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AbstratThis thesis is devoted to the global (as opposed to loal) analysis, and synthesis of stable limit yleosillations in dynamial systems desribed by di�erential equations. Dynamial systems that exhibit stablelimit yle osillations are alled osillators. The main ontribution is the development of a theory for osillatorsseen as open systems, that is, as systems that an be interonneted to other systems through their inputsand outputs. The results are obtained by onsidering an input-output haraterization of osillators based ondissipativity theory. The use of a dissipativity haraterization opens the way to limit yle global onvergeneanalysis and synthesis in high dimensional and interonneted models of osillators.In the �rst part of the thesis, we de�ne a lass of dynamial systems exhibiting globally attrative limityle osillations, and study the fundamental mehanisms responsible for these osillations. We name elementsof this lass �passive osillators�. Passive osillators onsist in the feedbak interonnetion of a passive systemwith a stati nonlinearity whih is �loally ative� and �globally dissipative�. For this nonlinearity, the slopeat the origin is treated as a bifuration parameter. For values of the parameter in the viinity of a ritialbifuration value, we give su�ient onditions for the existene, uniity, and globally attrativity of a limityle osillation. Central to these results is the haraterization of passive osillators by a spei� dissipationinequality. This dissipation inequality provides an external haraterization of osillators whih allows arigorous global stability analysis of limit yles in high dimensional systems.In the seond part of the thesis, we show the usefulness of the dissipativity haraterization for the globalanalysis of networks of interonneted passive osillators. In partiular, we give su�ient onditions thatallow straightforward extensions of the results obtained for an isolated passive osillator to networks of passiveosillators. These extensions rely on a multivariable version of the dissipation inequality used to haraterizethe network. We also introdue an inremental version of this dissipation inequality and show its usefulnessfor proving existene, and global stability of synhrone osillations in networks of idential passive osillators.Finally, we show the usefulness of the onsidered approah for the synthesis of osillations. We show that anatural osillation mehanism is indued when a passive system is put in feedbak with a spei� proportional-integral ontroller for whih the sign of the proportional part is loally reversed. The main advantage ofthis ontroller is that it relies on existing energy-based stabilization theory for equilibrium points: one astabilizing, passive output has been designed for the system, it is used to lose the loop with the ontroller inorder to generate limit yle osillations in the losed loop system.
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Chapter 1IntrodutionThis thesis is devoted to the global analysis and synthesis of stable limit yle osillations. Dy-namial systems that exhibit stable limit yle osillations are alled osillators. They are ubiquitousin physial and biologial systems (see [Gol96, Mos97, Str03℄ for numerous examples of osillators).Detailed models of osillators abound in the literature, most frequently in the form of a set of nonlin-ear di�erential equations whose solutions robustly onverge to a limit yle osillation. Loal stabilityanalysis is possible by means of Floquet theory [Far94, BM94℄ but global stability analysis is usuallyrestrited to seond order models. For these models, global analysis is performed by using spei� lowdimensional tools (phase plane methods, Poinaré-Bendixon theorem, et.) whih do not easilygeneralize to higher dimensions. The lak of analytial tools in higher dimensions generally foreshigh dimensional models of osillators to be studied through numerial methods thereby giving noinsight into the fundamental osillation mehanisms involved. Moreover, when onsidering interon-netion, the methods used for the analysis of an isolated osillator do not generalize to the network.These onsiderations show the need for developing general analysis methods for osillators. Thesemethods should allow the analysis of osillators independently from their dimension and provide aninteronnetion theory for osillators.From an analysis point of view, the aim of this thesis is to develop a global analysis method. Weharaterize a lass of high-dimensional feedbak systems exhibiting globally asymptotially stablelimit yle osillations and study the mehanisms responsible for these osillations. To this end,we onsider an external haraterization of osillators whih �ts their desription by physial statespae models but, at the same time, has important impliations for the stability and synhronyanalysis of their interonnetions. This external haraterization of osillators follows the fundamentalharaterization of open systems by a dissipation inequality, whih opens the way for the developmentof an interonnetion theory for osillators.From a synthesis point of view, the aim is to provide a simple feedbak mehanism that allowsfor the generation of stable limit yle osillations in stable systems. In other words, we study thedesign of a simple ontroller that yields stable limit yle osillations in stable systems.1.1 Thesis main ontributions and related publiationsThe main ontribution of this thesis is the analysis of osillators by a dissipativity theory. Inpartiular, we show the impliations of this dissipativity theory for (i) the global stability analysis ofan isolated osillator, (ii) the global stability analysis of interonnetions of osillators, and (iii) the1



CHAPTER 1. INTRODUCTIONglobal synhrony analysis of interonnetions of N idential osillators. Regarding the synthesis ofosillations, the main ontribution onerns the design of a proportional-integral ontroller to generateosillations in stabilizable systems.To give the reader a �avor of the results, we introdue hereafter the main ideas that will bedeveloped in details in the next hapters.1.1.1 Global stability analysis of an isolated osillatorThis researh started with the analysis of two low dimensional systems whih are well-known fortheir global limit yle osillations: the elebrated Van der Pol and Fitzhugh-Nagumo models.Eah of these systems is a referene model for nonlinear osillations in physial and biologial sys-tems. On the one hand, the Van der Pol model is a basi example of osillator in the frameworkof eletromehanial systems. On the other hand, the Fitzhugh-Nagumo model, whih is a sim-pli�ation of the Hodgkin-Huxley model for voltage osillations in the neuron ell membrane, isa basi example of osillator in biology. Starting from these two models, we haraterize a ommonfeedbak struture in whih the forward blok is �lled with a linear system and the feedbak blokwith a stati nonlinearity. This feedbak interonnetion struture is represented in Figure 1.1. It isommonly referred to as a Lure feedbak interonnetion.

−k

−

u ypassivestati nonlinearity
Figure 1.1: Blok diagram of the Lure nonlinear system studied in this thesis.The stati nonlinearity in both models is haraterized by a negative slope at the origin and a u-bi behavior far from the origin, that is a nonlinear funtion of the form −ky+y3. To understand thefeedbak mehanisms involved and, at the same time, obtain an interonnetion theory for osillators,we searhed for an external haraterization for both the dynami and the stati blok. Passivityrapidly emerged as a natural external haraterization. Passivity is a partiular ase of the generaldissipativity theory introdued by Willems [Wil72℄. It provides a dimension-independent, inter-onnetion theory for open systems desribed by state-spae models. Open means that the systemdynamis depend on external variables whih desribe the interation with the environment. Passiv-ity of an open system expresses that the rate of hange of its internal energy is bounded by the rateat whih the system an exhange energy with its environment through its external variables. Themathematial haraterization of this physial property is the existene of a salar, positive semidef-inite funtion of the state S(x), alled the storage funtion, whih is suh that its time derivativesatis�es the dissipation inequality Ṡ ≤ uy where u and y represent the input and output of the system2



1.1. THESIS MAIN CONTRIBUTIONS AND RELATED PUBLICATIONSrespetively. For the feedbak stati nonlinearity, passivity amounts to satisfy a positivity ondition:a stati nonlinearity φ(·) is passive if its graph belongs to the �rst and third quadrants, that is, if
yφ(y) ≥ 0 for any y. Furthermore, if the nonlinearity φ(·) is suh that limy→±∞

φ(y)
y

= ∞, it issaid to be sti�ening. The ommon stati nonlinearity of the Van der Pol and Fitzhugh-Nagumoosillators has two terms: the �rst one y3 is sti�ening, passive and the seond one −ky is anti-passiveor ative. Sine the feedbak interonnetion of two passive systems is passive, the ative term ne-essarily plays a determinant role for the generation of limit yle osillations. We observed that,onsidering k as a parameter, a bifuration ours in both models at a ertain ritial value k∗. Inthe Van der Pol model, a superritial Hopf bifuration ours at k = 0: two omplex onjugateeigenvalues ross the imaginary axis at k = 0, giving rise to a globally stable limit yle surroundingthe unique unstable equilibrium point x = 0 for k > 0. The superritial Hopf bifuration is diretlyresponsible for the global osillation. The orresponding feedbak osillation mehanism is an energyexhange between the storage variables of the forward passive system. This energy exhange is reg-ulated by the stati nonlinearity: when the internal energy of the system is too low, the ative partof the nonlinearity fores its inrease whereas the passive part fores its derease when it is too high.In the Fitzhugh-Nagumo model, the feedbak osillation mehanism an be seen as the additionof a slow feedbak adaptation dynami to a globally bistable system. This slow adaptation dynamiperpetually fores a swith from one equilibrium point to the other one, thereby transforming theglobally bistable behavior into a global relaxation osillation. The globally bistable system resultsfrom a superritial pithfork bifuration ourring in a subpart of the Fitzhugh-Nagumo dynam-is. This subpart onsists in a Lure feedbak interonnetion similar to the one skethed in Figure1.1.
The passivity haraterization of these two low dimensional osillators raised the question if suhglobal osillation mehanisms still hold for a high dimensional, nonlinear system in the forward blokand a more general stati nonlinearity in the feedbak blok. The answer to this question onstitutesthe �rst main result presented in Chapter 3: under some tehnial assumptions, the Lure feedbakinteronnetion of a passive system with a stati nonlinearity possessing a parametrized ative part(−ky) and a sti�ening, passive part (φ(y)) fores one of two bifuration senarii (Theorems 3.8and 3.12). The �rst one orresponds to a superritial Hopf bifuration: two omplex onjugateeigenvalues ross the imaginary axis at k = k∗, giving rise to a stable limit yle surrounding theunique unstable equilibrium point x = 0 for k & k∗ (the notation k & k∗ is used to denote a value ofthe parameter k near the ritial value k∗, i.e. k ∈

(
k∗, k̄

] for some k̄ > k∗). The seond bifurationsenario is a superritial pithfork bifuration: the stable equilibrium x = 0 beomes a saddle pointbeyond the bifuration value k = k∗ and two new stable equilibria appear for k & k∗. This seondbifuration senario an be transformed into a global osillation by addition of a slow adaptationdynami (Theorem 3.9). As meant by the notation k & k∗, the results are loal in the parameterspae (they hold for values of the parameter in the viinity of the ritial bifuration value) butthey are global in the state-spae, i.e. onvergene to the stable limit yle is proved for all initialonditions that do not belong to the stable manifold of the (unstable) equilibrium at the origin. Sinepassivity is the driving line and main assumption, we name the global osillators orresponding tothis �rst result passive osillators. The results of Chapter 3 have been presented in [SS03℄, [SS04b℄and in [SS05a℄. 3



CHAPTER 1. INTRODUCTION1.1.2 Global stability analysis of interonnetions of osillatorsA fundamental property of passivity is the analysis of interonnetions. In the �rst part of Chapter4 we show that the results obtained for an isolated passive osillator extend to networks of passiveosillators when the stati oupling between the osillators satis�es a passivity (positivity) ondition.To this end, we onsider a MIMO representation of the network whih is the multivariable analogueof the Lure feedbak struture presented in Figure 1.1. As suh, extension of the preeding results toa network of passive osillators beomes straightforward (Theorems 4.5, 4.9, and 4.12). These resultsshow that our approah not only provides results for isolated osillators, but also for interonnetionsof osillators. This is fundamental to the development of a system theory for osillators and allows forthe following analogy between passivity theory and passive osillators theory: the building bloks ofomplex passive systems are their storage elements whereas the building bloks of omplex osillatingnetworks are their passive osillators.1.1.3 Global synhronization analysis of interonnetions of idential osillatorsAfter having determined the existene and stability of limit yle osillations in a network ofinteronneted passive osillators, the important question of their relative osillating behavior arises.Global synhronization among idential passive osillators is studied in the seond part of Chapter4. In this part, we show that dissipativity not only provides an interonnetion theory for osillatorsbut also, in its inremental form, a global synhronization theory. Synhronization refers to thetendeny of interonneted osillators to produe ensemble phenomena, that is, to phase lok asif an invisible ondutor was orhestrating them. Synhronization is a onvergene property forthe di�erene between the solutions of di�erent systems. Convergene properties for the di�erenebetween solutions of a losed system are haraterized by notions of inremental stability. For opensystems, the orresponding notion is inremental passivity. The main result (Theorem 4.15) onernsthe impliations of inremental passivity for the global stability of synhrone osillations in networksof idential passive osillators.The results of Chapter 4 have been presented in [SS04a℄, [Sep04℄ and in [SS05b℄.1.1.4 Synthesis of osillations in stable systemsOur last ontribution onerns the synthesis of osillations in stabilizable systems. More spei�-ally, we examine how to design a simple ontroller that yields stable limit yle osillations in a sta-bilizable system. To answer this question, we propose, in Chapter 5, a simple nonlinear proportional-integral feedbak ontroller. The design of this ontroller is diretly inspired from the analysis of theLure feedbak struture presented in the previous setions. Under some tehnial assumptions, itallows to generate osillations in any stabilizable system. The main advantage of this ontroller isthat it relies on stabilization theory for equilibrium points: one a stabilizing, passive output has beendesigned for the system, it is used to lose the loop with the ontroller in order to generate limit yleosillations with large basins of attration. The design of a stabilizing, passive output is a entraltopi in nonlinear ontrol theory and many methods already exist to solve this problem (feedbakpassivation designs, ontrolled Hamiltonian and Lagrangian theory, energy shaping methods, et.).Even in the ase when the required tehnial assumptions are not satis�ed, the proposed ontroller isexpeted to yield stable limit yle osillations thus providing a simple method to fore osillations byfeedbak. Appliation of this ontroller to benhmark underatuated mehanial systems suh as the4



1.2. BIBLIOGRAPHICAL STATE OF THE ARTart-pendulum, the pendubot, the arobot, or the balaning ontrol of the bipedal robot RABBIT ispart of ongoing researh. In Chapter 5, we present simulation results obtained for the art-pendulum.Real implementation of this ontroller for the balaning ontrol of RABBIT is the subjet of a urrentjoint projet in ollaboration with the Laboratoire d'Automatique de Grenoble.1.2 Bibliographial state of the art1.2.1 Analysis of osillationsThe analysis of the fundamental mehanisms responsible for limit yle osillations in feedbaksystems is a longstanding problem. Earlier results in the literature have exploited the strutureof Lure systems for the study of nonlinear osillations. This struture was �rst investigated inthe works of Yakubovih [Yak73℄ and Tomberg [TY89℄ whih provided su�ient onditions forthe existene of �auto-osillations�. Auto-osillation is there understood as [TY89℄ "stable, non-deaying osillatory regimes that arise in nonlinear systems... it is not neessarily onneted, asis sometimes done, with periodi movement". The results presented in [Yak73, TY89℄ onern theexistene of auto-osillation but do not predit towards whih auto-osillatory regime the solutionwill onverge nor its uniqueness. The mathematial onepts of auto-osillation and self-osillatingsystem go bak to the works of the A. A. Andronov shool [AVK66, AVK65℄. This theory hasbeen followed by many developments by the Russian shool summarized in the survey book [LBS96℄by Leonov. In [LBS96℄, frequeny onditions for the existene and loal stability of limit ylein high dimensional systems are presented. The main assumption of these frequeny riteria is theLevinson dissipativity [Lev44, CL55℄ of the feedbak system whih implies that all the solutions areultimately bounded. Levinson dissipativity may be proved with the help of the onept of semi-passivity introdued by Pogromsky and Nijmeijer in [Pog98, PGN99℄. The presented existeneonditions are based on high-dimensional generalizations of the annulus priniple (i.e. the Poinaré-Bendixon theorem) initiated in the work of Smith [Smi79, Smi86℄. The loal stability onditionsare mainly based on the geometrial onstrution and linear stability analysis of Poinaré maps.Unfortunately, no periodiity, uniqueness or global onvergene result is provided. Furthermore, thephysial interpretation of the underlying feedbak mehanisms responsible for the osillations is notdisussed.The analysis of feedbak indued osillations has also been investigated by Mees [MC79℄ wherenonlinear feedbak systems exhibiting superritial Hopf bifurations are onsidered. In [MC79℄,Mees presents a �frequeny-domain� Hopf bifuration theorem and graphial onditions orrespond-ing to rigorous versions of the desribing funtions method (also known as the harmoni balanemethod) to onlude about loal stability of limit yles in feedbak loops. If one is only interested inloal stability properties of the limit yle, then the results of Mees are well suited to draw onlu-sions for any partiular feedbak loop system onsisting of a linear feedforward path and a nonlinearfeedbak path. For the partiular ase of Hopf indued bifuration, a simple appliation of Meesresults to our lass of systems shows that, generially, a superritial Hopf bifuration arises (seeAppendix C). Nevertheless, in [MC79℄, the fundamental properties of the feedforward and feedbakpath leading to global stability properties of the limit yle are not disussed. Moreover, the extensionof Mees results to several idential interonneted systems is not obvious and the proedure has tobe restarted ab initio for the whole network.Another way of analyzing limit yle osillations is to extend existing equilibrium point analysis5



CHAPTER 1. INTRODUCTIONmethods. In [HC94, CH95, CH97, CH98℄, Hauser and Chung present an analysis framework forthe omputation of Lyapunov funtions allowing to determine if a given limit yle is loally ex-ponentially stable. This framework is based on the de�nition of a loal hange of oordinates (θ, ρ)highlighting the n−1 dimensional transverse dynamis of a periodi orbit. It allows to draw analogiesfrom the equilibrium point stability analysis (transverse linearization instead of equilibrium point lin-earization, periodi Lyapunov equation instead of Lyapunov equation, Lp stability and L2 gain ofa periodi orbit). However, no ondition allowing to onlude about existene, uniqueness or globalstability of a limit yle is given.For the analysis of pieewise linear systems, Gonalves [GMD01, GMD03℄ reently developednumerial tools to prove existene and global asymptoti stability of limit yles. In his approah,Gonalves redues the problem of stability analysis of the limit yle in pieewise linear systems tothat of the (numerial) onstrution of a set of quadrati Lyapunov funtions de�ned on the swithingsurfaes of the pieewise linear system. These Lyapunov funtions are found by numerially solving a�nite set of linear matrix inequalities. At the end of Chapter 3, we adapt the method of Gonalvesto the analysis of limit yle osillations in pieewise linear version of passive osillators.1.2.2 Analysis of osillations in networksOver the last deade, the analysis of networks of osillators has been a very ative researh area inbiology, hemistry, physis, ontrol and applied mathematis (see [HI97, Mos97, NRA03, GS02, SS93,Kri97, Pog98, VG01, DM01, KE02, PSN02a, SW03, SWR04, RAN04℄ to ite just a few). The lak ofan interonnetion theory for osillators generally fores an oversimpli�ation of the models of eahosillator of the network. Two important networks models, extensively studied in the literature, arethose of Hopfield [Hop82℄ and Kuramoto [Kur84℄. In Hopfield models, the dynami of osillator
k in the network is desribed by a single salar variable ρk whih models an average ativity of theosillator (as a model for networks of neurons, this average ativity is often thought of as the average�ring rate of the neuron). Hopfield models abound in neurosiene and have been used to desribethe dynamis of a number of omputational tasks (see for instane [Wil99b℄ for several illustrations invision). In these examples, the osillatory behavior of the neuron is unimportant. The state ρk onlymodels the storage apaity of the neuron. Storage models of osillators neglet the phase variable ofperiodi solutions. As a onsequene, they are inadequate for phase-loking or synhrony analysis. Inontrast, in Kuramoto phase models [Kur84, HI97℄, the dynami of the osillator k is desribed bya single salar variable θk on the irle. These models neglet the radial variable of periodi solutionsand thus disregard the dynamial behavior of the osillator away from its limit yle solution. Theyare inadequate for (global) orbital stability analysis. Several authors have studied how to reduegeneral models of osillators to phase models in the limit of weak oupling, that is, when the ouplingbetween the osillators does not a�et the onvergene of eah osillator to a limit yle solution. Formore details about this redution proedure and the stability analysis of interonneted phase modelsof osillators, we refer the reader to the reent papers [BMH04, RA03℄ and referenes therein. In ourapproah, we do not make suh simpli�ations. We haraterize su�ient input-output properties thatenable (global) limit yle osillations for an isolated osillator. These input-output properties arethen generalized to interonnetions of osillators, thereby providing su�ient onditions for (global)limit yle osillations in networks. 6



1.2. BIBLIOGRAPHICAL STATE OF THE ART1.2.3 Analysis of synhronization in networksThe growing interest for synhronization in engineering appliations is due to the robustness ofolletive phenomena, making an ensemble phenomenon insensitive to individual failures. The mani-festations of synhronization are numerous both in nature and in engineered devies. The interestedreader will �nd several ompelling illustrations in [Str03℄ and [NRA03℄.In [PN01, PSN02b, PSN02a℄, Pogromsky and Nijmeijer show that the existene of symmetryin the network implies the existene of linear invariant manifolds. This orresponds to so-alled partialsynhronization, or lusterization, a phenomenon ourring when some subsystems from the networkoperate in a synhronous manner. The authors present su�ient onditions guaranteeing globalasymptoti stability of the partial synhronization manifolds. These onditions are based on theassumption that the systems in the network are onvergent. In [LS98, WS℄, Slotine uses nonlinearontration theory to derive results on global synhronization. Both onvergene and ontration areinremental stability notions (see [Ang02, LS98, PPvdWN04℄) that are de�ned spei�ally for losedsystems. In these approahes, synhronization is thus not studied from an input-output perspetive.In this thesis, we onsider an input-output approah for the analysis of synhronization. Moreover,we put the emphasis on synhronization as a design priniple, that is on the use of synhronization toahieve stable limit yle osillations in networks of idential systems. Most of the literature resultson synhrony and phase-loking are based on the assumption that eah isolated system of the networkis haraterized by a stable limit yle. In our approah, we �rst prove that eah isolated system isharaterized by a globally stable limit yle and then use synhronization to extend this property toa network of idential osillators.1.2.4 Synthesis of osillationsThe problem of synthesis of osillations in ontrol systems �nds many appliations. In the �eld ofrobotis, it plays an important role for the ontrol of (underatuated) rhythmi tasks robot suh aswalking robots ([CAA+03, WGC02, TYS91℄), juggling robots ([SA93, SA94, BKK94, ZRB99, LB01,GS04, RLS04℄) or general dexterous robots (see e.g. [Wil99a℄). Several paths to solve this problemhave been investigated.In [BM94, BM95a, BM95b, BMS96℄, Baiotti and oworkers address the important problemsof limit yle generation by feedbak and loal stabilization of a preassigned limit yle. For thelimit yle generation by feedbak, they prove the existene of a polynomial feedbak u = u(x) forlinear ontrollable systems ensuring the existene, uniqueness, and loal asymptoti stability of alimit yle. For the seond problem, their results onsist in the extension of the Artstein-Sontagand Jurdjevi-Quinn methods to guarantee stabilization of limit yles under the assumption ofthe existene of a Lyapunov funtion for the limit yle.Another trend in the generation of stable limit yle osillation is due to Arail, Gomez-Esternand oworkers (see [GGEOA02, GAGE03, BAGGE04, GEBAG05℄). Their method onsists in twosteps. First, a globally attrative osillation is indued in a nominal seond order subsystem by apartiular ontroller. Then, the nominal stabilizing ontroller is extended to systems of arbitraryorder via a method in the essene of bakstepping.The problem of foring osillations by feedbak in underatuated mehanial systems is quite re-ent. In [BAGGE04℄, the method desribed in the preeding paragraph has been applied to generateloally stable osillations in underatuated mehanial systems suh as the ball and beam or theinverted pendulum on a art. In [SC04℄, Shiriaev and Canudas-de-Wit propose a onstrutive7



CHAPTER 1. INTRODUCTIONmethod for generation and loal orbital stabilization of pre-spei�ed periodi solutions in underatu-ated mehanial systems with one degree of underatuation. Their results are based on a feedbakstruture that expliitly uses the general or full integral of the zero dynamis. Their method providesa ontrol law that generates a limit yle and makes it loally exponentially stable in the losed-loop system. This work was initiated by Canudas-de-Wit in [CEU02℄ where a method to math apartiular osillatory exo-system, or a given losed urve was introdued.Finally, the synthesis of osillations an be seen as a partiular ase of the output regulationproblem (see e.g. [Isi95, Chapter 8℄, [Pav04℄). Output regulation methods deals with asymptotitraking of presribed referene signals. The lass of referene signals onsists of solutions of someexternal autonomous system alled the exosystem. Referene signals generated by the exosystem arealled exosignals. The output to regulate is alled the regulated output (e.g. the traking error inthe traking problem). The output available for measurement is alled the measured output. Theidea is to �nd a measured output feedbak ontroller suh that the losed loop system is internallystable and the regulated output tends to zero along solutions of the losed loop system. The internalstability requirement roughly means that all solutions of the losed loop system �forget� their initialonditions and onverge to some limit solution whih is determined only by the exosignal. To generateosillations, the exosystem is designed to produe a spei� osillating exosignal. The use of outputregulation methods to produe stable limit yle osillations is generally not easy beause of the needto �nd spei� output and ontroller that renders the losed loop system internally stable and atthe same time allows to solve the regulation problem. Their advantage is that they allow to trak aspei� orbit in the state spae.1.3 Organization of the thesisChapter 2 ontains mathematial preliminaries to the other hapters of the thesis. It realls stan-dard de�nitions about stability, passivity, absolute stability, bifurations, and other onepts used inthe thesis. Chapter 3 onerns the �rst main result of the thesis: global limit yle osillation analysisfor passive osillators. At the end of Chapter 3, we present an adaptation of the numerial methodreently proposed in [GMD03℄ that allows the extension of our stability results in the parameterspae. Chapter 4 ontains the other two main results of the thesis: �rst, the extension of the resultsof Chapter 3 to networks of passive osillators, and seond, the study of global synhrone osillationsin networks of idential passive osillators. Finally, in Chapter 5 we adopt a synthesis point of viewfor the generation of stable osillations. Conlusion and future work are given in Chapter 6.
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Chapter 2PreliminariesIn this hapter, we reall some fundamental onepts and de�nitions that onstitute the mainmathematial prerequisites for the thesis. Most of the de�nitions are diretly taken from popularreferene books on di�erential equations and nonlinear systems. The interested reader is referred tothese books for further details and omments. The proofs of the ited Lemmas and Theorems are notgiven sine they an be found in the ited referenes.2.1 PassivityPassivity is a useful tool for the analysis of nonlinear systems, whih relates niely to Lyapunovstability. Very few system theory onepts an math passivity in its physial and intuitive appeal.This explains the longevity of the passivity onept from the time of its �rst appearane some 30years ago (see [Wil72℄), to its urrent use as a powerful tool for nonlinear feedbak design (see[SJK97, vdS00℄). The main passivity theorem states that the (negative) feedbak interonnetionof two passive systems is passive. Under additional zero-state detetability onditions, the feedbakinteronnetion is also asymptotially stable. The passivity theorems and the small-gain theoremprovide a oneptually important generalization of the fat that the feedbak interonnetion of twostable linear systems will be stable if the loop gain is less than one or the loop phase is less than180 degrees. The onnetion between passivity and the phase of a transfer funtion omes from thefrequeny-domain haraterization of positive real transfer funtions. The phase of a positive realtransfer funtion annot exeed 90 degree. Hene, the loop phase annot exeed 180 degrees. If oneof the two transfer funtions is stritly positive real, the loop phase will be stritly less than 180degrees. Passivity results an be broadened with the help of loop transformations and multiplierswhih allow, in ertain ases, to transform the feedbak interonnetion of two systems that may notbe passive into an equivalent feedbak interonnetion of two passive systems.2.1.1 General passivity de�nitionWe begin by de�ning the onepts of storage funtion, supply rate, dissipativity, and passivity.Dissipativity theory, introdued by Willems [Wil72℄, is an interonnetion theory for open systems.9



CHAPTER 2. PRELIMINARIES2.1.1.1 Class of systemsAlthough the dissipativity and passivity onepts apply to wider lasses of systems, we restritour attention to dynamial systems modeled by ordinary di�erential equations with an input vetor
u and an output vetor y:

ẋ = f(x, u) (2.1)
y = h(x, u) (2.2)We will be onerned with the ase when the state x(t), as a funtion of time, is uniquely determined byits initial value x(0) and the input funtion u(t). Throughout the thesis, we assume that u : R≥0 → R

pbelongs to an input set U of funtions whih are bounded on all bounded subintervals of R≥0. Infeedbak designs u beomes a funtion of x, so the assumption u ∈ U annot be a priori veri�ed.The satisfation of this assumption for initial onditions in the region of interest will have to be aposteriori guaranteed by the design.Another restrition is that the system (2.1)-(2.2) is �square�, that is, its input and output havethe same dimension p. We also assume that f : R
n×R

p → R
n is ontinuous, and loally Lipshitz1,

h : R
n × R

p → R
p is ontinuous. These assumptions imply that the system (2.1)-(2.2) has theloal existene and uniqueness property of trajetories (see [Kha02℄ for de�nition of loal existeneand uniqueness of trajetories). Finally, an assumption made for onveniene is that the system(2.1)-(2.2) has an equilibrium point at the origin, that is, f(0, 0) = 0, and h(0, 0) = 0.We will �nd it helpful to visualize the system (2.1)-(2.2) as the input-output blok diagramdepited in Figure 2.1. In suh blok diagram the dependene on the initial ondition x(0) will notbe expliitly stressed, but must not be overlooked.

