfaces, Sy
and S;. The linear dynamics in each region are respectively

L. (Ry) y(t) < —m
t=(A—-pBC)x —dB = Ajx — dB,

2. (Ro) —m < y(t) <m
&= (A+kBC)x = Agx,
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Figure 3.21: Replacing the nonlinear function ¢(-) by a piecewise linear function fps(-).

3. (R3) y(t) >m
&t =(A—-pBC)x+dB = Az +dB,

where d = m(k + p).

Throughout this section, we assume that A, has no real unstable eigenvalue. We also assume
that %ﬂ > —C’A;lB in order to guarantee that the system (3.52),(3.53) has a unique equilibrium,
located at z = 0.

Because the feedforward linear system H is assumed to be (strongly) passive and detectable, the
matrix A; is HURWITZ for any positive value of p. Since the functions ¢(-) and fps(-) have the
same linearization around the origin, the dynamics in the intermediate region (R3) is the same as the
dynamics of the nonlinear feedback system linearized around the origin. This implies that the matrix
A has at least 2 eigenvalues with positive real parts for k > k*.

The switching surfaces of the PLS are defined by

So = {zeR"|Czx=—-m},
S; = {zeR"|Cx=m}=-5.
Our analysis, based on [GMDO03], will be in terms of contraction properties of impact maps that
solutions of the PLS define between switching surfaces. The key observation in [GMDO03] is that these

impact maps are linear maps parametrized by the switching time, which is a scalar function of the
state.

3.6.2 Existence of limit cycles

We will only be interested in cycles of (3.52),(3.53) that are of the type illustrated in Figure 3.22:
a (periodic) solution initialized at —z7 € Sy obeys the linear dynamics (R;) and reaches a point
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x§ € Sp after a finite switching time ¢7; it then obeys the linear dynamics (R2) and reaches the point
x] € S after a finite switching time ¢5. The values zf, 7, t] and ¢5 that determine the periodic
solution satisfy the algebraic equations (see [GMDO03])

fi(t,65) = Cag (1, 13) +m = 0 (3.54)
fa(t1,13) = Cay (1, 15) —m = 0, (3.55)

where
* 5 -1 *
xg (t7,t5) = (I + eAltleA2t2> ATt (I — eA1t1> dB,

1
(14 ettieti) " eMtiart (1 M) aB,

7 (17, 13)

These solutions simply characterize the switching points that the limit cycle of Figure 3.22 defines on
the switching surfaces.

(R1) (R2) (R3)

A Y
* \
T \
|

—-m m ! Cz
7/
Ve
- *
-7 |7 %0
L -
_ -
o —

*
-]

So S1

Figure 3.22: Limit cycle with four switches per period (first half period in plain line and second half
period in dashed line).

The roots of (3.54),(3.55) determine periodic solutions of (3.52),(3.53). Simulations of the system

Y Y

(3.52),(3.53) provide a good initial guess for the numerical search of (¢],3) solving (3.54),(3.55).

3.6.3 Quadratic stability of impact maps

As we have stated in the introduction of Section 3.6, stability of the limit cycle can be studied
through quadratic stability of the impact maps of the system. Indeed, consider a subset Sar of
So given by SO+ = {z € Sy: CAyx > 0}. SSL is the set of points in Sy that can be reached by
trajectories initialized in (R;). In a similar way, define S; C Sp as S; = {z € Sy : C Az < 0} and
also Sfr = =S, and S| = —Sar. From symmetry considerations, three impact maps only are of
interest for the analysis. The first impact map (impact map 1) takes points from S; and maps them
in S;". The second impact map (impact map 2a) takes points from S\ {z§} and maps them back to
Sy \ {z(}. Finally, the third impact map (impact map 2b) takes points from SJ and maps them to
SiF. Let @1 be a point in Sy \ {—}}. Since 4; is HURWITZ and ﬁ > —CA[ !B, the trajectory x1(t)
will necessarily switch after a finite switching time ¢; at xo = x; (t1). Since Ay is not HURWITZ and
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has no real unstable eigenvalue, a trajectory starting at xo € Sy \ {z§} can either switch at some point
in Sy, or at some point in Sy, or not switch at all if x5 belongs to the stable manifold of the origin.
Let S, C Sg\{z§} (vesp. S, C Sy) be the set of points that switch in Sy (vesp. S1). If 2o € S,
(resp. x2 € Sp), the trajectory switches in finite time tg, (resp. top) at x3q = 2 (t2a) € Sy \{—Z7}
(resp. 3, = 72 (tap) € ;7). Then, it switches again at T4q = 34 (t34) (vesp. zap = w3p (t3)), and so
on (see Figure 3.23).

So

Va ()

Z4a

Vi(v) Vi)

S1 S1

@ (b)

Figure 3.23: Impact maps of the PLS; (a) impact map 1 and impact map 2a, (b) impact map 1 and
impact map 2b.

The symmetry of the system allows to perform the analysis on a half trajectory. This means that
it is equivalent to consider the trajectory starting at xo or —xo. To perform asymptotic stability of
the limit cycle, the idea is to check if x3, (resp. —z3p) is closer to —z7 than x;. If so for any point
x1 € Sy \ {—=7}, the limit cycle is globally asymptotically stable.

Since 1, x2, T34 € So and z3, € S1, we can write x1 = —z] + A1, 2 = 25+ Ag, 234 = —27 + Aszq,
and z3, = 7 + Asp, where zfj; and z] have been found as numerical solutions of (3.54),(3.55) and

CAL = CAy = CAszy = CAsz, = 0. A sufficient condition for the POINCARE map to be contracting
around zj is

Vs (AQ) < W (Al) for all Ay € SO_\ {—JIT},
Vi (Aga) < V5 (Ag) for all AQ € Sa\ {:L'S},
% (Agb) < V5 (Ag) for all AQ € Sb\ {xé},

where Vi(-) and V(+) are quadratic LYAPUNOV functions defined on S, and Sy respectively (see
Figure 3.23).

The key result of [GMDO03] is that the impact maps induced by an LTI (linear time invariant) flow
between two switching surfaces can be represented as a linear transformation analytically parametrized
by a scalar function of the state. This parameter is simply the switching time associated with the
impact map. We thus have Ay = Hj (t1) A1, A3, = Haq (tog) Ao, Asy, = Hop (top) Ao, where (see
[GMDO03])
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H, (tl) = (—l”f (tl) — :1:8) w1 (tl) + eA1t1’
(1) Cetth
wit) = —
—m+ Cz7 (t)
_$>{ (tl) = _eAltle + Al—l (I _ eAltl) dB7
Hy (tQa) = (.’Ba (tQQ) —+ af{) Wag (tQa) + €A2t2a,
( ) CleAzt2a
w2 t2 = ,
T —m = Ca ()
xEk) (t2a) = Azt SCS,
Hy(tw) = (xf(ta) — F) wap (tay) + ™2,
( ) CleA2tan
woy (top) = ———=—57—»
m — C’xo (th)
xh (tw) = e™ap,

We then have to prove that

ri(t) £ ATP () A (3.56)
=Vi (A1) = Va(Hy (t1) Ar) >0,
raa (taa) 2 AJ Pag (t2a) Ao (3.57)
= V5 (A2) — Vi (Haqa (t2a) A2) > 0,
rob (tay) = A Py (ta) Ao (3.58)

= V2 (Ag) — Vi (Hay (t2p) A2) >0

for all expected switching times t1 € 77, to, € To, and top, € To where 77, To, and 7Ty denote the set
of all expected switching times corresponding respectively to all A; € Sy \{—z7}, As € S\ {z}}.
and Ay € Sp\ {z(}. If the sets of expected switching times are bounded, then by discretizing the sets
of expected switching times, inequalities (3.56), (3.57), and (3.58) define a finite set of LMIs in the
unknowns P; (¢;) > 0, i = 1, 2a, 2b.

3.6.4 Bounds on switching times

Computationally, it is impossible to check directly if the stability conditions (3.56), (3.57) and
(3.58) are satisfied for all expected switching times. An alternative is to find some intervals such that
if (3.56), (3.57) and (3.58) are satisfied in these intervals, then stability follows. In other words, we
would like to find a lower and an upper bound for each switching time. We denote them respectively
by timin, timaz, t2amins t2amazs t2bmin, t2bmaz- We then only need to solve the LMIs r;(t) > 0

Yt € [timin, timaz), where @ = 1,2a,2b. This can be done by discretizing each [timin, timaz] interval,
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and solving the corresponding LMIs at those discrete time instants. In order to do so, we must be able
to guarantee that there exists a tg such that the difference between any two consecutive switching
times of a trajectory x(t) for ¢ > ty is higher than t,,;,, but lower than ¢,,,,. Such bounds can
be computed, for instance, when the linear dynamics in each region are HURWITZ and possess no
equilibrium (see [GMDO3] for details).

3.6.4.1 Lower bounds on the switching times

For the PLS (3.52),(3.53), the lower bounds are 0, i.e. t1min = t2amin = t2bmin = 0.

3.6.4.2 TUpper bound on t;

To compute upper bounds, GONCALVES proposes a general method in [GMDO03, Propositions B.1
and B.2|. The idea can be summarized by the following steps. First, the existence of a bounded
invariant set where every trajectory will eventually enter is proved. Second, bounds on the expected
switching times are found by computing bounds on switching times of trajectories inside that bounded
invariant set. This method holds valid for PLS for which the feedback piecewise linear function is
bounded such as for relay feedback systems and saturation systems. For these systems, it is possible
to guarantee that there exists a ¢ such that the difference between any two consecutive switching times
of a trajectory x(t) for t > ¢ is lower than ¢,,q,. Unfortunately, in our case fps(-) is not bounded and
the method cannot be applied.

GONCATLVES also presents a method for computing upper bounds on ¢; when a bounded invariant
set cannot be guaranteed. In this case, the analysis must be done for all ¢; > 0. The idea is the
following: for large values of ¢;, we compute the value of 7(c0) and show that this value is nonnegative.
We then show that for large enough t,,,44, 7(¢t) > 0 for all ¢ > t,,4,. To this end, we show that 7(¢) < 0
for all t > t,,4,. If the matrix A; of the considered impact map is stable this is done according to the
method described in [GMDO03, Appendix A.3|.

3.6.4.3 Upper bounds on ty, and ty

The unstable equilibrium x = 0 of (3.52),(3.53) typically possesses a stable manifold when n > 2.
In this case, the switching times are unbounded because of intersections between the stable eigenspace
of Ay and the switching surfaces Sy and Sj: any trajectory starting on a point belonging to these
intersections will remain on the stable manifold until it asymptotically reaches the origin. As a conse-
quence, the corresponding switching time will tend towards infinity. Intuitively, trajectories starting
in a neighborhood of such an intersection point will be characterized by a switching time inversely
proportional to the distance to this point. In other words, the closer we start from the intersection,
the longer the switching time. A solution to apply the LMI numerical method of GONCALVES would
be to geometrically characterize a neighborhood of the intersection points and to compute the upper
bounds on the switching time associated to points which do not belong to this neighborhood. The
method of GONCALVES can then be applied to study contraction of impact maps defined for any point
which is not in the defined neighborhood. For points in the neighborhood, new contraction conditions
expressed in the form of LMIs would have to be satisfied. This solution is still under research.

If we restrict our attention to the 2-dimensional case, then x = 0 has no stable manifold (As is
anti-stable). Moreover, in this case, by symmetry considerations, any trajectory belonging to SS“ will
necessarily switch at a point belonging to S1. As a consequence, there are only two impact maps to
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consider, i.e. impact map 1 and impact map 2b. The upper bound on ¢; is computed by considering
the worst switching scenario for a point belonging to Sar . This worst switching scenario occurs when
Cxz = —m and Cz = 0. There exists only one point on SO+ corresponding to this situation. The upper
bound is thus the switching time associated with this point.

3.6.5 Simulation results

To illustrate the numerical method presented in the previous sections, we present here the results

obtained for two dimensional systems corresponding to Figure 3.10 where the transfer function de-

scribing the forward linear system is ¥ = G(s) = ﬁ with a > 0 and the adaptation parameter 7 is

+
such that 7> (k — k*)~*. The critical bifurcation value of Gy(s) is k* = kpassive = ¢ and the corre-
sponding transfer function is Gy+(s) = 1. The condition 7 > (k — E*)~! thus writes 7> (k— )t

From Theorems 3.8 and 3.9, we expect the feedback system to be characterized by a globally asymp-
totically limit cycle for k 2 « and 7 > (k — a)_l. Nevertheless, the range of values of k for which
this behavior holds is not known. Replacing ¢x(y) = —ky + y> by fus(y) (see (3.53)) in Figure 3.10,
and choosing values for p and k such that p > 0 and k£ > k*, we may use the numerical analysis
method presented in Section 3.6.3 to conclude about existence and global asymptotic stability of a
limit cycle for any fixed value of k.

Before presenting the simulation results, we briefly describe the inputs and outputs of the algo-
rithm. The inputs are the transfer function G(s) together with the parameters a, k > «, p > 0 and
7> (k—a)~ ' A graphic showing the minimum eigenvalues of each Pi(t;), i = 1, 2b (see (3.56), and
(3.58)) is generated. GAS of the limit cycle is then concluded if the minimum eigenvalues are positive
on their respective set of expected switching times.

To illustrate the application of the numerical method, we considered the parameters values a = 1
and 7 = 20. From these values, we compute k* = ;assi'ue = 1. We then have chosen the following
values for k and p: kK = 1.2 and p = 5. The corresponding values of m and d are m = 0.63 and d = 3.92.
The simulation results showing the state space and the time evolution of the state variables for a
particular initial condition are given on Figure 3.24. The numerical algorithm described previously
is then applied to this particular PLS. The number of (¢}, t3) solutions found by the algorithm for
(3.54) and (3.55) is equal to one, i.e. t] = 8.4 and t5 = 8.88. These values agree with those found
by simulation of the dynamical system. The algorithm then solves the finite set of LMIs defined by
the discretization of (3.56) and (3.58) on their expected switching times interval 77 and 73, and plots
Figure 3.25. On this figure, we see that the minimum eigenvalue of each P;(t;), i = 1, 2b is positive
on its respective set of expected switching times 7; and 7g;,. The set of expected switching times in
this example are approximately 73 = (0,12) and T3, = (0,9.0414). The first upper bound t1,,4, = 12
was chosen arbitrarily. We then numerically checked that r; (1) > 0 for all ¢; > 1,4, as explained
in Section 3.6.4.2. The second upper bound was computed according to the worst switching scenario
method: if to9p > 9.0414, there is no point in S(Jf with switching time equal to top. Using conditions
(3.56) and (3.58), we thus have shown that the system possesses a globally asymptotically stable limit
cycle in R#\{0}.

Remark 3.13 If we consider Figure 3.8 where the forward system 3 results from the feedback inter-

connection of G(s) = —— with the transfer function #4—1’ the bifurcation analysis is different. The

sta

transfer function corresponding to the feedback interconnection of SJ%Q with %H is ¥ = H(s) =
+1

7'32+(1+Tosn')s+(a+1) ’

The system in Figure 3.8 is equivalently described as the (negative) feedback
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Temporal evolution of the output and the state xi for k|=1. kp:1.200000e+000 and p=5
State space for one oscillator with k‘=1, kp=1.2000009+000 and p=5 0.8

_ I I I I I I I
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y Time (s)
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Figure 3.24: Simulation results for the PLS defined by the parameters values a« =1, k=12, p=15
and 7 = 20. Column (a): state-space. Column (b): time evolution of the state variables.

Oscillator with klzl, kp:1.2000008+000 and p=5

Mm(elg(R‘(t))) with implementation of the conic relation

0.2 I I I I I
0

Figure 3.25: Time evolution of the minimum eigenvalues of P (t1) and Py, (t9p) for the PLS defined
by the parameters values « =1, k= 1.2, p =5 and 7 = 20.

. . _ H(s) _ +1
interconnection of Hy(s) = kA — T82+(1+(Q_T}z)7)8+(1+a_k)

with the static monlinear function
d(y) = y3. The critical value at which Hy(s) looses passivity is kpassive = . For 7> 1, a HOPF

bifurcation occurs at the critical value k* = a + % The corresponding critical transfer function is
Hy«(s) = T#@lﬂ). This critical transfer function is similar to the one obtained in Section 3.5.3.
In that section we saw that, with such a transfer function, no multiplier could be found to prove abso-
lute stability of the feedback system at k = k*. In this case, the analytical results of our theorems do
not apply. The application of the numerical method to the PLS resulting from the feedback intercon-
nection of H(s) with fus(y) can then be useful to numerically prove existence and global asymptotic

stability of a limit cycle. To illustrate this, we performed a simulation with the same parameters values
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except for T =2 and k = 1.8. With these values, we obtain kj, .. =1, k* = 1.5, m = 0.775, and
d = 5.267. The simulation results are shown in Figure 3.26.

The results of the application of the same numerical algorithm to this PLS are shown in Figure

Temporal evolution of the output and the state xi for L§=1, k =1.800000e+000 and p=5
State space for one oscillator with k=1, kp:148000009+000 and p=5 1 P

08 ; ; ; ; ; ; ; ; ; \:—)E«‘ P‘ [‘

06

NN NN N NNNON

0.2

- I I I I I I . . .
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 [ 20 40 60 80 100 120 140 160 180 200
y Time (s)

(a) (b)

Figure 3.26: Simulation results for the PLS defined by the parameters values a =1, k =1.8, p=15
and 7 = 2. Column (a): state-space. Column (b): time evolution of the state variables.

3.27. The number of (t7,t5) solutions found by the algorithm for (3.54) and (3.55) is equal to one,
i.e. t] = 3.1227 and t5 = 5.1617. These values agree with those found by simulation of the dynam-
ical system. The set of expected switching times in this example are approzimately T, = (0,12) and
Top = (0,5.3291). Once again, the PLS was numerically proved to be characterized by a GAS limit
cycle in R?2\{0} since the minimum eigenvalues of Py (t1) and Py (top) are positive on their respective
set of expected switching times.

3.7 Summary

The point of view developed in this chapter is that of oscillators as open systems. To this end,
we considered an external characterization of oscillators which fits their description by physical state
space models and, at the same time, has implications for their global stability analysis. This exter-
nal characterization of oscillators is expressed by a dissipation inequality that was shown to enable
global limit cycle oscillations in the isolated system. The presented theory covers two global oscil-
lation mechanisms which are present in the celebrated low dimensional models of VAN DER PoOL
and F1TZHUGH-NAGUMO. These two global oscillation mechanisms were extended to higher dimen-
sional systems composed of a strongly passive system in feedback with a slope parametrized static
nonlinearity. We showed that this feedback interconnection undergoes either a supercritical HOPF,
or a supercritical pitchfork bifurcation (Theorem 3.8). The global oscillation results either from the
supercritical HOPF bifurcation or from the addition of a slow adaptation dynamic to the globally
bistable system created by the supercritical pitchfork bifurcation (Theorem 3.9). The main assump-
tion that allows the global asymptotic stability of the unique equilibrium point to be retained by
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Oscillator with klzl, kp:1.8000005+000 and p=5

Mm(elg(R‘(t))) with implementation of the conic relation

Figure 3.27: Time evolution of the minimum eigenvalues of P (t1) and Py, (t9p) for the PLS defined
by the parameters values a =1, k=18, p=>5and 7 = 2.

the bifurcated solution is the absolute stability of the system at criticality. A sufficient condition for
this assumption to be satisfied is the simultaneous loss of stability and passivity of the bifurcation
parameter at a certain critical value . This condition has been relaxed with the help of multipliers
(Theorem 3.12), thereby broadening the class of passive oscillators. These results were illustrated on
a simple mechanical example. Finally, we considered an equivalent piecewise linear characterization
of the passive oscillator and adapted a numerical method recently proposed in the literature to prove
global stability of the limit cycle for fixed values of the parameter. This method was successfully
applied to numerically study global asymptotic stability of the limit cycle solution of a second order
piecewise linear, passive oscillator.
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Chapter 4

(<lobal results for interconnected
oscillators

The aim of the previous chapter was to show that dissipativity theory can be usefully applied to
study existence and global asymptotic stability of limit cycles and to give simple explanations for the
feedback mechanisms responsible for these nonlinear oscillations. As we have pointed out previously,
an important benefit is that a dissipativity approach is not restricted to low-dimensional systems. In
this chapter, we focus on the second important benefit of a dissipativity approach: the analysis of
interconnections. In Section 4.1, we show that the characterization of a globally asymptotically stable
limit cycle for one oscillator extends in a straightforward manner when several passive oscillators are
arranged in a network configuration through input-output coupling. Section 4.2 contains the first
main results of the chapter: extension of the results presented in Chapter 3 to networks of passive
oscillators. In Section 4.3, we consider some illustrative examples of these results, i.e. we consider
networks of increasing sizes for which the existence of a globally asymptotically stable limit cycle can
be directly deduced from the results of Section 4.2. In Section 4.4 we present the second main result
of this chapter: sufficient network topology conditions leading to existence and global asymptotic
stability of synchrone oscillations in networks of identical passive oscillators. The emphasis is on
synchronization as a design principle, that is on the use of synchronization to achieve globally stable
oscillations in interconnected systems. We propose an explanation for the global synchronization of
identical oscillators based on an input-output characterization that we name incremental passivity.
Finally, in Section 4.5 we present simulation results to illustrate our theory.

4.1 Networks of passive oscillators

Consider a network of N passive oscillators, coupled through their input and output. The os-
cillators are constructed according to the LURE feedback structure shown in Figure 3.8. The static
feedback nonlinearities used in each passive oscillator are identical, i.e. ¢k (y;) = —ky; + ¢ (y;), Vi =
1,..., N, where y; represents the output of passive oscillator i. Only the feedforward blocks ¥; may
differ. The network may be seen as a MIMO system whose inputs and outputs are respectively
U= (u,..., uN)T and Y = (y1,..., yN)T where u; and y; are the scalar input and output of passive
oscillator ¢ respectively. The network admits the representation in Figure 4.1 which is a MIMO ex-
tension of the block diagram of Figure 3.8. In the case of a network of identical passive oscillators, all
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the forward X; blocks of the passive oscillators are identical. This is then emphasized by the notation
T = diag{X}. In Figure 4.1, F(Y") represents the coupling between the oscillators while the static
nonlinearity ®5,(Y) is described as ®4(Y) = (¢ (y1) .- ., % (yn))*. The repeated nonlinear element
is the static nonlinear function ¢y (y) given in (3.17) and satisfying the associated assumptions given
in Section 3.3.1. Repeated nonlinearities are generally denoted by diag{¢(-)}.

Y1 v
i~
o j o j

Figure 4.1: MIMO representation of a network of passive oscillators. ®5(Y) = (¢ (y1) 5. - - dx (yn))”
is a multivariable repeated nonlinearity. The repeated nonlinear element is ¢x(y) = —ky+ ¢(y) where
¢(+) is a static nonlinear function that satisfies the assumptions of Section 3.3.1. F(Y") characterizes
the coupling. = denotes the feedback interconnection of T and F(Y).

.

As parallel interconnection of the input-affine ¥; blocks defined in (3.16), T admits the input-affine
state model

X. = fT(‘-() gT(‘()f
T 4.1
where X = (xr{, ... ,xjj\})T with z; denoting the state of passive oscillator 7. fy, gy and hy inherit

the properties of the functions f;, g; and h; defining the ¥; blocks, i.e. fv, gy and hy are smooth,
and satisfy fy(0) =0, hy(0) =0, and gy (0) # 0.

We denote by = the feedback interconnection of Y with F(Y) and by Zj the (positive) feedback
interconnection of Z with the MIMO feedback static gain diag{k}. The MIMO feedback system in
Figure 4.1 is thus equivalently represented as the feedback interconnection of = and ®y(-), or as the
feedback interconnection of = and ®(-) (see Figure 4.2).

Remark 4.1 The MIMO system Z obviously admits an input-affine state model of the form (4.1)
with f=(X) = fr(X) — gr(X)F (hr (X)), g=(X) = gr(X) and h=(X) = hy(X).

As parallel interconnection of strongly passive systems, the forward block YT has the same passivity
properties as the forward systems >J; of each passive oscillator. Not taking into account the coupling,
the dissipativity inequality satisfied by the MIMO system in Figure 4.1 is thus (see Lemma 2.15)

S<(k-k,

passive)

YTy —vTo(y)+ YU, (4.2)

where S(X) is the sum of the storage functions of the passive oscillators of the network.
The coupling between the oscillators is described by the relation

U=-FY)+W, (4.3)
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W V Y 14

Dr(+) ®(-)

Figure 4.2: Two equivalent representations of the LURE MIMO nonlinear system studied in this
chapter. ®4(Y) = (¢ (y1),-.., ¢k (yn))? is a multivariable repeated nonlinearity. The repeated
nonlinear element is ¢r(y) = —ky + ¢(y) where ¢(-) is a static nonlinear function that satisfies the
assumptions of Section 3.3.1.

where F(-) is a C! function in RY defining the topology of the network and W is the external input
of the network. We assume that F'(0) = 0 and that the coupling function F(-) satisfies the passivity
condition

YTF(Y)>0,VvY e RV, (4.4)

This directly implies that the passivity properties of T transmit to =, i.e. that = is strongly passive.
As a result, the dissipativity characterization of the MIMO system in Figure 4.1 is similar to the
dissipativity characterization of the SISO system in Figure 3.8, i.e.

S < (k—k;

passive

VYTV —YTo(Y) + YTW. (4.5)

This means that, under the assumption of passive coupling, the network dissipativity characterization
is similar to that of one of its constituting passive oscillator.
If we assume linear coupling, F'(Y) =T'Y, and (4.3) becomes

U=-TY +W, (4.6)

where T' € RVXN represents the interconnection matrix. The passivity condition (4.4) implies that
I" is a real positive semidefinite matrix'. Note that even the positive semidefiniteness condition on
I’ may be relaxed through a parameter shift. Let kg be a scalar such that IV = T" + kol is a real
positive semidefinite matrix of rank ¢ < N and define ¥’ = k + ko. This simply amounts to define
the coupling as U = — (I' + koIn) + koIn + W. The network admits the representation of Figure 4.1
where F(Y) =T"Y and k is replaced by k’. The dissipation inequality (4.5) becomes

s < _@/_):—1_ (k B k;assive + kO) YTy — YT(I)(Y) + yTw
>0
< (K -k

passive)

Yy —vTo(y)+vTw

which is similar to (4.5) with k" replacing k.
To pursue the analogy with the SISO situation, we will assume that the network is unforced, i.e.
W = 0. This external network input is important for the analysis of interconnected networks. The

"We recall that a real matrix A is positive semidefinite iff 7 Az > 0 for all z € R™. As a consequence of this
definition, a real matrix A is positive semidefinite iff its symmetric part % (AJr AT) is positive semidefinite. This
allows to consider matrices which are not symmetric (see also Appendix A for some properties of real positive definite

matrices).
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argument developed in this chapter directly extends to this situation. This allows the analysis of
networks of increasing complexity through the same methodology. This emphasizes the far reaching
implications of an input-output point of view for the characterization of limit cycle oscillations.

4.2 Second result of this thesis - Networks of passive oscillators

In this section we present an extension of the bifurcation results presented in Chapter 3. The
statement of the results in Chapter 3 were global in the state-space. To this end, we introduced
the additional assumption that the feedback interconnection of ¥ and ¢g(-) is ultimately bounded.
Following a result of ARCAK [AT02], we remarked in Section 3.3.2 that this assumption was always
satisfied for 3 linear, passive and detectable. In the following section, we extend this result to the
corresponding MIMO situation when Y is linear, passive and detectable, F(Y) =T'Y, with ' € RV*YN
and I' > 0, and ®y(-) = diag{¢x(-)} is a multivariable repeated nonlinearity where ¢(-) is assumed to
satisfy the assumptions of Section 3.3.1 and to be additionally monotone increasing. For the general
case when T is nonlinear, we will explicitly assume that the unforced (W = 0) MIMO feedback system
in Figure 4.2 is ultimately bounded.

4.2.1 Global boundedness result for T linear and linear coupling

In the case of T linear and linear coupling, we extend the global boundedness results of ARCAK
[AT02] to networks of passive oscillators.

We have seen in Section 3.3.2 that (3.23) does not imply (3.24) for general multivariable nonlin-
earities. However, in the case of multivariable repeated nonlinearities, denoted by

(I)(Y) = (¢ (yl)vv(b(yN))Ta (47)

conditions (3.23) and (3.24) are satisfied if the repeated nonlinearity ¢(-) satisfies (3.25), (3.26) and
is monotone increasing. We summarize this result in Theorem 4.2.

Theorem 4.2 If ¢(-) : R — R satisfies (3.25), (3.26) and is monotone increasing then the multi-
variable repeated nonlinearity (4.7) satisfies (3.23) and (3.24).

Proof
First, we prove property (3.23).

YTa(Y)

> yid (i) + ko (k) , where kis s.t. [[Y]| o = |yl
itk

yr® (Yr)

lyr| &1 (lyw!)

1Yo @0 (Y1l o) -

AVARAVARIV]

The second inequality is a consequence of the sector condition (3.25) and the growth condition (3.26):
for scalar nonlinearities, the sector condition (3.25) combined with the growth condition (3.26) is
equivalent to property (3.23) (see Remark 3.4).
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Second, we prove property (3.24)

YTO(Y) = > yid(yi) + yed (r) , where kisst. Y] = |yl
ik
> [yl 1@ (yw)]
> [é(yr)], when [y > 1
= ||2(Y)]|,,, when [|Y||,, > 1 since ¢(-) is monotone increasing.

|
From Theorem 4.2, we may conclude to global boundedness of the solutions of the network if =

is a linear system. This result is summarized in Theorem 4.3.

Theorem 4.3 Consider the system represented in Figure 4.2, where = is a linear, passive and de-
tectable system and ®(-) = diag{¢n(-)} : RY — RN is a multivariable repeated nonlinearity. If the
repeated nonlinearity ¢y(-) satisfies

¢r(y) — 00 as y — 0o and ¢p(y) — —o0 as y — —oo, (4.8)

and is such that ¢i(y) is monotone increasing for |y| > b for some b > 0, then the trajectories are
bounded.

Proof
We first note that from (4.8) we can find a constant a > 0 such that

ly| > a = yor(y) > 0.

Then, we let qg(y) be a continuous, monotone increasing function such that

o(y) = ¢r(y) when |y| > ¢ = max(a,b)

and yo(y) > 0 for all y # 0. It follows that (3.25) and (3.26) hold for ¢. From Theorem 4.2,

- - - T
this implies that the repeated multivariable nonlinearity ®(Y) = (gb (yl),...,(b(yN)) satisfies

conditions (3.23) and (3.24).
The dynamics of the isolated (W = 0) feedback system represented in Figure 4.2 may be written as

X = AX + B[-®(Y) + D(Y)], (4.9)
where D(Y) = ®(Y) — ®,(Y) is bounded because (D(Y)) =0 when |y;| > ¢. Since, by assumption,

the linear system = is passive and detectable, and ®(-) satisfies (3.23) and (3.24), we conclude from
Theorem 3.2 that the trajectories of (4.9) are bounded. |

Remark 4.4 The assumptions on = are obviously satisfied for Y linear, passive and detectable and
F(Y) linear and passive. The assumptions on @y (-) = diag{¢r(-)} are obviously satisfied for ¢i(y) =
—ky + yo(y) with ¢(-) satisfying the assumptions of Section 3.3.1 and monotone increasing.
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4.2.2 Bifurcations in networks of passive oscillators

In this section, we focus on the bifurcations that may arise in a network of passive oscillators
satisfying the representation in Figure 4.2. We first present a MIMO generalization of Theorem 3.8,
then we show its usefulness for the bifurcation analysis in networks of passive oscillators.

Similarly to the SISO situation of Section 3.3.3, the MIMO system in Figure 4.2 may be seen as the
(positive) feedback interconnection of an absolutely stable MIMO system with the MIMO static gain
diag{k}. Generically, a bifurcation occurs when k is increased?. We note R(s) the MIMO transfer
function of the linearization of = at X = 0. Similarly, we note Rj(s) the MIMO transfer function of
the linearization of =5 at X = 0.

Theorem 4.5 Consider the unforced (W = 0) system shown in Figure 4.2. Assume that Z is strongly
passive, that both = and its linearization are zero-state detectable and that the feedback interconnection

of 2 and ®y(-) is ultimately bounded. Let k.. . > 0 be the minimum value for which the MIMO
transfer function Ry(s) has a pole on the imaginary azis.
If Ry, (s) has a unique pole on the imaginary azis and if Ekz,,.. . is strongly passive, then

the bifurcation is a supercritical pitchfork bifurcation; for k 2 kY, . the system is globally bistable,
that is, the equilibrium X = 0 is a saddle and its stable manifold FE(0) separates the state space in
two open sets, each of which is the basin of attraction of a stable equilibrium.