H
u yFigure 2.1: Input-output representation of (2.1)-(2.2).The system desription (2.1)-(2.2) inludes as speial ases the following three lasses of systems:

• Nonlinear input-a�ne systems
ẋ = f(x) + g(x)u

y = h(x) + j(x)u1A funtion f(x) is said to be loally Lipshitz on a domain (open and onneted set) D ⊂ R
n if eah point of Dhas a neighborhood D0 suh that f satis�es the Lipshitz ondition

|f(a) − f(b)| ≤ L |a − b| (2.3)for all points in D0 with some Lipshitz onstant L0. We say that f is Lipshitz on a set W if it satis�es theLipshitz ondition (2.3) for all points in W , with the same Lipshitz onstant L. A loally Lipshitz funtion ona domain D is not neessarily Lipshitz on D, sine the Lipshitz ondition may not hold uniformly (with the sameonstant L) for all points in D. However, a loally Lipshitz funtion on a domain D is Lipshitz on every ompat(losed and bounded) subset of D . A funtion f(x) is said to be globally Lipshitz if it is Lipshitz on R
n. TheLipshitz property of a funtion is stronger than ontinuity and weaker than ontinuous di�erentiability (see [Kha02℄).10



2.1. PASSIVITY
• Linear systems

ẋ = Ax+Bu

y = Cx+Du

• Memoryless (or stati) nonlinearity
y = φ(t, u)In the ase of linear systems, we will let the system be represented by its transfer funtion H(s) =

C(sI −A)−1B +D where s = σ + jω is the omplex variable.2.1.1.2 Basi oneptsFor an easy understanding of the onepts of dissipativity and passivity it is onvenient to imaginea physial system with the property that its energy an be inreased only through the supply froman external soure. As an example, let us think of baking a potato in a mirowave oven. As long asthe potato is not allowed to burn, its energy an inrease only as supplied by the oven. A similarobservation an be made about an RLC-iruit onneted to an external battery. The de�nitionsgiven below are abstrat generalization of suh physial properties.De�nition 2.1 [SJK97℄ Assume that assoiated with the system (2.1)-(2.2) is a funtion w : R
p ×

R
p → R, alled the supply rate, whih is loally integrable for every u ∈ U , that is, it satis�es
∫ t1
t0

|w(u(t), y(t))| dt <∞ for all t0 ≤ t1. Let X be a onneted subset of R
nontaining the origin. Wesay that the system is dissipative in X with the supply rate w(u, y) if there exists a funtion S(x),

S(0) = 0, suh that for all x ∈ X

S(x) ≥ 0 and S(x(T )) − S(x(0)) ≤
∫ T

0
w(u(t), y(t)) dt (2.4)for all u ∈ U and all T ≥ 0 suh that x(t) ∈ X for all t ∈ [0, T ]. The funtion S(x) is thenalled a storage funtion. If the dissipativity inequality (2.4) is satis�ed with the equality sign, i.e.

S(x(T )) − S(x(0)) =
∫ T

0 w(u(t), y(t)) dt, the system is said to be onservative or lossless.In our RLC-iruit example, the storage funtion S is the energy, w is the input power, and
∫ T

0 w(u(t), y(t)) dt is the energy supplied to the system from the external soures. The system isdissipative if the inrease in its energy during the interval (0, T ) is not bigger than the energy suppliedto the system during that interval.De�nition 2.2 [SJK97℄ Passivity is dissipativity with the supply rate w(u(t), y(t)) = uT (t)y(t).If the storage funtion S(x) is di�erentiable, the dissipation inequality (2.4) is equivalently written as
Ṡ(x(t)) ≤ w(u(t), y(t))Again, the interpretation is that the rate of inrease of energy is not bigger than the input power.Throughout the thesis, we will assume that the storage funtion is di�erentiable. Under theassumption of a di�erentiable storage funtion S(x), the following terminology is used:11



CHAPTER 2. PRELIMINARIESDe�nition 2.3 [Kha02℄ The dissipative system (2.1)-(2.2) with di�erentiable storage funtion S(x)is said to be
• input-feedforward passive if Ṡ ≤ uT y − uT ν(u) for some funtion ν(·).
• input stritly passive if Ṡ ≤ uT y − uT ν(u) and uT ν(u) > 0, ∀u 6= 0.
• output-feedbak passive if Ṡ ≤ uT y − yTρ(y) for some funtion ρ(·).
• output stritly passive if Ṡ ≤ uT y − yTρ(y) and yTρ(y) > 0, ∀y 6= 0.
• stritly passive if Ṡ ≤ uT y − ζ(x) for some positive de�nite funtion ζ(·).In all ases, the inequality should hold for all (x, u).We also introdue the notion of strong passivity that will be used throughout the thesis.De�nition 2.4 (Strong passivity) We say that the system (2.1)-(2.2) is strongly passive if it ispassive and its storage funtion additionally satis�es the following assumptions:1. (smoothness) S(x) is ontinuously di�erentiable (C1) in R

n and twie ontinuously di�erentiable(C2) in a neighborhood of the origin.2. (Lyapunov) S(x) is positive de�nite, S(x) > 0, and radially unbounded, i.e. S(x) → ∞ as
|x| → ∞.3. (loally quadrati) The Hessian of S(x) evaluated at zero ∂2S(x)

∂x2

∣
∣
∣
x=0

is a symmetri positivede�nite matrix P = P T > 0.As it is well-known, these assumptions are always satis�ed in the (detetable) linear ase beauselinear passive systems have quadrati positive de�nite storage funtions [Wil72℄. In general, theseassumptions are onvenient to link the passivity of the system to the stability properties of the zeroinput system sine S(x) then serves as a (global) Lyapunov funtion.Example 2.5 An integrator is the simplest example of a dynami passive system. Consider system
ẋ = u

y = xThis system is strongly passive with S(x) = 1
2x

2 as a storage funtion.2.1.2 Passivity of memoryless nonlinearitiesWe onsider memoryless nonlinearities of the form y = φ(t, u), where φ : [0,∞) × R
p → R

p.Sine their state spae is void, De�nitions 2.2 and 2.3 diretly apply to the speial ase of (possiblytime-varying) memoryless nonlinearities by onsidering that their storage funtion is identially zero(S ≡ 0). Passivity for a single input - single output (SISO) memoryless nonlinearity geometriallymeans that the u − y urve must lie in the �rst and third quadrants, as shown in Figure 2.2 (a)and (b). When this ondition is respeted, we also say that the nonlinearity belongs to the setor12



2.1. PASSIVITY
[0,∞], where zero and in�nity are the slopes of the boundaries of the �rst-third quadrant region.The graphial representation is valid even when φ is time varying. In this ase, the u− y urve willbe hanging with time, but will always belong to the setor [0,∞]. For a vetor funtion, we angive a graphial representation in the speial ase when φ(t, u) is deoupled in the sense that φi(t, u)depends only on ui. In this ase, the graph of eah omponent belongs to the setor [0,∞]. In thegeneral ase, suh graphial representation is not possible.

u

y

(a)
u

y

u

y

(b) ()Figure 2.2: (a) and (b) are examples of passive nonlinearities; () is an example of a non-passivenonlinearity.2.1.3 Loop transformationsIn this setion we present loop transformations whih extend the utility of passivity theorems.Starting with a feedbak interonnetion in whih one of the two feedbak omponents is not passiveor does not satisfy a ondition that is needed in one of the passivity theorems, we may be ableto reon�gure the feedbak interonnetion into an equivalent interonnetion that has the desiredproperties. We illustrate the proess for loop transformations with dynami multipliers, as show inFigure 2.3.
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Figure 2.3: Loop transformation with dynami multipliers.Pre (resp. post) multiplying H1 by a spei� transfer funtion an be nulli�ed by post (resp. pre)13



CHAPTER 2. PRELIMINARIESmultiplying H2 by the inverse of this transfer funtion, provided that this inverse exists. This leads toan equivalent feedbak system that is represented in its general form in Figure 2.3. The interest of suhloop transformation is the ability to transform a feedbak system that does not satisfy the onditionsneeded by one of the passivity theorem into an equivalent one that does it, thereby extending theutility of passivity theorems.2.1.4 Passivity versus Lyapunov stabilityIn this setion, we reall the important links that exist between passivity and Lyapunov stability.For the proofs of the di�erent lemmas and theorems, the reader is referred to [Kha02℄. We �rst reallthe de�nitions of Lyapunov and asymptoti stability.2.1.4.1 Lyapunov stabilityLyapunov stability and asymptoti stability are properties not of a dynamial system as a whole,but rather of its individual solutions.Consider the time-invariant system
ẋ = f(x) (2.5)where x ∈ R

n and f : R
n → R

n is loally Lipshitz ontinuous. The solution of (2.5) whih startsfrom x0 at time t0 ∈ R is denoted as x (t;x0, t0), so that x (t0;x0, t0) = x0. Beause the solutionsof (2.5) are invariant under translation of t0, that is, x (t+ T ;x0, t0 + T ) = x (t;x0, t0), the stabilityproperties of x (t;x0, t0) are uniform, that is they do not depend on t0. Without loss of generality, weassume t0 = 0 and write x (t;x0) instead of x (t;x0, 0). Lyapunov stability is a ontinuity property of
x (t;x0) with respet to x0. If the initial state x0 is perturbed to x̃0, then, for stability, the perturbedsolution x (t; x̃0) is required to stay lose to x (t;x0) for all t ≥ 0. In addition for asymptoti stability,the error x (t; x̃0) − x (t;x0) is required to vanish as t→ ∞.De�nition 2.6 [SJK97℄ The solution x (t;x0) of (2.5) is

• bounded, if there exists a onstant K (x0)suh that
|x (t;x0)| ≤ K (x0) , ∀t ≥ 0;

• stable, if for eah ǫ > 0 there exists δ(ǫ) > 0 suh that
|x̃0 − x0| < δ(ǫ) ⇒ |x (t; x̃0) − x (t;x0)| < ǫ, ∀t ≥ 0; (2.6)

• attrative, if there exists an r (x0) > 0 suh that
|x̃0 − x0| < r (x0) ⇒ lim

t→∞
|x (t; x̃0) − x (t;x0)| = 0; (2.7)

• asymptotially stable, if it is stable and attrative;
• unstable, if it is not stable. 14



2.1. PASSIVITYSome solutions of a given system may be stable and some unstable. In partiular, (2.5) may havestable and unstable equilibria, that is, onstant solutions x (t;xe) ≡ xe satisfying f (xe) = 0. Theabove de�nitions of stability properties of an equilibrium xe involve only initial states lose to xe,that is, they are loal. If an equilibrium is attrative, then it has a region of attration, i.e. a set Ωof initial states x0 suh that x (t;x0) → xe as t→ ∞ for all x0 ∈ Ω. In this thesis, our attention willbe foused on global stability properties.De�nition 2.7 [SJK97℄ An equilibrium point of (2.5) is
• globally stable (GS) if it is stable and if all the solutions of (2.5) are bounded.
• globally asymptotially stable (GAS) if it is asymptotially stable and its region of attration is

R
n.Any equilibrium under investigation an be translated to the origin by rede�ning the state as z =

x− xe. For simpliity, we will assume that the translation has been performed, that is f(0) = 0, andthus the equilibrium under investigation is z = 0. When, for brevity, we say that �the system (2.5)is GS or GAS�, we mean that its equilibrium z = 0 is GS or GAS. While GAS of z = 0 prevents theexistene of other equilibria, the reader should keep in mind that it is not so with GS.The most often used method to establish stability of equilibrium points of nonlinear systems isthe diret method of Lyapunov. The diret method of Lyapunov aims at determining the stabilityproperties of x (t;x0) from the properties of f(x) and its relationship with a positive de�nite funtion
V (x). Global results are obtained if this funtion is radially unbounded, i.e. V (x) → ∞ as |x| → ∞.Theorem 2.8 (Lyapunov stability Theorem) [SJK97℄ Let x = 0 be an equilibrium of (2.5) andsuppose f is loally Lipshitz ontinuous. Let V : R

n → R>0 be a C1 positive de�nite and radiallyunbounded funtion V (x) suh thaṫ
V =

∂V

∂x
(x)f(x) ≤ 0, ∀x ∈ R

nThen x = 0 is GS and all solutions of (2.5) onverge to the set E where V̇ (x) ≡ 0. If V̇ is negativede�nite, then x = 0 is GAS.For a sharper haraterization of onvergene properties we employ the onept of invariant sets.De�nition 2.9 [SJK97℄ A set M is alled an invariant set of (2.5) if any solution x(t) that belongsto M at some time t1 belongs to M for all future and past time, i.e.
x (t1) ∈M ⇒ x(t) ∈M, ∀t ∈ RDe�nition 2.10 [SJK97℄ A set P is positively invariant if this is true for all future time only, i.e.
x (t1) ∈ P ⇒ x(t) ∈ P, ∀t ≥ t1An important result desribing onvergene to an invariant set is La Salle's Invariane Priniple.15



CHAPTER 2. PRELIMINARIESTheorem 2.11 (La Salle's Invariane Priniple) [SJK97℄ Let Ω be a positively invariant setof (2.5). Suppose that every solution starting in Ω onverges to a set E ⊂ Ω and let M be the largestinvariant set ontained in E. Then, every bounded solution starting in Ω onverges to M as t→ ∞.An appliation of the Invariane Priniple is the following asymptoti stability ondition.Corollary 2.12 (Asymptoti stability) [SJK97℄ Under the assumptions of Theorem 2.8, let E =
{

x ∈ R
n | V̇ (x) = 0

}. If no solution other than x(t) ≡ 0 an stay for all t in E, then the equilibrium
x = 0 is GAS.While the Lyapunov stability theorem (Theorem 2.8) establishes that the solutions are bounded andonverge to the set E where V̇ ≡ 0, Theorem 2.11 sharpens this result by establishing the onvergeneto a subset of E. Thanks to its invariane, this subset an be found by examining only those solutionswhih, having started in E, remain in E for all t.In ontrol systems, suh invariane and onvergene results are made possible by system's observ-ability properties. Typially, the onvergene of the system output y to zero is established �rst, andthen the next task is to investigate whether some (or all) of the states onverge to zero. For this taskwe need to examine only the solutions satisfying y(t) ≡ 0. If it is known beforehand that y(t) ≡ 0implies x(t) ≡ 0, then the asymptoti stability of x = 0 is established, as in Corollary 2.12.2.1.4.2 Passivity and Lyapunov stabilityThe de�nitions of dissipativity and passivity do not require that the storage funtion S(x) ispositive de�nite. They are also satis�ed if S(x) is only positive semide�nite. As a onsequene, inthe presene of an unobservable unstable part of the system, they allow x = 0 to be unstable. Forinstane, the unstable system

ẋ1 = x1

ẋ2 = u

y = x2is passive with the storage funtion S = 1
2x

2
2.For passivity to imply Lyapunov stability, we must exlude suh situations. In linear systemsthis is ahieved with a detetability assumption, whih requires that the unobservable part of thesystem is asymptotially stable. Zero-state detetability de�nes an analogous onept for nonlinearsystems (see [SJK97℄ or [vdS00℄).De�nition 2.13 [SJK97℄ Consider the system (2.1)-(2.2) with zero input, that is ẋ = f(x, 0) and

y = h(x, 0), and let Z ⊂ R
n be its largest positively invariant set ontained in {x ∈ R

n | y = h(x, 0) = 0}.We say that the zero input system is zero-state detetable (ZSD) if x = 0 is asymptotially stableonditionally to Z, that is if (2.6) and (2.7) hold for any x0 ∈ Z. If Z = {0}, we say that the zeroinput system is zero-state observable (ZSO).For a linear system, the notions of detetability and zero-state detetability are equivalent.Whenever we use the ZSD property to establish a global result, we assume that x = 0 is GASonditionally to Z. One of the bene�ts from the ZSD property is that passivity and stability areonneted even when the storage funtion S(x) is only positive semide�nite.16



2.1. PASSIVITYLemma 2.14 [SJK97℄ Consider the system (2.1)-(2.2). Suppose that this system is passive with a
C1 storage funtion S(x) and h(x, u) is C1 in u for all x.Then,(1) the origin of ẋ = f(x, 0) is stable if

• the storage funtion S(x) is positive de�nite , or
• the system is ZSD.(2) the origin of ẋ = f(x, 0) is asymptotially stable if the system is
• stritly passive, or
• output stritly passive and ZSD.(3) when there is no throughput, y = h(x), then the feedbak u = −y ahieves asymptoti stability of

x = 0 if and only if the system is ZSD.Furthermore, if the storage funtion is radially unbounded, the origin will be globally asymptoti-ally stable.2.1.5 Interonnetions of passive systemsConsider the feedbak interonnetion of Figure 2.4 where eah of the feedbak omponents H1and H2 is either a time-invariant dynamial system represented by the state model
ẋi = fi (xi, ei) (2.8)
yi = hi (xi, ei) , (2.9)with fi(0, 0) = 0 and hi(0, 0) = 0, i ∈ {1, 2}, or a (possibly time-varying) memoryless funtionrepresented by
yi = φi (t, ei) , (2.10)

i ∈ {1, 2}.We are interested in using passivity properties of the feedbak omponents H1 and H2 to analysestability of the parallel and feedbak interonnetions. Assuming that both H1 and H2 are in theform (2.8)-(2.9), we �rst must make sure that the interonnetion is also in the form (2.8)-(2.9). Thisis obviously true for the parallel interonnetion. However the feedbak interonnetion may not be inthe form (2.8)-(2.9) and may fail to have a well-de�ned solution. Let us onsider the two possibilities(2.8)-(2.9) and (2.8)-(2.10) separately.When both omponents H1 and H2 are dynamial systems, the losed-loop state model takes theform
ẋ = f(x, u) (2.11)
y = h(x, u) (2.12)where x =

(
xT

1 , x
T
2

)T , u =
(
uT

1 , u
T
2

)T , and y =
(
yT
1 , y

T
2

)T . We assume that f is loally Lipshitz, his ontinuous, f(0, 0) = 0, and h(0, 0) = 0. It an be veri�ed that the feedbak interonnetion willhave a well-de�ned state model if the equations
e1 = u1 − h2 (x2, e2) (2.13)
e2 = u2 + h1 (x1, e1) (2.14)17
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y2(b)(a)Figure 2.4: (a) Feedbak interonnetion of H1 and H2. (b) Parallel interonnetion of H1 and H2.have a unique solution (e1, e2) for every (x1, x2, u1, u2). The properties f(0, 0) = 0 and h(0, 0) = 0follow from fi(0, 0) = 0 and hi(0, 0) = 0. It is also easy to see that (2.13)-(2.14) will always have aunique solution if h1 is independent of e1 or h2 is independent of e2. In this ase, the funtions fand h of the losed-loop state model inherit smoothness properties of the funtions fi and hi of thefeedbak omponents. In partiular, if fi and hi are loally Lipshitz, so are f and h. For linearsystems, requiring hi to be independent of ei is equivalent to requiring the transfer funtion of Hi tobe stritly proper.When one omponent, sayH1, is a dynamial system, while the other one is a memoryless funtion,the losed-loop state model takes the form
ẋ = f(t, x, u) (2.15)
y = h(t, x, u) (2.16)where x = x1, u =

(
uT

1 , u
T
2

)T , and y =
(
yT
1 , y

T
2

)T . We assume that f is pieewise-ontinuous in t andloally Lipshitz in (x, u), h is pieewise ontinuous in t and ontinuous in (x, u), f(t, 0, 0) = 0, and
h(t, 0, 0) = 0. The feedbak interonnetion will have a well-de�ned state model if the equations

e1 = u1 − φ2 (t, e2)

e2 = u2 + h1 (x1, e1)have a unique solution (e1, e2) for every (x1, t, u1, u2). This will be always the ase when h1 isindependent of e1. The ase when both omponents are memoryless funtions is less importantand follows diretly as a speial ase when the state x does not exist. In this ase, the feedbakinteronnetion is represented by y = h(t, u). Theorem 2.15 onstitutes the main property for paralleland feedbak interonnetions of passive systems.Theorem 2.15 [Kha02℄ The feedbak and parallel interonnetion of passive systems is passive.The proof is straightforward by taking as storage funtion for the interonnetion system the sum ofthe storage funtions of eah system and taking into aount the interonnetion rules.Using Theorem 2.15 and the results on stability properties of passive systems, we an arrive atsome straightforward onlusions on stability of the feedbak interonnetion. We are interested instudying stability and asymptoti stability of the origin of the feedbak losed-loop system when
u = 0. Stability of the origin follows trivially from Theorem 2.15 and the �rst part of Lemma 2.14.18



2.1. PASSIVITYTherefore, we fous out attention on studying asymptoti stability. The next theorem is an immediateonsequene of Theorem 2.15 and Lemma 2.14.Theorem 2.16 [Kha02℄ Consider the feedbak interonnetion of two time-invariant dynamial sys-tems of the form (2.8)-(2.9). The origin of the losed-loop system (2.11) (when u = 0) is asymptoti-ally stable if
• both feedbak omponents are stritly passive, or
• both feedbak omponents are output stritly passive and ZSD, or
• one omponent is stritly passive and the other one is output stritly passive and ZSD.Furthermore, if the storage funtion for eah omponent is radially unbounded, the origin is globallyasymptotially stable.The proof uses a simple idea, namely, that the sum of the storage funtions for the feedbak ompo-nents is a Lyapunov funtion for the feedbak interonnetion. In fat, this is too restritive sineto show that Ṡ = Ṡ1 + Ṡ2 ≤ 0, we insist that both Ṡ1 ≤ 0 and Ṡ2 ≤ 0. Clearly, this is not neessary.One term, say Ṡ1, ould be positive over some region as long as Ṡ ≤ 0 over the same region. This isa manifestation of the idea that shortage of passivity of one omponent an be ompensated for bythe exess of passivity of the other omponent.When the feedbak interonnetion has a dynamial system as one omponent and a memorylessfuntion as the other omponent, we an perform Lyapunov analysis by using the storage funtionof the dynamial system as a Lyapunov funtion. It is important, however, to distinguish betweenthe time-invariant and the time-varying memoryless funtions, for in the latter ase the losed-loopsystem will be nonautonomous and we annot apply La Salle invariane priniple. We treat thesetwo ases separately in the next two theorems.Theorem 2.17 [Kha02℄ Consider the feedbak interonnetion of a stritly passive, time-invariant,dynamial system of the form (2.8)-(2.9) with a passive (possibly time-varying) memoryless funtionof the form (2.10). Then, the origin of the losed-loop system (2.15) (when u = 0) is uniformly asymp-totially stable. Furthermore, if the storage funtion for the dynamial system is radially unbounded,the origin will be globally uniformly asymptotially stable.Theorem 2.18 [Kha02℄ Consider the feedbak interonnetion of a time-invariant dynamial system

H1 of the form (2.8)-(2.9) with a time-invariant memoryless funtion H2 of the form (2.10). Supposethat H1 is ZSD and has a positive de�nite storage funtion, whih satis�es
Ṡ1 ≤ eT1 y1 − yT

1 ρ1 (y1)and that H2 satis�es
eT2 ν2 (e2) ≤ eT2 y2Then, the origin of the losed-loop system (2.15) (when u = 0) is asymptotially stable if

vT (ρ1(v) + ν2(v)) > 0, ∀v 6= 0Furthermore, if V1 is radially unbounded, the origin will be globally asymptotially stable.Theorem 2.18 is one again a manifestation of the idea that shortage of passivity in one omponentan be ompensated for by exess of passivity in the other omponent.19



CHAPTER 2. PRELIMINARIES2.1.6 Charaterization of input-a�ne passive systemsConsider the input-a�ne system
ẋ = f(x) + g(x)u (2.17)
y = h(x) (2.18)The passivity ondition amounts to Ṡ = ∂S(x)