If szetwwk(s) has a unique pair of conjugated poles on the imaginary azts and if Spx

strongly passive, then the bifurcation is a supercritical HOPF bifurcation; for k 2 kY ... the system
has a stable limit cycle which is globally asymptotically stable in R™N\ E,(0).

Proof
The proof is a straightforward extension of the SISO case presented in the proof of Theorem 3.8. It
relies on the dissipation inequality at the bifurcation point,

S<-vTo(), (4.10)

where S denotes the storage function of =i+ . The global part of the proof is identical: it relies on
absolute stability of the MIMO system at criticality. The local part is similar. For a one dimensional
manifold, the output of the system is Y = C¢ + O <\§]2> with C € RY and ¢ € R. Since the
linearization of the center manifold dynamics is observable, C is full rank which means that at least
one component of C' is nonzero. The corresponding component of Y qualifies for a local coordinate

2This is easily seen from the ISIDORI normal form of the linearization of Z;, at X = 0, i.e.

Z QZ + DY
Y = EZ+(K+kCB)Y,

where CB = (CB)" > 0 from the strong passivity assumption of Zj, (see [SJK97, Section 2.4.2]). The system necessarily
becomes unstable for large positive values of k. To see this, we note that for k sufficiently large, the symmetric matrix
Ks + kCB (where K, denotes the symmetric part of K) is symmetric positive definite (e.g. from WEYL theorem
[HJ85, Theorem 4.3.1, p. 181] which allows to compare the eigenvalues of K + kC'B with those of K, and kCB:
Amin (Ks) + Amin (ECB) < Amin (Ks + kCB)). This in turn implies that K + kCB is positive definite and thus that
all its eigenvalues have positive real parts (see Appendix A). Using the SCHUR complement of the Jacobian matrix

Q D o . .
( E K4kCB ) it is then easy to show that the system is unstable for k sufficiently large.
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in the center manifold, i.e. 3i € {1,..., N} such that y; = ¢;§{ + O (]{\2> with ¢; # 0 and the proof

follows as in the SISO case. For a two dimensional manifold, the proof directly follows as in the SISO
case (see[SS05b] for an explicit proof in the MIMO framework). |

Remark 4.6 As the feedback interconnection of Y and F(Y'), = and its linearization are zero-state
detectable if T and its linearization are zero-state detectable. Simalarly, =y~ is strongly passive
if T is strongly passive since the coupling F(Y') is assumed to be passive. For networks of

network

identical passive oscillators, i.e. T = diag{X}, these conditions are satisfied if they hold for X.

4.2.2.1 Dimension of the center manifold for a network of identical passive oscillators
with linear symmetric coupling

The results of Theorem 4.5 restrict the dimension of the center manifold at the bifurcation.
The dimension is generically one or two in a general interconnection. However, it can be higher in
symmetric interconnections of identical oscillators: when the network possesses symmetry, multiple
eigenvalues may cross the imaginary axis simultaneously even in the generic case (see |[GS02|), and
the dimension of the center manifold can be greater than 2. The situation is much more complicated
and a deeper analysis has to be done this is the case, for example, of the equivariant bifurcations
described in [GSS88]. In this thesis, we do not consider such degenerate situations.

Knowing the dimension of the center manifold of one isolated passive oscillator, what can be said
about the dimension of the center manifold of a network of identical passive oscillators? This question
is easily answered in the case of a network of identical passive oscillators with linear and symmetric
positive semi-definite coupling. If we assume linear symmetric, positive semi-definite coupling, i.e.
U= -TY with ' = I'" > 0 and rank(T") = ¢ < N, the poles of the MIMO transfer function Ry(s) are
easily obtained from the poles of the SISO transfer function Gg(s). The poles of the MIMO transfer
function Ry(s) are the complex values of s such that

rank <1_Gk(:§;(S)IN —i—F) < N.

Because I' is a symmetric positive semidefinite matrix of rank ¢, there exists an orthogonal matrix L

such that I' = LTAL where A = diag (0,...,0, AN—g+1,---,An) With 0 < Ay_g41 < -+ < An. We
thus have to search for the complex values of s that render the diagonal matrix (1_5(6:)(5) In + A)
singular. This matrix is singular for each complex value of s solution of one of the equations

%/\;))G(S) =0,7=1,...,N. Thus the poles of the MIMO closed-loop transfer function are found

by replacing k by kK — X\;, ¢ = 1,..., N in the expression of the poles of Gi(s). As a consequence,
at k = k*, the MIMO system possesses a center manifold of dimension m(N — ¢) where m is the
dimension of the center manifold of one isolated passive oscillator at criticality. In Theorem 3.8 we
have shown that, generically, m € {1,2}. As a result, if ¢ = N — 1 we are in the situation described
by Theorem 4.5.

Remark 4.7 As we have noted in Section 4.1, if the matriz T is only symmetric, a shift by koly
transforms I into a positive semidefinite matriz I" = T'+koln of rank g < N. The critical bifurcation
value for network, kY, . . is then linked to the critical value for an isolated passive oscillator k* by

the relation k* = k* — ko.

network
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These considerations lead to the following proposition.

Proposition 4.8 Consider a network of N identical passive oscillators with linear symmetric cou-
pling U = —TY, where T' = T'T. Let ko be the minimal shift such that T' = T"T =T 4+ koIy > 0
and rank (I") = N — 13, If one isolated oscillator has a center manifold of dimension one or two at
k = k*, then the network possesses a center manifold of the same dimension at the bifurcation value
k* =k* — ko.

network

4.2.2.2 Relaxation oscillations in networks of passive oscillators

In this section we give an extension of Theorem 3.9 which transforms the global bistability result
of Theorem 4.5 into a relaxation oscillation result. For this, we consider the addition of a feedback
adaptation loop to the globally bistable system in Figure 4.2. The adaptation loop is represented on
Figure 4.3. As we have seen in the proof of Theorem 4.5, there always exists (at least) one output
component that qualifies for a local coordinate in the center manifold. Let y; be this component.
The adaptation we consider is diagonal and acts only on g;, i.e. only the corresponding component
w; of the external input W is nonzero . This component is such that w; = —R; where R; is the state
variable of the additional adaptation dynamic.

w v Y
= Let y; be the component of the MIMO
output Y that qualifies for a local coordinate
- - in the center manifold when the adaptation is not present.

(I)k() The adaptation loop | w; = —R;

g is defined as: TR, =y — R;
1 oI e; =(0,...,0,1,0,...,0

7s+1 €i€; i= ¢ )

Figure 4.3: Converting the global bistability scenario into a relaxation oscillator with a slow adapta-
tion mechanism (7> (k — k%, )7").

With this additional feedback adaptation loop, the global bistability result of Theorem 4.5 can
be transformed into a global relaxation oscillation for the network. This result is summarized in
Theorem 4.9.

Theorem 4.9 Under the assumptions of Theorem 4.5, suppose that the feedback interconnection of =
and ®y(-) undergoes a supercritical pitchfork bifurcation at k =k ., ... and that the feedback system
shown in Figure 4.3 is ultimately bounded. Then there exists constants € > 0, and T > 0 such that

VE € (K rworks Ko ctworie + €) and 7> (k — k;:,etwork)_li the feedback system shown in Figure 4.3 has
a globally asymptotically stable limit cycle in R\ E4(0).

Proof
The proof is similar to the proof of Theorem 3.9. Let € = (k — & _,,,,%) and consider the system

represented on Figure 4.3. By assumption, the feedback interconnection of = and ®j(-) possesses
a one dimensional center manifold at ¢ = 0. For W # 0, strong passivity of = implies that the

3This condition can be satisfied iff the minimal eigenvalue of T has an algebraic multiplicity equal to one.
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center-unstable manifold equation writes?
N
Ui = ey; — K'yP + Zajwj +0 (v}).
j=1

where k' > 0 and wj represents the 4t component of the network external input vector W. Thus, if
we augment the one-dimensional center-unstable manifold of the original system (without adaptation)
with the adaptation equation, we obtain

G = eyi— Ky — bR+ 0 (| R)I'), W >0, >0

R = §(—Ri+uy), (4.11)
(6 = 0,
0 = 0),

where § = 771. The dynamics (4.11) are identical to those obtained in the SISO case (see (3.38)).
The local part of the proof is thus similar to the SISO case.

The global part of the proof follows as in Theorem 4.5: for § > 0 and ¢ = 0, the equilibrium
(z, R;) = (0,0) is globally asymptotically stable because the augmented storage V' = 6S+%R% satisfies
the dissipation inequality V = 6S+ R;R; = —0YT®(Y) —6y; Ri +0R; (—R; + ;) < —6YT®(Y) which
is analogous to (4.10). |

Remark 4.10 If the forward system = is linear, strongly passive and detectable and the repeated
nonlinearity ¢(-) satisfies the assumptions of Section 3.3.1 and is monotone increasing, then ultimate
boundedness results from Theorem 4.8 since the adaptation dynamics are passive.

4.2.3 Relaxation of the assumptions of Theorem 4.5 - Use of multipliers

The key to our results is the absolute stability of the feedback system at criticality. The strong
passivity of Bkt o 15 @ sufficient condition for such a property. Nevertheless, it is rather restrictive
since it requires that = loses stability and passivity for the same value of the parameter k. Multipliers
can be used to extend the results of Theorem 4.5 to more general situations. In Theorem 4.11, we
present an extension of Theorem 3.11 that provides sufficient conditions for absolute stability of the
feedback system of Figure 4.2.

Theorem 4.11 Consider the system shown in Figure 4.2 with W = 0. Assume that = and its
linearization are zero-state detectable and that the feedback interconnection of = and ®(-) is ultimately
bounded. Then each of the following conditions is sufficient for global asymptotic stability of the
equilibrium X = 0 of the feedback system.

o O(.) = diag{o(-)} with ¢(-) in the sector (0,00) and there exists v > 0 such that (1 + vs)INEg
18 strongly passive;

“The strong passivity of Z (and g= full rank) implies that = has relative degree one at X = 0. This, in turn,
implies that for X in a neighborhood of the origin, the input V' of = directly enters the Y dynamics, i.e. Y = ohe X =

23
Lih=(X) + Lg=h=(X)V with L,_h=(0) = %};(E ‘ 9=(0) being a symmetric positive definite matrix.
X=0
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o &(1) = diag{é(-)} with ¢(-) monotone in the sector (0,00) and there ewists M(s)Iy =
Hi(s)Hy(—s)In with M(s) in the form (3.39), z(t) > 0, such that Z, = HiINSpHy 'y is
strongly passive;

o &() = diag{g(-)} with #(-) odd, monotone in the sector (0,00) and there exists M(s)Iy =
Hi(s)Hy(—s)In with M(s) in the form (8.39) such that =y, = H INZ,Hy 'y is strongly passive.

Proof
For Popov MIMO multipliers, the assumption that (14 vs)InyZj is strongly passive implies that S <

— (@) (Y + 7Y). A LyapuNov function for the interconnection is V =5 + 'yzi]\il Jro(s)ds,
which satisfies V < — (&(Y))T Y.
For ZamEes-FALB MIMO multipliers M(s)I, with M(s) in the form (3.39), sufficient conditions for

the strict positivity (strict passivity) of the MIMO nonlinearity ®(-) = Holn®(-)H] "Iy are given in
[SK00, Theorem 1] :

(0)- (o) - o

These conditions are satisfied for a repeated monotone nonlinearity ®(-) = diag{¢(-)} with ¢(-)
monotone increasing and satisfying ¢(0) = 0. The rest of the proof directly follows as the one of
Theorem 3.11. [ ]

We now present Theorem 4.12. It is an extension of Theorem 3.12 that generalizes the results of
Theorem 4.5 through the use of multipliers.

Theorem 4.12 The statements of Theorem 4.5 hold if the strong passivity assumption on Zgx
18 replaced by one of the following conditions:

o O() = diag{o(-)} with ¢(-) in the sector (0,00) and there exists v > 0 such that (1 +
’ys)INEk;twwk 15 strongly passive;

e &(-) = diag{é(-)} with ¢(-) monotone in the sector (0,00) and there exists M(s)Iy =
Hl(S)HQ(—S)IN with M(S) in the form (3.39), Z(t) > 0, such that Ek;etwo'rk = HlINEk;etworkHQ_IIN

18 strongly passive;

o O(-) = diag{o(-)} with ¢(-) odd, monotone in the sector (0,00) and there exists M(s)In =

Hy(s)Ha(—s)In with M(s) in the form (3.39) such that ék;etwork = HlINEkiezwomH;lIN is
strongly passive.
Proof
The proof is similar to that of Theorem 3.12. An explicit proof in the MIMO framework can be found
in [SS05b]. [ ]
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Remark 4.13 Suppose that a passive oscillator is constructed through the use of a multiplier M (s)
as described in Theorem 5.12. Consider a network of such identical passive oscillators represented
according to Figure 4.1. We would like to use the MIMO repeated version of this multiplier M (s)In
to conclude about bifurcation with the help of Theorem 4.12. A sufficient condition is that the repeated
multiplier also preserves the positivity of the coupling (since the MIMO repeated multiplier M (s)In
already ensures that diag{3y} is strongly passive for k < k¥ .. . ). For this condition to be satisfied,
the coupling F(Y') has to be the gradient of a convex function (see [SK00]). In the case of linear
coupling F(Y) =TY, a sufficient condition is I' =TT > 0.

4.3 Illustrative examples

In this section, we illustrate the results of Theorems 3.8 or 4.12 by examples of networks of
identical passive oscillators of order 3. These passive oscillators were presented in Section 3.5.1. In
these oscillators, the forward block appearing in Figure 3.8 is filled with a passive linear system whose
corresponding transfer function is

S (TS + w2)

G(s) = B 4.12
() $3 4+ 20wps? + (T + wl) s + w2’ (412)

with w
2¢ > >0, (4.13)

T

and the static nonlinearity is

or(y) = y* — ky. (4.14)

As mentioned in Section 3.5.1, the presence of a single zero at s = 0 forces the HOPF bifurcation
scenario described in Theorem 3.8. The critical values k* and k... of Gi(s) are given in (3.48)
and (3.49) respectively.

Using Theorem 3.8 or 3.12, we have shown in Section 3.5.1 that, for particular values of the
parameters, this system satisfies the definition of a passive oscillator given in Section 3.3.4 for k = k*,
i.e.

. . . . . . . * 2 4 .
1. the feedback system satisfies the dissipation inequality S < (k - kpasswe) y< =yt +uy;
2. when isolated, this system possesses a global limit cycle for k = k*.

We now illustrate some network topologies which allow for a direct application of Theorem 4.5 (or 4.12,

depending on the parameters values). We successively consider networks composed of an increasing
number of oscillators: N =2, N =3, and N > 3.

4.3.1 Case 1: N =2

Consider the positive (resp. negative) feedback coupling of 2 identical passive oscillators of type
(4.12)-(4.14) as illustrated in Figure 4.4. The interconnection matrices corresponding to these cases
_01 _01 ) for column (a) and 'y = ( (1) (1) ) for column (b). The network
is unchanged by the shifts IV = I" + koI and k¥’ = k + ko. In both cases, choosing kg = 1, the

are respectively I'y = (
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shifted matrices T} = ( 11 _11 ) and T, =

11
11
Proposition 4.8, the dimension of the center manifold of the network is 2. The critical bifurcation
value for the network is k¥, . = k* — 1. From Theorem 4.5 (or Theorem 4.12, depending on the
parameters values), we conclude that the network possesses a limit cycle for k 2 & _, .. This is
illustrated by the simulation results presented in Figure 4.4. In this simulation, the chosen parameter
values are the same as in Section 3.5.1.1, i.e. w, =1, { = 1.25, 7 = 2. For these parameter values, we
obtain k* = k. = 1 (see Section 3.5.1.1) and k;, ;. = 0. As can be seen on these simulation

results, the interconnection defined by I'y leads to synchrone oscillations while the interconnection
defined by I's leads to anti-synchrone oscillations.

are positive semidefinite with rank 1. By

4.3.2 Case2: N=3

We consider now a network of 3 oscillators of type (4.12)-(4.14) connected according to the chain
structure of Figure 4.5.
The corresponding interconnection matrix is

311
r=(120]|>o0 (4.15)
10 2

The eigenvalues of I' being 1, 2 and 4, the shift ky required to transform I' into a positive semidefinite
2 1 1

matrix of rank 2 is kg = —1. The shifted matrix IV isthen | 1 1 0 | > 0. By Proposition 4.8, the
1 01

dimension of the center manifold is 2. The critical bifurcation value for the networkis k7 _, . = k*+41.

From Theorem 4.5 (or Theorem 4.12 according to the parameter values), we conclude that the network

possesses a limit cycle for k 2 k' _, .. This is illustrated by the simulation results presented in Figure

4.6. For this simulation we considered a network of 3 identical passive oscillators of type (4.12)-(4.14)

coupled according to (4.15). Once again, we chosed the parameters values w,, =1, ( = 1.25, 7 = 2.

These parameter values lead to a critical bifurcation value k7, . = 2.

4.3.3 Case 3: N >3

As an illustration for a large number of oscillators, we first consider a Sy symmetry (all-to-all)
network of passive oscillators of type (4.12)-(4.14). The Sy symmetry coupling corresponds to the
interconnection matrix

(N-1DK  -K - K
K (N-1D)K - -K
r— | | ) | (4.16)
K K - (N-DEK

where K is the coupling strength characterizing the Sy symmetry network. The eigenvalues of I' are
NK with a multiplicity N — 1 and 0. As a consequence, the rank of I' is N — 1. By Proposition
4.8, the dimension of the center manifold is 2. The critical bifurcation value for the network is

* tworke = K*. From Theorem 4.5 (or Theorem 4.12 according to the parameter values), we conclude
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+1 —1
+1 —1

State-space of 2 oscillators for k|=1, kp:aoonoooe-ol State-space of 2 oscillators for k‘=1, k p=3v000000e—01

X 2 s

Time evolution of the two outputs for k=1, kp:S 000000e-01 Time evolution of the two outputs for k=1, kp:ﬁ.UOODUOefOI
15 T T T T T 15 T T T T T

—,0 —,0
) 0

1H 4

(a) (b)

Figure 4.4: Simulation results for a network of 2 identical oscillators of type (4.12)-(4.14). The circles
represent the oscillators. Column (a) corresponds to I'y and column (b) corresponds to I's. The
parameters values are w, = 1, ( = 1.25, 7 = 2, £ = 0.3. The critical bifurcation value for an
isolated oscillator is k* = 1 and the corresponding bifurcation value for the network is & _,, . = 0.
The trajectories generated in the state space of each oscillator are represented on the second row. A
different color is used for each oscillator (red for the trajectory of oscillator 1 and blue for the trajectory

of oscillator 2). The third row represents the time evolution of the outputs of the oscillators.

that the network possesses a limit cycle for k 2 k7 _,, ...~ This is illustrated by the simulation results

presented in Figure 4.7. For this simulation we considered a network of 5 identical passive oscillators
of type (4.12)-(4.14) coupled according to S5 symmetry. The parameters values are w, = 1, { = 1.25,

7 = 2. This leads to a critical bifurcation value £ _, . = 1.
The results of Theorems 4.5, or 4.12 hold only for k& 2 K, .- Nevertheless, we expect these

results to hold valid for a (large) range of the bifurcation parameter k. To illustrate this we selected k =
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Figure 4.5: Network of 3 oscillators in chain structure.

State-space of 3 oscillators for kDZZ.IOOOOOEH)U
Time evolution of the three outputs for kp:2.100000e+00

—,0

Figure 4.6: Simulation results for a network of 3 identical oscillators of type (4.12)-(4.14) coupled
according to Figure 4.5. The parameters values are w, = 1, ( = 1.25, 7 = 2, k = 2.1. The critical
bifurcation value for an isolated oscillator is £* = 1 and the corresponding bifurcation value for the

o _
network is k', .= 2.

2. In this simulation, we see that all the oscillators synchronize. We will return to the synchronization
behavior in Section 4.4.2.

The same results hold for Dy symmetry networks, i.e. bidirectional rings of oscillators. In the
case of Dy symmetry networks, the matrix I' has the form

2K -K 0 - 0 -K
~K 2K —-K 0 - 0
0 —K . e e

r=| . . . (4.17)
0 . 2K -K 0
o . -K 2K -K
K 0 - 0 -K 2K
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State-space of 5 oscillators for k=2
Time evolution of the five outputs for k=2
4 T T T T T

- y,®
%0
_ 0

2 L : : ~ 0l
15 Y5(t)

Figure 4.7: Simulation results for a network of 5 identical oscillators of type (4.12)-(4.14) coupled
through S5 symmetry. The parameters values are w, =1, ( = 1.25, 7 =2, k=2, and K = 1. The
critical bifurcation value for an isolated oscillator is £* = 1 and the corresponding bifurcation value

for the network is k7, . = 1.

This matrix is cyclic and its eigenvalues can be calculated analytically (see e.g. [Hop86]): A\;(I') =
2K (1 — Cos (%)) >0, j=1,...,N. The rank of I' is once again equal to N — 1 and the results
of Theorems 4.5 (or 4.12 according to the parameter values) may be directly applied.

4.4 Third result of this thesis - Incremental passivity and synchro-
nization

After having determined the existence and stability of sustained oscillations in a network of inter-
connected passive oscillators, the next step is to characterize their relative oscillating behavior, i.e.
one with respect to the other ones. The question of global synchronization among the oscillators is
particularly relevant. Synchronization refers to the tendency of interconnected oscillators to produce
ensemble phenomena, that is, to phase lock as if an invisible conductor was orchestrating them. Syn-
chronization is a convergence property for the difference between the solutions of different systems.
Convergence properties for the difference between solutions of a closed system are characterized by
notions of incremental stability [Ang02, LS98, PPvdWNO04|. For open systems, the corresponding
notion is incremental passivity.

In the next section, we define the notion of incremental passivity and give sufficient conditions
under which passive oscillators are incrementally passive. In Section 4.4.2; we show the implications
of incremental passivity for synchronization and derive sufficient network topology conditions for
the existence of globally asymptotically stable synchrone oscillations in networks of oscillators. The
results concern the interconnection of IV identical passive oscillators with network topologies that
include Sy symmetry (all-to-all topology), Dy symmetry (bidirectional ring topology), Zy symme-
try (unidirectional ring topology) and open chain symmetry. Exploiting the properties of passive
oscillators, we additionally show that the network solutions are bounded and that the global limit
cycle stability analysis carried out for an isolated oscillator extends to the network. These results are
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related to other recent synchronization results in the literature [SW03, Pog98, Ang02] that are all
based on incremental stability notions.

4.4.1 Incremental passivity

Consider two different solutions x,(t) and x(¢) of the input-affine system ¥ given in (3.16) with
corresponding inputs and outputs (uq(t),y.(t)) and (up(t), ys(t)). Denote the incremental variables
by Ax = x4 — xp, Au = uq — up, and Ay = y, — yp. The system is incrementally dissipative if it
satisfies a dissipation inequality of the form

AS < w (Au, Ay) (4.18)

for the scalar incremental storage function AS(Az) > 0 with the incremental supply rate w (Au, Ay).
Incremental dissipativity (4.18) with the incremental supply rate w (Au, Ay) = (Au)” Ay is called
incremental passivity.

Passivity implies incremental passivity for linear systems, that is, if the quadratic stor-
age S(xr) = 2T Pz satisfies the dissipation inequality S < uTy then the incremental storage
AS(Az) = (Az)" PAx satisfies the incremental dissipation inequality AS < (Au)” Ay. Passivity
also implies incremental passivity for monotone increasing, static nonlinearity: if ¢(-) is monotone
increasing, then (s; — s2) (¢ (s1) — ¢ (s2)) = AsA¢(s) > Asyp(As) > 0, VAs = s; — s9 for some
static nonlinearity (-).

Passive oscillators made of the feedback interconnection of a linear system Y with a monotone
increasing nonlinearity ¢(-) are thus also incrementally passive. In the following sections we restrict
ourselves to linear passive systems ¥ and to nonlinearities ¢(-) that are monotone increasing.

4.4.2 Synchronization

Consider a network of NV identical passive oscillators of type (3.16),(3.17),(3.18). We assume that
the only nonlinearity in each passive oscillator is due to the nonlinear monotone increasing function
¢(+) appearing in the definition of ¢y(-). The dynamics for oscillator i = 1,..., N write

; = Awx; — Boy (yi) + By
yi = Cux;

where u; represents the external input of oscillator ¢. The dynamics of the network are easily repre-
sented with the help of the KRONECKER product (see Section 2.7 for a reminder of the main properties
of the KRONECKER product).

{X = (IN®A)X —(Iy@B)®(Y)+ (In® B)U (4.19)

Y = (Iy®C) X

where X = (mlT,...,x%)T eR™, Y = (y1,...,yn)! € RV,
(V) = (¢ (y1) 5., o (yn))" € RN, and Iy represents the N by N identity matrix.
We assume linear coupling, i.e. the topology of the network is defined by the input-output relation

U=-TY. (4.20)

Furthermore, we make the following network topology assumptions:
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e We assume that I' is real and positive semidefinite, and that 1 (the vector (1,...,1)T € RY)
belongs to the kernel of I". This is equivalent to the assumption that all rows of I' sum to
zero which implies that the coupling between the oscillators disappears when synchronization
is reached.

e We assume that the rank of I' is equal to N — 1, i.e. I" has only one zero eigenvalue. This is
equivalent to the assumption that the network is connected.

e We do not require the interconnection matrix I" to be symmetric but we assume that ker (I') =
ker (I'") = range (1).

Theorem 4.15 gives sufficient conditions for the existence of a globally asymptotically stable oscillation
in a network of identical passive oscillators satisfying the above made assumptions.

Definition 4.14 We denote by Amin_, (T's) the smallest nonzero eigenvalue of the symmetric part of
r.

Theorem 4.15 Consider the MIMO system (4.19)-(4.20) representing a network of N identical in-
crementally passive oscillators. Assume that (A,C') is observable, ¢(-) is monotone increasing and
each isolated oscillator (u; = 0) possesses a globally asymptotically stable limit cycle in R™\ E4(0)
where E4(0) denotes the stable manifold of the origin. If the interconnection matriz T is a real, pos-
itive semidefinite matriz such that ker (I') = ker (I'") = range (1) then for Amingg (Is) >k — K} yesive

(strong coupling), the network has a limit cycle which attracts all solutions except those belonging to
the stable manifold of the origin, and all the oscillators of the network exponentially synchronize.

Proof
We compare the solution of each oscillator in the network to that of an isolated reference oscillator.
The isolated reference oscillator dynamics are

{fvo = Axo— Boy (o)
Yo = Cx

where zg € R™ and yy € R. Consider the incremental dynamics

{AX = (IN®A)AX — (Iy® B)A®,(Y) + (Iy® B)U (4.21)

AY = (Iy ® C) AX

where AX = X — 1 ® xg with X satisfying the dynamics (4.19), 1 € RY and A®.L(Y) =
O (Y) — 1 ® ¢ (yo). Since each passive oscillator is incrementally passive, the incremental system
(4.21) satisfies the incremental dissipation inequality

SA < (k= Eaesine) AYTAY — AYTAD(Y) + AYTU
< EAYTAY + AYTU (4.22)
< kAYTAY — AYTTAY,

and Sa = $AXT (Iy ® P)AX with P = PT > 0 defining the storage
function associated to each incrementally passive oscillator (i.e. S; = x?PmZ) Sa is the sum of the
incremental storage functions of the incrementally passive oscillators. The second inequality comes

where k = k — k*

passive
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from the monotone increasing property of ¢(-). The third inequality comes from the properties of T',
ie. U=-TY =-T(AY +1®yp) = —T'AY since 1 € ker (I").

Decompose (uniquely) the vector X into two components belonging respectively to the kernel of
I' ® I, and to its orthogonal complement, i.e. X = Xy + X 1 where Xy € ker (I'® I,,) and
Xt € ker (I'® In)L = {V eR™W . VIW =0, YW € ker (I'® In)} The corresponding output
decomposition is Y = Yier + Y, 1 with Yier = (Iy ® C) Xyey € ker (I') and V)1 = (INn® C) X, .1 €
(ker (I'))* (this is obvious from the KRONECKER product properties, see Propositions A.6 and A.7 in
Appendix A). From the assumption ker (I') = range (1), we have Xyor = 1 ® Zyer and Yier = 1 ® Yier,
with 1 € RV, We thus write AX = 1 ® (Zer — Z0) + Xt and AY = 1® (Yker — Y0) + Yyt - Under
the assumption that ker (I') = ker (I‘T), it can be shown that —AYITAY < ~Amin_s (Ts) ‘Ykerlf
where Amin, (I's) represents the smallest nonzero eigenvalue of the symmetric part of I' (see Propo-
sition A.5 in Appendix A). The incremental passivity inequality (4.22) then writes

S’A < ]_'C ’1 ® (yker - yO)|2 + (l_ﬁ - )\min¢o (Fs)) ‘YkerJ-‘ (423)

Assume that the initial condition of the reference oscillator xo(0) is chosen to be equal to the initial
condition of the kernel component of X, i.e. x¢(0) = zker(0). The invariance of the kernel dynamics
(see Appendix A) implies that xo(t) = Tker(t), V& > 0 and thus that yye (t) — yo(t) = 0, ¥t > 0. The
incremental passivity inequality now writes

Sa < (k= Amingo () [Vt |*- (4.24)

From the strong coupling assumption, we have

¥ = Aming, (I's) =k > 0. (4.25)

Integrating (4.24) over [to, tp + 0] where 0 > 0 is arbitrarily chosen, we obtain

to+0 .
/ Sadr
to

IN

to+0 9
—7/ |Vt (T)| dr

to

< —ay | X (t0)|2, a>0, (4.26)

for all X, 1 (to), to > 0. The last inequality comes from the observability of the pair (A,C)
(see Appendix A). Global exponential stability (GES) of X, 1 (t) is then deduced from classical
exponential stability theorems (see, for example, [SB89, Theorem 1.5.2]). This means that with a
particular choice of initial condition for the reference oscillator, we were able to show that AX (¢) =0

is GES. GES of the solution AX = 0 for the difference system (4.21) implies that all solutions of the
network (4.19) exponentially converge to the invariant subspace

{XG]R”N::cl:‘--:xN:xO} (4.27)

where the dynamics are decoupled. Because the dynamics of the network decouple in the invariant
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subspace (4.27), GES of the solution AX = 0 for the difference system (4.21) implies that all bounded
solutions converge to the w-limit sets of the decoupled system and that all oscillators synchronize
asymptotically.

Combining GES of the difference system (4.21) and global boundedness of the solutions (see Section
4.2.1), we conclude that, for strong coupling, all solutions of the network (4.19) converge to the w-limit
sets of the uncoupled dynamics, i.e. all solutions except those belonging to the stable manifold of the
origin of the network converge towards a unique limit cycle. [

Remark 4.16 The result still holds if the observability assumption on the pair (A, C) is relazed to a
detectability assumption.

Remark 4.17 The GES result of AX = 0 may be viewed as an incremental input-to-state stability
(0-1SS) property of the network with S(X) being the corresponding 6-1SS LYAPUNOV function [Ang02].

Remark 4.18 Theorem 4.15 is closely linked to recent synchronization results by SLOTINE [SW03]
and POGROMSKY [Pog98]. This may easily be noticed from the normal form of passive systems. The
normal form for oscillator i of the network is [STK97]

(5) = ()G ( &) vnmem
- ;%J(g ETB)«Z)‘@))

where CB is positive definite from the strong passivity assumption. Assume, as it is done by SLO-
TINE and POGROMSKY, that v;; < 0 for i # j, and that v; = Zjvzl |vij|, then the couplings

0 o
i\ o cB
dynamics, divided according to the coupling structure, is given by

are positive semidefinite. The symmetric part of the Jacobian of the uncoupled

Ja=( . Le+/)
Cosle+ Nt g+CBk_CB%i¢) :

It is then easily seen that the sufficient conditions given by SLOTINE [SW03, Remark 3 of Theorem
2] are satisfied, i.e.

1. Qs is contracting since it is HURWITZ from the passivity and detectability assumptions;
2. Amaz(g +CBk — CB%;?')) < g+ CBk < oo from the monotone increasing assumption;

3. Omax (%(e+ f)) e;fr < 00.

Exploiting the special structure of passive oscillators, Theorem 4.15 additionally proves that the
network solutions are bounded and that the limit cycle stability analysis carried out for an isolated
oscillator extends to the network.
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4.5 Examples and simulation results

As an illustration of Theorem 4.15 for a non symmetric interconnection matrix, we consider a Zy
symmetry network of passive oscillators of type (4.12)-(4.14). In the case of Zy symmetry networks,
the matrix I" has the form

K K . ... 0
0 K -K - 0

r= : 0o K . (4.28)
5 . . =K
-K 0 - 0 K

and it can be easily shown that rank(I') = N — 1% and that all its eigenvalues have nonnegative real
parts (this results from a simple application of the GERSHGORIN Theorem [GvL89]). Indeed, it can be
shown that Awin_, (I's) = K (1 — cos (%%)). From the strong coupling condition (4.25), this implies
k—k* .
passive
(l—cos %T
4.15, we conclude that for K > Ky, , all solutions, except those belonging to the stable manifold,
converge towards the w-limit set of the uncoupled system which is a globally attractive limit cycle for

k> k.

that synchronization is guaranteed if K > Kz, with Kz, = . Moreover, from Theorem

Time evolution of the five outputs for kp:2

— v,®
— Y,
A ]
N ~ 0]
Ys(t)

0 2 4 6 8 10 12 14 16 18 20

Figure 4.8: Time evolution of the outputs in a network of 5 oscillators coupled through Z5 symmetry.