∂x
(f(x) + g(x)u) ≤ uTh(x), ∀x ∈ R

n, ∀u ∈ R
p, orequivalently (set �rst u = 0, and then use linearity in u) to the Hill-Moylan passivity onditions[HM76℄

LfS(x) ≤ 0 (2.19)
LgS(x) = hT (x) (2.20)where we have used the notation LfS(x) = ∂S(x)

∂x
f(x). If the system is linear

ẋ = Ax+Bu

y = Cxthen there exists a quadrati storage funtion S(x) = xTPx, with P = P T ≥ 0, and the Hill-Moylan passivity onditions beome algebrai
PA+ATP ≤ 0 (2.21)

BTP = C (2.22)The equivalene of the onditions (2.21)-(2.22) with the frequeny-domain haraterization of pas-sivity was established by the elebrated Kalman-Yakubovih-Popov lemma. Before the statementof the KYP lemma, we introdue the de�nition of a positive real transfer funtion.De�nition 2.19 [Kha02℄ A p×p proper rational transfer funtion matrix G(s) is alled positive realif
• poles of all elements of G(s) are in ℜ{s} ≤ 0,
• for all real ω for whih jω is not a pole of any element of G(s), the matrix G(jω) +GT (−jω)is positive semide�nite, and
• any pure imaginary pole jω of any element of G(s) is a simple pole and the residue lims→jω(s−
jω)G(s) is positive semide�nite Hermitian.The transfer funtion G(s) is alled stritly positive real if G(s− ǫ) is positive real for some ǫ > 0.When p = 1, the seond ondition of De�nition 2.19 redues to ℜ{G(jω)} ≥ 0, ∀ω ∈ R, whih holdswhen the Nyquist plot of G(jω) lies in the losed right-half omplex plane. This is a ondition thatan be satis�ed only if the relative degree of the transfer funtion is zero or one.Lemma 2.20, presented hereafter, states the Kalman-Yakubovih-Popov (KYP) lemma in thepartiular ase when (A,B,C) is a minimal realization. Extensions of the KYP lemma to non-minimalrealizations an be found in [IT87, TI88℄. 20



2.1. PASSIVITYLemma 2.20 (Kalman-Yakubovih-Popov lemma) [Kha02℄ Let G(s) = C(sI−A)−1B+Dbe a p× p transfer funtion matrix, where (A,B) is ontrollable and (A,C) is observable. Then, G(s)is stritly positive real if and only if there exists P = P T > 0, L, and W , and a positive onstant ǫsuh that
PA+ATP = −LTL− ǫP

PB = CT − LTW

W TW = D +DTFor linear, throughput-free (D = 0), passive systems, possessing a minimal realization, the link withthe Hill-Moylan onditions (2.21)-(2.22) is obvious. In the general ase when D 6= 0, this link isexpressed in Lemma 2.21.Lemma 2.21 [Kha02℄ The linear time-invariant minimal realization
ẋ = Ax+Bu

y = Cx+Duwith G(s) = C(sI −A)−1B +D is
• passive if G(s) is positive real,
• stritly passive if G(s) is stritly positive real.2.1.7 Strutural properties of input-a�ne passive systemsIn this setion, we onsider two strutural properties of input-a�ne passive systems. By struturalwe mean that they are invariant under feedbak transformations of the form u = α(x)+β(x)v. Thesetwo strutural properties are the relative degree of input-a�ne passive systems and their weaklyminimum phaseness.2.1.7.1 Relative degreeThe relative degree of a system is an integer that quanti�es the number of times that the outputmust be di�erentiated w.r.t. time for the input to appear expliitly. The statement �the system hasrelative degree r� means that the input appears expliitly for the �rst time in the rth time derivativeof the output. For SISO linear systems, the relative degree is the di�erene between the number ofpoles and zeros in the transfer funtion.Consider the (MIMO) nonlinear input-a�ne system (2.17)-(2.18). This system has relative degreeone at x = 0 if the matrix Lgh(0) is invertible.Lemma 2.22 [SJK97℄ If the system (2.17)-(2.18) is passive with a C2 storage funtion S(x) then ithas relative degree one at x = 0.For a proof the reader is referred to [SJK97℄. 21



CHAPTER 2. PRELIMINARIES2.1.7.2 Weakly minimum phasenessThe remaining dynamis when we impose the onstraint y(t) = h(x) ≡ 0 is alled the zerodynamis. If the zero dynamis is asymptotially stable, the initial system is said to be minimumphase. If the zero dynamis is only Lyapunov stable with a C2 positive de�nite Lyapunov funtion,then the system is said to be weakly minimum phase.Lemma 2.23 [SJK97℄ If the system (2.17)-(2.18) is passive with a C2 positive de�nite storage fun-tion S(x) then it is weakly minimum phase.For a proof the reader is referred to [SJK97℄.2.2 Absolute stabilityConsider the feedbak interonnetion of Figure 2.5 where G(s) represents a linear system and
φ(·) a memoryless nonlinearity. We assume that the external input v = 0. The unfored system issaid to be absolutely stable if it has a globally (uniformly) asymptotially stable equilibrium point atthe origin for all nonlinearities in a given setor. The problem was originally formulated by Lureand is sometimes alled Lure's problem. The Lure problem has a very onrete motivation sineit represents a basi feedbak loop in automati ontrol. This (hard) problem motivated entraldevelopments of system theory. It has led to the emergene of several stability riteria whih makeuse of the input-output properties of the linear blok G(s), and haraterize lasses of nonlinearitieswhih ensure stability.

−
u y+

G(s)

φ(·)

v

Figure 2.5: Lure feedbak interonnetion.Passivity is useful for solving the Lure problem. A Lyapunov funtion an be hosen by using thepassivity tools of the previous setions. In partiular, if the losed-loop system an be represented as afeedbak interonnetion of two passive systems, then the sum of the two storage funtions an be usedas a Lyapunov funtion andidate for the losed-loop system. The use of loop transformations allowsto over various setors and Lyapunov funtion andidates, leading to the irle [San64a, San64b℄and Popov [Pop62, Pop73℄ riteria whih give frequeny-domain su�ient onditions for absolutestability in the form of strit positive realness of ertain transfer funtions. In the single input -single output (SISO) ase, both riteria an be applied graphially rendering them very easy to usein pratie. Nowadays, numerial methods based on Integral Quadrati Constraints theory (IQC) areused to prove absolute stability of Lure feedbak systems (see [MR97℄).22



2.3. SEMI-GLOBAL PRACTICAL ASYMPTOTIC STABILITY2.3 Semi-global pratial asymptoti stabilityIn this setion, we present the notion of semi-global pratial asymptoti stability for systemsdepending on a small parameter. This setion is inspired by the results of Moreau, summarized in[MA00℄. The results of Moreau show that if the referene system ẋ = g(x) is globally asymptot-ially stable then, starting from an arbitrarily large set of initial onditions, the trajetories of theparameterized system ẋ = f ǫ(x) onverge to an arbitrarily small residual set around the origin when
ǫ > 0 is taken su�iently small, under the assumption that trajetories of the parametrized systemonverge (uniformly on ompat time intervals) to trajetories of the referene system. We restritthe presented results to the ase of time-invariant dynamis. Nevertheless, the results presented in[MA00℄ hold for the general ase of time-varying dynamis.Consider two systems:

• a system that depends on a (small) parameter ǫ ∈ (0, ǫ0] (ǫ0 ∈ (0,∞))
ẋ = f ǫ(x) (2.23)

• and a system
ẋ = g(x) (2.24)We assume that f ǫ : R

n → R
n and g : R

n → R
n are ontinuous and loally Lipshitz. We do notassume forward ompleteness of the solutions, i.e. we do not exlude �nite esape times. We denoteby xfǫ (t;x0) (resp. xg (t;x0)) the solution of (2.23) (resp. the solution of (2.24)) that starts from x0at t = 0.The main result of Moreau relies on the assumption that trajetories of (2.23) onverge to thoseof (2.24) in the following sense:Convergene of trajetories2 [MA00℄: For every T ∈ (0,∞) and ompat setK ⊂ R

n satisfying
{(t;x0) ∈ R × R

n | t ∈ [0, T ] , x0 ∈ K} ⊂ Dom (xg), for every d ∈ (0,∞), there exists ǫ∗ ∈ (0, ǫ0] suhthat for all x0 ∈ K and for all ǫ ∈ (0, ǫ∗)
{

xfǫ (t;x0) exists
|xfǫ (t;x0) − xg (t;x0)| < d

∀t ∈ [0, T ] (2.25)In other words, it is required that trajetories of (2.23) onverge on ompat time intervals totrajetories of (2.24) as ǫ → 0, and furthermore we assume that this onvergene ours for all x0belonging to ompat sets. It is important to notie that the assumed onvergene is not stated interms of vetor �elds, but in terms of trajetories; it is not assumed that f ǫ onverges point-wise to
g as ǫ→ 0.Under the assumption of onvergene of trajetories, GAS for (2.24) implies semi-global pratialasymptoti stability for (2.23). We �rst reall the de�nition of semi-global pratial asymptotistability given by Moreau [MA00℄.De�nition 2.24 [MA00℄ Consider system (2.23). Assume that the assumptions on f ǫ are satis-�ed. We all the origin of this system semi-globally pratially asymptotially stable (SGPAS) if thefollowing three onditions are satis�ed:2In this de�nition Dom (xg) denotes the domain of de�nition of the funtion (t; x0) → xg (t; x0) that de�nes the �owof the vetor �eld g. 23



CHAPTER 2. PRELIMINARIES1. For every c2 ∈ (0,∞), there exists c1 ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] suh that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists
|xfǫ (t;x0)| < c2

∀t ∈ (0,∞]2. For every c1 ∈ (0,∞), there exists c2 ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] suh that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists
|xfǫ (t;x0)| < c2

∀t ∈ (0,∞]3. For every c1, c2 ∈ (0,∞), there exists T ∈ (0,∞) and ǫ̂ ∈ (0, ǫ0] suh that for all x0 ∈ R
n with

|x0| < c1 and for all ǫ ∈ (0, ǫ̂)

{
xfǫ (t;x0) exists ∀t ∈ (0,∞] ,
|xfǫ (t;x0)| < c2, ∀t ∈ (T,∞]The notion of SGPAS may be interpreted as follows. Condition 1 of De�nition 2.24 de�nes a pratialversion of stability of the origin. Condition 2 de�nes a pratial version of boundedness. Condition3 de�nes a pratial version of global attrativity: all trajetories starting in an arbitrarily large ballentered at the origin end up in an arbitrarily small ball entered at the origin for appropriate �depending on the radii of the onsidered balls � values of the parameter ǫ. Notie that the origin isnot required to be an equilibrium point in De�nition 2.24, nor that the solution be forward omplete.Consider systems (2.23) and (2.24) introdued above satisfying the onvergene of trajetoriesassumption. Assume that the origin is a GAS equilibrium of (2.24). It is well known that this doesnot imply that the origin is a GAS equilibrium point of (2.23) even if ǫ is small. It seems howeverreasonable to expet that (2.23) inherits some weaker notion of stability: the SGPAS. The followingtheorem asserts that this weaker stability property is indeed inherited by (2.23) if the origin is a GASequilibrium of (2.24).Theorem 2.25 (SGPAS theorem) [MA00℄ Given systems (2.23) and (2.24) satisfying the onver-gene of trajetories assumption. If the origin is a GAS equilibrium point of (2.24), the origin of(2.23) is SGPAS.For a proof, the reader is referred to [MA00℄.In Chapter 3,the SGPAS theorem will be very useful for the proving that the global stability of theequilibrium point at ritiality is transmitted to the bifurated solution for values of the parameter'slightly larger' than the ritial value.2.4 Limit yles and nonlinear osillationsOsillation is one of the most important phenomena that our in dynamial systems. A systemosillates when it has a nontrivial periodi solution
x(t+ T ) = x(t), ∀t ≥ 024



2.4. LIMIT CYCLES AND NONLINEAR OSCILLATIONSfor some T > 0. The word �nontrivial� is used to exlude onstant solutions orresponding to equilib-rium points. The image of a periodi solution in the state spae is a losed trajetory, whih is usuallyalled a periodi orbit or a losed orbit. The simplest example of nontrivial periodi solution is givenby the solutions of a seond-order linear system with eigenvalues ±jβ. It is usually referred to asthe harmoni osillator. If we think of the harmoni osillator as a model for a linear LC eletrialiruit (see Figure 2.6), then we an see that the physial mehanism leading to these osillations is aperiodi exhange (without dissipation) of the energy stored in the apaitor's eletri �eld with theenergy stored in the indutor's magneti �eld.
LC

Figure 2.6: A linear LC iruit for the harmoni osillator.There are, however, two fundamental problems with this linear osillator. The �rst problem isone of robustness. In�nitesimally small perturbations (linear or nonlinear) of the linear vetor �eldwill destroy the osillation, i.e. the linear osillator is not struturally stable. The seond problem isthat the amplitude of the osillations is dependent on the initial onditions. These two fundamentalproblems an be eliminated in nonlinear osillators. The Van der Pol osillator that we will onsiderin more details in Chapter 3 is the simplest example of suh nonlinear osillators. In the ase of theharmoni osillator, there is a ontinuum of losed orbits around the equilibrium point, while in theVan der Pol osillator, there is only one isolated periodi orbit. Suh isolated periodi orbit isalled a limit yle. Isolated means that neighbouring trajetories are not losed; they spiral eithertoward or away from the limit yle. Stable limit yles are very important sienti�ally � they modelsystems that exhibit self-sustained osillations. In other words, these systems osillate even in theabsene of external periodi foring. Of the many examples that ould be given, we mention only afew: the beating of a heart, the periodi �ring of a paemaker neuron, daily rhythms in human bodytemperature and hormone seretion, and hemial reations that osillate spontaneously. In eahase, there is a limit osillation of some preferred period, waveform, and amplitude. If the system isperturbed slightly, it always returns to the limit yle. This leads us to the de�nition of stability ofperiodi solutions.2.4.1 Stability of periodi solutionsConsider the autonomous system
ẋ = f(x) (2.26)where f : D → R

n is ontinuously di�erentiable and D ⊆ R
n is a domain inluded into R

n. Let
M ⊆ D be a losed invariant set of (2.26). De�ne an ǫ-neighborhood of M by

Uǫ = {x ∈ R
n | dist(x,M) < ǫ}25



CHAPTER 2. PRELIMINARIESwhere dist(x,M) is the minimum distane from x to a point in M , i.e.dist(x,M) = inf
y∈M

|x− y|De�nition 2.26 [Kha02℄ The losed invariant set M of (2.26) is
• stable if, for eah ǫ > 0, there is δ > 0 suh that

x(0) ∈ Uδ ⇒ x(t) ∈ Uǫ, ∀t ≥ 0

• asymptotially stable if it is stable and δ an be hosen suh that
x(0) ∈ Uδ ⇒ lim

t→∞
dist(x(t),M) = 0In partiular, we will apply these onepts to the spei� ase when the invariant set M is the losedorbit assoiated with a periodi solution. Let u(t) be a nontrivial periodi solution of the autonomoussystem (2.26) with period T , and let γ be the losed orbit de�ned by

γ = {x ∈ R
n |x = u(t), 0 ≤ t ≤ T}The losed orbit γ is the image of u(t) in the state spae. It is an invariant set whose stabilityproperties are haraterized by De�nition 2.26. Having de�ned the stability properties of losedorbits, we an now de�ne the stability properties of periodi solutions.De�nition 2.27 [Kha02℄ A nontrivial periodi solution u(t) of (2.26) is

• orbitally stable if the losed orbit γ generated by u(t) is stable.
• asymptotially orbitally stable if the losed orbit γ generated by u(t) is asymptotially stable.2.5 Center manifold theory and bifurationsThe loal asymptoti stability of an equilibrium point of a nonlinear system an be deter-mined through the stability analysis of the linearized system if this equilibrium point is hyperboli(Hartman-Grobman Theorem [Wig90, Theorem 2.2.6℄). When the equilibrium point is not hyper-boli (i.e. the Jaobian matrix of the system linearized around this equilibrium point possesses atleast one eigenvalue on the imaginary axis), the stability analysis of the equilibrium point dependson the nonlinear terms negleted through the linearization proess.For systems depending on a parameter µ, the topologial harater of equilibria an hange at aritial value of the parameter, e.g. perhaps two branhes of equilibria ross or a branh loses or gainsstability. Suh a state and parameter is alled a bifuration point of the parametrized vetor �eld.A loal bifuration takes plae at a parameter value where the system loses strutural stability withrespet to parameter variations, i.e. the phase portrait around the equilibrium point at the ritialparameter value is not loally topologially onjugate3 to the phase portrait around the equilibrium3If the loal linearizations at two equilibria have no poles on the imaginary axis, the same number of stritly stableand the same number of stritly unstable poles then the loal phase portraits are topologially onjugate.26



2.5. CENTER MANIFOLD THEORY AND BIFURCATIONSat nearby parameter values. Therefore a loal bifuration is mathematially haraterized by one ormore eigenvalues of the linearized system rossing the imaginary axis.A standard approah to analyzing the behavior of parametrized ordinary di�erential equationsaround a bifuration point is to treat the parameter as an additional state variable with dynami µ̇ = 0and to ompute the enter manifold of the extended dynamis through the bifuration point and thedynamis restrited to this manifold (see [Wig90℄). The enter manifold is an invariant manifold ofthe di�erential equation whih is tangent at the bifuration point to the eigenspae of the neutrallystable eigenvalues. In pratie, one does not ompute the enter manifold and its dynamis exatly.In most ases of interest, an approximation of degree two or three su�es. If the other eigenvaluesare in the open left-half plane, then this part of the dynamis is loally asymptotially stable andtherefore an be negleted in a loal stability analysis around the bifuration point.2.5.1 The enter manifold theoremConsider the autonomous system
ẋ = f(x) (2.27)where f : D → R

n is twie ontinuously di�erentiable and D ⊆ R
n is a domain that ontains theorigin x = 0. Suppose that the origin is a non-hyperboli equilibrium point of (2.27). The entermanifold theorem states that the stability properties of the origin an be determined by analyzing alower order nonlinear system.Equation (2.27) an be represented as

ẋ = Ax+ (f(x) −Ax) = Ax+ f̃(x), (2.28)where A = ∂f
∂x

∣
∣
∣
x=0

and f̃(x) = f(x) − Ax. f̃(x) is twie ontinuously di�erentiable and f̃(0) = 0,
∂f̃
∂x

∣
∣
∣
x=0

= 0. Sine the origin x = 0 is assumed to be a non-hyperboli equilibrium point of (2.27), let
k be the number of eigenvalues with zero real parts and m = n − k the number of eigenvalues withnegative real parts. We an always �nd a similarity transformation matrix T that transforms A intoa blok diagonal matrix, i.e.

TAT−1 =

(
A1 0
0 A2

)where all the eigenvalues of A1 have zero real parts and all the eigenvalues of A2 have negative realparts. Clearly, A1 is k × k and A2 is m×m. The hange of variables
(
y

z

)

= Tx, y ∈ R
k, z ∈ R

mtransforms (2.28) into the form
ẏ = A1y + g1(y, z)
ż = A2z + g2(y, z)

(2.29)where g1 and g2 inherit the properties of f̃ . In partiular, they are twie ontinuously di�erentiableand
gi(0, 0) = 0,

∂gi

∂y

∣
∣
∣
∣
(y,z)=0

= 0,
∂gi

∂z

∣
∣
∣
∣
(y,z)=0

= 0 (2.30)27



CHAPTER 2. PRELIMINARIESfor i = 1, 2. If z = h(y) is an invariant manifold of (2.29) and h is smooth, then it is alled a entermanifold if
h(0) = 0,

∂h

∂y

∣
∣
∣
∣
y=0

= 0.Theorem 2.28 (Center manifold theorem) [Kha02℄ If g1 and g2 are twie ontinuously di�eren-tiable and satisfy (2.30), all eigenvalues of A1 have zero real parts, and all eigenvalues of A2 havenegative real parts, then there exists a onstant δ > 0 and a ontinuously di�erentiable funtion h(y),de�ned for all |y| < δ, suh that z = h(y) is a enter manifold for (2.29).If the initial state of the system (2.29) lies in the enter manifold, i.e. z(0) = h(y(0)), then thesolution (y(t), z(t)) will lie in the manifold for all t ≥ 0, i.e. z(t) ≡ h(y(t)). In this ase, the motionof the system in the enter manifold is desribed by the k-th order di�erential equation
ẏ = A1y + g1 (y, h(y)) (2.31)whih we refer to as the redued system. Even if z(0) 6= h(y(0)), it an be shown (see [Kha02℄) thatthe stability properties of the origin are determined by the redued system (2.31). This is summarizedin the next theorem, known as the redution priniple.Theorem 2.29 (Redution priniple) [Kha02℄ Under the assumptions of Theorem 2.28, if theorigin y = 0 of the redued system (2.31) is asymptotially stable (respetively, unstable) then theorigin of the full system (2.29) is also asymptotially stable (respetively, unstable).To use Theorem 2.29, we need to �nd the enter manifold z = h(y). The funtion h is a solution ofthe partial di�erential equation

N (h(y)) =
∂h

∂y
(y) (A1y + g1 (y, h(y))) −A2h(y) − g2 (y, h(y)) = 0,with boundary onditions

h(0) = 0,
∂h

∂y

∣
∣
∣
∣
y=0

= 0.This equation for h annot be solved exatly in most ases (to do so would imply that a solution ofthe full system (2.29) has been found), but its solution an be approximated arbitrarily losely as aTaylor series in y. This result is summarized in Theorem 2.30.Theorem 2.30 [Kha02℄ If a ontinuously di�erentiable funtion φ(y) with φ(0) = 0 and ∂φ
∂y

∣
∣
∣
y=0

= 0an be found suh that N (φ(y)) = O (|y|p) for some p > 1, then for su�iently small |y|,
h(y) − φ(y) = O (|y|p) ,and the redued system (2.31) an be represented as

ẏ = A1y + g1 (y, φ(y)) + O
(

|y|p+1
)

.Remark 2.31 In Theorem 2.30, the order of magnitude notation f(|y|) = O (|y|p) is used as ashorthand notation for |f(y)| ≤ k |y|p for su�iently small |y|.28



2.6. THE HOPF BIFURCATION THEOREM2.6 The Hopf bifuration theoremIn this setion, we state (a version of) the Hopf bifuration theorem and point out the importanthypotheses required for the appearane of a limit yle. Loosely, Hopf's theorem says that if an
n-dimensional ordinary di�erential equation ẋ = f(x, µ) depends on a real parameter µ, and if onlinearizing about an equilibrium point we �nd that pairs of omplex onjugate eigenvalues of thelinearized system ross the imaginary axis as µ varies through ertain ritial values, then for near-ritial values of µ there exist limit yles lose to the equilibrium point. Just how near to ritiality
µ has to be is not determined, and indeed unless a ertain rather ompliated expression (we shallall it the urvature oe�ient) is nonzero, the usual statement of the theorem does not guaranteeexistene at all. The sign of the urvature oe�ient determines the stability of the limit yle, andwhether the limit yle exists for subritial (µ < µ0) or superritial (µ > µ0) parameter values. (Weshall adopt the onvention that near µ = µ0 the real parts or the eigenvalues inrease as µ inreases.)Hopf �rst proved the theorem for analyti f by series expansion [Hop42℄. The more reentgeometrial approah presented in [MM76, HKW81℄ is less restritive and more intuitive, thoughextremely heavy algebra is required in the detailed proof. In [Far94℄, another version of the Hopfbifuration theorem based on the notion of h-asymptoti stability4 is given. This version of theHopf bifuration theorem is useful in order to avoid the omputation of the urvature oe�ientsine h-asymptoti stability an be veri�ed through the onstrution of an appropriate Lyapunovfuntion. A graphial interpretation of the Hopf bifuration theorem based on a rigorous version ofthe desribing funtion method has been given by Mees in [Mee81℄. The appliation of the graphialHopf bifuration theorem of Mees to the lass of passive osillators (de�ned in Chapter 3) is donein Appendix C.The Hopf bifuration theorem is an important tool for understanding systems desribed byordinary di�erential equations beause it is one of the few reliable methods for establishing theexistene of limit yles in high-dimensional systems. To use it e�etively, one must be aware of bothits advantages and its disadvantages. The prinipal advantage of the Hopf theorem in 'real-world'problems is its ability to handle high-dimensional systems; its prinipal disadvantage is the fat thatthe range of allowed values of µ is unknown, so one never knows if a given value of µ orrespondsto the existene of a limit yle. The Hopf theorem is thus 'loal' in the sense that it only makespreditions for unspei�ed regions of parameter spae and state spae. These preditions may bevalid over regions whih are very big or very small, and the usual form of the theorem gives little helpin determining their size. Nevertheless, we an reasonably expet the parameter region to be largeas emphasized by Mees [Mee81℄ : �The Hopf theorem only makes preditions for an unspei�ed,probably small range of values of the bifuration parameter. Nevertheless, experiene tends to on�rmthat preditions often remain qualitatively orret even when the system is very far from bifuration.This is not surprising if one imagines how the limit yle grows out from equilibrium in the state spae:even if the limit yle bifurates repeatedly, there will always be at least one limit yle present (notneessarily stable). If it does not grow to in�nite amplitude it an only disappear ompletely either byollapsing bak into the equilibrium or by oalesing with another limit yle having omplementarystability properties: this other limit yle would have to have been generated by an independentbifuration proess.�To introdue the Hopf bifuration, onsider a two-dimensional ordinary di�erential equation.4A system is said to be h-asymptotially stable if its asymptoti stability is robust to perturbations of its vetor�eld by term of order h + 1. 29
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Figure 2.7: As µ inreases, a sink hanges to a soure, expelling or absorbing a limit yle. Line (a):superritial bifuration; Line (b): subritial bifuration.Figure 2.7 shows how the phase portrait might alter as a parameter is varied, ausing a spiral sinkto beome a spiral soure. At a ritial parameter value µ0, the equilibrium point is a enter, i.e.the loal linearization is equivalent to undamped simple harmoni motion of period 2π
ω
, where ±jωare the eigenvalues of the Jaobian at ritiality. When µ 6= µ0, the system behaves as if it is linearvery lose to the equilibrium, but a little further out the e�ets of nonlinearity sometimes manifestthemselves in the appearane of a limit yle. In Figure 2.7 (a) the limit yle grows outwards fromthe enter as µ inreases through µ0, and so the period is likely to be not far from 2π

ω
. Figure 2.7 (b)shows another possibility in whih the stability behavior of the equilibrium point (and therefore thebehavior of the eigenvalues of the linearization) is indistinguishable from that of Figure 2.7 (a), butin whih an unstable limit yle ollapses into the sink instead of a stable one growing out. Figure2.8 represents what is happening in the (x1, x2, µ) spae. Here the slies µ = constant are phaseportraits. The �bowl� in eah ase represents a lous of limit yles. In Figure 2.8 (a) orrespondingto Figure 2.7 (a), an attrating limit yle appears as µ reahes ritiality, and grows as µ inreasesfurther, while in Figure 2.8 (b), orresponding to Figure 2.7 (b), a repelling limit yle gets smaller as

µ inreases, disappearing as µ reahes ritiality. In both ases, the equilibrium itself is attrating for
µ < µ0 and repelling for µ > µ0. We an distinguish between the two ases by whether the bowl is theright way up or upside down, and in fat the urvature oe�ient mentioned earlier is just a onstantfator times the urvature oe�ient of the bowl at the ritial point. Note that if the urvature isnon-vanishing the bowl is paraboli, so the radius of the limit yle grows as √|µ− µ0| (i.e. muhfaster than |µ− µ0| at �rst). If the urvature vanishes, it is possible, though not ertain, that the30



2.6. THE HOPF BIFURCATION THEOREMbowl is �at out to in�nity, in whih ase the periodi orbits exist only at the ritial parameter value.An example of this ase is given by the linear system
ẍ+ µẋ+ x = 0and an example where the urvature oe�ient vanishes but the bowl is nevertheless not �at is givenby

ẍ+ µẋ+ x = g (x, ẋ)where all partial derivatives of g at the origin vanish up to the 4th order, but there is a non-vanishing
5th partial derivative.Global theorems do not transfer easily from 2 to n dimensions. The Hopf bifuration theorem,however, is loal and the transition is omparatively painless thanks to the invariant manifold theorem(see [Kha02℄) whih lets us take the eigenspae of the bifurating eigenvalues as an approximation toa two dimensional manifold � the enter manifold � that ontains the limit yle if there is one. TheHopf bifuration theorem for two dimensions an thus be used to establish existene of a limit ylein the enter manifold, whih of ourse implies existene in the whole spae. The urvature oe�ienthas an extra ontribution from the urvature of the enter manifold relative to the eigenspae usedto approximate it, and the limit yle may, of ourse, attrat some trajetories and repel others.
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Figure 2.8: Figures 2.7 (a) and (b) in (x1, x2, µ) spae. Dashed lines are repellers and solid lines areattrators.We shall now state a theorem whih, though not the most general statement of the Hopf bifur-ation, is adequate for the majority of problems. A ontinuity ondition is imposed to ensure that,in spite of possible losses of di�erentiability, the bowl is smooth enough so that its urvature an bealulated.Theorem 2.32 (Hopf bifuration theorem) [Mee81℄Let fµ be a vetor �eld on R
n (n ≥ 2), parametrized by µ ∈ R and Ck (k ≥ 4) jointly in x ∈ R

n and
µ. Suppose fµ (x̂(µ)) = 0 for a loally unique point x̂(µ) and write Jµ for the Jaobian ∂fµ

∂x
|x̂(µ).Suppose 31



CHAPTER 2. PRELIMINARIES(a) Jµ has a pair of omplex onjugate eigenvalues λ(µ), λ̄(µ) for whih ℜ{λ(µ)} = 0 at µ = µ0and
d

dµ
ℜ{λ(µ)} > 0, ℑ{λ(µ)} > 0at µ = µ0;(b) Every eigenvalue ν(µ) of Jµ exept λ(µ) and λ̄(µ) satis�es

ℜ{ν (µ0)} 6= 0;() The urvature oe�ient a given in (2.32) is nonzero.Then there is a range either of positive or of negative values of ∆µ ≡ µ− µ0 in whih every value of
µ orresponds to a unique limit yle at a distane O

(√

|∆µ|
) from x̂(µ), and of period 2π

ℑ{λ(µ0)} +

O (∆µ). Furthermore,(d) If a < 0 and ℜ{ν (µ0)} < 0, ∀ν, the limit yle is attrating, while if a > 0 and ℜ{ν (µ0)} >
0, the limit yle is repelling.The urvature oe�ient a is given by (see [Mee81, eq. (6.1.4)℄)

a = ℜ{ψ} , where
ψ = upvjvkv̄l

(

f
p
jkl − 2fp

jmJ
−1
mqf

q
kl − f

p
lm(J − 2iω)−1

mqf
q
jk

) (2.32)where J = Jµ0 and uT and v are respetively left and right eigenvetors of J belonging to λ (µ0),normalized so that uT v = 1. Repeated subsripts imply summation from 1 to n and fp
jk means ∂f

µ
p (x)

∂xk∂xj(where fµ
p is the pth omponent of fµ) evaluated at x = x̂ (µ0). For two-dimensional systems, it anbe shown (see [Mee81, eq. (6.2.9)℄) that the expression of the urvature oe�ient is

a =
1
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(
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2
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)
. (2.33)where ω0 = ω (µ0) = ℑ{λ (µ0)} and all derivatives are evaluated at x = x̂ (µ0) and µ = µ0.The onditions (a) and (b) of the theorem are natural and are satis�ed typially. If the equilibrium

x̂(µ) is linearly asymptotially stable for µ's in an interval, i.e. all the eigenvalues of Jµ have negativereal parts, then as µ is inreased (or dereased) one may expet that at a ertain value of µ either anegative eigenvalue rosses the imaginary axis or a pair of omplex onjugate eigenvalues rosses intothe right-hand half plane. It is �unlikely� and generially does not happen in a one parameter familyof systems that two pairs of omplex eigenvalues or a pair and a real eigenvalue ross simultaneouslyinto the positive half of the omplex plane resulting in the destabilization of the equilibrium point.(In the ase the family depends on two or more parameters, suh a situation may generially our,giving rise to so-alled �odimension two or higher bifurations�; see e.g., Langford [Lan79℄ andGolubitsky-Shaeffer [GSS85℄). Condition (a) insists that the eigenvalues ross the imaginaryaxis with nonzero speed, while ondition (b) is stronger than neessary, but simpli�es the uniquenessstatement following (). Unfortunately, ondition () is not so easy to hek beause of the need32



2.7. THE KRONECKER PRODUCTto �nd n4 third partial derivatives and n3 seond partial derivatives when alulating a. This isunavoidable, sine the whole point of the Hopf bifuration is that it deals with the ase when �rstderivatives do not determine behavior. If the urvature oe�ient a is nonzero, its sign determinesthe loal stability of the bifurated limit yle. The alulation of a quikly beomes tedious for highdimensional systems. In Chapter 3 we will show that for the lass of feedbak nonlinear system weonsider, expliit omputation of the urvature oe�ient is unneessary: the passivity properties ofour systems imply that the limit yle is attrating.2.7 The Kroneker produtThe use of the Kroneker produt is very useful when onsidering interonnetion of identialsystems (see Chapter 4). In this setion, we reall its de�nition and main properties. We refer thereader to [Gra81℄ for more details on the use and appliations of the Kroneker produt.For matries A and B the notation A⊗B (the Kroneker produt of A and B) stands for thematrix omposed of sub-matries AijB, i.e.
A⊗B =








A11B A12B · · · A1nB

A21B A22B · · · A2nB... ... . . . ...
Am1B Am2B · · · AmnB







,where Aij , i = 1, . . . ,m, j = 1, . . . , n, stands for the ij-th entry of the m× n matrix A.The main properties of the Kroneker produt are summarized hereafter. In the following, weassume that A, B, C, and D are real valued matries. Some identities only hold for appropriatelydimensioned matries.

• The Kroneker produt is a bi-linear operator. Given α ∈ R,
A⊗ (αB) = α(A⊗B)

(αA) ⊗B = α(A⊗B)

• The Kroneker produt distributes over addition
(A+B) ⊗ C = (A⊗ C) + (B ⊗ C)

A⊗ (B + C) = (A⊗B) + (A⊗ C)

• The Kroneker produt is assoiative
(A⊗B) ⊗ C = A⊗ (B ⊗ C)

• The Kroneker produt is not ommutative
A⊗B 6= B ⊗A

• Transpose distributes over the Kroneker produt
(A⊗B)T = AT ⊗BT33



CHAPTER 2. PRELIMINARIES
• When dimensions are appropriate, matrix multipliation satis�es

(A⊗B)(C ⊗D) = AC ⊗BDIn partiular, we have1. (A⊗ In) (Im ⊗B) = (A⊗B) = (Im ⊗B) (A⊗ In) for A ∈ R
m×m and B ∈ R

n×n,2. (A⊗ In) (Im ⊗B) = (Im ⊗B)A for A ∈ R
m×m and B ∈ R

n×1,3. (Im ⊗ C) (A⊗ In) = A (Im ⊗ C) for A ∈ R
m×m and C ∈ R

1×n.
• When A and B are square and full rank

(A⊗B)−1 =
(
A−1 ⊗B−1

)

• The determinant of Kroneker produt is
det (Am×m ⊗Bn×n) = det(A)n det(B)m

• The trae of Kroneker produt istrae (A⊗B) = trae (A) trae (B)

34



Chapter 3Global results for one osillatorOsillators are dynamial systems that exhibit stable limit yle osillations. The emphasis inthis hapter is on osillators as open systems, that is, as systems that an be interonneted toother systems through their inputs and outputs. The aim is to show that dissipativity theory an beusefully applied to study the existene of limit yle osillations and their global stability propertiesand also to give simple explanations for the feedbak mehanisms responsible for these osillations.An obvious bene�t of this dissipativity approah for the haraterization of limit yles is that it isnot restrited to low-dimensional systems. A further bene�t is that it is well-suited to the analysis ofinteronnetions. The important topi of networks of osillators will be treated in Chapter 4.Starting from two of the most simple examples of nonlinear systems exhibiting globally attra-tive limit yles osillations, namely the Van der Pol osillator (Setion 3.1) and the Fitzhugh-Nagumo osillator (Setion 3.2), we present two di�erent feedbak osillation mehanisms responsiblefor global limit yle osillations in (generalized) Lure feedbak systems (Setion 3.3). The limit yleeither results from a superritial Hopf bifuration or from the addition of a slow adaptation dynamito a globally bistable system reated through a superritial pithfork bifuration. The �rst senarioprovides a high-dimensional generalization of the Van der Pol osillator. Its energy interpretation�ts the qualitative desription of many physial osillations, desribed as the lossless exhange ofenergy between two storage elements, regulated by a loally ative but globally dissipative element.The seond senario provides a high-dimensional generalization of Fitzhugh-Nagumo osillators.Its energy interpretation �ts the qualitative desription of many osillation mehanisms in biology,viewed as periodi swithes between two quasi-stable steady-states. Sine the entral assumption forthese results is passivity, we name the resulting global osillators, passive osillators. Central to theresults of this hapter is the haraterization of passive osillators by the dissipation inequality
Ṡ ≤ (k − k∗) y2 − yφ(y) + uy. (3.1)Beyond the stability results, the dissipation inequality (3.1) provides an external haraterizationof osillators whih opens the way to a rigorous stability analysis of limit yles in possibly high-dimensional systems and interonnetions of suh systems.3.1 The Van der Pol osillatorIn the early days of nonlinear dynamis, say from about 1920 to 1950, intensive researh was doneon nonlinear osillations. One of the very �rst to propose a model for global limit yle osillations35



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORwas the Duth eletrial engineer Balthazar Van der Pol. Van der Pol is nowadays onsideredas the pioneer engineer in the �elds of radio and teleommuniations. In an era when these topis weremuh less advaned than they are today, vauum tubes were used to ontrol the �ow of eletriity in theiruitry of transmitters and reeivers. Contemporary with Lorenz, Thompson, and Appleton,Van der Pol experimented with osillations in a vauum tube triode iruit and onluded thatall initial onditions onverged to the same periodi orbit of �nite amplitude. Sine this behavioris di�erent from the behavior of solutions of linear equations, Van der Pol proposed a nonlineardi�erential equation, ommonly referred to as the Van der Pol equation, as a model for the behaviorobserved in the experiment. Sine its introdution in the 1920's, the Van der Pol equation hasbeen a prototype for systems with self-exited limit yle osillations.In this setion, we will show that the Van der Pol osillator an be seen as a partiular Lurefeedbak system and that the main feedbak mehanism responsible for global osillations in the Vander Pol osillator is the Hopf bifuration.3.1.1 Van der Pol dynamis - Global resultsOsillations in physial systems generally result from a sustained energy exhange between twoor several storage elements. In the Van der Pol osillator the two storage elements are a apaitorand an indutor, whereas the dissipation is regulated by means of a nonlinear stati element. Figure3.1 shows a sketh of the �tetrode multivibrator� iruit used in the earliest ommerial radios andanalyzed by Van der Pol. The indutor and the apaitor are assumed to be linear, time invariantand passive, that is, L > 0 and C > 0. In Van der Pol's day, the nonlinear stati element wasa vauum tube; today it would be a semiondutor devie implementing a twin-tunnel-diode iruit.This nonlinear element ats like an ordinary resistor for high urrents, but like a negative resistor forlow urrents. Its urrent-voltage harateristi i = φR(v) resembles a ubi funtion with a negativeslope at the origin, as represented on Figure 3.1. The funtion φR(·) satis�es the onditions
φR(0) = 0, φ′R(0) = −R < 0, φ′′R(0) = 0, φ′′′R(0) > 0and

lim
v→+∞

φR(v) = +∞, lim
v→−∞

φR(v) = −∞,where φ′R(v) and φ′′R(v) are the �rst and seond derivative of φR(v) with respet to v respetively.For the Van der Pol equation,
φR(v) =

1

3
v3 −Rv (3.2)where R parameterizes the slope at the origin.Using Kirhhoff's laws, the seond order dynamis of the Van der Pol iruit of Figure 3.1are

LC
d2v

dt2
+ L

(
v2 −R

) dv

dt
+ v = 0.The foregoing equation an be written in a form that oinides with some well-known equationsin nonlinear systems theory. To do that, let us hange the time variable from t to τ = t√

LC
. Denotingthe derivative of v with respet to τ by v̇, we an rewrite the iruit equation as

v̈ +

√

L

C

(
v2 −R

)
v̇ + v = 0. (3.3)36



3.1. THE VAN DER POL OSCILLATOR
i

v

v−

elementresistiveNonlinear
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+
i = φR(v)
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L

iCiL slope at origin = −RFigure 3.1: The Van der Pol �tetrode multivibrator� iruit.This last equation is known as the Van der Pol equation and is a speial ase of Liénard'sequation
v̈ + f(v)v̇ + g(v) = 0, (3.4)where f(v) =

√
L
C
φ′R(v) =

√
L
C

(
v2 −R

) and g(v) = v. It an also be interpreted mehanially asthe equation of motion for a unit mass subjet to a nonlinear damping fore −f(v)v̇ and a nonlinearrestoring fore −g(v). Liénard systems are well known in the literature for their nonlinear osillationsproperties. The following theorem states that Liénard systems have a unique, stable limit yle underappropriate hypotheses on f(·) and g(·). For a proof, see [JS87℄, [Gri90℄, or [Per91℄.Theorem 3.1 (Liénard's Theorem) [Str00℄ Suppose that f(v) and g(v) satisfy the followingonditions:1. f(v) and g(v) are ontinuously di�erentiable for all v ∈ R;2. g(−v) = −g(v) for all v ∈ R;3. g(v) > 0 for v > 0;4. f(−v) = f(v) for all v;5. The odd funtion F (v) =
∫ v

0 f(u) du has exatly one positive zero at v = a, is negative for
0 < v < a, is positive and nondereasing for v > a, and F (v) → ∞ as v → ∞.Then the system (3.4) has a unique, stable limit yle surrounding the origin in the phase plane.The assumptions on g(v) mean that the restoring fore ats like an ordinary spring, and tends toredue any displaement, whereas the assumptions on f(v) imply that the damping is negative atsmall |v| and positive at large |v|. Sine small osillations are pumped up and large osillations aredamped down, it is not surprising that the system tends to settle into a self-sustained nonlinearosillation at some intermediate amplitude.3.1.2 The Van der Pol model as a Lure feedbak systemThe Van der Pol osillator may be seen as a partiular Lure feedbak system that admitsthe blok diagram representation of Figure 3.2, whih is the feedbak interonnetion of a dynamialpassive system with a stati nonlinearity haraterized by a negative slope at the origin.37
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−

passive y

Σ

−RFigure 3.2: Blok diagram orresponding to the Lure SISO nonlinear system interpretation of theVan der Pol equation.This is easily seen by hoosing the state variables as the voltage aross the apaitor and theurrent through the indutor. Denoting the state variables by z1 = iL and z2 = v, the state model isgiven by
dz1

dt
=

1

L
z2

dz2

dt
= − 1

C

(

z1 +

(
1

3
z3
2 −Rz2

))Sine the �rst model (3.3) has been written with respet to the time variable τ = t√
LC

, let us writethis model with respet to τ . We obtain
ż1 =

√
C
L
z2

ż2 = −
√

L
C

(
z1 +

(
1
3z

3
2 −Rz2

)) (3.5)Let us assume, without loss of generality, that L = C = 1. We then get the Van der Pol statemodel
ż1 = z2
ż2 = −z1 −

(
1
3z

3
2 −Rz2

) (3.6)The state model (3.6) admits the blok diagram representation depited in Figure 3.3. Sine anintegrator is the most simple example of a passive dynamial system and the feedbak interonnetionof passive systems is passive (see Theorem 2.15), the blok diagram representation given in Figure3.3 learly orresponds to the Lure feedbak system of Figure 3.2. In Setion 3.3, we will prove thatthe lass of Lure feedbak systems depited in Figure 3.2 extends the fundamental properties of theVan der Pol osillator to high-dimensional systems, i.e. to feedbak systems haraterized by aunique limit yle whih is (almost) globally attrative.The feedbak mehanism responsible for global osillations in the Van der Pol model (3.6) is theHopf bifuration. This is easily seen by onsidering R as a parameter and performing a bifurationanalysis on the linearized system. The Jaobian matrix of the linearized system is
A =

(
0 1
−1 R

)

.38
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φR(·)Figure 3.3: Blok diagram representation of the Van der Pol state model (3.6).For negative values of R, the origin (z1, z2) = (0, 0) is asymptotially stable whereas for positive valuesof R, the origin is unstable. For R = 0, the origin of the linearized system is marginally stable withtwo eigenvalues (±i) on the imaginary axis. Moreover, as R is inreased through 0, the orrespondingeigenvalues ross the imaginary axis with nonzero speed. The assumptions of the Hopf bifurationin Theorem 2.32 are thus satis�ed. The type of Hopf bifuration is determined by the sign of theurvature oe�ient a given in (2.33), i.e.
a =

1
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z1z1z1
+ f1

z1z2z2
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)

− 1

16

(
f1
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(
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z1z1
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(
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z1z1
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z2z2

)
− f1

z1z1
f2

z1z1
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z2z2
f2

z2z2

)
,where f i denotes the ith omponent of the vetor �eld at the ritial value R = 0, i.e. ( f1

f2

)

=
(
f1 (z1, z2, 0)
f2 (z1, z2, 0)

)

=

(
z2

−z1 − 1
3z

3
2

) and all partial derivatives are evaluated at the bifuration point,i.e. (z1, z2, R) = (0, 0, 0). In the Van der Pol model, we obtain a = −1
8 < 0. Sine a is negative,we dedue that the Hopf bifuration is superritial and gives rise to a loally stable limit yle for

R > 0. Furthermore, from the Liénard Theorem 3.1, we know that this limit yle is unique andglobally asymptotially stable for R > 0. It an also be shown that the origin of the Van der Polstate model (3.6) is globally asymptotially stable for R ≤ 0 (see [Kha02℄). In Setion 3.3, we willsee that the global asymptoti stability of the origin before the ritial bifuration value R = 0 (i.e.for R ≤ 0) is an important ondition for obtaining a globally attrative limit yle for values of Rgreater than 0.3.2 The Fitzhugh-Nagumo osillatorOsillations in biologial systems generally result from a relaxation osillation haraterized byrapid swithes between two quasi steady states (see [Mur02℄). Most of the time, this relaxationosillation is the result of the feedbak addition of a slow adaptation mehanism to a globally bistablesystem. In this setion, we are interested in one of the most simple models for voltage osillations in theneuron ell membrane, the Fitzhugh-Nagumomodel. We will show that, under ertain assumptions,this model admits the Lure feedbak representation of Figure 3.2, plus a feedbak adaptation loop.39



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORIn the Fitzhugh-Nagumo model, the Lure feedbak system is globally bistable. The osillationmehanism onsists in the transformation of this globally bistable system into a relaxation osillationthrough the addition of a slow adaptation dynami.3.2.1 Fitzhugh-Nagumo dynamis - Global resultsThe simplest model that has been proposed for spike generation is the Fitzhugh-Nagumo model.This model is a simpli�ation of the Hodgkin-Huxley model for voltage osillations in the neuronell membrane [HH52℄.In 1952, Hodgkin and Huxley [HH52℄ proposed a mathematial model to explain pulse gen-eration by neurons. Aording to their analysis, the eletrial pulses arise beause the neuron ellmembrane is preferentially permeable to various hemial ions with the permeabilities a�eted bythe urrents and ions present. The key elements in the system are potassium ions (K+) and sodiumions (Na+). The Hodgkin-Huxley equations are haraterized by a threshold for generating limityles and thus provide a qualitative approximation to spike generation thresholds. Simpli�ationsof the model of Hodgkin and Huxley lead to the well-known seond order Fitzhugh-Nagumomodel whih qualitatively preserves its important properties.The Fitzhugh-Nagumo dimensionless model is (see [Mur02℄)
v̇ = f(v) − w + Ia
ẇ = bv − γw,

(3.7)where Ia models the external exitation urrent, f(v) = −v(v− a)(v− 1), 0 < a < 1, and b and γ arepositive onstants. The orresponding nulllines are w = b
γ
v and w = f(v) + Ia.With Ia = 0, the possible phase portraits, as illustrated in Figure 3.4, show that there an be noperiodi solutions sine we either have a unique, asymptotially stable equilibrium point or a bistablesystem, i.e. two stable equilibrium points with a saddle point in between.
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ẇ > 0ẇ < 0

S1

S2
w = bv

γ

(a) (b)

w = bv
γ

a a 11
Figure 3.4: Nulllines for the original Fitzhugh-Nagumo model (3.7) when Ia = 0. As the param-eters b and γ vary there an be (a) one stable equilibrium point or, (b) three equilibrium points, oneunstable, namely, S1, and two stable, namely, (0, 0) and S2.Suppose now that there is an applied urrent Ia > 0. The e�et on the nulllines is simply tomove the v nullline, with Ia = 0, up the w-axis. The orresponding nulllines are illustrated in40



3.2. THE FITZHUGH-NAGUMO OSCILLATORFigure 3.5 (a) to (d) for several Ia > 0. With parameter values suh that the nulllines are as inFigure 3.4-(a), we an see that by varying only Ia there is a range of applied urrents (I1, I2) wherethe steady state an be unstable and limit yle osillations possible, that is, a nullline situationlike that in Figure 3.5-(b). The algebra to determine the various parameter ranges for a, b, γ and Iafor eah of these various possibilities to hold is straightforward [Mur02℄. Finally, with the situationexhibited in Figure 3.5-(d) limit yle solutions are not possible. On the other hand this form anexhibit equilibria swith properties.
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Figure 3.5: Nulllines for the original Fitzhugh-Nagumo model (3.7) with di�erent applied urrents
Ia. Cases (a), where Ia < I1, and (), where Ia > I2, have linearly stable steady states, while in(b), where I1 < Ia < I2, the steady state an be unstable and limit yle periodi solutions arepossible. With the on�guration (d), the steady states S1, S3 are stable whereas S2 is unstable. Inthe on�guration (d), a perturbation from either S1 or S3 an e�et a swith to the other.Sine we are interested in the situation where a limit yle osillation ours in the Fitzhugh-Nagumo model (3.7), the positive onstants a, b, γ, and Ia are hosen suh that the system possessesa unique unstable equilibrium point as in Figure 3.5-(b). For nulllines to be as in Figure 3.5-(b), wemust impose that the slope at the in�exion point (v = a+1

3 ) of the nullline w = f(v)+ Ia is less than41
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b
γ
(the slope of the nullline w = b

γ
v). This leads to the ondition

b

γ
>

1

3

(
a2 − a+ 1

) (3.8)whih guarantees uniqueness of the equilibrium point of the state model (3.7).Suppose now that for a partiular value Īa of Ia, the equilibrium point is the in�exion point ofthe nullline, i.e. w̄ = f(v̄) + Īa = b
γ
v̄ with v̄ = a+1

3 . Then for the in�exion point to be unstable wemust further impose the ondition
γ <

1

3

(
a2 − a+ 1

)
. (3.9)It may be similarly showed that the equilibrium point is unstable in the range of values

V̄1 ≤ v̄ ≤ V̄2, (3.10)where V̄1 = a+1
3 −

√
(a2−a+1)−3γ

3 and V̄2 = a+1
3 +

√
(a2−a+1)−3γ

3 with (a2 − a+ 1
)
− 3γ > 0 fromondition (3.9).From ondition (3.10) we may approximate the range of values for the exitation urrent Ia(leading to a situation similar to that desribed in Figure 3.5 (b)) by

I1 ≤ Ia ≤ I2, (3.11)where I1 = b
γ
V̄1 − f

(
V̄1

) and I2 = b
γ
V̄2 − f

(
V̄2

).3.2.2 The Fitzhugh-Nagumo model as a Lure feedbak system plus a feedbakadaptation loopIn this setion we perform several hanges of oordinates in order to obtain a state model of theFitzhugh-Nagumo equations (3.7) that admits the Lure feedbak representation of Figure 3.2,plus a feedbak adaptation loop.In order to enter the origin of the axes in Figure 3.5-(b) at the in�exion point of the funtion
f(v), we perform the following hange of oordinates

z1 = w − f

(
a+ 1

3

)

− Ia

z2 = v − a+ 1

3
,whih leads to the equivalent model

1

γ
ż1 =

b

γ
z2 − z1 +
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γ
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3
− f

(
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3
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)

ż2 = −z1 −
(

z3
2 − 1
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(
a2 − a+ 1

)
z2

)