Simulation results for a Z; symmetry network of passive oscillators of type (4.12)-(4.14) are
presented in Figure 4.8. For this simulation, we have chosen the following values of the parameters:
T =2, =125 and w, = 1. This leads to a critical bifurcation value £* = 1 while the loss of
passivity occurs at ;assive = 1. The value of the bifurcation parameter k£ has been chosen equal to
2. The initial conditions for this simulation have been chosen at random. For global synchronization,
the common coupling strength K has to be strong enough (i.e., K > % = 1.4472). For this

simulation, the value of K was equal to 2.

5The characteristic polynomial is (K — )" — K~ which has only one root equal to zero for any N.
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State-space of 5 oscillators for kp:2

Figure 4.9: Superposition of the state spaces of the 5 passive oscillators coupled through Z5 symmetry.

In Figure 4.9, we clearly see that the oscillators synchronize around a common limit cycle. This
limit cycle is identical to the one obtained for an isolated oscillator.

The same global synchronization results hold for Dy and Sy symmetry networks. For Dy sym-
k—k*, . o;

passive

2ieos(Z)) O SN

k—k

" Mpassive

metry networks, the coupling strength synchronization threshold is Kp, =

symmetry networks, the coupling strength synchronization threshold is Kg, =

Finally, the case of bidirectional open chain structures is also included in Theorem 4.15. Consider
the network represented on Figure 4.10. The corresponding interconnection matrix I' is symmetric
tridiagonal and writes

K —-K 0 - 0 0
-K 2K -K 0 --- 0
0 -K
r= _
0 . 2K —-K 0
0 : . —K 2K -K
0 0o - 0 —-K K

and it is easy to show that its eigenvalues are \; = 2K <1 — cos (%)) , j€{0,...,N —1}. The
k—k*

passive

coupling strength threshold is Kopen chain = m
N
We see that the "larger’ the symmetry of the synchronizing interconnection structure, the smaller

the coupling strength threshold, i.e. Kg, < Kp, < Kz, < Kopen chain- This is in accordance with
the results of SLOTINE [WS] which predict that the synchronization rate is proportional to the number
of oscillators in the network and to the symmetry of the network. The higher the number of oscillators
or the symmetry, the higher the synchronization rate. This is confirmed by the simulations results in
Figure 4.11 where we consider four different topologies with the same number of oscillators, the same
initial conditions and the same coupling strength. We see from Figure 4.11 that the synchronization
rate increases with the symmetry of the network.
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—K —2K —2K -K
K K K
K K K

Figure 4.10: Synchronizing bidirectional open chain structure.

Time evolution of the five outputs for kp=2 Time evolution of the five outputs for kp=2
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Figure 4.11: Simulation results for networks of five identical passive oscillators. (a) Open chain, (b)
Z5 symmetry, (¢) Dy symmetry, (d) S5 symmetry. The parameters values are w, = 1, ( = 1.25,
7 =2, k = 2. The critical bifurcation value for an isolated oscillator is £* = 1 and the corresponding
bifurcation value for the network is k7 _, . = 1. The coupling strength value is K = 3. The same
initial conditions have been used for the different network topologies.

4.6 Summary

In the previous chapter, we showed that dissipativity theory has implication for the global stability
analysis of the limit cycle solution of passive oscillators. In this chapter, we extended the dissipative
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characterization of passive oscillators to networks. This was done by considering a MIMO feedback
representation of the network that is similar to the feedback structure of each isolated passive oscilla-
tor. The main assumption was the passivity (positivity) of the coupling. Under this assumption, we
obtained a dissipation inequality for the network that is similar to that satisfied by each isolated pas-
sive oscillator. Based on this dissipativity inequality, we showed that the results of Chapter 3 extend
in a straightforward manner to networks of passive oscillators (Theorems 4.5, 4.9, and 4.12). As a
second result, we showed that global synchronization is implied by an incremental dissipativity char-
acterization of the network that we named incremental passivity. We provided sufficient conditions
under which passive oscillators are incrementally passive and derived sufficient network topology
conditions for the existence of globally asymptotically stable synchrone oscillations in networks of
identical oscillators (Theorem 4.15). This synchronization result concerns network topologies that
include Sy symmetry (all-to-all topology), Dy symmetry (bidirectional ring topology), Zy symme-
try (unidirectional ring topology) and open chain symmetry. We compared our result with recent
literature results on global synchronization and showed that generically passive oscillators satisfy the
required conditions.
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Chapter 5

Synthesis of stable oscillations

In this chapter, we adopt a synthesis point of view for the generation of stable limit cycle oscil-
lations. We examine how to design a simple controller that yields stable limit cycle oscillations in
a stabilizable system. The problem of synthesis of stable oscillations finds many applications. For
example, in the field of robotics, it plays an important role for (underactuated) rhythmic task robots
such as walking robots ([CAAT03, WGC02, TYS91]), juggling robots (|[SA93, SA94, BKK94, ZRB99,
LBO01, GS04, RLS04]) or general dexterous robots (see e.g. [Wil99a]). In Section 5.1, we propose a
proportional-integral controller to generate oscillations in stabilizable systems. The proposed con-
troller is directly inspired from the theory introduced in the previous chapters. In Section 5.2 we
show that this controller is a natural choice for the generation of limit cycle oscillations in mechanical
systems. We also show that for conservative stabilizable (mechanical) systems in feedback with our
controller, the only assumption of our theorems that is not satisfied is the low dimension of the center
manifold: these systems are generically characterized by a degenerate bifurcation. In Section 5.3 we
propose a method to regularize the degenerate bifurcation. We also show that this regularization
method is only possible for fully actuated, two degrees of freedom mechanical systems. In Section
5.4, we provide simulation results for the cart-pendulum system as a typical example of an underac-
tuated mechanical system for which direct application of the proposed controller results in generation
of stable limit cycle oscillations. Finally, as a second illustration, we describe the research project
that we have initiated with the Laboratoire d’Automatique de Grenoble. This project concerns the
balancing control of the bipedal robot RABBIT.

5.1 A proportional-integral mechanism to generate oscillations in a
stabilizable system

In this section, we consider the problem of generation of limit cycle oscillations in stabilizable

systems. To this end, we introduce the definition of a stabilizable system.
Consider an input-affine nonlinear system 3 represented by the state space model

i = f(2) + g(a)u, (5.1)

where z € R" is the state and v € R™ is the input.
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Definition 5.1 The input affine system (5.1) is called stabilizable if there exists a control law u(x)
and a LYAPUNOV function V (x) whose time derivative is rendered negative definite by u(x).

We also introduce the concept of a “control LyAPUNOV function” (CLF) [SJK97, Section 3.5.3], which
is strongly linked with definition 5.1.

Definition 5.2 [SJK97, Section 3.5.3] A smooth, positive definite, and radially unbounded function
V(x) is called a control LyApuNov function (CLF) for the input affine system (5.1) if, for all x # 0,

LeV(z) =0 = L;V(z) < 0. (5.2)

By definition, any LYAPUNOV function whose time derivative can be rendered negative definite (by
control) is a CLF.

Proposition 5.3 If system (5.1) with LYAPUNOV function V (x) is stabilizable by the control r(x),
then it is passive and ZSD with respect to the input v = u — r(x) and the output y = (L,V (z))".

Proof
The time derivative of the LyApUNOV function V' (z) along the trajectories of system (5.1) is given by

V =LiV(x)+ LyV(x)u.

Using feedback control u = r(z) + v, we obtain
V< yTo,

which implies passivity of the system w.r.t. input v and output y. Furthermore, by definition, V(x)
is a CLF and thus satisfies (5.2). This directly implies zero-state detectability of system (5.1) w.r.t.

Y- [

Assume that the system (5.1) is stabilizable by the control r(x). To generate stable limit cycle
oscillations, we consider the output y = (L,V(x))" € R™ and close the loop with the nonlinear
proportional (P) and integral (I) controller

u(t) = r(z(t) — @ (y(1) — K /O y(r) dr, (5.3)

where r(z) is referred to as the stabilization part, @y (y(¢)) as the “proportional part”, and
Ki fg y(r)dr (with K; = K} > 0) as the “integral part” (see Figure 5.1). The nonlinear func-
tion @y (-) = diag{¢r(-)} defining the proportional part is a multivariable repeated nonlinearity. The
repeated nonlinearity ¢p(y) = —ky + ¢(y) is assumed to satisfy the assumptions given in Section
3.3.1, and ¢(-) is furthermore assumed to be monotone increasing.

To intuitively understand the effect of this controller, consider the SISO case when u € R and
y € R. The proportional part is then denoted by ¢ (y). Its sign varies according to the magnitude
of the output. For small values of the output, the proportional part is sign opposed to y whereas for
large values of the output, the proportional part has the same sign as y. This means that the sign of
the dissipation injected into the system through the proportional part depends on the magnitude of
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the output y. Since the feedback system dissipates energy for large values of the output and restores
it for small values, a limit cycle is expected to appear. As we have seen in Chapter 3, the integral
part generically forces a HOPF bifurcation because of the presence of a zero at the origin for the
linearized system. If the system already includes an integral action, the integral part of the controller
is unnecessary and may be omitted.

Stable system y = (LgV)T

v
Oé with Lyapunov

function V

®y(-) + K diag{1}

Figure 5.1: Synthesis of oscillations by nonlinear PI control of a stable system.

Controller (5.3) is inspired by classical PI controllers u = r(z(t)) — Kpy — K7 f(f y(7) d7 used in
equilibrium point stabilization and regulation theory (see e.g. [CSB96, Chapter 2]). These controllers
are well-known for their robustness to constant perturbations: for any Kp = Kg >0, K= Kf > 0,
the feedback system is (globally) asymptotically stable. This is an immediate consequence of Theorem
2.15, Lemma 2.14 and Proposition 5.3: the feedback interconnection of system (5.1) with the integral
part of the PI controller yields a passive and ZSD system characterized by the storage function
S=V+ %x?KIxI where z; denotes the state of the integrator part of the controller. The whole
feedback system is then characterized by the dissipation inequality S < —y” Kpy. This last inequality
together with ZSD implies global asymptotic stability of the system composed of a forward passive
block in feedback with the classical PI controller u = Kpy + K7 fg y(T)dr.

Other solutions for the generation of oscillation in stable systems have been proposed in the
literature. We classify them mainly in two categories:

e Output regulation where the idea is to force the stable system with an external oscillating input
(see e.g. |Isi95, Chapter 8|, [Pav04]).

e Inversion and zero dynamics shaping where the idea is to design a particular output such that,
when forced to zero, the remaining dynamics yield a stable limit cycle oscillation (see e.g.
|GAGE03, BAGGE04, GEBAGO5], |[BM94, BM95a, BM95b, BMS96]|, [CEU02, SC04]).

Output regulation methods deal with asymptotic tracking of prescribed reference signals. The class
of reference signals consists of solutions of some external autonomous system called the ezosystem.
Reference signals generated by the exosystem are called ezosignals. The output to regulate is called
the regulated output (e.g. the tracking error in the tracking problem). The output available for
measurement is called the measured output. The idea is to find a measured output feedback controller
such that the closed loop system is internally stable and the regulated output tends to zero along
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solutions of the closed loop system. The internal stability requirement roughly means that all solutions
of the closed loop system “forget” their initial conditions and converge to some limit solution which
is determined only by the exosignal. To generate oscillation the exosystem is designed to produce
a specific oscillating exosignal. The use of output regulation methods to produce stable limit cycle
oscillations is generally not easy because of the need to design specific output and controller that
render the closed loop system internally stable and at the same time allow to solve the regulation
problem. Their advantage is that they allow to track a specific orbit in the state space.

Inversion methods generally require precise models of the system. They use the control to destroy
unwanted (generally nonlinear) parts of the dynamics in order to feedback transform the system
into a specific, easier to control, system (e.g. partially linear system). To generate oscillations, the
control is used to force the output of the transformed system to zero and simultaneously to induce
a zero dynamics that yields stable limit cycle oscillations. The main drawback of these methods are
their lack of robustness to unmodeled dynamics, and/or the difficulty to perform the required zero
dynamics shaping for complex nonlinear systems.

The main advantage of the PI controller (5.3) is that it relies on stabilization theory for equi-
librium points. It is thus easy to implement: once a stabilizing, passive output has been designed
for the system, it is used to close the loop with the controller in order to generate limit cycle os-
cillations. The design of a stabilizing, passive output is a central topic in nonlinear control theory
and many methods already exist to solve this problem (feedback passivation designs [vdS00, SJK97],
controlled Hamiltonian and Lagrangian theory [BLMO01, BCLMO01, BOvdS02|, energy shaping meth-
ods [OvdSMMO1, OvdSMEO02], etc.). Furthermore, this passivity based controller is expected to have
good robustness properties to model uncertainties and perturbations because it does not rely on the
exact cancellation of parts of the dynamics. The counterpart is that it does not allow to track a
specific orbit and, as we have seen in Theorem 4.5', that specific assumptions have to be satisfied:

e ultimate boundedness of the closed-loop system:;

e absolute stability at criticality, that is, when k = k*.

The ultimate boundedness assumption is a technical assumption. As we have seen in Chapter 3,
it is always satisfied when the forward block is linear. For a general nonlinear forward block, this
assumption is difficult to verify. Nevertheless, for a passive, zero-state detectable, forward system,
unbounded solutions are unlikely to happen. This is intuitively clear if one considers the sign of the
dissipation added by the nonlinear proportional part of the controller. For large values of the output,
the sign of the dissipation is positive leading intuitively to bounded solutions.

The absolute stability assumption is thus the most critical one. Numerous criteria have been
developed in order to verify absolute stability of a feedback system: e.g. circle criterion, PorPov
criterion, ZAMES-FALB multipliers, and numerical methods (e.g. Integral-Quadratic-Constraints
see [MR97| for a general and recent treatment). In the next section, we introduce and justify the use
of a passivity based controller for the generation of limit cycle oscillations in mechanical systems.

In this chapter, Theorem 4.5 is used to characterize oscillations in MIMO feedback systems. For this, we consider
Theorem 4.5 where = is not supposed to result from the interconnection of several SISO systems as in Chapter 4, but
from the interconnection of the stabilizable MIMO system (5.1) with the integral part of controller (5.3). As such,
Theorem 4.5 is the direct and immediate extension of Theorem 3.8 to the feedback interconnection of a MIMO strongly
passive system Z with the multivariable repeated nonlinearity ®4(-). Since the notion of network has no sense here, we
denote the critical value of bifurcation by k™ instead of k) ,,0rk- With these considerations in mind, the formulation
of the Theorem is identical.
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5.2. SYNTHESIS OF STABLE OSCILLATIONS IN MECHANICAL SYSTEMS

5.2 Synthesis of stable oscillations in mechanical systems

For the generation of stable oscillations in mechanical systems, the nonlinear PI controller (5.3)
is natural for several reasons:

e The total energy of the mechanical system is generally a good LYAPUNOV function candidate.
e Passivity is a natural physical property between conjugated variables of the system.

e Even for unstable mechanical systems (e.g. the cart-pendulum with pendulum in inverted
position), various energy shaping methods exist to feedback transform the initial system into a
stable and conservative system.

Using the PI controller (5.3), global limit cycle oscillations are obtained for k 2 k* if the assumptions
of Theorem 4.5 are satisfied. As we have seen, the critical assumption is the absolute stability of the
feedback system at k = k*. In order to satisfy this assumption, we may consider systems for which it
is trivially satisfied. This is the case for general conservative systems which typically loose stability
and passivity simultaneously at £* = 0 when put in feedback with controller (5.3). Unfortunately, the
resulting feedback system is generically characterized by a degenerate bifurcation, i.e. the number of
eigenvalues crossing the imaginary axis at k = 0 is typically greater than 2 (see Appendix B). Three
solutions may be considered at this stage:

e Solution 1: Take into account RAYLEIGH dissipation in the model and check if all the assump-
tions of Theorem 4.5 are satisfied (that is, mainly the absolute stability at criticality).

e Solution 2: Regularize the bifurcation by feedback in order to return to the standard bifurcation
scenario.

e Solution 3: Generalize Theorem 4.5 to the case of degenerate bifurcations.