.If we assume that Ia = b
γ

a+1
3 − f

(
a+1
3

) (whih belongs to the urrent range (3.11)), the statemodel beomes
τ ż1 = bτz2 − z1,

ż2 = −z1 −
(
z3
2 − 1

3

(
a2 − a+ 1

)
z2
)
,

(3.12)42



3.2. THE FITZHUGH-NAGUMO OSCILLATORwhere τ = 1
γ
, and admits the feedbak representation of Figure 3.6 where φa (z2) = z3

2 −
1
3

(
a2 − a+ 1

)
z2. In the model (3.12), the uniqueness of the equilibrium point is guaranteedby the ondition 1

3

(
a2 − a+ 1

)
< bτ and its unstability by the ondition 1

3

(
a2 − a+ 1

)
> 1

τ
. Welearly see that both onditions are simultaneously satis�ed for τ large enough.
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Figure 3.6: Blok diagram representation of the Fitzhugh-Nagumo state model (3.12).We are now ready to interpret the osillation mehanism of the Fitzhugh-Nagumo osillator.The inner-loop dynami
ż2 = kaz2 − z3

2 , (3.13)where we have posed ka = 1
3

(
a2 − a+ 1

)
> 0, onstitutes a globally bistable system. The mostnatural way to obtain a bistable system from a salar parameterized system is through a pithforkbifuration. The Fitzhugh-Nagumo osillator exploits this idea. Consider exlusively the innerloop dynami (3.13) of the Fitzhugh-Nagumo model parameterized by k ∈ R, we obtain
ż2 = kz2 − z3

2 . (3.14)It is easy to see that this �rst order system undergoes a superritial pithfork bifuration at k = 0sine for k < 0, the origin of (3.14) is globally asymptotially stable, whereas for k > 0, the origin isa saddle point and there exists two other asymptotially stable equilibrium points loated at ±√
k.Considering only the inner loop dynami (3.14), one thus obtains the phase portrait shown in Figure3.7-(a) for k = ka > 0.The outer-loop in Figure 3.6 or equivalently the adaptation equation

τ ż1 = −z1 + bτz2 (3.15)onverts the bistable behavior into a limit yle in the phase plane (z1, z2) as shown in Figure 3.7-(b).The limit yle is guaranteed to be globally asymptotially stable provided that the time onstant τis large enough, i.e. the adaptation is slow enough to let the �fast" dynamis onverge to quasi steadystate (this is easily seen by applying singular perturbation theory � see [Kha02℄).The global bistability of the inner loop ombined with the slow adaptation of the outer loop thusprovides a seond feedbak mehanism for global osillations. The resulting relaxation osillation isharaterized by rapid swithes between two quasi steady states.43
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(a) Without adaptation (b) With adaptationGlobally bistable system Relaxation osillationFigure 3.7: The hysteresis assoiated to a bistable system.3.3 First result of this thesis - Passive osillator de�nitionThe aim of this setion is to onstrut a lass of high-dimensional systems that generalizes theglobal limit yle osillation mehanisms of the Van der Pol and Fitzhugh-Nagumo osillators.In the Van der Pol example (3.6), the feedbak mehanism responsible for the generation of globallimit yle osillation is the superritial Hopf bifuration that ours at R = 0. In the Fitzhugh-Nagumo example (3.12), the global osillation feedbak mehanism onsists in the addition of a slowadaptation dynami to a globally bistable system.Both in the Van der Pol and the Fitzhugh-Nagumo models, the bifurations our in astruture that orresponds to the feedbak interonnetion of a onservative system with a statinonlinearity of the form φk(y) = −ky + y3, i.e. a nonlinearity φ(y) = y3 that satis�es the setorondition yφ(y) > 0, ∀y ∈ R plus a parameterized slope at the origin −ky. In the Van der Pol ex-ample (3.6), the onservative system onsists in the feedbak interonnetion of two simple integratorswhereas in the Fitzhugh-Nagumo situation (3.12), the onservative system is a single integrator.To generalize the Van der Pol and Fitzhugh-Nagumo global osillation properties to higher-dimensional systems, the ideal situation would be to replae the integrator appearing in the forwardpath of Figures 3.3 and 3.6 diretly by a general passive system. This is a su�ient ondition forproving global boundedness of the solutions of the feedbak system as we will see in Setion 3.3.2.However, it is a too general assumption that annot reasonably lead to global osillations in thegeneral ase. In Setion 3.3.3, we will prove that in order to obtain global stability properties througha superritial bifuration, it is essential that the system under onsideration possesses a unique,globally asymptotially stable equilibrium point before the bifuration. In other words, the systemmust be absolutely stable for values of the bifuration parameter less or equal to the ritial value.This will allow the global stability property of the equilibrium point to be transmitted to the bifuratedsolution, at least in the viinity of the ritial bifuration value. Replaing the forward integrator inFigures 3.3 and 3.6 by a passive system does not lead to a situation where this ondition is satis�edgenerially. As we will see, for a general Lure system of the form represented in Figure 3.8, passivityof the parameterized system Σk is generially lost before its stability as the parameter k is inreased(i.e. before the bifuration), leading to a situation where the feedbak system is not neessarilyglobally asymptotially stable before the bifuration. Stronger assumptions are to be imposed to theforward system Σk if one is interested in global osillations. These assumptions will be disussed in44



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONSetion 3.3.3.3.3.1 Class of systems studiedConsider the Lure system shown in Figure 3.8 whih represents the feedbak interonnetionof the nonlinear system Σ with a stati nonlinearity φk(·). Throughout this hapter, we make thefollowing assumptions. We assume that the (SISO) system Σ is desribed by the state-spae model
(Σ)

{
ẋ = f(x) + g(x)v, x ∈ R

n, v ∈ R

y = h(x), y ∈ R
(3.16)where the vetor �elds f and g and the salar funtion h are smooth1. We assume that the origin x = 0is an equilibrium point, i.e. f(0) = 0, and that h(0) = 0 and g(0) 6= 0. We also assume zero-statedetetability of the pair (f, h), i.e. that every solution x(t) of ẋ = f(x) that veri�es y(t) = h(x(t)) ≡ 0asymptotially onverges to the zero solution x = 0 as t→ ∞.The stati nonlinearity φk(·) : R → R is desribed as

φk(y) = −ky + φ(y), (3.17)where φ(·) is a smooth setor nonlinearity in the setor (0,∞), whih satis�es φ′(0) = φ′′(0) = 0,
φ′′′(0) = κ > 0 and lim|s|→∞

φ(s)
s

= +∞ (�sti�ening� nonlinearity). The parameter k regulates thelevel of �ativation� near the equilibrium x = 0.The feedbak interonnetion is de�ned by
v = −φk(y) + u, (3.18)where u ∈ R represents the external input of the feedbak nonlinear system. Sine, in this hapter,we are interested in self-osillating systems, the external input u is onsidered to be equal to zero. InChapter 4 it will be used to interonnet several systems (osillators) into a network.We denote by G(s) the transfer funtion of the linearization of Σ at x = 0 and by Σk the (positive)feedbak interonnetion of Σ with the feedbak gain k. Similarly, we denote by Gk(s) = G(s)

1−kG(s) thetransfer funtion of the linearization of Σk at x = 0. The feedbak system is equally desribed as thefeedbak interonnetion of Σk and the nonlinearity φ(·) (see Figure 3.8).
u y

−
v

≡
u y

−
Σ Σk

φ(·)φk(·)Figure 3.8: Equivalent representations of the Lure SISO nonlinear system.We assume that the system Σ is strongly passive with storage funtion S(x) (see De�nition 2.4).For larity, we reall here the three additional assumptions haraterizing the storage funtion S(x)of a strongly passive system.1By smooth, we mean ontinuously di�erentiable up to order k (Ck) with k large enough to satisfy our needs (i.e.to ful�l the requirements of the theorems we are using, suh as the theorem on existene and uniqueness of solutions,the theorem on ontinuous dependene of a solution on the initial ondition (see [KhalilBook2, Setions 3.1 and 3.2℄),the Hopf bifuration theorem, et.). 45



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR1. (smoothness) S(x) is ontinuously di�erentiable (C1) in R
n and twie ontinuously di�erentiable(C2) in a neighborhood of the origin.2. (Lyapunov) S(x) is positive de�nite, S(x) > 0, and radially unbounded, i.e. S(x) → ∞ as

|x| → ∞.3. (loally quadrati) The Hessian of S(x) evaluated at zero ∂2S(x)
∂x2

∣
∣
∣
x=0

is a symmetri positivede�nite matrix P = P T > 0.As it is well-known, these assumptions are always satis�ed in the (detetable) linear ase beauselinear passive systems have quadrati positive de�nite storage funtions [Wil72℄. In general, theseassumptions are onvenient to link the passivity of Σ to the stability properties of the zero inputsystem sine S(x) then serves as a (global) Lyapunov funtion. The loally quadrati assumptionfurther ensures that the linearization of Σ is passive, with the quadrati approximation of S(x) as astorage funtion. It also implies that the system has a relative degree one2, i.e. ∂h
∂x

(x)g(x) > 0 for all
x in a (small) neighborhood of the origin x = 0, and that it is weakly minimum phase, i.e. its zerodynamis are Lyapunov stable [BIW91℄.The �rst question if we are interested in global results onerns the global boundedness of thesolutions of the feedbak system (3.16),(3.17),(3.18) with u ≡ 0. To this end, we introdue an extraproperty for the feedbak system in Figure 3.8. The feedbak interonnetion of Σ and φk(·) is alledultimately bounded3 if all solutions enter in �nite time a ompat set Ω = Ω(k). The main resultof this hapter (see Setion 3.3.3) states ultimate boundedness as an extra assumption to strongpassivity and zero-state detetability of Σ. Following the argument of Arak and Teel in [AT02℄,we observe that this extra assumption is always satis�ed when the feedbak interonnetion of Σwith a sti�ening, stritly passive nonlinearity is input-to-state stable. This is beause the sti�eningnonlinearity φk(·) always admits the deomposition

φk(y) = ψ(y) + χk(y),with ψ(y) stritly passive and χk(y) uniformly bounded by a onstant C = C(k). If Σ is passive,the feedbak interonnetion of Σ and φk(·) is thus equivalent to the feedbak interonnetion of Σwith ψ(·), whih is stritly passive, fored by the bounded input χk(y). Ultimate boundedness is thusimplied by input-to-state stability (see [Son89℄) of the stritly passive interonnetion of Σ and ψ(·),whereas strit passivity only implies a �nite L2 gain when Σ is nonlinear. In the partiular ase of
Σ linear, Arak and Teel [AT02℄ have proved that weakly minimum phaseness and detetabilityof the linear system Σ neessarily implies ultimate boundedness of the feedbak interonnetion of Σ2This an be easily seen from the seond Hill-Moylan ondition (2.20). Condition (2.20) implies
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„
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g(x) =
∂h(x)

∂x
g(x)By de�nition of the storage funtion S(x), ∂S

∂x

˛

˛
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= 0, and we obtain gT (0) ∂2S
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˛

˛

˛

x=0
g(0) = Lgh(x)|x=0. Sine, byassumption, ∂2S

∂x2

˛

˛

˛

x=0
is a symmetri, positive de�nite matrix, and g(0) 6= 0, this implies, Lgh(x)|x=0 > 0, whih meansthat the system has relative degree one around the origin (see [SJK97, Appendix A.1℄).3In the literature, this property is often alled dissipativity (or Levinson dissipativity) whih should not be onfusedwith the dissipativity notion in this doument. In [Pog98, PGN99℄ this ultimate boundedness property is proved usingthe onept of semi-passive system. 46



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONwith the sti�ening, stati nonlinearity φk(·). For the seek of ompleteness, we summarize the resultsof Arak and Teel for Σ linear in the following setion. For proofs of the ited theorems, theinterested reader is referred to the paper [AT02℄.3.3.2 Global boundedness results for Σ linearArak and Teel [AT02℄ have given su�ient onditions for input-to-state stability (ISS4) of thefeedbak interonnetion of a linear, passive, and detetable blok with a stati nonlinear element. Inthe absolute stability framework, they prove ISS from the passivity of the linear blok, by restritingthe setor nonlinearity to grow unbounded as its argument tends to in�nity. When this growthproperty is violated, examples show that the ISS property is lost. The ISS result of Arak andTeel an be used to give a simple proof of boundedness for negative resistane osillators, suh asthe Van der Pol osillator. Their main result is realled in Theorem 3.2.Theorem 3.2 (Arak's Theorem [AT02℄) Consider the system
ẋ = Ax+B[−φ(y) + d] (3.19)
y = Cx (3.20)where x ∈ R

n, φ(·) : R
m → R

m, and (C,A) is detetable. If there exists a matrix P = P T ≥ 0satisfying the Hill-Moylan onditions
ATP + PA ≤ 0, (3.21)

C = BTP, (3.22)a onstant µ > 0, and a lass K∞ funtion φl(·), suh that
‖y‖∞ φl (‖y‖∞) ≤ yTφ(y) for all y ∈ R

m, (3.23)
‖φ(y)‖∞ ≤ yTφ(y) when ‖y‖∞ ≥ µ, (3.24)then the system is ISS with respet to d.Remark 3.3 [AT02℄ When (A,B,C) is a minimal realization, a straightforward modi�ation of theKalman-Yakubovih-Popov lemma 2.20 for P ≥ 0 shows that assumptions (3.21), (3.22) areequivalent to the positive realness of H(s) = C(sI − A)−1B. For a more general result, in Theorem3.2, Arak and Teel allow non-minimal realizations and only restrits (C,A) to be detetable.Remark 3.4 [AT02℄ For salar nonlinearities φ(·) : R → R the ondition (3.23) is equivalent to thesetor property

yφ(y) > 0, ∀y 6= 0, (3.25)4A dynamial system of the form ẋ = f(x, u), y = h(x) is input-to-state stable (ISS) if there exist γ ∈ K,β ∈ KLsuh that for all x0, u and t ≥ 0:
|x (t, x0, u)| ≤ β (|x0| , t) + γ

`

‖u‖∞
´A funtion γ : R≥0 → R≥0 is of lass K if it is ontinuous, positive de�nite, and stritly inreasing. It is of lass K∞if it is also unbounded.A funtion β : R≥0 × R≥0 → R≥0 is of lass KL if, for eah �xed t ≥ 0, β(·, t) is of lass K and, for eah �xed s ≥ 0,

β(s, t) dereases to 0 as t → ∞. 47



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORand the growth ondition
|y| → ∞ ⇒ |φ(y)| → ∞. (3.26)For salar nonlinearities, the ondition (3.24) is redundant beause (3.23) implies yφ(y) =

|y| |φ(y)| and, thus, (3.24) holds with µ = 1. For multivariable nonlinearities, (3.23) does not imply(3.24). A ounterexample is
φ(y) = y + |y|3 Jy,where J satis�es J +JT = 0 and JTJ = I. In this example, yTφ(y) = |y|2 and |φ(y)| =

√

|y|2 + |y|8,whih means that (3.23) is satis�ed with φl (|y|) = |y|, but (3.24) is violated.The ISS result of Theorem 3.2 an be used to prove boundedness for negative resistane osillatorssuh as the Van der Pol osillator as well as for the larger lass (3.19),(3.20), whih inludes higherorder systems and bounded disturbanes. This seond result of Arak and Teel is summarized inTheorem 3.5.Theorem 3.5 [AT02℄ Consider the system (3.19),(3.20) where x ∈ R
n, φ(·) : R → R, (C,A) isdetetable, and d is a bounded disturbane. If there exists a matrix P = P T ≥ 0 satisfying onditions(3.21) and (3.22), and if the nonlinearity φ(·) satis�es φ(y) → −∞ as y → −∞ and φ(y) → ∞ as

y → ∞, then all the trajetories are bounded.This result an be further generalized: Theorem 3.5 an be used to establish boundedness of traje-tories for a relative degree one, weakly minimum phase, linear blok, in feedbak with a sti�eningnonlinearity, de�ned by the property
lim

|y|→∞

φ(y)

y
→ +∞. (3.27)Using the Isidori normal form [Isi95℄ for relative degree one systems, this feedbak interonnetionis expressed as

ż = A0z +B0y (3.28)
ẏ = −C0z − ay − φ(y) + d, (3.29)where the z-subsystem represents the zero dynamis of the linear blok. This third result of Arakand Teel is summarized in Theorem 3.6.Theorem 3.6 [AT02℄ Consider the system (3.28),(3.29), where d is a bounded disturbane, (C0, A0)is a detetable pair, and there exists a matrix P0 = P T

0 ≥ 0 suh that
AT

0 P0 + P0A0 ≤ 0, P0B0 = CT
0 (3.30)If the nonlinearity φ(·) : R → R satis�es the sti�ening property (3.27), then the trajetories arebounded.This last result is useful to prove boundedness for systems with imaginary axis zeros. To illustrateTheorem 3.6, we onsider the following example: 48



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONExample 3.7 Consider the negative feedbak interonnetion of the linear system H(s) = s2+1
s3−s2+2s−1with the sti�ening nonlinearity φ(y) = y3. To apply Theorem 3.6, we note that H(s) is relative degreeone, and rewrite the system as in (3.28)-(3.29) with d = 0 and

A0 =

(
0 1
−1 0

)

, B0 =

(
0
1

)

, C0 =
(

0 1
)
, a = −1.The origin is unstable from the Jaobian linearization. However, beause (3.30) holds with P0 = I,Theorem 3.6 ensures boundedness. Numerial simulations indiate that the trajetories onverge toone of the two stable equilibria (x1, x2, x3) = ± (0, 0, 1) (Figure 3.9-(a)), or to a limit yle as shown(Figure 3.9-(b)).
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(a) (b)Figure 3.9: Example of Arak [AT02℄. (a) The initial ondition belongs to the basin of attrationof the equilibrium point (x1, x2, x3) = (0, 0,−1); (b) The initial ondition belongs to the basin ofattration of the limit yle.As a onsequene of the results of Arak and Teel, we may onlude that for linear systems Σ,weakly minimum phaseness5 and detetability seem to be important su�ient onditions for ultimateboundedness of the Lure feedbak interonnetion represented in Figure 3.8. Nevertheless, as wehave seen in example 3.7, these onditions are not su�ient to guarantee existene, uniqueness andglobal asymptoti stability of the limit yle. In the next setion, we give su�ient onditions forthe existene, uniqueness and global asymptoti stability of a limit yle in Lure feedbak systemssatisfying the representation given in Figure 3.8.3.3.3 Bifurations in absolutely stable Lure feedbak systemsIn this setion, we present the main results of this hapter, i.e. Theorems 3.8, 3.9, and 3.12.These results onern the high dimensional extension of the feedbak (global) osillation mehanismspresent in the Van der Pol and Fitzhugh-Nagumo models introdued in Setions 3.1 and 3.2.Theorem 3.8 presents the typial bifuration senarii that our in Lure feedbak systems satisfying5We reall that weakly minimum phaseness is a strutural property of input-a�ne passive systems (see Setion2.1.7). 49



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORthe representation given in Figure 3.8, i.e. superritial Hopf and superritial pithfork bifurations.Theorem 3.12 extends the results presented in Theorem 3.8 by weakening its assumptions throughthe use of multipliers. Finally, Theorem 3.9 shows that the global bistability behavior that appearsthrough the superritial pithfork bifuration senario an be transformed into a global relaxationosillation by addition of a feedbak adaptation loop to the Lure system.The feedbak system (3.16),(3.17),(3.18) with u ≡ 0 is absolutely stable when the equilibrium x = 0is globally asymptotially stable (GAS) for any nonlinearity φ(·) in the setor (0,+∞). Beause thesetor memoryless nonlinearity v̄ = φ(y) is stritly input passive, a su�ient ondition for absolutestability is that Σk is strongly passive and zero-state detetable. This results from Theorem 2.18.Assuming that Σ is strongly passive and zero-state detetable, the feedbak system (3.16),(3.17),(3.18)with u ≡ 0 is absolutely stable for k = 0. As k inreases, a root lous argument shows that thefeedbak system must loose stability at some ritial value k∗6. The following result haraterizes thepossible bifurations under a passivity assumption for Gk∗ . The notation k & k∗ is used to denote avalue of the parameter near the bifuration, i.e. k ∈
(
k∗, k̄

] for some k̄ > k∗.Theorem 3.8 Consider the system shown in Figure 3.8 and haraterized by (3.16),(3.17),(3.18)with u ≡ 0. Assume that Σ is strongly passive, that both Σ and its linearization are zero-statedetetable and that the feedbak interonnetion of Σ and φk(·) is ultimately bounded. Let k∗ ≥ 0 bethe minimum value for whih the transfer funtion Gk(s) has a pole on the imaginary axis.If Gk∗(s) has a unique pole on the imaginary axis and if Σk∗ is strongly passive, then the bifurationis a superritial pithfork bifuration; for k & k∗ the system is globally bistable, that is, the equilibrium
x = 0 is a saddle and its stable manifold Es(0) separates the state spae in two open sets, eah ofwhih is the basin of attration of a stable equilibrium.If Gk∗(s) has a unique pair of onjugated poles on the imaginary axis and if Σk∗ is strongly passive,then the bifuration is a superritial Hopf bifuration; for k & k∗ the system has a stable limit ylewhih is globally asymptotially stable in R

n\Es(0).ProofThe proof is divided into a loal argument and a global argument. Both arguments rely on thedissipation inequality
Ṡ ≤ −yφ(y) (3.31)at the bifuration point, where S(x) denotes a storage funtion for Σk∗ . The loal argument willshow the existene of a superritial Hopf (respetively, pithfork) bifuration at ǫ = k − k∗ = 0.This implies the existene of a onstant ǭ1 > 0 and a neighborhood U of x = 0 suh that for eah

ǫ ∈ (0, ǭ1], all solutions with initial ondition in U either onverge to the unstable equilibrium x = 0or to a unique stable limit yle of radius O (
√
ǫ) (respetively, one of two stable equilibria loatedat a distane O (

√
ǫ) of the origin). The global argument will show that there exists a onstant

0 < ǭ2 ≤ ǭ1, suh that for eah ǫ ∈ (0, ǭ2], all solutions enter the set U in �nite time (whih means6For the positive feedbak interonnetion of G(s) with the stati gain k, the root lous is suh that parts of the realaxis loated at the left of an even number of real singularities (poles or zeros) and at the right of the rightmost realsingularity belong to the root lous. As the transfer funtion of a strongly passive system, G(s) has a relative degreeequal to one and all its poles and zeros belong to the losed left-half omplex plane. As a onsequene, one branh(at least) of the root lous must enter the right-half omplex plane sine the positive part of the real axis neessarilybelongs to the root lous. 50



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITIONthat the loal argument eventually applies to eah solution).We �rst prove the global argument. Ultimate boundedness implies that for eah ǫ ∈ (0, ǭ3], allsolutions enter in �nite time an invariant ompat set Ω = Ω(ǫ). Furthermore, the robustness ofglobal asymptoti stability at ǫ = 0 implies semi-global pratial asymptoti stability of the solution
x = 0 (see Theorem 2.257), i.e. the existene of ǭ2 ≤ ǭ3 suh that, for eah ǫ ∈ (0, ǭ2], all solutionswith initial ondition in Ω enter in �nite time the set U .Next we turn to the loal argument. At the bifuration, i.e. for k = k∗, the system possesses a entermanifold. In a neighborhood of the origin x = 0, the dissipation inequality (3.31) writes

Ṡ ≤ −κy4 + O
(
y5
)
, κ = φ′′′(0) > 0 (3.32)with S(x) being loally quadrati positive de�nite. In partiular, this last inequality holds valid onthe enter manifold as well. The restrition of S(x) on the enter manifold is thus a loally quadratiLyapunov funtion that satis�es (3.32). Moreover, detetability of the linearization of Σ impliesobservability of the linearized enter manifold dynamis8.Case (1): If Gk∗(s) has a unique pole on the imaginary axis, the enter manifold is one-dimensional.For a one dimensional manifold, the assumption h(0) = 0 implies that the output of the system is

y = cξ + O
(

|ξ|2
) with ξ ∈ R. Sine the linearization of the enter manifold dynami is observable,

c is nonzero. This implies that y quali�es for a loal oordinate in the enter manifold. In normalform, the enter manifold dynami thus writes [Wig90℄
ẏ = a3y

3 + O
(
y4
)
, y ∈ R. (3.33)The restrition of the storage funtion on the enter manifold is a loally quadrati funtion of theform Senter manifold = 1

2P1y
2 + O

(
y3
) (with P1 > 0 from the strong passivity assumption of Σk∗)that satis�es the dissipation inequality

Ṡenter manifold = P1yẏ ≤ −κy4 + O
(
y5
)
. (3.34)We thus obtain

a3P1y
4 + O

(
y5
)
≤ −κy4 + O

(
y5
)
,whih in turn implies that a3 < 0. As a onsequene, the pithfork bifuration is superritialpithfork, that is, there exists one unstable equilibrium at y = 0 and two asymptotially stableequilibria y = ±O (

√
ǫ) for small ǫ > 0.Case (2): If Gk∗(s) has two onjugated poles at s = ±jω, the enter manifold is two-dimensional.7With the notations of Theorem 2.25, f ǫ orresponds to the vetor �eld of Σk with k & k∗ and g to the vetor�eld of Σk∗ . This implies that the onvergene assumption is neessarily satis�ed sine f ǫ onverges point-wise to g as

ǫ → 0.8If a linear system is (zero-state) detetable then its unobservable modes are asymptotially stable. This an alsobe formulated as follows: If a linear system is (zero-state) detetable then its non asymptotially stable modes areobservable. 51



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORThe normal form of the enter manifold dynamis is [Wig90℄
ξ̇ = Acξ + |ξ|2

(
a3ξ1 − b3ξ2
b3ξ1 + a3ξ2

)

+ O
(

|ξ|4
)

, Ac =

(
0 ω

−ω 0

) (3.35)whih, in polar oordinates, yields
{
ρ̇ = a3ρ

3 + O
(
ρ4
)

θ̇ = ω + O
(
ρ2
) (3.36)The restrition of S on the enter manifold is a loally quadrati Lyapunov funtion S =

ξTQξ + O
(

|ξ|3
) whih satis�es

Ṡ = ξT
(
QAc +AT

c Q
)
ξ + O

(

|ξ|3
)

≤ −κy4 + O
(
y5
)
. (3.37)Up to a saling fator, the only positive de�nite solution Q of QAc + AT

c Q ≤ 0 is Q = 1
2I, whihimplies S = 1

2ρ
2 + O

(
ρ3
). For initial onditions in the enter manifold, the dissipation inequality(3.37) thus satis�es

Ṡ = a3ρ
4 + O

(
ρ5
)
≤ −κy4 + O

(
y5
)
.Integration on both sides over an arbitrarily hosen time interval T > 0 yields

a3

∫ T

0
(ρ(t))4 dt ≤ −κ

∫ T

0
(y(t))4 dt+ O

(
y5
)whih, from the observability of the linearized enter manifold dynamis, fores a3 < 0. This impliesthat the bifuration is a superritial Hopf bifuration, that is, for small ǫ > 0, all solutions in Ueither onverge to the unstable equilibrium x = 0 or to a unique stable limit yle of radius O (

√
ǫ).This onludes the proof.The Hopf bifuration senario of Theorem 3.8 provides a high dimensional generalization of theglobal limit yle osillation mehanism satis�ed by the Van der Pol osillator. It has the followingenergy interpretation: passivity at the bifuration point allows for a lossless exhange of energybetween at least two storage elements9. The stati nonlinearity φk �regulates" the dissipation in theLure feedbak system, restoring energy when it is too low and dissipating it when it is too high.On the other hand, the pithfork bifuration senario provides a high dimensional generalization ofthe global bistability behavior ouring in the inner loop of Figure 3.6. The following result transformsthis global bistability behavior into a feedbak mehanism for global osillations.Theorem 3.9 Under the assumptions of Theorem 3.8, suppose that the feedbak interonnetion of

Σ and φk(·) undergoes a superritial pithfork bifuration at k = k∗ and that the feedbak systemshown in Figure 3.10 is ultimately bounded. Then there exists onstants ǭ > 0, and τ > 0 suh thatfor all k ∈ (k∗, k∗ + ǭ) and τ ≫ (k − k∗)−1, the feedbak system shown in Figure 3.10 is haraterizedby a globally asymptotially stable limit yle in R
n+1\Es(0).9In the Van der Pol osillators these two elements are the two integrators appearing in Figure 3.3.52



3.3. FIRST RESULT OF THIS THESIS - PASSIVE OSCILLATOR DEFINITION
−−

y

R

φk(·)

Σ

1
τs+1

u

Figure 3.10: Converting the global bistability senario into a relaxation osillator with a slow adapta-tion mehanism (τ ≫ (k − k∗)−1). The ase Σ = 1
s
orresponds to the Fitzhugh-Nagumo osillator.ProofThe proof is similar to the proof of Theorem 3.8. Let ǫ = (k − k∗). Consider the system representedon Figure 3.10. By assumption, the feedbak interonnetion of Σ and φk(·) possesses a one dimen-sional enter manifold at ǫ = 0. For u 6= 0, strong passivity of Σ implies that the enter-unstablemanifold dynami writes10

ẏ = ǫy + a3y
3 + bu+ O

(
y4
)
, a3 < 0, b > 0.Thus, if we augment the one-dimensional enter-unstable manifold of the original system (withoutadaptation) with the adaptation equation, we obtain

ẏ = ǫy + a3y
3 − bR+ O

(

|(y,R)|4
)

, a3 < 0, b > 0,

Ṙ = δ(−R+ y),
(ǫ̇ = 0,

δ̇ = 0),

(3.38)where treating δ = τ−1 as a state variable makes the adaptation equation part of the enter-unstablemanifold loally de�ned around (x,R, ǫ, δ) = (0, 0, 0, 0) (see [Wig90, Setion 2.1b℄). The equilibrium
(y,R) = (0, 0) of (3.38) is stable for ǫ < δ > 0 and unstable for ǫ > δ > 0. Standard arguments basedon singular perturbation theory (see [Kha02, pp. 445-448℄) prove that there exists a onstant ǭ > 0and a neighborhood U of the equilibrium (y,R) = (0, 0) of (3.38) suh that for any �xed 0 < δ ≪ ǫ,
ǫ ∈ (0, ǭ], all solutions with initial ondition in U\{0} onverge to a unique limit yle. Beause ofthe time-sale separation, this limit yle orresponds to a relaxation osillation.The global part of the proof is as in Theorem 3.8: for δ > 0 and ǫ = 0, the equilibrium (x,R) = (0, 0)is globally asymptotially stable beause the augmented storage V = δS+ 1

2R
2 satis�es the dissipationinequality V̇ = δṠ+ ṘR = −δyφ(y)− δyR+ δR (−R+ y) ≤ −δyφ(y), whih is analogous to (3.31).10The strong passivity of Σ and the assumption g(0) 6= 0 imply that Σ has relative degree one at x = 0. This,in turn, implies that for x in a neighborhood of the origin, the input v of Σ diretly enters the ẏ dynamis, i.e.

ẏ = ∂h
∂x

ẋ = Lfh(x) + Lgh(x)v with Lgh(0) = ∂h
∂x

˛

˛

x=0
g(0) = b > 0.53



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORRemark 3.10 If the forward system Σ is linear, strongly passive and detetable, then ultimate bound-edness results from Theorem 3.6 sine the adaptation dynami is passive.Theorems 3.8 and 3.9 provide high dimensional extensions of the fundamental global osillation meh-anisms present in the Van der Pol and Fitzhugh-Nagumo models thus allowing for the de�nitionof high dimensional, global nonlinear osillators. Sine the main property of the system Σ is itsstrong passivity, we name suh osillators passive osillators. In the next setion, we give the generalde�nition of a passive osillator.3.3.4 Passive osillator de�nitionWe de�ne a passive osillator as a system that admits the feedbak representation in Figure 3.8,is haraterized by (3.16), (3.17), and (3.18), and satis�es the two following onditions:1. the feedbak system satis�es the dissipation inequality Ṡ ≤
(

k − k∗passive

)

y2−yφ(y)+uy where
S(x) represents the storage funtion of Σ and k∗passive ≥ 0 is the ritial value of k above whihthe system Σk loses passivity;2. when unfored (u ≡ 0), the feedbak system possesses a global limit yle, i.e. a stable limityle whih attrats all solutions exept those belonging to the stable manifold of the origin.The �rst ondition neessarily holds if we assume that the forward blok Σ is strongly passive. InTheorems 3.8 and 3.9, we provided su�ient onditions for the seond ondition to be satis�ed aswell. The most restritive assumption of Theorem 3.8 is the strong passivity assumption of Σk∗ . Itamounts to impose that, inreasing k, Σk remains passive until it loses stability, i.e. to impose that

k∗passive = k∗. In the next setion, we show that this assumption an be weakened through the use ofmultipliers.The external haraterization of our � possibly high-dimensional � passive osillators by a dis-sipation inequality plays a role both in the superritial harater of the bifuration and in thepreservation of global onvergene properties beyond the bifuration value. In Chapter 4, we showthat this external haraterization also plays an important role in the study of osillations in networksof interonneted passive osillators.3.4 Relaxation of the assumptions of Theorem 3.7 - Use of multipli-ersThe important property used in the proof of Theorem 3.8 is the absolute stability of the systemat ritiality (i.e. when k = k∗). As we have seen, this property is satis�ed under the assumptionthat Σk∗ is strongly passive. The assumption that Σk∗ is strongly passive is rather restritive. Itrequires that Σk loses stability and passivity for the same value of the parameter k. In general,this is not the ase. As the parameter k inreases, passivity of Σk is generally lost before stability.Speial ases where passivity and stability are lost simultaneously inlude lossless systems, e.g. thesimple integrator 1
s
or general Output Feedbak Lossless (OFL) systems, i.e. systems that an berendered lossless by feedbak. This quite restrits the appliability of Theorem 3.8. Fortunately, theassumptions of Theorem 3.8 an be relaxed with the help of multipliers (see [MR97℄ for a reent and54



3.4. RELAXATION OF THE ASSUMPTIONS OF THEOREM 3.7 - USE OF MULTIPLIERSgeneral treatment of multipliers). In this setion, we will see how multipliers an be used to relax the
Σk∗ strong passivity assumption but still guarantee the absolute stability at k = k∗.For the results of the present hapter, the main observation is that, when H1(s) and H2(s)are two transfer funtions with both poles and zeros in the open left-half omplex plane, then thefeedbak interonnetion of Σk and φ in Figure 3.8 is equivalent to the feedbak interonnetionof Σ̃k = H1ΣkH

−1
2 and φ̃ = H2φH

−1
1 showed in Figure 3.11. If H1 and H2 are suh that φ̃ isstritly passive, then strong passivity of Σ̃k beomes su�ient for absolute stability, yielding relaxedonditions for the stability of the feedbak system.
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Figure 3.11: Equivalent feedbak loop with multipliers.For the setor nonlinearity φ, the simplest example of multiplier is the Popov multiplier
M(s) = H1(s) = 1 + γs, γ > 0.Requiring strong passivity of the system (1 + γs)Σk for absolute stability of the feedbak system(3.16),(3.17),(3.18) with u ≡ 0 is Popov riterion [Kha02℄. For monotone inreasing stati nonlin-earities, a broad lass of multipliers was introdued by Zames and Falb [ZF68℄ in the form

M(jω) = 1 − Z(jω) = 1 −
∫ +∞

−∞
z(t)e−jωt dt,

∫ ∞

−∞
|z(t)| dt < 1. (3.39)The additional assumption z(t) ≥ 0 is also needed unless φ(·) is odd. Zames and Falb [ZF68℄ showedthat multipliers of the form (3.39), whih are not neessarily ausal, an always be fatored in theform

M(s) = H1(s)H2(−s)with H1, H2, and their inverses being ausal and stable and with the operator φ̃ = H2φH
−1
1 beingstritly passive. As a onsequene, strong passivity of Σ̃k is su�ient for absolute stability of thefeedbak system. Note that when Σk is a linear system, (strong) passivity of Σ̃k is equivalent topositive realness of the transfer funtion Gk(s)H1(s)H

−1
2 (s) (see Lemma 2.21).We summarize the following su�ient onditions for absolute stability of the feedbak system inFigure 3.8. 55



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORTheorem 3.11 Consider the system shown in Figure 3.8 and haraterized by (3.16),(3.17),(3.18)with u ≡ 0. Assume that Σ and its linearization are zero-state detetable and that all solutions of thefeedbak system are bounded. Then eah of the following onditions is su�ient for global asymptotistability of the equilibrium x = 0 of the feedbak system.
• φ is in the setor (0,∞) and there exists γ > 0 suh that Σ̃k = (1 + γs)Σk is strongly passive;
• φ is monotone inreasing in the setor (0,∞) and there exists M(s) = H1(s)H2(−s) in the form(3.39), z(t) ≥ 0, suh that Σ̃k = H1ΣkH

−1
2 is strongly passive;

• φ is odd, monotone inreasing in the setor (0,∞) and there exists M(s) = H1(s)H2(−s) in theform (3.39) suh that Σ̃k = H1ΣkH
−1
2 is strongly passive.ProofLet x be the state of Σ̃k and S̃(x) be its the storage funtion. Strong passivity of Σ̃k implies

˙̃
S ≤ ũỹ, (3.40)where ỹ = H1y and ũ is the output of the operator (−φ̃).For the Popov multiplier, this yields

˙̃
S ≤ −φ(y)(y + γẏ).A Lyapunov funtion for the interonnetion is given by V = S̃ + γ

∫ y

0 φ(s) ds, whih satis�es
V̇ = ˙̃

S + γφ(y)ẏ ≤ −yφ(y).For Zames-Falb multipliers, the operator (−φ̃) is of the form
(

−φ̃
){

ẇ1 = A1w1 +B1ỹ, y = C1w1 +D1ỹ

ẇ2 = A2w2 +B2φ(y), ũ = −C2w2 −D2φ(y)
(3.41)with (Ai, Bi, Ci, Di), i = 1, 2, being minimal realizations of the (stable) �lters H−1

1 and H2, respe-tively. For a given ỹ(t), t ≥ 0, we denote by −φ̃ (ỹ(t)) the (unique) output ũ(t) of (3.41) for theinitial ondition w(0) = (w1(0), w2(0)) = (0, 0). Strit passivity of the operator φ̃ is established in[ZF68℄. It implies
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt > 0for all T > 0, whih in turn implies that the integral monotonially inreases as a funtion of T .For an arbitrary initial ondition w(0), the di�erene ũ(t) + φ̃ (ỹ(t)) is exponentially deaying, andbeause ỹ(t) is bounded for all t ≥ 0, we have

∫ ∞

0

(

ũ(t) + φ̃ (ỹ(t))
)

ỹ(t) dt ≤ C (w(0)) ,56



3.4. RELAXATION OF THE ASSUMPTIONS OF THEOREM 3.7 - USE OF MULTIPLIERSwhere the onstant C ontinuously depends on the initial ondition and satis�es C(0) = 0. Integrat-ing the dissipation inequality (3.40), we obtain
∀T ≥ 0 : −S̃ (x(0)) < S̃ (x(T )) − S̃ (x(0)) ≤

∫ T

0
ũ(t)ỹ(t) dt

=

∫ T

0

(

ũ(t) + φ̃ (ỹ(t))
)

ỹ(t) dt

−
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt

≤ C (w(0)) −
∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt.This yields

∀T ≥ 0 :

∫ T

0
ỹ(t)φ̃ (ỹ(t)) dt < S̃ (x(0)) + C (w(0)) .Beause the integral in the left hand side monotonially inreases as a funtion of T , the �nite upperbound in the right hand side fores asymptoti onvergene of ỹ(t) to zero as t → ∞. Convergeneof the state follows from the zero-state detetability of Σ̃k. Finally, Lyapunov stability of the originfollows from the ontinuous dependene of S̃ (x(0)) + C (w(0)) on the initial ondition and from thedetetability of the linearized system. Global attrativity and Lyapunov stability of the origin implythat system resulting from the feedbak interonnetion of Σ̃k and φ̃ is globally asymptotially stable.This onludes the proof.Using Theorem 3.11, the assumptions of Theorem 3.8 an be weakened. Theorem 3.12 onstitutesthe multiplier version of Theorem 3.8.Theorem 3.12 The statements of Theorem 3.8 hold if the strong passivity assumption on Σk∗ isreplaed by one of the following onditions:

• φ(·) is in the setor (0,∞) and there exists γ > 0 suh that (1 + γs)Σk∗ is strongly passive;
• φ(·) is monotone inreasing in the setor (0,∞) and there exists M(s) = H1(s)H2(−s) in theform (3.39), z(t) ≥ 0, suh that Σ̃k∗ = H1Σk∗H−1

2 is strongly passive;
• φ(·) is odd, monotone inreasing in the setor (0,∞) and there exists M(s) = H1(s)H2(−s) inthe form (3.39) suh that Σ̃k∗ = H1Σk∗H−1

2 is strongly passive.ProofThe global argument of the proof of Theorem 3.8 is unhanged beause it relies on the absolutestability of the system when ǫ = k − k∗ = 0. Conditions of Theorem 3.11 still guarantee absolutestability when ǫ = 0. For the loal argument, in the ase of Popov multiplier, the dissipationinequality (3.31) is reovered with the new storage S̃ + γ
∫ y

0 φ(s) ds. In the ase of Zames-Falbmultipliers, we onsider, as in the proof of Theorem 3.11, a C1 and loally quadrati storage funtion57
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S̃ for Σ̃k∗ , whih satis�es the dissipation inequality

˙̃
S ≤ ũỹ (3.42)with ỹ = H1y and ũ the output of (3.41).From the assumptions of Zames and Falb [ZF68℄, H1 and H2 are invertible and H1, H−1

1 , H2, and
H−1

2 are ausal and bounded (i.e. have �nite gains) operators. As a onsequene, the �lters H1,
H−1

1 , H2, and H−1
2 do not hange the dimension of the enter manifold. In normal form, the entermanifold dynamis write [Wig90℄

ξ̇ = Acξ + O
(

|ξ|3
) (3.43)with ξ ∈ R and Ac = 0 when Gk∗(s) has a unique pole at s = 0, and with (3.43) repeated from (3.35)when Gk∗(s) has two onjugated poles at s = ±jω.In order to analyze the dissipation inequality (3.42) on the enter manifold, we approximate theexpression of ũ and ỹ as funtions of ξ up to suitable order. We note ũ = ũ(3)(ξ) + O

(

|ξ|4
),

w2 = h
(3)
2 (ξ) + O

(

|ξ|4
), ỹ = c̃ξ + O

(

|ξ|2
), and w1 = h1ξ + O

(

|ξ|2
). By de�nition, we have

ũ(3)(ξ) = −C2h
(3)
2 (ξ) −D2κ (cξ)3 , c = C1h1 +D1c̃.The funtion h(3)

2 is the solution of the partial di�erential equation that expresses the invariane ofthe enter manifold up to terms O (|ξ|4) (see [Car81℄):
(

−C2
∂h

(3)
2

∂ξ
−D23κ (cξ)2 c

)

Acξ = −C2A2h
(3)
2 (ξ) − C2B2κ (cξ)3 −D23κ (cξ)2 cAcξ (3.44)with the boundary onditions h(3)

2 (0) = 0, ∂h
(3)
2

∂ξ

∣
∣
∣
∣
ξ=0

= 0. Beause they satisfy the same partialdi�erential equation (see [Isi95, Chapter 8℄), the solution ũ(3) (ξ(t)) oinides with the unique steady-state output of the operator (−φ̃(3)
), whih is the operator (−φ̃) with φ(·) replaed by its ubiapproximation, to the (periodi) input ỹ(1) = c̃eActξ(0).Case (1): When ξ ∈ R, the onstant input ỹ(1) = c̃ξ gives rise to the onstant output ũ(3)(ξ) = βξ3.Strit positivity [ZF68℄ of the operator φ̃(3) implies that c̃β = −γ < 0. The dissipation inequalitythus beomes

˙̃
S ≤ ũ(3)(ξ)ỹ(1)(ξ) + O

(

|ξ|5
)

= −γξ4 + O
(

|ξ|5
)

,whih fores the existene of a superritial pithfork bifuration, as in the proof of Theorem 3.8.Case (2): When ξ ∈ R
2, the periodi input ỹ(1) (ξ(t)) = c̃eActξ(0) gives rise to the periodi output

ũ(3) (ξ(t)). Strit positivity [ZF68℄ and homogeneity of the operator φ̃(3) implies
∫ T

0
ũ(3) (ξ(t)) ỹ(1) (ξ(t)) dt < −γ |ξ(0)|4 + O

(

|ξ(0)|5
)

, T =
2π

ω
.58



3.5. EXAMPLES AND SIMULATION RESULTSUsing the same argument as in the proof of Theorem 3.8, integration of (3.42) over one period yieldsfor initial onditions in the enter manifold
S̃ (x(T )) − S̃ (x(0)) = a3

∫ T

0
ρ4(t) dt+ O

(

(ρ(0))5
)

< −γ (ρ(0))4 + O
(

(ρ(0))5
)

.This fores a3 < 0 in the enter manifold dynamis (3.36), whih proves the existene of a superritialHopf bifuration. This onludes the proof.3.5 Examples and simulation resultsWe illustrate the main result of Setion 3.4 with the seond-order system
θ̈ + ω2

nθ + 2ζωnθ̇ = u, τ > 0, ωn > 0. (3.45)The hoie of the output y = τ θ̇ + ω2
nθ results in the transfer funtion
H(s) =

τs+ ω2
n

s2 + 2ζωns+ ω2
n

, (3.46)whih is passive if
2ζ ≥ ωn

τ
> 0. (3.47)Suh a transfer funtion is a model for the mehanial system represented in Figure 3.12. Themass m glides on the ground without frition. It is attahed to a spring and a dashpot linked to eahother through a gearing. Denoting by d the damping fator of the dashpot, by r the spring fator,by l0 the natural length of the spring, and by α the gearing ratio, the dynamial equation of thismehanial system is

mẍ = −d (ẋ− v̇) − r (x− u− l0) ,where u is the input of the system and x − l0 its output. Sine v = αu, the orresponding transferfuntion of the system is
H(s) =

dαs+ r

ms2 + ds+ r
=

dα
m
s+ r

m

s2 + d
m
s+ r

m

,where the passivity ondition (3.47) is satis�ed if d2 ≥ r
α
m > 0.In the next setions, we illustrate the results of Theorems 3.8, 3.9, and 3.12 on this simplemehanial example. To this end, we onsider the Lure feedbak system in Figure 3.8 where Σ =

H(s). φ(·) is assumed to satisfy the assumptions of Setion 3.3.1 and additionally to be odd (thisis useful for the use of Zames-Falb multipliers) and monotone inreasing (this will be useful forillustrations used in Chapter 4). 59
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Figure 3.12: Mehanial example.
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Figure 3.13: Foring the Hopf bifuration with an integrator in the feedbak loop. The aseH(s) = 1
sorresponds to the Van der Pol osillator.3.5.1 Foring the Hopf bifurationAs a �rst illustration, we fore the Hopf bifuration senario by onsidering the feedbak systemshown in Figure 3.13. Rewriting the system in the Lure form of Figure 3.8, the Hopf bifuration isfored beause of the presene of a single zero at s = 0 in the transfer funtion G(s) = sH(s)

s+H(s) . As wehave seen, in Setion 3.3.3, the positive part of the real axis belongs to the root lous. The preseneof a single zero at s = 0 then neessarily fores the Hopf bifuration senario.The system is equivalently desribed by the feedbak interonnetion of Gk(s) = sH(s)
s+(1−ks)H(s) withthe stati nonlinearity φ(·). Here, the transfer funtion Gk(s) is

Gk(s) =
s
(
τs+ ω2

n

)

s3 + (2ζωn − kτ) s2 + (τ + ω2
n(1 − k)) s+ ω2

n

.A Hopf bifuration arises at
k∗ =

τ(τ + ω2
n) + 2ζω3

n −
√

τ4 + 2ω2
nτ

3 + ω3
n(ωn − 4ζ)τ2 + 4ω4

nτ(1 − ζωn) + 4ζ2ω6
n

2ω2
nτ

, (3.48)with
Gk∗(s) =

sH(s)

s+ (1 − k∗s)H(s)
=

s(τs+ ω2
n)

(s+ α) (s2 + Ω2)
,and

α = 2ζωn − k∗τ, Ω =
√

τ + ω2
n(1 − k∗).60



3.5. EXAMPLES AND SIMULATION RESULTSFurthermore, Gk(jω) is passive (see Lemma 2.21) if k ≤ k∗passive, with
k∗passive = min

(

1,
(

2ζ − ωn

τ

) ωn

τ

)

. (3.49)If k∗passive = k∗, we may diretly use Theorem 3.8 to onlude to the existene of a globallyasymptotially stable limit yle for k & k∗.If k∗passive < k∗, we may still obtain the result with the help of Theorem 3.12. Indeed, when
k∗passive < k∗, and 0 < α < 2ω2

n

τ
(whih is equivalent to the ondition 2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
), wemay use a Zames-Falb multiplier to prove absolute stability at the ritial bifuration value k = k∗.This Zames-Falb multiplier is

M(s) = H1(s) = 1 − Z(s), Z(s) =
ω2

n

τ
− α

s+ ω2
n

τ

, ROC =

{

s ∈ C | ℜ{s} > −ω
2
n

τ

}

, (3.50)whih, at k = k∗, yields the passive transfer funtion
Gk∗(s)H1(s) = τ

s

s2 + Ω2
.By Theorem 3.12, for τ > 0, ωn > 0, and ζ > 0 satisfying (3.47), and k∗ given in (3.48) satisfying

2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
, the feedbak system in Figure 3.13 with H(s) de�ned by (3.46), isabsolutely stable for all k ≤ k∗ and possesses a globally asymptotially stable limit yle for k & k∗.3.5.1.1 Simulation resultsSuppose we hose the parameters values as ωn = 1, τ = 2 and ζ = 1.25. We thus have H(s) =

2s+1
s2+2.5s+1

. From these parameters values we an ompute the ritial value k∗ of the bifurationparameter and the quantity k∗passive de�ning the exess of passivity of H (see (3.48) and (3.49)). Weobtain k∗ = 1 and k∗passive = 1. In this partiular ase, there is no need of a multiplier to prove theabsolute stability at k = k∗ sine the system looses passivity and stability simultaneously at k = 1.Diret appliation of Theorem 3.8 allows to onlude to the existene of a globally asymptotiallystable limit yle for k & k∗.For the simulations, we onsidered the feedbak interonnetion of G(s) = sH(s)
s+H(s) with the non-linearity φk(y) = y3 − ky. We simulated the system obtained with H(s) = 2s+1

s2+2.5s+1
for di�erentvalues of k around the ritial value k∗ = 1 and for di�erent initial onditions. Figure 3.14 illustratesthe simulation results for an arbitrarily hosen initial ondition. As an be seen, the origin of thefeedbak nonlinear system is GAS for k ≤ 1 whereas a limit yle appears for values of k & 1. To testthe range of values of k for whih the result holds, we have simulated the system with many di�erentvalues of k > 1. In all ases, we obtained an asymptotially stable limit yle whose amplitude isproportional to the value of k − k∗ as predited by the Hopf bifuration theorem.To illustrate a ase where the multiplier (3.50) is needed to prove absolute stability at k = k∗, weonsidered the following parameters values: ωn = 1, τ = 2 and ζ = 1. We thus have H(s) = 2s+1

s2+2s+1
.With these parameters values, we obtain k∗passive = 0.75 and k∗ = 0.7753. Sine the ondition61
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2ωn

τ

(
ζ − ωn

τ

)
< k∗ < 2ζ ωn

τ
is satis�ed, we an use the Zames-Falb multiplier (3.50) to proveabsolute stability at k = k∗.For the simulations, we onsidered, one again, the feedbak interonnetion of G(s) = sH(s)

s+H(s)with the nonlinearity φk(y) = y3 − ky. We simulated the system obtained with H(s) = 2s+1
s2+2s+1

fordi�erent values of k around the ritial value k∗ = 0.7753, and for di�erent initial onditions. Figure3.15 illustrates the simulation results for an arbitrarily hosen initial ondition. As an be seen, theorigin of the feedbak nonlinear system is GAS for k ≤ k∗ whereas a limit yle appears for values of
k & k∗.3.5.1.2 Graphial interpretation of the multiplier e�etIn this setion, we onsider the example given in the previous setion and show the e�et of themultiplier on the Nyquist and Bode plots of the transfer funtion Gk(jω).62
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CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORthe Nyquist plot of G(jω) with the real axis). As a result, when k is inreased, the system losespassivity before losing stability. The e�et of the Zames-Falb multipliers is to transform the initialfeedbak loop into an equivalent one (see Figure 3.11) where the forward path Σ̃k is strongly passivefor k ≤ k∗. This an be seen in Figure 3.17. In this �gure, we see that, without multiplier, Gk(jω)loses passivity at k∗passive = min
(
1,
(
2ζ − ωn

τ

)
ωn

τ

). This is trivially seen on the Nyquist plot of
Gk(jω) where the positive realness ondition ℜ (Gk(jω)) ≥ 0, ∀ω of Lemma 2.21 is not satis�ed for
k > k∗passive, or on the Bode phase diagram where the passivity phase ondition ∠ (Gk(jω)) ≤ π

2is not satis�ed for k > k∗passive. On the ontrary, the transfer funtion Gk(jω)M(jω) satis�es theseonditions for k ≤ k∗ whih equivalently means that k∗passive = k∗ for the system with multiplier.
Gk(jω) (without multiplier) Gk(jω)M(jω) (with multiplier)

k =k∗passive − 0.1, k∗passive, k∗passive + 0.1 k =k∗ − 0.1, k∗, k∗ + 0.1
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3.5. EXAMPLES AND SIMULATION RESULTS3.5.2 Not foring the Hopf bifuration - pithfork bifurationAs a seond illustration, we do not fore the Hopf bifuration with an additional integrator. Weanalyze bifurations in the feedbak interonnetion of H(s) with φk(·). Di�erent bifuration senariiare possible. To see this, onsider the transfer funtion
Hk(s) =

H(s)

1 − kH(s)
=

τs+ ω2
n

s2 + (2ζωn − kτ) s+ (1 − k)ω2
n

. (3.51)The bifuration in the feedbak loop di�ers aording to the relative position of the poles and zero of
H(s). If 2ζωn > τ , then a pithfork bifuration ours at k∗ = 1, and

Hk∗(s) =
τs+ ω2

n

s (s+ 2ζωn − τ)
.The (Popov) multiplier M(s) = 1 + s (2ζωn − τ)−1 makes the transfer funtion Hk∗(s)M(s) =

τs+ω2
n

(2ζωn−τ)s passive for k ≤ k∗. By Theorem 3.12, the feedbak interonnetion of Hk∗(s) with φ(·) isabsolutely stable for k ≤ k∗ and globally bistable for k & k∗.3.5.2.1 Simulation resultsTo illustrate the global bistability behavior, we have hosen the following parameters values:
ωn = 1, τ = 2 and ζ = 2.5. With these parameters values, we are in the ase where 2ζωn > τ .We then onsidered the feedbak interonnetion of H(s) with the nonlinearity φk(y) = y3 − ky.We simulated the feedbak system for di�erent values of k around the ritial value k∗ = 1. Figure3.18 illustrates the simulation results. As an be seen, the origin of the feedbak nonlinear system isGAS for k ≤ 1 whereas it is globally bistable for k & 1. To learly see the two stable equilibria weperformed the simulation twie with two opposed sign initial onditions.
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CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORTo illustrate the results of Theorem 3.9, we then performed simulations of the feedbak systemwhen an additional adaptation loop is present as in Figure 3.10. The system resulting from theaddition of the feedbak adaptation loop is of order 3. The adaptation parameter is hosen as
τ = 100 (k − k∗)−1. The simulation results are shown in Figure 3.19 for k = 2. In Figure 3.19-(b),we show the projetion of the state spae on the two dimensional spae of the state variables of H.The relaxation nature of the osillation is learly seen in Figure 3.20 whih represents the output yof the system.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

X
1

X
2

State−space for k
i
=1 and k

p
=2

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

X
1

X
2

State−space of a SINGLE relaxation oscillator for k
i
=1 and k

p
=2

(a) (b)Figure 3.19: (a) State-spae for k = 2, without adaptation feedbak loop. (b) Projetion of the statespae on the two dimensional spae of the state variables of H for k = 2, with adaptation feedbakloop.