Solution 3 is beyond the scope of this chapter and will be the subject of future work. Solution 2
is considered in Section 5.3. The idea is to inject dissipation into the conservative system in order
to return to a non-degenerate bifurcation situation. In Section 5.3, we show that generically, this
regularization is possible only for fully actuated, two degrees of freedom mechanical systems.

5.3 Fully actuated, two degrees of freedom mechanical systems

In this section we present a method to regularize the degenerate bifurcation that generically ap-
pears when considering the feedback interconnection of a linear, conservative system with controller
(5.3). This method consists in injecting specific dissipation into the system in order to 'push’ all eigen-
values but two in the open left-half complex plane, thus keeping the critical value k* = 0 unchanged
but regularizing the bifurcation. Sufficient conditions that allow for the feedback implementation of
this specific dissipation are presented in Section 5.3.1. We show that the proposed sufficient conditions
can be satisfied only for fully actuated, two degrees of freedom mechanical system.
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CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS

5.3.1 Transforming a linear PCH system into a passive system that satisfies the
assumptions of Theorem 4.5

Consider the feedback interconnection of Figure 5.1 where the forward block, denoted by X, is
linear, strongly conservative and detectable. We denote by Z, the feedback interconnection of X with
the integral part of the controller. As feedback interconnection of two conservative systems, = is
conservative w.r.t. its input w and its output y. It is also easy to show that = is detectable.

Let z denote the state variable of Z. The dynamics of the linear system = are given by

2z = Az+ Bw (5.4)
y = Cz

Since Z is conservative, there exists a matrix P = P” > 0 such that the HILL-MOYLAN conditions

ATP+PA = 0 (5.5)
¢ = B'p

are satisfied. Taking J = AP~!, the first HILL-MOYLAN condition (5.5) leads to J = —JT which
shows that J is a skew symmetric matrix and that the system (5.4) may be written as a port controlled
Hamiltonian (PCH) system (see [vdS00, section 4.2.2]).

z = JPz—l—Bw:J%H(z)—i-Bw (5.7)
z
0H
_ pTp,_ proHd
y = B"Pz=DB P (2) (5.8)

where the Hamiltonian function H(z) is the storage function S(z) associated to the (strongly) con-
servative system (5.4), i.e. H(z) = S(z) = 227 Pz with P = PT > 0.

We now present a method that transforms the linear PCH system (5.7),(5.8) into a system that
satisfies the assumptions of Theorem 4.5. The intuitive idea is to inject dissipation into the system
in order to push all the eigenvalues but two into the open left-half complex plane.

Consider system (5.7),(5.8). There always exists a real orthogonal matrix @ that transforms it
into a block triangular system, i.e. a system with a block triangular Jacobian matrix (see [HJ85, p.
82, theorem 2.3.4]). Under this coordinate transformation, equations (5.7),(5.8) write

i = JPz+ Bw (5.9)
y = BTPz (5.10)
where 2 = Qz, B=QB, J = QJQT = —JT, and P = QPQT = PT > 0 Since passivity (conserva-

tiveness) is a coordinate independent property, system (5.9),(5.10) is also conservative w.r.t. input w
and output y. In these coordinates, the matrix JP writes

JP:(S Z) (5.11)
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where ¢ is a 2 x 2 matrix, and both § and A have all their eigenvalues on the imaginary axis (see
Appendix B). The idea of the method is to design a dissipation matrix R = RT > 0 such that the
resulting port controlled Hamiltonian system with dissipation (PCHD):

o= (j—R)P2+Bw (5.12)
y = BTPz (5.13)

has only two eigenvalues on the imaginary axis, the other eigenvalues having strictly negative real
parts.

Thus, given P, we want to find R = R” > 0 such that (j — R) P has the form

) *
0 A—el |-

This amounts to find a symmetric positive semidefinite matrix R such that

o 0 % =1
R_<0 d)p .

If we choose x = 6P12P231, where Pjs and Pao appear in the block decomposition of p-t corresponding

.. == ~ P P ~ T . .
to the block decomposition of JP, i.e. P~ = < Pl% Pm > = (P_1> > 0, then R is a symmetric
12 22
positive semidefinite matrix. This is proved hereafter.

Proof

~1 —1pT
With * = ePP;;!, we have R = ( 0 ePiaPy, ) < Py Pro > _ 6( PioPyy Py Pio

which
0 e Ph Py P Py )

is obviously symmetric. Moreover, it is positive semidefinite for € > 0 since e Pyo is symmetric positive
definite and its SCHUR complement is positive semidefinite? (see [HJ85, Theorem 7.7.6]). [ |

Generically, the PCHD system (5.12)-(5.13) with the dissipation matrix

R—e < Plng%le; Po >
P Pas

will satisfy all the assumptions of Theorem 4.5. In order to have a constructive way that allows to
regularize the bifurcation, we now present a method to implement this dissipation matrix by feedback.

5.3.2 Implementing specific dissipation by feedback

The following algorithm leads to the computation of the feedback law implementing the desired
dissipation matrix R. This algorithm is derived from the more general matching theorem of port-
controlled Hamiltonian systems given in [OvdSMMO01, OvdSME02, BOvdS02]:

1. Compute the image of B, i.e. W = Im(B) = {p eR": Bv=p, Vv e Rm}

2. Compute the left annihilator of W, ie. W° = Ann(W)={leR" : I[p=0, Vp e W}

2The ScHUR complement is 0.

109



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS

3. If 31 € W° such that [RPZ =0, VZ € R", then —RP% € W for all Z € R", which in turn implies
that there exists a control w € R™ such that Bw = —RPZ for all Z € R"”

o ~\—1 < ~
4. The control law that implements the dissipation matrix R is w = — (BTB) BTRPZ +w
where w denotes the new control input of the system.

For the particular matrix R that we have chosen, the condition 31 € W° s.t. [RPZ = 0, VZ € R"

amounts to verify that Im ( P12 > C I'm(B). This is easily seen by partitioning the vector [ according
22

-1
to the partition of RP. The condition then writes I € W*° s.t. e( i Iy ) < 8 P12f22 ) ( zl > —
2

Pioy

0, Vz € R™, which amounts to verify that 9l € W° s.t. ( I Iy ) < P
22

> = 0. This condition is

satisfied if and only if Im < ?2 > C Im(B).
22

: Pro
The matrix
( Py

the dimension of the system and m the number of control inputs. For fully actuated mechanical
systems, we have m = 7, where 7 is an integer that denotes the number of degrees of freedom of the

> is a n x (n — 2) matrix. The matrix B is a n x m matrix where n denotes

. o P, = . .
mechanical system. It results that the condition I'm < P12 ) C Im(B) can generically be satisfied
22

only for n =4 and m = 2, i.e. for a fully actuated mechanical systems with two degrees of freedom.

This dissipation implementation method has been given here for the sake of completeness. Indeed,
because of its limited application field, and since our final goal is to generalize Theorem 4.5 to
degenerate bifurcations, we chosed not to investigate further in this way but rather to have a first
insight into the qualitative behavior in the degenerate case. In this case, we cannot conclude to the
existence, uniqueness and global asymptotic stability of limit cycle oscillations generated by controller
(5.3). Nevertheless, we intuitively expect this controller to yield limit cycle oscillations when used
in feedback with a stabilizable, conservative system. To show this, we provide, in the next section,
simulation results for the cart pendulum system as a typical example of underactuated, conservative
mechanical systems for which direct application of our controller leads to limit cycle oscillations.
These simulation results show that, even in the presence of a degenerate bifurcation, a limit cycle
oscillation with a large basin of attraction is generated. This tends to confirm that our results should
hold even if the bifurcation is degenerate, which would allow to apply controller (5.3) directly to any
stabilizable, conservative system.

5.4 Direct application to underactuated, mechanical systems

As an illustration of the application of our theory to underactuated, mechanical systems we
consider the cart-pendulum example and provide simulation results when the loop is closed with our
controller. We have chosen this simple example because it constitutes a benchmark, underactuated,
mechanical system for which stabilization by energy shaping has already been solved. The limit cycle
generation method is explained in the next sections. The general idea is the following: first, we use
energy shaping to feedback transform the system into a conservative, stabilizable system, and second,
we use the corresponding conservative output to close the loop with our controller. This idea is used
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to generate limit cycle oscillations both around the stable and the unstable position of the pendulum.
As we have remarked in Section 5.2, generically the bifurcation is degenerate and Theorem 4.5 does
not allow to draw conclusions about limit cycle oscillations. Nevertheless, simulation results show
that, even in the degenerate bifurcation case, limit cycle oscillations with large basin of attraction are
generated. The proof of this claim (Solution 3 in Section 5.2) is beyond the scope of this chapter and
will be the subject of future work. As a second illustration, we present, in Section 5.4.4, our current
research project in collaboration with the Laboratoire d’Automatique de Grenoble (France) involving
the problem of balancing control of the bipedal robot RABBIT.

5.4.1 Typical example of underactuated mechanical system: the inverted pen-
dulum on a cart

We consider the cart-pendulum system without friction. We derive a non-linear control law aimed
at producing limit cycle oscillations around the origin of the cart axis. For the pendulum, two
situations are considered: oscillations around the stable position of the pendulum and oscillations
around its unstable position.

We denote by x the cart position, by v = & the cart velocity, by 6 the angle between the vertical
axis and the pendulum, by w = 0 the angular velocity of the pendulum, and by F' the lateral force
applied to the cart (see Figure 5.2). With these notations, the cart-pendulum equations of motion
are

{ Jw —mglsind +mlocos = 0 (5.14)

Mo+ mlwcosd —mlw?sind = F

where J = mi? is the moment of inertia with respect to the pivot point, m the mass of the pendulum,
m. the mass of the cart and M = m + m.. Equivalently we have

Jw — mglsin 0 + mlo cos 6 = 0
(M — m (cos 9)2) v — mlw?sind + mgsinfcosf =

The (nonsingular) feedback transformation
(M —m (cos 9)2) a — mlw?sinf +mgsinfcos = F

yields the simplified dynamics

(5.15)

Jw —mglsin@ + mlacosd = 0
v = a

where the new input a directly controls the cart acceleration.
The open-loop structure of this system is

(it = ot
Ependutum = GQQZG(_WZWCOSQ)

where Epenguium = %JwQ + mglcos0 and yo = —mlsinf.

5.4.2 Around the stable position of the pendulum

In order to generate limit cycle oscillations around the stable position of the pendulum, we first
design a conservative output y that allows stabilization of the system by damping injection. We then
use this output to generate oscillations in the whole system by closing the loop with ¢ (y) = —ky+y>.
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Figure 5.2: The cart-pendulum system

5.4.2.1 Design of a stabilizing output
The total energy of the system is given by

- 1
E = Ependulum + 57}27

whose derivative is )
E = a2
where z =z + yo = x — mlsin§.
In order to create a minimum at (x,j:, 0, 9) = (0,0,m,0), we perform (potential) energy shaping

by considering the energy function

-1
V:E+§sz , Ky >0
whose derivative is
V= (a+ Kpz)z.

Taking the control input a to be a = —Kp,z + u, we get
V =uy
where y = 2 is the output with respect to which the system is conservative.

5.4.2.2 Stabilization of the system

The damping control v = —K,y, asymptotically stabilizes the pendulum at its stable position
and the cart at the origin. The corresponding acceleration control is given by

a = —Ky,z— Kgy.
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5.4.2.3 Creation of a limit cycle oscillation

After feedback transformation into a stabilizable, conservative system, we consider the poles/zeros
configuration of the linearization around (9, 6’,:1:,3':) = (m,0,0,0). This poles/zeros map is sketched

on Figure 5.3. As can be seen the system already possesses a zero at the origin. The integral part of
the controller is thus not necessary.

(s} LEGEND
X pole

O  zero

R{s}

Figure 5.3: Poles/zeros configuration for the cart pendulum system after feedback transformation
into a stabilizable and conservative system.

For k > 0, the control law u = ky — 3> is expected to produce a limit cycle oscillation around the
stabilized position of Section 5.4.2.2. The corresponding acceleration control is given by

a=—Kyz+ky—y> (5.16)

5.4.2.4 Simulation results

In this section, we present the simulation results obtained with the control law (5.16) for different
values of the control parameter k. The physical parameters of the system have been chosen in order to
correspond to reality: m = 0.14kg, m. = 0.44kg, g = 9.81 m/sz, [ = 0.215m. The control parameter
K, was chosen equal to 10. The initial condition was (arbitrarily) chosen as z(0) = 1, #(0) = 0.3,
6(0) = m+40.2, and 0(0) = 0.1. We then have considered three values of the parameter k, respectively
k=-1, k=1, and k = 2.

In Figure 5.4, we clearly see that the origin of the system is asymptotically stable for k = —1,
and unstable for k = 1 and k = 2. Moreover, as expected, a limit cycle whose radius depends on k
appears for £ > 0. The same steady state responses were obtained when other initial conditions were
used.

5.4.3 Around the unstable position of the pendulum

Similarly to the idea presented in Section 5.4.2, we first design a conservative output y that allows
stabilization of the system with pendulum in inverted position and cart at the origin. As we did
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Figure 5.4: Cart-pendulum system: creation of oscillations around the stable position of the pen-
dulum. Column (a) k = —1, Column (b) £ = 1, Column (c¢) k = 2. The first line represents the
projection of the state space on the pendulum state variables plane. The second line represents the
projection on the cart state variables plane. The third line represents the temporal evolution of the
state variables.

in section 5.4.2, we then use this output to generate oscillations in the whole system by closing the
loop with ¢x(y) = —ky + y3. The stabilization part is directly inspired by literature results (see
[BLMO01, BCLMO01, BOvdS02]).

5.4.3.1 Design of a stabilizing output

In the first step, the kinetic energy of the pendulum is shaped by %kpy% (kp < 0). In the second
step, overall energy shaping is achieved.

e Step 1
We use the feedback a = —kpij2 + w to obtain

z = w
Ependulum = w?)2
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with 2 = 2 + kpy2, and Ependutum = Ependutum + skpy3. This leads to Epepautum = 5J6% +
m cos 6 (gl + %Jk:pé2 cos 9).

e Step 2
We perform overall energy shaping by considering the energy function

~ 1, 1
V= Ependulum + 532 + iKp (Z + y2)2 s

whose derivative is

V=(+1792) (w+ Kp(z+y2)).

Taking the control input w to be w = u — K, (2 4+ y2), we get

V = uy,

where y = Z + 19 is the output with respect to which the system is conservative.

5.4.3.2 Stabilization of the system

The damping control u = — K,y stabilizes the pendulum in the inverted position and the cart at
the origin (see [BLMO1]). The corresponding acceleration control is given by

a = —kpijp — Ky (2 +y2) — Kay.

Taking into account the definitions of y2 and z, and the dynamics (5.15) for the elimination of §js
from the equation, we obtain

kpmgsin 0 cos 0 — kymlf?sin — K, (z — (kp + 1) mlsin0) — K, (x — (kp + 1) mlf cos 0)

a= >
1+ kpm (cos )

5.4.3.3 Creation of a limit cycle oscillation

After feedback transformation into a stabilizable, conservative system, the poles/zeros configura-
tion of the linearization around (0, 0, x, a:) = (0,0,0,0) is similar to that sketched in Figure 5.3. The
system being conservative w.r.t. the output y, the control law v = ky — y> is expected to produce a

limit cycle oscillation around the stabilized position of Section 5.4.3.2 for k& = 0. The corresponding
acceleration control is given by

a4 = — pQQ_Kp(Z“‘yQ)‘{'ky_y?)'

Taking into account the definitions of y2 and z, and the dynamics (5.15) for the elimination of ¢
from the equation, we obtain

kpmgsin 6 cos 6 — Icprnlé2 sinf — Ky (z — (kp + 1) ml sin 9) + k (z — (kp + 1) mlé cos 0) — (z — (kp —+ 1) ml6 cos 9)3
_ . 5.17
“ 1+ kpm (cos6)? ( )
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State-space projected on the pendulum state variabls plane State-space projected on the pendulum stae variabes plane

Time evolution ofthe state variable of the carl-pale system

(a) k= —1 (b) k= 0.1

Figure 5.5: Cart-pendulum system: creation of oscillations around the unstable position of the pen-
dulum. Column (a) k = —1, Column (b) k& = 0.1, Column (c¢) & = 1. The first line represents the
projection of the state space on the pendulum state variables plane. The second line represents the
projection on the cart state variables plane. The third line represents the temporal evolution of the
state variables.