0 100 200 300 400 500 600 700 800
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time evolution of the output of a SINGLE relaxation oscillator for k
i
=1 and k

p
=2

Figure 3.20: Output of the relaxation osillator.66



3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETER3.5.3 Not foring the Hopf bifuration - Hopf bifurationConsider, one again, the transfer funtion (3.51). If 2ζωn < τ , then a Hopf bifuration arises at
k∗ = 2ζωn

τ
, and

Hk∗(s) =
τs+ ω2

n

s2 +
(

1 − 2ζωn

τ

)

ω2
n

.No valid multiplier ould be found to prove absolute stability of the feedbak loop for k ≤ k∗. Theresults of Theorem 3.12 do not apply in this situation and the stability properties of the limit ylemay depend on the partiular nonlinearity φ(·).3.6 Numerial analysis of PLS - GAS of the limit yle for a parti-ular value of the bifuration parameterIn Setion 3.3.3, we de�ned a lass of parameter-dependent nonlinear systems exhibiting an almostglobally asymptotially stable limit yle. The results were proved for values of the parameter in theviinity of a bifuration value. Unfortunately, Theorems 3.8 and 3.9 do not give any predition aboutthe range of parameter values in whih the results hold. In order to be able to onlude aboutglobal asymptoti stability of the limit yle for a partiular value of the parameter, we onsider anequivalent pieewise linear haraterization of this lass of systems and adapt numerial tools reentlyproposed in the literature (see [GMD03℄).In [GMD03℄, Gonalves developed a onstrutive numerial method in order to analyse the be-havior of pieewise linear systems (PLS). These systems are haraterized by a �nite number of a�nelinear dynamial models together with a set of rules for swithing among these models. The method-ology developed by Gonalves onsists in inferring global properties of PLS solely by studying theirbehavior at their orresponding swithing surfaes. The method allows the global stability analysisof equilibrium points as well as that of limit yles through the same onepts. The main idea is toanalyze impat maps, i.e. maps from one swithing surfae to the next swithing surfae. These mapsare proved globally stable by onstruting quadrati Lyapunov funtions on the swithing surfaes.The notion of an impat map an be thought as a generalization of a Poinaré map. Proving thatall the impat maps are globally ontrating around some spei� points is a su�ient ondition forproving that the Poinaré map assoiated to the PLS is globally ontrating. In this way globalasymptoti stability of a limit yle an be proved by heking global ontration of the impat mapsaround the spei� swithing points that this limit yle has in ommon with the swithing surfaes.The key result of Gonalves onerns a representation of impat maps that allows to use themto onlude about stability of PLS. Impat maps are known to be �unfriendly� maps in the sense thatthey are highly nonlinear, multivalued, and not ontinuous. Although analysis of nonlinear systemsat swithing surfaes has already been studied (e.g. Poinaré), with the exeption of very simplesystems, no one really knew how to use impat maps to analyse global properties of PLS. The reasonwhy Gonalves was able to use impat maps in the global analysis of ertain lasses of hybridsystems is based on the disovery that an impat map indued by an LTI (linear time-invariant) �owbetween two swithing surfaes an be represented as a linear transformation analytially parametrizedby a salar funtion of the state. This parameter is simply the swithing time assoiated with theimpat map. This representation of impat maps allows the searh for quadrati Lyapunov funtionson swithing surfaes to be done by simply solving a set of linear matrix inequalities (LMIs) using67



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORe�ient omputational algorithms. Global asymptoti stability of limit yles and equilibrium pointsof PLS an in this way be e�iently heked.The algorithms developed by Gonalves depend on the swithing struture imposed by thepartiular PLS under onsideration. These algorithms have to be adapted to eah partiular type ofpieewise linear system. This amounts to adapt the de�nition of the swithing surfaes, their positionin the state spae and the partiular linear dynamis in eah region.In the next setions, we de�ne a pieewise linear version of the passive osillator. We then showhow the method of Gonalves may be adapted to numerially prove global asymptoti stabilityof the limit yle for seond order pieewise linear passive osillators. Extension of this numerialmethod to high-order pieewise linear passive osillator is part of ongoing researh.3.6.1 Problem de�nitionWe start by de�ning a pieewise linear system (PLS) qualitatively equivalent to the lass of passiveosillators. For this, we onsider the PLS resulting from the feedbak interonnetion of a stronglypassive, linear system with a pieewise linear approximation of the nonlinearity φk(·) de�ned by (3.17).In other words, we onsider the feedbak interonnetion of a linear system H whose dynamis are
H :

{
ẋ = Ax+Bv, x ∈ R

n (n ≥ 2), v ∈ R

y = Cx, y ∈ R
(3.52)with a pieewise linear funtion fpls(y):

v = −fpls(y) =







−p(y +m) − km for y < −m
ky for −m ≤ y ≤ m

−p(y −m) + km for y > m

(3.53)The system H is assumed to be strongly passive and detetable. The parameters of the pieewiselinear funtion fpls(·) satisfy k > 0, m =
√

k
3 and p > 0. The funtion fpls(·) is a pieewise linearapproximation of the ubi nonlinearity φk(y) = −ky + y3 that appears in the Van der Pol andFitzhugh-Nagumo osillators, as an be seen in Figure 3.21. This ubi nonlinearity is one of themost simple example of nonlinearity that satis�es the assumptions made in Theorems 3.8 and 3.9.The method presented here an be applied to any other kind of nonlinearity. For more ompliatednonlinearities, the omplexity of its pieewise approximation (i.e. the number of pieewise linearregions) inreases and so does the omplexity of the orresponding algorithm.Sine fpls(·) is odd, the resulting system is symmetri in the sense that if x(t) is a solution startingat x0 then −x(t) is another solution starting at −x0. As we will see shortly, this symmetry propertyhelps in reduing the omplexity of the numerial algorithm.The pieewise linear system resulting from the feedbak interonnetion of (3.52) and (3.53) on-sists of three regions, (R1), (R2), and (R3) in the state spae delimited by two swithing surfaes, S0and S1. The linear dynamis in eah region are respetively1. (R1) y(t) < −m

ẋ = (A− pBC)x− dB = A1x− dB,2. (R2) −m ≤ y(t) ≤ m

ẋ = (A+ kBC)x = A2x, 68
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Figure 3.21: Replaing the nonlinear funtion φk(·) by a pieewise linear funtion fpls(·).3. (R3) y(t) > m

ẋ = (A− pBC)x+ dB = A1x+ dB,where d = m(k + p).Throughout this setion, we assume that A2 has no real unstable eigenvalue. We also assumethat 1
k+p

> −CA−1
1 B in order to guarantee that the system (3.52),(3.53) has a unique equilibrium,loated at x = 0.Beause the feedforward linear system H is assumed to be (strongly) passive and detetable, thematrix A1 is Hurwitz for any positive value of p. Sine the funtions φ(·) and fpls(·) have thesame linearization around the origin, the dynamis in the intermediate region (R2) is the same as thedynamis of the nonlinear feedbak system linearized around the origin. This implies that the matrix

A2 has at least 2 eigenvalues with positive real parts for k > k∗.The swithing surfaes of the PLS are de�ned by
S0 = {x ∈ R

n |Cx = −m},
S1 = {x ∈ R

n |Cx = m} = −S0.Our analysis, based on [GMD03℄, will be in terms of ontration properties of impat maps thatsolutions of the PLS de�ne between swithing surfaes. The key observation in [GMD03℄ is that theseimpat maps are linear maps parametrized by the swithing time, whih is a salar funtion of thestate.3.6.2 Existene of limit ylesWe will only be interested in yles of (3.52),(3.53) that are of the type illustrated in Figure 3.22:a (periodi) solution initialized at −x∗1 ∈ S0 obeys the linear dynamis (R1) and reahes a point69



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR
x∗0 ∈ S0 after a �nite swithing time t∗1; it then obeys the linear dynamis (R2) and reahes the point
x∗1 ∈ S1 after a �nite swithing time t∗2. The values x∗0, x∗1, t∗1 and t∗2 that determine the periodisolution satisfy the algebrai equations (see [GMD03℄)

f1 (t∗1, t
∗
2) = Cx∗0 (t∗1, t

∗
2) +m = 0, (3.54)

f2 (t∗1, t
∗
2) = Cx∗1 (t∗1, t

∗
2) −m = 0, (3.55)where

x∗0 (t∗1, t
∗
2) =

(

I + eA1t∗1eA2t∗2

)−1
A−1

1

(

I − eA1t∗1

)

dB,

x∗1 (t∗1, t
∗
2) =

(

I + eA2t∗2eA1t∗1

)−1
eA2t∗2A−1

1

(

I − eA1t∗1

)

dB.These solutions simply haraterize the swithing points that the limit yle of Figure 3.22 de�nes onthe swithing surfaes.

S0 S1

m−m Cx

(R2) (R3)(R1)

x∗

0

x∗

1

−x∗

0

−x∗

1Figure 3.22: Limit yle with four swithes per period (�rst half period in plain line and seond halfperiod in dashed line).The roots of (3.54),(3.55) determine periodi solutions of (3.52),(3.53). Simulations of the system(3.52),(3.53) provide a good initial guess for the numerial searh of (t∗1, t
∗
2) solving (3.54),(3.55).3.6.3 Quadrati stability of impat mapsAs we have stated in the introdution of Setion 3.6, stability of the limit yle an be studiedthrough quadrati stability of the impat maps of the system. Indeed, onsider a subset S+

0 of
S0 given by S+

0 = {x ∈ S0 : CA2x ≥ 0}. S+
0 is the set of points in S0 that an be reahed bytrajetories initialized in (R1). In a similar way, de�ne S−

0 ⊂ S0 as S−
0 = {x ∈ S0 : CA2x ≤ 0} andalso S+

1 = −S−
0 and S−

1 = −S+
0 . From symmetry onsiderations, three impat maps only are ofinterest for the analysis. The �rst impat map (impat map 1) takes points from S−

0 and maps themin S+
0 . The seond impat map (impat map 2a) takes points from S+

0 \ {x∗0} and maps them bak to
S−

0 \ {x∗0}. Finally, the third impat map (impat map 2b) takes points from S+
0 and maps them to

S+
1 . Let x1 be a point in S−

0 \ {−x∗1}. Sine A1 is Hurwitz and 1
k+p

> −CA−1
1 B, the trajetory x1(t)will neessarily swith after a �nite swithing time t1 at x2 = x1 (t1). Sine A2 is not Hurwitz and70



3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETERhas no real unstable eigenvalue, a trajetory starting at x2 ∈ S+
0 \ {x∗0} an either swith at some pointin S0, or at some point in S1, or not swith at all if x2 belongs to the stable manifold of the origin.Let Sa ⊂ S+

0 \ {x∗0} (resp. Sb ⊂ S+
0 ) be the set of points that swith in S0 (resp. S1). If x2 ∈ Sa(resp. x2 ∈ Sb), the trajetory swithes in �nite time t2a (resp. t2b) at x3a = x2 (t2a) ∈ S−

0 \ {−Z∗
1}(resp. x3b = x2 (t2b) ∈ S+

1 ). Then, it swithes again at x4a = x3a (t3a) (resp. x4b = x3b (t3b)), and soon (see Figure 3.23).
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Figure 3.23: Impat maps of the PLS; (a) impat map 1 and impat map 2a, (b) impat map 1 andimpat map 2b.The symmetry of the system allows to perform the analysis on a half trajetory. This means thatit is equivalent to onsider the trajetory starting at x2 or −x2. To perform asymptoti stability ofthe limit yle, the idea is to hek if x3a (resp. −x3b) is loser to −x∗1 than x1. If so for any point
x1 ∈ S−

0 \ {−x∗1}, the limit yle is globally asymptotially stable.Sine x1, x2, x3a ∈ S0 and x3b ∈ S1, we an write x1 = −x∗1 +∆1, x2 = x∗0 +∆2, x3a = −x∗1 +∆3a,and x3b = x∗1 + ∆3b, where x∗0 and x∗1 have been found as numerial solutions of (3.54),(3.55) and
C∆1 = C∆2 = C∆3a = C∆3b = 0. A su�ient ondition for the Poinaré map to be ontratingaround x∗0 is

V2 (∆2) < V1 (∆1) for all ∆1 ∈ S−
0 \ {−x∗1},

V1 (∆3a) < V2 (∆2) for all ∆2 ∈ Sa\ {x∗0},
V1 (∆3b) < V2 (∆2) for all ∆2 ∈ Sb\ {x∗0},where V1(·) and V2(·) are quadrati Lyapunov funtions de�ned on S−

0 and S+
0 respetively (seeFigure 3.23).The key result of [GMD03℄ is that the impat maps indued by an LTI (linear time invariant) �owbetween two swithing surfaes an be represented as a linear transformation analytially parametrizedby a salar funtion of the state. This parameter is simply the swithing time assoiated with theimpat map. We thus have ∆2 = H1 (t1) ∆1, ∆3a = H2a (t2a) ∆2, ∆3b = H2b (t2b)∆2, where (see[GMD03℄) 71



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATOR
H1 (t1) = (−x∗1 (t1) − x∗0)w1 (t1) + eA1t1 ,

w1 (t1) =
CeA1t1

−m+ Cx∗1 (t1)
,

−x∗1 (t1) = −eA1t1x∗1 +A−1
1

(
I − eA1t1

)
dB,

H2 (t2a) = (x∗0 (t2a) + x∗1)w2a (t2a) + eA2t2a ,

w2a (t2a) =
CeA2t2a

−m− Cx∗0 (t2a)
,

x∗0 (t2a) = eA2t2ax∗0,

H2 (t2b) = (x∗0 (t2b) − x∗1)w2b (t2b) + eA2t2b ,

w2b (t2b) =
CeA2t2b

m− Cx∗0 (t2b)
,

x∗0 (t2b) = eA2t2bx∗0.We then have to prove that
r1 (t1) , ∆T

1 P1 (t1)∆1 (3.56)
= V1 (∆1) − V2 (H1 (t1) ∆1) > 0,

r2a (t2a) , ∆T
2 P2a (t2a) ∆2 (3.57)

= V2 (∆2) − V1 (H2a (t2a)∆2) > 0,

r2b (t2b) , ∆T
2 P2b (t2b)∆2 (3.58)

= V2 (∆2) − V1 (H2b (t2b) ∆2) > 0for all expeted swithing times t1 ∈ T1, t2a ∈ T2a and t2b ∈ T2b where T1, T2a and T2b denote the setof all expeted swithing times orresponding respetively to all ∆1 ∈ S−
0 \ {−x∗1}, ∆2 ∈ Sa\ {x∗0},and ∆2 ∈ Sb\ {x∗0}. If the sets of expeted swithing times are bounded, then by disretizing the setsof expeted swithing times, inequalities (3.56), (3.57), and (3.58) de�ne a �nite set of LMIs in theunknowns Pi (ti) > 0, i = 1, 2a, 2b.3.6.4 Bounds on swithing timesComputationally, it is impossible to hek diretly if the stability onditions (3.56), (3.57) and(3.58) are satis�ed for all expeted swithing times. An alternative is to �nd some intervals suh thatif (3.56), (3.57) and (3.58) are satis�ed in these intervals, then stability follows. In other words, wewould like to �nd a lower and an upper bound for eah swithing time. We denote them respetivelyby t1min, t1max, t2amin, t2amax, t2bmin, t2bmax. We then only need to solve the LMIs ri(t) > 0

∀t ∈ [timin, timax], where i = 1, 2a, 2b. This an be done by disretizing eah [timin, timax] interval,72



3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETERand solving the orresponding LMIs at those disrete time instants. In order to do so, we must be ableto guarantee that there exists a t0 suh that the di�erene between any two onseutive swithingtimes of a trajetory x(t) for t > t0 is higher than tmin, but lower than tmax. Suh bounds anbe omputed, for instane, when the linear dynamis in eah region are Hurwitz and possess noequilibrium (see [GMD03℄ for details).3.6.4.1 Lower bounds on the swithing timesFor the PLS (3.52),(3.53), the lower bounds are 0, i.e. t1min = t2amin = t2bmin = 0.3.6.4.2 Upper bound on t1To ompute upper bounds, Gonalves proposes a general method in [GMD03, Propositions B.1and B.2℄. The idea an be summarized by the following steps. First, the existene of a boundedinvariant set where every trajetory will eventually enter is proved. Seond, bounds on the expetedswithing times are found by omputing bounds on swithing times of trajetories inside that boundedinvariant set. This method holds valid for PLS for whih the feedbak pieewise linear funtion isbounded suh as for relay feedbak systems and saturation systems. For these systems, it is possibleto guarantee that there exists a t̄ suh that the di�erene between any two onseutive swithing timesof a trajetory x(t) for t > t̄ is lower than tmax. Unfortunately, in our ase fpls(·) is not bounded andthe method annot be applied.Gonalves also presents a method for omputing upper bounds on t1 when a bounded invariantset annot be guaranteed. In this ase, the analysis must be done for all ti ≥ 0. The idea is thefollowing: for large values of ti, we ompute the value of r(∞) and show that this value is nonnegative.We then show that for large enough tmax, r(t) > 0 for all t ≥ tmax. To this end, we show that ṙ(t) < 0for all t ≥ tmax. If the matrix A1 of the onsidered impat map is stable this is done aording to themethod desribed in [GMD03, Appendix A.3℄.3.6.4.3 Upper bounds on t2a and t2bThe unstable equilibrium x = 0 of (3.52),(3.53) typially possesses a stable manifold when n > 2.In this ase, the swithing times are unbounded beause of intersetions between the stable eigenspaeof A2 and the swithing surfaes S0 and S1: any trajetory starting on a point belonging to theseintersetions will remain on the stable manifold until it asymptotially reahes the origin. As a onse-quene, the orresponding swithing time will tend towards in�nity. Intuitively, trajetories startingin a neighborhood of suh an intersetion point will be haraterized by a swithing time inverselyproportional to the distane to this point. In other words, the loser we start from the intersetion,the longer the swithing time. A solution to apply the LMI numerial method of Gonalves wouldbe to geometrially haraterize a neighborhood of the intersetion points and to ompute the upperbounds on the swithing time assoiated to points whih do not belong to this neighborhood. Themethod of Gonalves an then be applied to study ontration of impat maps de�ned for any pointwhih is not in the de�ned neighborhood. For points in the neighborhood, new ontration onditionsexpressed in the form of LMIs would have to be satis�ed. This solution is still under researh.If we restrit our attention to the 2-dimensional ase, then x = 0 has no stable manifold (A2 isanti-stable). Moreover, in this ase, by symmetry onsiderations, any trajetory belonging to S+
0 willneessarily swith at a point belonging to S1. As a onsequene, there are only two impat maps to73



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORonsider, i.e. impat map 1 and impat map 2b. The upper bound on t1 is omputed by onsideringthe worst swithing senario for a point belonging to S+
0 . This worst swithing senario ours when

Cx = −m and Cẋ = 0. There exists only one point on S+
0 orresponding to this situation. The upperbound is thus the swithing time assoiated with this point.3.6.5 Simulation resultsTo illustrate the numerial method presented in the previous setions, we present here the resultsobtained for two dimensional systems orresponding to Figure 3.10 where the transfer funtion de-sribing the forward linear system is Σ = G(s) = 1

s+α
with α > 0 and the adaptation parameter τ issuh that τ ≫ (k − k∗)−1. The ritial bifuration value of Gk(s) is k∗ = k∗passive = α and the orre-sponding transfer funtion is Gk∗(s) = 1

s
. The ondition τ ≫ (k − k∗)−1 thus writes τ ≫ (k − α)−1.From Theorems 3.8 and 3.9, we expet the feedbak system to be haraterized by a globally asymp-totially limit yle for k & α and τ ≫ (k − α)−1. Nevertheless, the range of values of k for whihthis behavior holds is not known. Replaing φk(y) = −ky + y3 by fpls(y) (see (3.53)) in Figure 3.10,and hoosing values for p and k suh that p > 0 and k > k∗, we may use the numerial analysismethod presented in Setion 3.6.3 to onlude about existene and global asymptoti stability of alimit yle for any �xed value of k.Before presenting the simulation results, we brie�y desribe the inputs and outputs of the algo-rithm. The inputs are the transfer funtion G(s) together with the parameters α, k > α, p > 0 and

τ ≫ (k − α)−1. A graphi showing the minimum eigenvalues of eah Pi(ti), i = 1, 2b (see (3.56), and(3.58)) is generated. GAS of the limit yle is then onluded if the minimum eigenvalues are positiveon their respetive set of expeted swithing times.To illustrate the appliation of the numerial method, we onsidered the parameters values α = 1and τ = 20. From these values, we ompute k∗ = k∗passive = 1. We then have hosen the followingvalues for k and p: k = 1.2 and p = 5. The orresponding values ofm and d arem = 0.63 and d = 3.92.The simulation results showing the state spae and the time evolution of the state variables for apartiular initial ondition are given on Figure 3.24. The numerial algorithm desribed previouslyis then applied to this partiular PLS. The number of (t∗1, t
∗
2) solutions found by the algorithm for(3.54) and (3.55) is equal to one, i.e. t∗1 = 8.4 and t∗2 = 8.88. These values agree with those foundby simulation of the dynamial system. The algorithm then solves the �nite set of LMIs de�ned bythe disretization of (3.56) and (3.58) on their expeted swithing times interval T1 and T2b and plotsFigure 3.25. On this �gure, we see that the minimum eigenvalue of eah Pi(ti), i = 1, 2b is positiveon its respetive set of expeted swithing times T1 and T2b. The set of expeted swithing times inthis example are approximately T1 = (0, 12) and T2b = (0, 9.0414). The �rst upper bound t1max = 12was hosen arbitrarily. We then numerially heked that r1 (t1) > 0 for all t1 ≥ t1max as explainedin Setion 3.6.4.2. The seond upper bound was omputed aording to the worst swithing senariomethod: if t2b ≥ 9.0414, there is no point in S+

0 with swithing time equal to t2b. Using onditions(3.56) and (3.58), we thus have shown that the system possesses a globally asymptotially stable limityle in R
2\{0}.Remark 3.13 If we onsider Figure 3.8 where the forward system Σ results from the feedbak inter-onnetion of G(s) = 1

s+α
with the transfer funtion 1

τs+1 , the bifuration analysis is di�erent. Thetransfer funtion orresponding to the feedbak interonnetion of 1
s+α

with 1
τs+1 is Σ = H(s) =

τs+1
τs2+(1+ατ)s+(α+1)

. The system in Figure 3.8 is equivalently desribed as the (negative) feedbak74



3.6. NUMERICAL ANALYSIS OF PLS - GAS OF THE LIMIT CYCLE FOR A PARTICULARVALUE OF THE BIFURCATION PARAMETER
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Figure 3.25: Time evolution of the minimum eigenvalues of P1 (t1) and P2b (t2b) for the PLS de�nedby the parameters values α = 1, k = 1.2, p = 5 and τ = 20.interonnetion of Hk(s) = H(s)
1−kH(s) = τs+1