5.4.3.4 Simulation results

In this section, we present the simulations results obtained with the control law (5.17) for different
values of the control parameter k. The values of physical parameters are the same as in Section
5.4.2.4. The value of the control parameters k, and K, are chosen equal to —80 and 2 respectively
(see [BLMO1]). The initial conditions are z(0) = 10, #(0) = 0.3, 8(0) = 0.2, and #(0) = 0.1. Note the
large initial deviation of position of the cart with respect to the origin. Once again we have considered
three values of the parameter k, respectively k = —1, k = 0.1, and k = 1.

In Figure 5.4, we clearly see that the origin of the system is asymptotically stable for k = —1,
and unstable for £ = 0.1 and £ = 1. Moreover, as expected, a limit cycle whose radius depends
on k appears for k£ > 0. Using different initial conditions, we have obtained the same steady state
responses, which tends to confirm that the created limit cycle has a large basin of attraction.

As a second illustration of the application of our controller to the generation of stable limit cycle
oscillations in mechanical systems, we present, in the next section, our current research project in
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collaboration with the Laboratoire d’Automatique de Grenoble (France).

5.4.4 Balancing control of RABBIT

RABBIT is a bipedal robot specifically designed to advance the fundamental understanding of
controlled legged locomotion (see [CAAT03] for an excellent introduction to the RABBIT project).
A picture of RABBIT is displayed in Figure 5.6. A canonical problem in bipedal robots is the design
of a controller that generates closed-loop motions such as walking, running, or balancing, that are
periodic and stable (i.e. limit cycles).

Figure 5.6: The bipedal robot RABBIT

During a balancing motion, RABBIT is modeled as a three link inverted pendulum (see Figure
5.7): the stance leg is supposed to be rigidified in such a way that the tibia, femur and torso are
aligned while the balancing leg is actuated at the hip and knee. The goal is to find a feedback control
law that induces a non-trivial, limit cycle in the three-link inverted pendulum. As emphasized in
[CAAT03]: “what makes this control problem quite different from walking is that ground impacts are
not considered in balancing. At first glance, this may seem to simplify the problem, but, upon further
reflection, this is not the case. The difficulty lies in the fact that the class of stable, periodic motions
that can be achieved by balancing seems to be much smaller than what can be achieved through
allowing impacts.” A solution to the balancing problem has been recently proposed in [CEU02, SC04].
This solution is based on the concepts of zero dynamics shaping and virtual constraints. It allows to
generate locally stable periodic orbits for the balancing motions of the three-link pendulum model of
RABBIT.

Balancing leg

Stance leg /

@® : Actuators

Figure 5.7: Modelization of RABBIT as a three-link inverted pendulum.

In ongoing research, we envision to apply our nonlinear PI controller to generate stable balancing
motions for RABBIT. The aim is to illustrate our theory and to show that our PI controller provides a
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simple and robust method to generate limit cycle oscillations in such a complex system as RABBIT. To
support this idea, we consider some analogies with the problem of generating limit cycle oscillations in
the cart-pendulum system. The modelization of RABBIT as a three-link inverted pendulum indicates
several similarities with this system. First, it constitutes an underactuated system with one degree of
underactuation. Second, if we consider small deviation of the stance leg (corresponding to the free link
of the three-link pendulum) w.r.t. the vertical axis, the movement of the hip is almost horizontal and
may be assimilated to the translational degree of freedom of the cart. Preliminary works show that the
dynamics of the three link inverted pendulum for small deviation around the inverted vertical position
(free link in inverted position and actuated links hanging in stable position) is very similar to that
of the cart-pendulum except for some additional centrifugal terms in the (free) pendulum dynamics.
Based on these analogies, application of our controller to the three-link pendulum is expected to allow
for the development of a simple and robust control law for the balancing control of RABBIT.

5.5 Summary

In this chapter we adopted a synthesis point of view for the generation of stable limit cycle oscilla-
tions in stabilizable systems. Based on the theory developed in the previous chapters, we presented a
proportional-integral feedback controller to answer the synthesis question and briefly compared it with
other solutions proposed in the literature. Under some technical assumptions presented in the previ-
ous chapters, we showed that this controller is useful to generate oscillations in stabilizable systems.
The main advantage of this controller is that it relies on existing stabilization theory for equilibrium
points: once a stabilizing, passive output has been designed for the system, it is used to close the
loop with the controller in order to generate limit cycle oscillations with large basins of attraction.
The design of a stabilizing, passive output is a central topic in nonlinear control theory and many
methods already exist to solve this problem (feedback passivation designs, controlled Hamiltonian
and Lagrangian theory, energy shaping methods, etc.). However, the use of the proposed controller
does not allow to directly draw conclusions from the theorems presented in the previous chapter. The
main reason is the difficulty of verifying the absolute stability assumption at criticality. To guarantee
that this assumption is satisfied, we have considered the class of stabilizable, conservative systems
for which it generically holds. Unfortunately, we have shown that the corresponding bifurcation is
generically degenerate. To regularize the degenerate bifurcation we have proposed a method based
on the feedback injection of specific damping into the system. This solution has been shown to be
applicable only to fully actuated two degrees of freedom mechanical systems. Even in the case when
the degenerate bifurcation is not regularized, the proposed controller is expected to yield stable limit
cycle oscillations thus providing a simple method to force oscillations by feedback. As an illustration
of the proposed synthesis method to underactuated mechanical systems, we have shown simulation
results for the cart-pendulum. In future work, we plan to extend our theorems to include degenerate
bifurcations and apply this controller to the balancing control of the bipedal robot RABBIT.
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Chapter 6

Conclusion and future work

6.1 Summary

The central theme of this thesis is the global analysis and synthesis of oscillators. Our aim has
been to develop a global analysis method for oscillators which is independent of their dimension
and provides an interconnection theory. The proposed approach was to consider a dissipativity
characterization of oscillators which fits their description by physical state space models and, at
the same time, has implications for their global stability analysis. This theory includes two global
oscillation mechanisms which are illustrated in their simplest way in the celebrated low dimensional
models of VAN DER PoOL and FITZHUGH-NAGUMO. A first main contribution has been the extension
of these global oscillation mechanisms to high-dimensional systems composed of a strongly passive
system in feedback with a slope parametrized, static nonlinearity. Under some technical assumptions,
we showed that, generically, this feedback interconnection undergoes either a supercritical HOPF, or a
supercritical pitchfork bifurcation. The global oscillation results either directly from the supercritical
HoPF bifurcation or from the addition of a slow adaptation dynamic to the globally bistable system
created by the supercritical pitchfork bifurcation.

As a second contribution, we have shown that the results obtained for an isolated passive os-
cillator extend to passive interconnections of passive oscillators. Moreover, we showed that global
synchronization is implied by an incremental dissipativity characterization of the network that we
named incremental passivity. We also provided sufficient conditions under which passive oscillators
are incrementally passive and derived sufficient network topology conditions for the existence of glob-
ally asymptotically stable synchrone oscillations in networks of identical passive oscillators. This
global synchronization result concerns network topologies that include Sy symmetry (all-to-all topol-
ogy), Dy symmetry (bidirectional ring topology), Zy symmetry (unidirectional ring topology) and
open chain symmetry. We compared our synchronization result with other recent results on global
synchronization and showed that generically passive oscillators satisfy the required conditions.

Finally, based on these analysis results, we presented a proportional-integral feedback controller
to answer the limit cycle synthesis question and briefly compared it with other solutions proposed in
the literature. The main advantage of the proposed controller is that it relies on existing stabilization
theory for equilibrium points: once a stabilizing, passive output has been designed for the system,
it can be used to close the loop with the controller in order to generate limit cycle oscillations with
large basins of attraction. The design of a stabilizing, passive output is a central topic in nonlinear
control theory and many methods already exist to solve this problem (feedback passivation designs,
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controlled Hamiltonian and Lagrangian theory, energy shaping methods, etc.). As an illustration of
the application of this controller to underactuated mechanical systems, we showed simulation results
for the cart-pendulum for which limit cycle oscillations with large basins of attraction were successfully
generated.

6.2 Future work
In future work, we plan to investigate the following open questions:

e Extension of the numerical method proposed in Section 3.6 to piecewise linear passive oscillators
of order greater than two.
This extension would lead to a global numerical analysis method for piecewise linear approxi-
mations of passive oscillators. Such a method would be very interesting for testing numerically
the existence and global stability of the limit cycle for a particular value of the bifurcation
parameter.

e Generalization of our theorems to the degenerate bifurcation situation when more than two
eigenvalues cross the imaginary axis simultaneously at criticality.
This generalization would yield analytical results proving that, even if the bifurcation is degener-
ate, a globally asymptotically stable limit cycle is created. This result is particularly important
for the synthesis of global oscillations in conservative systems.

e Application and experimental validation of our limit cycle oscillations synthesis method to
underactuated mechanical systems including the pendubot, the acrobot, and the balancing
control of the bipedal robot RABBIT.

e Extension of the synchronization results to networks of non identical passive oscillators.

e Analysis of other feedback oscillation mechanisms through an input-output approach.
The feedback mechanisms presented in this thesis were based on bifurcations caused by an
inversion of the feedback static gain. Other feedback mechanisms based on bifurcations caused
by inversion of the phase are common in biochemistry. This phase inversion is generally due to
the presence of a delay in the feedback loop. The use of an input-output approach to perform
analysis of delay feedback systems yielding globally stable limit cycle oscillations constitutes an
important open question that is currently investigated.
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Appendix A

Complement to Chapter 4

A.1 Real positive definite matrices

In this section we give the definition of real positive definite matrices. This definition does not
implicitly assume, as is often the case in the literature, that the matrix is symmetric. This distinction
is important in the context of interconnection of passive oscillators since it allows for non symmetric
network topologies to be considered.

Definition A.1 A real matriz A is positive definite iff 7 Az > 0, Vo € R™\{0}.

For positive semi-definite matrices, the same definition holds except that the inequality is non-strict.
Note that these definitions of positive (semi) definite matrices hold for non-symmetric matrices. In
fact, since any matrix A may be written under the form A; + A, where Ay = % (A + AT) is the
symmetric part of A and A, = % (A — AT) is the anti-symmetric part of A, we immediately see that
xT Az = 2T Az, for all 2 € R if A is real. Thus a real matrix is positive (semi) definite if and only if
its symmetric part is positive (semi) definite.

For a symmetric positive definite matrix the eigenvalues are positive. The corresponding property
for non symmetric positive definite matrix is given in Theorem A.2.

Theorem A.2 The eigenvalues of a real positive definite matriz have positive real parts.

Proof
If A= (Ar+iA;) € Cis an eigenvalue of A, then, by definition,

A= Av, v e C", (A1)

where v = vy + iv; denotes the corresponding eigenvector.
From equation (A.1), we get the system of equations

{ ARUR — AJUT Avg (A2)

A[VR + Agvr =  Avg
Since A is positive definite, we have
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T
vpAvg > 0
A.
{ ’U?AU[ > 0 (A-3)
Injecting the equations appearing in (A.2) into (A.3), we obtain
2y 4T
|UR|2 AR )\[1}7{%1}] > 0 (A4)
‘U[’ )\R+)\]1}I1)R > 0

Summing these two inequalities, we get the following condition which has to be respected for any
eigenvalue A

AR |U’2 > 0.

This condition implies Az > 0. [

A.2 Synchronization topologies

The synchrone oscillation result of Theorem 4.15 requires some particular assumptions on the
interconnection matrix I'. These assumptions are

o I' € RVXN i5 positive semidefinite, i.e. YITY >0, Vy e RY;

e ker (I') = ker (I'") = range (1).

Note that these assumptions do not require the interconnection matrix I" to be symmetric.
We will concentrate on the ker (I') = ker (FT) assumption. This assumption is essential for proving

that ij,;rlFYkerl > Aming, (I's) ‘YkerL‘Z for any Y, . belonging to the orthogonal complement of

ker (I'), i.e. for any Y, 1 € (ker )t = {Y eRN : YTZ =0,VZ € ker (T')}. First of all, we note
some propositions concerning the implications of this assumption.

Proposition A.3 Ifker (I') = ker (I'"), then Y € ker (I') = Y € ker (I';).

Proof
Obvious. ]

This property is important for the Zy symmetry case.

Proposition A.4 If ker (I') = ker (I‘T) and Y = Yier + Yo where Yier € ker (I') and Y, 1 €
(ker (T)*, then YITY =Y,I [ T.Y, ..

Proof
Obvious from proposition A.3. [

We are now ready to prove the main result. This result is summarized in Proposition A.5.
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Proposition A.5 If T' is a real, positive semidefinite matriz such that ker (I') = ker (FT) =
range (1) and Y = Yie + Yy 1 where Yier € ker (I') and Y, 1 € (ker (T)*, then YerLFYkerL >

ker
Amin_sq (Ty) ‘Ykerj_ ’2 where Amin_, (T's) denotes the smallest nonzero eigenvalue of (T's).

Proof
Ykzrirykerl = Ykzrlrsykeﬁ where I'y = %(F—i—FT). Since I'y is symmetric, there always exists
an orthogonal matrix L that diagonalizes Ty, i.e. LT\LT = A where A = diag (0, A, ..., A\n) with

0< A <--- < Ay. We thus have

VI T = Y. LTALY,

ker ert
2 2
)\222 + .- +)\NZN

> Ao (25 + 0+ 2%)
2
= )\2 ‘LYrkerl ’
2
— )\2 ‘Ykerl ’ 5
where z;, i = 1,..., N denotes the i*" component of LY, 1. The third equality comes from z; = 0
which results from the definition of Y} .. [ ]

Finally, we give two propositions allowing to compare ker (I') and ker (I' ® I,,).

Proposition A.6 If w € ker ('), then (Ix ® B)w € ker (I' ® I,), VB € R"*1,
Proof
T®Il,)(Iy®B)w=(Iy®B)Tw =0, Ywker (T). |
This proposition directly implies that Y, 1+ = (In®C)X, 1 € (ker )", VXL €
(ker (' ® 1)) since Yw € ker (I') we have (Ykeri)T’LU = (Xkerl)T (In®@CT)w=0.
Proposition A.7 If X € ker (I' ® I,), then (Ix ® C) X € ker (T'), VC € R*™.

Proof
FrIneC)X=Iy®C)IT'®I,) X =0,VX € ker (' ® I,,). [ ]

This proposition directly implies that Yier = (In @ C) Xyer € (ker (I')), VX € (ker (I' ® I,)).
A.3 Invariance of the kernel dynamics

In this section, we prove invariance of the kernel dynamics corresponding to equation (4.19).
Let Xyer belong to the kernel of I' ® I,,. According to (4.19), Xy, satisfies the dynamics

{ Xier = (In ® A) Xier = (In ® B) @ (Yieer) + (Iy @ B)U (A5)
Yker — (IN ® C) Xker

Assume linear coupling, i.e. U = —I'Yie. Since, by definition, (I' ® I,;) Xxer = 0, we obtain U =
T (UNRC)Xyer = —(IN®C) (I ® I,) Xyer = 0. It is now easy to see that the kernel dynamics

(A.5) are invariant since

T 1I) Xger = (In @ A) (T @ I,) Xieer — (In @ B) T®y, (Yier) = 0,
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for any Xy € ker (I'® I,).

A.4 Implication of observability for linear systems
Proposition A.8 For linear systems satisfying the state-space model

{ z = Ax+ Bu

y = O (A.6)

observability of the pair (A, C) implies 361 > 0, B2 > 0 such that Vt > 0

t
8, \xo!2s/0 () dr < Bo Jof?.

Proof
Observability of the pair (A, C) implies

t
vE, W,(0,%) = / (eAt)TcTceAt dt > 0,
0

where W,(0,¢) denotes the observability Grammian (see [AM97, p. 253]). Thus, for an observable
linear time-invariant system, W,(0,¢) is a symmetric positive definite matrix, for any ¢ > 0. This
means that for any ¢ > 0, there exists 81 > 0 and (33 > 0 such that

Bl < W (0,1) < Bl (A7)
The output of the linear system is given by
t
y(t) = CeMag +/ CeA'") Bu(r) dr
0
where xop = x(0). Consider the “input-free” output y(t) = y(t) — f(f CeAt=T) Bu(r)dr = CeAlay.

This yields 2l W, (0,t)zo = g:cOTeATTC’TC’eA%O dr = fo"?|g](7')]2 dr. Now, the condition (A.7)
equivalently writes

t
By |ol? < /0 ()2 dr < B ol (A.8)

for any t > 0. In particular, for an unforced linear time-invariant system (u = 0), we have (t) = y(¢)
and inequalities (A.8) express bounds on the output energy as functions of the initial condition energy.
|
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Appendix B

Degenerate bifurcation in linear,
conservative and detectable systems

In this appendix, we characterize the complex plane position of poles and zeros for a linear con-
servative system. Furthermore, we show that, the feedback interconnection of a conservative system
with a proportional gain is such that generically, all the poles cross the imaginary axis simultaneously.
This shows that the bifurcation is generically degenerate for conservative systems.

B.1 Poles/zeros map of linear conservative systems

In this section we consider the feedback interconnection of Figure 5.1 where the forward block,
denoted by 35, is linear, strongly conservative, and detectable. We denote by Z, the feedback inter-
connection of ¥ with the integral part of the controller. Being the feedback interconnection of two
conservative systems, = is conservative w.r.t. its input w and its output y. It is also easy to prove
that = is detectable.

We now show that the critical bifurcation value of the feedback system is k* = 0 and that
generically a degenerate bifurcation appears at k* = 0.

The dynamics of the linear system = are given by

2 = Az+ Bw (B.1)
y = Cz

From the assumption that = is a conservative system, there exists a matrix P = PT > 0 such that
the HiLL.-MOYLAN conditions

ATP+PA = 0 (B.2)
c = B'P (B.3)

are satisfied. From the first HILL-MOYLAN condition (B.2), we may deduce that all the eigenvalues
of A lie on the imaginary axis.

Proposition B.1 The poles of a linear, conservative system are all located on the imaginary axis.
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Proof
Let e be an eigenvector of A and A the corresponding eigenvalue i.e. Ae = e with A = o + jw. We
have thus e* (A*P + PA)e = Ae*Pe + \e*Pe = 20¢*Pe where * denotes the conjugate transpose
operator and \ the conjugate of . Since A is a real matrix we have A* = AT This proves that ¢ = 0
since P = PT > 0. Thus every eigenvalue of A has a zero real part. [

Moreover, = being a conservative system we know that it is weakly minimum phase (see Section
2.1.7). Thus the zeros of Z are located in the closed left-half complex plane. In fact all zeros of Z lie
on the imaginary axis. We prove this statement hereafter.

Proposition B.2 The zeros of a linear, conservative system are all located on the imaginary axis.

Proof
From the second HILL-MOYLAN condition (B.3) it follows that the matrix CB = BT PB is positive
definite; hence system (B.1) has relative degree one. A linear change of coordinates

(¥)=(e):

exists such that TB = 0. In these coordinates, system (B.1) is expressed in normal form:

f = Qué +Quy
y = Q& + Q2ny+ CBw

The system = expressed in the new coordinates (§p,y) is still conservative since passivity is a

coordinate independent property. The zero dynamics are §y = QQ11&y. Partitioning the corresponding
passivity matrix P = PT~> 0 according to the state partition (£p,y) the second HILL-MOYLAN
condition ( 07 (CB)T )P = (07 1) yields

Py=Pl = 0
Py = (BT

- T T -
whereas the first HILL-MOYLAN condition P ( Qu Qo > + ( Hoxa ) P =0 reduces to
Qa1 Q22 12 @2

P1Qu+ QL Py =0, Py=P]>o0.

This equality shows that all eigenvalues of ()1 are located on the imaginary axis. [

We thus have proved that the (MIMO) transfer function of a linear conservative system has all
its zeros and poles on the imaginary axis.

Remark B.3 The poles/zeros position of a linear, conservative, and detectable system may be further
characterized: poles and zeros alternate on the imaginary axis. This is proved hereafter.
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Denote by Zy, the (positive) feedback interconnection of = with the static gain k. Being the feedback
interconnection of a conservative, and detectable system (=) with a static, strictly input passive system
(w = —ky), E must be asymptotically stable for k < 0 since it is output strictly passive and detectable
(Lemma 2.14). Analyzing the poles/zeros configuration leading to an asymptotically stable system for
negative values of k, a root locus argument shows, that the only possibility is to have a simple alternance
of zeros and poles on the imaginary axis. To illustrate this, consider the three following systems

- S (32 + 4)
- (s2+1)(s2+9)
- S (32 + 1)
-0 (s2+4) (s> +9)
_ S (32 + 9)

(s2+1)(s2+4)

The corresponding root loci of their (positive) feedback interconnection with the static gain k, i.e. Z;, ,
i = a,b,c, are represented on Figure B.1. On this Figure we clearly see, that only =, is asymptotically
stable for any negative value of k.

uuuuuuuuuuuuuuuuuuuuuuuu

E E E -5 ) ] 2 -1 o =2 15 =
RRRRRR Real Axis Real Axis

(a) (b) (c)

Figure B.1: Root locus. (a) Zq,, (b) Zp,, (¢) Z¢,. Legend: X represent a pole, o represents a zero.
The solid curves represents the root locus.

B.2 Degenerate bifurcation

Now that we know the normal position of the zeros and poles of a conservative system in the
complex plane, we perform the bifurcation analysis for Z. We show that generically the bifurcation
at k = 0 is degenerate, i.e. all eigenvalues cross the imaginary axis simultaneously at k = 0.

Proposition B.4 The positive feedback interconnection of a linear, conservative, and detectable sys-
tem = with the proportional gain k is characterized by a degenerate bifurcation at k = 0.

Proof
Consider two systems. The original system =

2 = Az+ Bw

127



APPENDIX B. DEGENERATE BIFURCATION IN LINEAR, CONSERVATIVE AND
DETECTABLE SYSTEMS

and its anti-stable counterpart = whose dynamics are given by

z = —Az+ Bv
y = Cz

Both Z and = are conservative since they satisfy the HILL-MOYLAN conditions (B.2)-(B.3) for the
same matrix P = PT > 0. For k < 0, 5 and =, are output strictly passive and detectable. From
Lemma 2.14, they are both asymptotically stable for & < 0. This means that the matrices A+kBBT P
and —A+kBBT P are both HURWITZ for k < 0, or that A—kBB” P is anti-HUrRWI1TZ and A+kBBT P
is HURWITZ for k < 0. Thus, we have proved that a degenerate bifurcation appears at k* = 0 since
all the eigenvalues cross the imaginary axis simultaneously at k£ = 0. [
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Application of MEES results to our class
of systems

The approach we present in Chapter 3 is related to the work of MEES [MC79, Mee81]|. In his
work MEES presents a “frequency-domain” HOPF bifurcation theorem and graphical conditions cor-
responding to rigorous versions of the describing functions method to conclude about local stability
of limit cycles in feedback loops. In this appendix, we recall the graphical interpretation of the Hopr
bifurcation theorem given by MEES and use it to prove that if a HOPF bifurcation occurs in systems
satisfying the assumptions of Theorem 3.8 then this bifurcation is supercritical and leads to a locally
asymptotically stable limit cycle.

C.1 The frequency domain HOPF bifurcation theorem

The results of MEES are an extension of ALLWRIGHT’s proof of the HOPF bifurcation theorem
[A1l77] which is based on an application of the method of harmonic balance. This approach provides
a describing function-like graphical interpretation of the HOPF bifurcation theorem. This graphical
interpretation is based on the characteristic locus idea'. For a system parametrized by a real number
w, the graphical HOPF theorem shows how harmonic balance with harmonics zero to two is enough
to determine whether the system undergoes a HOPF bifurcation, and to say whether the limit cycle
is stable or unstable. It shows how to construct estimates of the frequency and amplitude of the
limit cycle, the error in frequency being O <\,u, — ,u0|2> and that in amplitude being O (]u — uo\%>.
The estimates of frequency w and first harmonic amplitude § may be read directly from a graph. In
this appendix, we apply Theorem C.1 to the feedback system represented in Figure 3.8 and conclude
about the existence of a supercritical HOPF bifurcation for values of k& 2 k*.

The main result of MEES is summarized in Theorem C.1.

Theorem C.1 (Frequency domain HOPF bifurcation theorem) [Mee81]
Let S be an autonomous feedback system described by

gf(e) +e=0,

! A characteristic locus corresponds to the (generalized) NYQUIST locus of a characteristic function. The definition
and theory of characteristic functions is given in [Mee81, page 76]. In the SISO case, the characteristic locus simply
corresponds to the NyYQUIST locus.
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where g is a linear operator with proper rational transfer function G such that G(s) € C*™ and
f: RE—=R™ is C* in e. Suppose é is a solution of G(0)f (¢) +¢é =0, and write D1 for (Df)e.

Let G(s)Dy have characteristic functions \i(s) (k = 1,...,p) and suppose g and f depend on
a real parameter p in such a way that as p passes through po, the locus of a single characteristic

A\ oA .
3 and M exist at

function S\(jw) passes through —1 at a unique frequency wg, and the derivative
(10, wo), where they are nonzero and are not parallel.

Define L1(0,w) as below (Table C.1) and suppose that when p = o, the locus of Ly (6,wo) as 6
varies is transverse to the \ locus where they intersect at —1.

Then for p = po+x02, where x = —1 or x = +1 and § > 0 is small, the Ly (6,wo) locus intersects
the A(jw) locus transversely at, say A(iw1), when 0 = 01. If § is sufficiently small the nonlinear system
can support oscillations of the form

2
e(t)y=¢é+ %Z are’™ + 0O (53) ,
k=0

where

v o= w1+0(53),

ag = 9%00—1—0(53),
a1 = 61+ 0 (6%,
as = by + 0 (6%,

and each vy, defined below (Table C.1), is O(1) in 6 as 6 — 0. Moreover, e(t) is the unique periodic
solution in a neighbourhood of é.

Suppose the linearized feedback system (with Dy replacing f) has two more poles in the right half-
plane when = po+16? (¢ = £1) than when p = po—pd%. If1px = +1 the bifurcation is supercritical
while if Yy = —1 it is subcritical; in particular, the periodic solution is stable if there are no poles in

R{s} > 0 for p = po — V6% and Yy = +1.

The statements about derivatives of \ just say that the A locus moves through —1 “in a generic way”.
In practice, one needs only draw the loci for a given value of y as in figure C.1, and use the frequency

wr at which A(jw) intersects the negative real axis near —1 (i.e. ER{}\(jw)} is closest to —1 and

Ry {5\(](,0)} = 0) in place of wg. MEES shows that |wr —wp| = O ((52) and thus the approximation

consisting in taking wg instead of wy is valid.

The statements about stability are easiest to understand in the case where the linearized system
is stable before bifurcation, in which case y = +1 implies a supercritical bifurcation to a stable limit
cycle. This means that the closed-loop system has two poles in R{s} > 0 and the L; locus points
outwards, towards the region of stable feedback gains (see Figure C.1). This is a rigorous version of
a heuristic test often used with describing functions [Ath75|, and there is an obvious generalization
in terms of right half-plane poles and numbers of encirclements of the point Ly (6, wg) by all the loci.
Essentially, MEES is saying that the behavior within the center manifold is described by the change in
the number of poles with positive real part as p increases through pg, while the question of whether
the manifold is itself attracting can be answered by looking at those poles which do not cross the
imaginary axis as p increases through pg. However, the proof of MEES does not depend on center
manifold theory.
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THE FREQUENCY DOMAIN HOPF BIFURCATION THEOREM

R

Li(0,wr) A (jw)

M (jw)

Figure C.1: Theorem C.1 in the case when p = 2. The characteristic loci are only shown for positive w.
The Lj locus is the heavy straight line emanating from —1: if the system was stable before bifurcation,
and the A\; locus moves outwards to engulf —1 after bifurcation, the bifurcation is supercritical and
the limit cycle is stable.

Summing up, then, the L;(f,w) locus behaves very like a describing function locus —ﬁ: it
allows us to read off the values of frequency and amplitude of oscillation and to see, very easily how
changes in the system will affect the limit cycle. The general procedure to compute the locus of points
Li(0,w) as 0 varies is summarized in Table C.1.

Remark C.2 The symbol ® appearing in Table C.1 denotes the tensor product. The formulas given
at point 2 can be understood in the following way:

1.

2.

3.

5.

.D?’f:misamxlxlxltensorandthusL:(D3f)

[PRESR™: X -Y = f(X).

D'f = 8’(;(;() is a m x | matriz and thus G(s)Dy is a | x | matriz.
D?f = % is a mx 1 x1 tensor and thus Q= (DQf)‘XE: DsE (where E is a l x 1 vector)
is a m X | matriz s.t. Qi = Z;Zl f;kEp.

EQE=D3FEQFE isamxl

9X3 |X

. ey L
matriz s.t. Lj, = szl Zqzl qukEqu'

DyE®E =Q.E and D3E ® E® E = L.E where . denotes the matriz product.

The locus of Ly for fixed w is just a straight line emanating from —1 and pointing in the direction
—2z1. If z; = 0 then the locus is degenerate, but this is excluded by transversality.
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Suppose G(0)f(é) +é =0 and Dy = (D’“f)é for k = 1,2, 3. Identify ) as in Theorem C.1 and let u”

and v be the left and right eigenvectors of G(jw)D; belonging to A(jw).
Write Gp, (jw) = (I + G(jw)D1) * G(jw).

1.

2.

Normalize v so that |v| = 1 and u so that u?v =1 (so [u| > 1).

Let
1 _
Vo = _ZGD1 (O)D2U X,
vT = U,
1 .
vg = _ZGDl(Q.]w)DQU ® v,
where the k' element of Dov @ v is (D2v @ 0),, = > 0., %Zf%(:) vy Us where k =1,...,m
’ rO€s |o—g

and where v denotes the complex conjugate of v.

. Let p(w) = Do (vo Qv+ %”D ® 1)2) + %ng ® v ® U where the k" element of D3v @ v ® v is

1— o m agfk(e)
(’UO X v+ §'U & v?)k - Zr,s,t:l De,OesOer

VyrUgVt.
e=é

- Let 21 (w) = v G(jw)p(w).

. Then Ly (0,w) = —1 — 622 (w).

Table C.1: Calculation of L;(6,w) [MeeS81|.

In the SISO case where G(s) € C and f : R — R is C*, the only characteristic function is G(s)D;.
Its locus corresponds to the NyYQuisT diagram of G(jw)D;. Since G(jw)Ds is a scalar, the right and
left eigenvectors for A (jwp) are given by v =1 and u = 1.

C.2 Application of Theorem C.1 to our class of systems

Consider the feedback system represented in Figure 3.8 where ¥ represents a linear system and
¢r(+) satisfies the assumptions of Theorem 3.8. To force the HOPF bifurcation scenario, we consider
that 3 is the feedback interconnection of a linear, passive system H with a simple integrator (see
Chapter 3). Using the notations of MEES (see Theorem C.1) we have f(-) = ¢x(-) and G = X.

Calculating the quantities appearing in Theorem C.1, we get G(s) = sH(s) ¢ C where H(s) is the

s+H(s)

transfer function of the passive system H and Dy = ¢}.(0) = —k, Dy = 0 and D3 = ¢}/(0) = £ > 0.

Thus,
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As) = G(s)D1 = —kG(s),
) B G(jw)
GD1(JW) = m,
vy = 0,
v = 1,
Vo2 = 0,
pw) = 3
aw) = gG(jw),
Li(0,w) = —1—gQQG(jw).

The characteristic locus of A(jw) is the NYQuisT diagram of —kG(jw). Since G(s) is the transfer
function of a passive system, the NYQUIST plot of —kG(jw) lies entirely in the left half-plane for
k > 0. When k increases the NYQUIST plot of —kG(jw) corresponds to that of G(jw) dilated by
—Fk. Since the feedback system becomes unstable at £k = k* > 0 we know that the NYQuisT plot of
—kG(jw) engulfs the point —1 when k = k*. Thus, ¢ = +1.

&

—k*G(jw)

Ll(ev C()())

Figure C.2: Characteristic locus of —kG(jw) for passive oscillators. The characteristic locus (i.e. the
NyQuisT plot) is only shown for positive w.

At k = k*, the NYQUIST plot of —kG(jw) crosses the real axis at —1 for w = wp and thus
G (jwo) = 7. We conclude that Ly (6, wg) = —1 — ;262 Thus, Ly (f,wp) is a vector starting at —1
and pointing towards —oo along the real axis (see Figure C.2). We thus have x = +1. We conclude

from Theorem C.1 that the HOpPF bifurcation is supercritical and leads to a locally stable limit cycle.
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