τs2+(1+(α−k)τ)s+(1+α−k)
with the stati nonlinear funtion

φ(y) = y3. The ritial value at whih Hk(s) looses passivity is k∗passive = α. For τ > 1, a Hopfbifuration ours at the ritial value k∗ = α + 1
τ
. The orresponding ritial transfer funtion is

Hk∗(s) = τ τs+1
τ2s2+(τ+1)

. This ritial transfer funtion is similar to the one obtained in Setion 3.5.3.In that setion we saw that, with suh a transfer funtion, no multiplier ould be found to prove abso-lute stability of the feedbak system at k = k∗. In this ase, the analytial results of our theorems donot apply. The appliation of the numerial method to the PLS resulting from the feedbak interon-netion of H(s) with fpls(y) an then be useful to numerially prove existene and global asymptotistability of a limit yle. To illustrate this, we performed a simulation with the same parameters values75



CHAPTER 3. GLOBAL RESULTS FOR ONE OSCILLATORexept for τ = 2 and k = 1.8. With these values, we obtain k∗passive = 1, k∗ = 1.5, m = 0.775, and
d = 5.267. The simulation results are shown in Figure 3.26.The results of the appliation of the same numerial algorithm to this PLS are shown in Figure
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∗
2) solutions found by the algorithm for (3.54) and (3.55) is equal to one,i.e. t∗1 = 3.1227 and t∗2 = 5.1617. These values agree with those found by simulation of the dynam-ial system. The set of expeted swithing times in this example are approximately T1 = (0, 12) and

T2b = (0, 5.3291). One again, the PLS was numerially proved to be haraterized by a GAS limityle in R
2\{0} sine the minimum eigenvalues of P1 (t1) and P2b (t2b) are positive on their respetiveset of expeted swithing times.3.7 SummaryThe point of view developed in this hapter is that of osillators as open systems. To this end,we onsidered an external haraterization of osillators whih �ts their desription by physial statespae models and, at the same time, has impliations for their global stability analysis. This exter-nal haraterization of osillators is expressed by a dissipation inequality that was shown to enableglobal limit yle osillations in the isolated system. The presented theory overs two global osil-lation mehanisms whih are present in the elebrated low dimensional models of Van der Poland Fitzhugh-Nagumo. These two global osillation mehanisms were extended to higher dimen-sional systems omposed of a strongly passive system in feedbak with a slope parametrized statinonlinearity. We showed that this feedbak interonnetion undergoes either a superritial Hopf,or a superritial pithfork bifuration (Theorem 3.8). The global osillation results either from thesuperritial Hopf bifuration or from the addition of a slow adaptation dynami to the globallybistable system reated by the superritial pithfork bifuration (Theorem 3.9). The main assump-tion that allows the global asymptoti stability of the unique equilibrium point to be retained by76



3.7. SUMMARY
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Figure 3.27: Time evolution of the minimum eigenvalues of P1 (t1) and P2b (t2b) for the PLS de�nedby the parameters values α = 1, k = 1.8, p = 5 and τ = 2.the bifurated solution is the absolute stability of the system at ritiality. A su�ient ondition forthis assumption to be satis�ed is the simultaneous loss of stability and passivity of the bifurationparameter at a ertain ritial value . This ondition has been relaxed with the help of multipliers(Theorem 3.12), thereby broadening the lass of passive osillators. These results were illustrated ona simple mehanial example. Finally, we onsidered an equivalent pieewise linear haraterizationof the passive osillator and adapted a numerial method reently proposed in the literature to proveglobal stability of the limit yle for �xed values of the parameter. This method was suessfullyapplied to numerially study global asymptoti stability of the limit yle solution of a seond orderpieewise linear, passive osillator.
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Chapter 4Global results for interonnetedosillatorsThe aim of the previous hapter was to show that dissipativity theory an be usefully applied tostudy existene and global asymptoti stability of limit yles and to give simple explanations for thefeedbak mehanisms responsible for these nonlinear osillations. As we have pointed out previously,an important bene�t is that a dissipativity approah is not restrited to low-dimensional systems. Inthis hapter, we fous on the seond important bene�t of a dissipativity approah: the analysis ofinteronnetions. In Setion 4.1, we show that the haraterization of a globally asymptotially stablelimit yle for one osillator extends in a straightforward manner when several passive osillators arearranged in a network on�guration through input-output oupling. Setion 4.2 ontains the �rstmain results of the hapter: extension of the results presented in Chapter 3 to networks of passiveosillators. In Setion 4.3, we onsider some illustrative examples of these results, i.e. we onsidernetworks of inreasing sizes for whih the existene of a globally asymptotially stable limit yle anbe diretly dedued from the results of Setion 4.2. In Setion 4.4 we present the seond main resultof this hapter: su�ient network topology onditions leading to existene and global asymptotistability of synhrone osillations in networks of idential passive osillators. The emphasis is onsynhronization as a design priniple, that is on the use of synhronization to ahieve globally stableosillations in interonneted systems. We propose an explanation for the global synhronization ofidential osillators based on an input-output haraterization that we name inremental passivity.Finally, in Setion 4.5 we present simulation results to illustrate our theory.4.1 Networks of passive osillatorsConsider a network of N passive osillators, oupled through their input and output. The os-illators are onstruted aording to the Lure feedbak struture shown in Figure 3.8. The statifeedbak nonlinearities used in eah passive osillator are idential, i.e. φk (yi) = −kyi + φ (yi) , ∀i =
1, . . . , N , where yi represents the output of passive osillator i. Only the feedforward bloks Σi maydi�er. The network may be seen as a MIMO system whose inputs and outputs are respetively
U = (u1, . . . , uN )T and Y = (y1, . . . , yN )T where ui and yi are the salar input and output of passiveosillator i respetively. The network admits the representation in Figure 4.1 whih is a MIMO ex-tension of the blok diagram of Figure 3.8. In the ase of a network of idential passive osillators, all79



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSthe forward Σi bloks of the passive osillators are idential. This is then emphasized by the notation
Υ = diag{Σ}. In Figure 4.1, F (Y ) represents the oupling between the osillators while the statinonlinearity Φk(Y ) is desribed as Φk(Y ) = (φk (y1) , . . . , φk (yN ))T . The repeated nonlinear elementis the stati nonlinear funtion φk(y) given in (3.17) and satisfying the assoiated assumptions givenin Setion 3.3.1. Repeated nonlinearities are generally denoted by diag{φ(·)}....y1

yN

YU

−−

Φk(Y )

F (Y )

−

...y1

yN

Y

Φk(Y )

Ξ
W W

≡

Υ
VṼ

Figure 4.1: MIMO representation of a network of passive osillators. Φk(Y ) = (φk (y1) , . . . , φk (yN ))Tis a multivariable repeated nonlinearity. The repeated nonlinear element is φk(y) = −ky+φ(y) where
φ(·) is a stati nonlinear funtion that satis�es the assumptions of Setion 3.3.1. F (Y ) haraterizesthe oupling. Ξ denotes the feedbak interonnetion of Υ and F (Y ).As parallel interonnetion of the input-a�ne Σi bloks de�ned in (3.16), Υ admits the input-a�nestate model

(Υ)

{
Ẋ = fΥ(X) + gΥ(X)Ṽ
Y = hΥ(X)

(4.1)where X =
(
xT

1 , . . . , x
T
N

)T with xi denoting the state of passive osillator i. fΥ, gΥ and hΥ inheritthe properties of the funtions fi, gi and hi de�ning the Σi bloks, i.e. fΥ, gΥ and hΥ are smooth,and satisfy fΥ(0) = 0, hΥ(0) = 0, and gΥ(0) 6= 0.We denote by Ξ the feedbak interonnetion of Υ with F (Y ) and by Ξk the (positive) feedbakinteronnetion of Ξ with the MIMO feedbak stati gain diag{k}. The MIMO feedbak system inFigure 4.1 is thus equivalently represented as the feedbak interonnetion of Ξ and Φk(·), or as thefeedbak interonnetion of Ξk and Φ(·) (see Figure 4.2).Remark 4.1 The MIMO system Ξ obviously admits an input-a�ne state model of the form (4.1)with fΞ(X) = fΥ(X) − gΥ(X)F (hΥ(X)), gΞ(X) = gΥ(X) and hΞ(X) = hΥ(X).As parallel interonnetion of strongly passive systems, the forward blok Υ has the same passivityproperties as the forward systems Σi of eah passive osillator. Not taking into aount the oupling,the dissipativity inequality satis�ed by the MIMO system in Figure 4.1 is thus (see Lemma 2.15)
Ṡ ≤

(
k − k∗passive

)
Y TY − Y T Φ(Y ) + Y TU, (4.2)where S(X) is the sum of the storage funtions of the passive osillators of the network.The oupling between the osillators is desribed by the relation

U = −F (Y ) +W, (4.3)80



4.1. NETWORKS OF PASSIVE OSCILLATORS
− ≡ −

V Y YW W

Φk(·) Φ(·)

Ξ Ξk

Figure 4.2: Two equivalent representations of the Lure MIMO nonlinear system studied in thishapter. Φk(Y ) = (φk (y1) , . . . , φk (yN ))T is a multivariable repeated nonlinearity. The repeatednonlinear element is φk(y) = −ky + φ(y) where φ(·) is a stati nonlinear funtion that satis�es theassumptions of Setion 3.3.1.where F (·) is a C1 funtion in R
N de�ning the topology of the network and W is the external inputof the network. We assume that F (0) = 0 and that the oupling funtion F (·) satis�es the passivityondition

Y TF (Y ) ≥ 0, ∀Y ∈ R
N . (4.4)This diretly implies that the passivity properties of Υ transmit to Ξ, i.e. that Ξ is strongly passive.As a result, the dissipativity haraterization of the MIMO system in Figure 4.1 is similar to thedissipativity haraterization of the SISO system in Figure 3.8, i.e.

Ṡ ≤
(
k − k∗passive

)
Y TY − Y T Φ(Y ) + Y TW. (4.5)This means that, under the assumption of passive oupling, the network dissipativity haraterizationis similar to that of one of its onstituting passive osillator.If we assume linear oupling, F (Y ) = ΓY , and (4.3) beomes

U = −ΓY +W, (4.6)where Γ ∈ R
N×N represents the interonnetion matrix. The passivity ondition (4.4) implies that

Γ is a real positive semide�nite matrix1. Note that even the positive semide�niteness ondition on
Γ may be relaxed through a parameter shift. Let k0 be a salar suh that Γ′ = Γ + k0IN is a realpositive semide�nite matrix of rank q < N and de�ne k′ = k + k0. This simply amounts to de�nethe oupling as U = − (Γ + k0IN ) + k0IN +W . The network admits the representation of Figure 4.1where F (Y ) = Γ′Y and k is replaed by k′. The dissipation inequality (4.5) beomes

Ṡ ≤ −Y T Γ′Y
︸ ︷︷ ︸

≥0

+
(
k − k∗passive + k0

)
Y TY − Y T Φ(Y ) + Y TW

≤
(
k′ − k∗passive

)
Y TY − Y T Φ(Y ) + Y TWwhih is similar to (4.5) with k′ replaing k.To pursue the analogy with the SISO situation, we will assume that the network is unfored, i.e.

W ≡ 0. This external network input is important for the analysis of interonneted networks. The1We reall that a real matrix A is positive semide�nite i� xT Ax ≥ 0 for all x ∈ R
n. As a onsequene of thisde�nition, a real matrix A is positive semide�nite i� its symmetri part 1

2

`

A + AT
´ is positive semide�nite. Thisallows to onsider matries whih are not symmetri (see also Appendix A for some properties of real positive de�nitematries). 81



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSargument developed in this hapter diretly extends to this situation. This allows the analysis ofnetworks of inreasing omplexity through the same methodology. This emphasizes the far reahingimpliations of an input-output point of view for the haraterization of limit yle osillations.4.2 Seond result of this thesis - Networks of passive osillatorsIn this setion we present an extension of the bifuration results presented in Chapter 3. Thestatement of the results in Chapter 3 were global in the state-spae. To this end, we introduedthe additional assumption that the feedbak interonnetion of Σ and φk(·) is ultimately bounded.Following a result of Arak [AT02℄, we remarked in Setion 3.3.2 that this assumption was alwayssatis�ed for Σ linear, passive and detetable. In the following setion, we extend this result to theorresponding MIMO situation when Υ is linear, passive and detetable, F (Y ) = ΓY , with Γ ∈ R
N×Nand Γ ≥ 0, and Φk(·) = diag{φk(·)} is a multivariable repeated nonlinearity where φ(·) is assumed tosatisfy the assumptions of Setion 3.3.1 and to be additionally monotone inreasing. For the generalase when Υ is nonlinear, we will expliitly assume that the unfored (W ≡ 0) MIMO feedbak systemin Figure 4.2 is ultimately bounded.4.2.1 Global boundedness result for Υ linear and linear ouplingIn the ase of Υ linear and linear oupling, we extend the global boundedness results of Arak[AT02℄ to networks of passive osillators.We have seen in Setion 3.3.2 that (3.23) does not imply (3.24) for general multivariable nonlin-earities. However, in the ase of multivariable repeated nonlinearities, denoted by

Φ(Y ) = (φ (y1) , . . . , φ (yN ))T , (4.7)onditions (3.23) and (3.24) are satis�ed if the repeated nonlinearity φ(·) satis�es (3.25), (3.26) andis monotone inreasing. We summarize this result in Theorem 4.2.Theorem 4.2 If φ(·) : R → R satis�es (3.25), (3.26) and is monotone inreasing then the multi-variable repeated nonlinearity (4.7) satis�es (3.23) and (3.24).ProofFirst, we prove property (3.23).
Y T Φ(Y ) =

∑

i6=k

yiφ(yi) + ykφ (yk) , where k is s.t. ‖Y ‖∞ = |yk|

≥ ykφ (yk)

≥ |yk|φl (|yk|)
≥ ‖Y ‖∞ φl (‖Y ‖∞) .The seond inequality is a onsequene of the setor ondition (3.25) and the growth ondition (3.26):for salar nonlinearities, the setor ondition (3.25) ombined with the growth ondition (3.26) isequivalent to property (3.23) (see Remark 3.4). 82



4.2. SECOND RESULT OF THIS THESIS - NETWORKS OF PASSIVE OSCILLATORSSeond, we prove property (3.24)
Y T Φ(Y ) =

∑

i6=k

yiφ(yi) + ykφ (yk) , where k is s.t. ‖Y ‖∞ = |yk|

≥ |yk| |φ (yk)|
≥ |φ (yk)| , when |yk| ≥ 1

= ‖Φ(Y )‖∞ , when ‖Y ‖∞ ≥ 1 sine φ(·) is monotone inreasing.From Theorem 4.2, we may onlude to global boundedness of the solutions of the network if Ξis a linear system. This result is summarized in Theorem 4.3.Theorem 4.3 Consider the system represented in Figure 4.2, where Ξ is a linear, passive and de-tetable system and Φk(·) = diag{φk(·)} : R
N → R

N is a multivariable repeated nonlinearity. If therepeated nonlinearity φk(·) satis�es
φk(y) → ∞ as y → ∞ and φk(y) → −∞ as y → −∞, (4.8)and is suh that φk(y) is monotone inreasing for |y| > b for some b ≥ 0, then the trajetories arebounded.ProofWe �rst note that from (4.8) we an �nd a onstant a > 0 suh that

|y| > a⇒ yφk(y) > 0.Then, we let φ̃(y) be a ontinuous, monotone inreasing funtion suh that
φ̃(y) = φk(y) when |y| > c = max(a, b)and yφ̃(y) > 0 for all y 6= 0. It follows that (3.25) and (3.26) hold for φ̃. From Theorem 4.2,this implies that the repeated multivariable nonlinearity Φ̃(Y ) =

(

φ̃ (y1) , . . . , φ̃ (yN )
)T satis�esonditions (3.23) and (3.24).The dynamis of the isolated (W ≡ 0) feedbak system represented in Figure 4.2 may be written as

Ẋ = AX +B[−Φ̃(Y ) + D̃(Y )], (4.9)where D̃(Y ) = Φ̃(Y )−Φk(Y ) is bounded beause (D̃(Y )
)

i
= 0 when |yi| > c. Sine, by assumption,the linear system Ξ is passive and detetable, and Φ̃(·) satis�es (3.23) and (3.24), we onlude fromTheorem 3.2 that the trajetories of (4.9) are bounded.Remark 4.4 The assumptions on Ξ are obviously satis�ed for Υ linear, passive and detetable and

F (Y ) linear and passive. The assumptions on Φk(·) = diag{φk(·)} are obviously satis�ed for φk(y) =
−ky + yφ(y) with φ(·) satisfying the assumptions of Setion 3.3.1 and monotone inreasing.83



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS4.2.2 Bifurations in networks of passive osillatorsIn this setion, we fous on the bifurations that may arise in a network of passive osillatorssatisfying the representation in Figure 4.2. We �rst present a MIMO generalization of Theorem 3.8,then we show its usefulness for the bifuration analysis in networks of passive osillators.Similarly to the SISO situation of Setion 3.3.3, the MIMO system in Figure 4.2 may be seen as the(positive) feedbak interonnetion of an absolutely stable MIMO system with the MIMO stati gaindiag{k}. Generially, a bifuration ours when k is inreased2. We note R(s) the MIMO transferfuntion of the linearization of Ξ at X = 0. Similarly, we note Rk(s) the MIMO transfer funtion ofthe linearization of Ξk at X = 0.Theorem 4.5 Consider the unfored (W ≡ 0) system shown in Figure 4.2. Assume that Ξ is stronglypassive, that both Ξ and its linearization are zero-state detetable and that the feedbak interonnetionof Ξ and Φk(·) is ultimately bounded. Let k∗network ≥ 0 be the minimum value for whih the MIMOtransfer funtion Rk(s) has a pole on the imaginary axis.If Rk∗
network

(s) has a unique pole on the imaginary axis and if Ξk∗
network

is strongly passive, thenthe bifuration is a superritial pithfork bifuration; for k & k∗network the system is globally bistable,that is, the equilibrium X = 0 is a saddle and its stable manifold Es(0) separates the state spae intwo open sets, eah of whih is the basin of attration of a stable equilibrium.If Rk∗
network

(s) has a unique pair of onjugated poles on the imaginary axis and if Ξk∗
network

isstrongly passive, then the bifuration is a superritial Hopf bifuration; for k & k∗network the systemhas a stable limit yle whih is globally asymptotially stable in R
nN\Es(0).ProofThe proof is a straightforward extension of the SISO ase presented in the proof of Theorem 3.8. Itrelies on the dissipation inequality at the bifuration point,

Ṡ ≤ −Y T Φ(Y ), (4.10)where S denotes the storage funtion of Ξk∗
network

. The global part of the proof is idential: it relies onabsolute stability of the MIMO system at ritiality. The loal part is similar. For a one dimensionalmanifold, the output of the system is Y = Cξ + O
(

|ξ|2
) with C ∈ R

N and ξ ∈ R. Sine thelinearization of the enter manifold dynamis is observable, C is full rank whih means that at leastone omponent of C is nonzero. The orresponding omponent of Y quali�es for a loal oordinate2This is easily seen from the Isidori normal form of the linearization of Ξk at X = 0, i.e.
Ż = QZ + DY

Ẏ = EZ + (K + kCB)Y,where CB = (CB)T
> 0 from the strong passivity assumption of Ξk (see [SJK97, Setion 2.4.2℄). The system neessarilybeomes unstable for large positive values of k. To see this, we note that for k su�iently large, the symmetri matrix

Ks + kCB (where Ks denotes the symmetri part of K) is symmetri positive de�nite (e.g. from Weyl theorem[HJ85, Theorem 4.3.1, p. 181℄ whih allows to ompare the eigenvalues of Ks + kCB with those of Ks and kCB:
λmin (Ks) + λmin (kCB) ≤ λmin (Ks + kCB)). This in turn implies that K + kCB is positive de�nite and thus thatall its eigenvalues have positive real parts (see Appendix A). Using the Shur omplement of the Jaobian matrix
„

Q D

E K + kCB

«, it is then easy to show that the system is unstable for k su�iently large.84



4.2. SECOND RESULT OF THIS THESIS - NETWORKS OF PASSIVE OSCILLATORSin the enter manifold, i.e. ∃i ∈ {1, . . . , N} suh that yi = ciξ + O
(

|ξ|2
) with ci 6= 0 and the prooffollows as in the SISO ase. For a two dimensional manifold, the proof diretly follows as in the SISOase (see[SS05b℄ for an expliit proof in the MIMO framework).Remark 4.6 As the feedbak interonnetion of Υ and F (Y ), Ξ and its linearization are zero-statedetetable if Υ and its linearization are zero-state detetable. Similarly, Ξk∗

network
is strongly passiveif Υk∗

network
is strongly passive sine the oupling F (Y ) is assumed to be passive. For networks ofidential passive osillators, i.e. Υ = diag{Σ}, these onditions are satis�ed if they hold for Σ.4.2.2.1 Dimension of the enter manifold for a network of idential passive osillatorswith linear symmetri ouplingThe results of Theorem 4.5 restrit the dimension of the enter manifold at the bifuration.The dimension is generially one or two in a general interonnetion. However, it an be higher insymmetri interonnetions of idential osillators: when the network possesses symmetry, multipleeigenvalues may ross the imaginary axis simultaneously even in the generi ase (see [GS02℄), andthe dimension of the enter manifold an be greater than 2. The situation is muh more ompliatedand a deeper analysis has to be done � this is the ase, for example, of the equivariant bifurationsdesribed in [GSS88℄. In this thesis, we do not onsider suh degenerate situations.Knowing the dimension of the enter manifold of one isolated passive osillator, what an be saidabout the dimension of the enter manifold of a network of idential passive osillators? This questionis easily answered in the ase of a network of idential passive osillators with linear and symmetripositive semi-de�nite oupling. If we assume linear symmetri, positive semi-de�nite oupling, i.e.

U = −ΓY with Γ = ΓT ≥ 0 and rank(Γ) = q < N , the poles of the MIMO transfer funtion Rk(s) areeasily obtained from the poles of the SISO transfer funtion Gk(s). The poles of the MIMO transferfuntion Rk(s) are the omplex values of s suh thatrank(1 − kG(s)

G(s)
IN + Γ

)

< N.Beause Γ is a symmetri positive semide�nite matrix of rank q, there exists an orthogonal matrix Lsuh that Γ = LT ΛL where Λ = diag (0, . . . , 0, λN−q+1, . . . , λN ) with 0 < λN−q+1 ≤ · · · ≤ λN . Wethus have to searh for the omplex values of s that render the diagonal matrix (1−kG(s)
G(s) IN + Λ

)singular. This matrix is singular for eah omplex value of s solution of one of the equations
1−(k−λi)G(s)

G(s) = 0, i = 1, . . . , N . Thus the poles of the MIMO losed-loop transfer funtion are foundby replaing k by k − λi, i = 1, . . . , N in the expression of the poles of Gk(s). As a onsequene,at k = k∗, the MIMO system possesses a enter manifold of dimension m(N − q) where m is thedimension of the enter manifold of one isolated passive osillator at ritiality. In Theorem 3.8 wehave shown that, generially, m ∈ {1, 2}. As a result, if q = N − 1 we are in the situation desribedby Theorem 4.5.Remark 4.7 As we have noted in Setion 4.1, if the matrix Γ is only symmetri, a shift by k0INtransforms Γ into a positive semide�nite matrix Γ′ = Γ+k0IN of rank q < N . The ritial bifurationvalue for network, k∗network, is then linked to the ritial value for an isolated passive osillator k∗ bythe relation k∗network = k∗ − k0. 85



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSThese onsiderations lead to the following proposition.Proposition 4.8 Consider a network of N idential passive osillators with linear symmetri ou-pling U = −ΓY , where Γ = ΓT . Let k0 be the minimal shift suh that Γ′ = Γ′T = Γ + k0IN ≥ 0and rank (Γ′) = N − 13. If one isolated osillator has a enter manifold of dimension one or two at
k = k∗, then the network possesses a enter manifold of the same dimension at the bifuration value
k∗network = k∗ − k0.4.2.2.2 Relaxation osillations in networks of passive osillatorsIn this setion we give an extension of Theorem 3.9 whih transforms the global bistability resultof Theorem 4.5 into a relaxation osillation result. For this, we onsider the addition of a feedbakadaptation loop to the globally bistable system in Figure 4.2. The adaptation loop is represented onFigure 4.3. As we have seen in the proof of Theorem 4.5, there always exists (at least) one outputomponent that quali�es for a loal oordinate in the enter manifold. Let yi be this omponent.The adaptation we onsider is diagonal and ats only on yi, i.e. only the orresponding omponent
wi of the external input W is nonzero . This omponent is suh that wi = −Ri where Ri is the statevariable of the additional adaptation dynami.

ei = (0, . . . , 0, 1, 0, . . . , 0)

i

−−
Ξ

Φk(·)

Let yi be the omponent of the MIMOoutput Y that quali�es for a loal oordinatein the enter manifold when the adaptation is not present.Y

1
τs+1eie

T
i

W The adaptation loopis de�ned as:
wj = 0, ∀j 6= i
τṘi = yi − Ri

wi = −Ri

V

Figure 4.3: Converting the global bistability senario into a relaxation osillator with a slow adapta-tion mehanism (τ ≫ (k − k∗network)
−1).With this additional feedbak adaptation loop, the global bistability result of Theorem 4.5 anbe transformed into a global relaxation osillation for the network. This result is summarized inTheorem 4.9.Theorem 4.9 Under the assumptions of Theorem 4.5, suppose that the feedbak interonnetion of Ξand Φk(·) undergoes a superritial pithfork bifuration at k = k∗network and that the feedbak systemshown in Figure 4.3 is ultimately bounded. Then there exists onstants ǭ > 0, and τ > 0 suh that

∀k ∈ (k∗network, k
∗
network + ǭ) and τ ≫ (k − k∗network)

−1, the feedbak system shown in Figure 4.3 hasa globally asymptotially stable limit yle in R
nN+1\Es(0).ProofThe proof is similar to the proof of Theorem 3.9. Let ǫ = (k − k∗network) and onsider the systemrepresented on Figure 4.3. By assumption, the feedbak interonnetion of Ξ and Φk(·) possessesa one dimensional enter manifold at ǫ = 0. For W 6= 0, strong passivity of Ξ implies that the3This ondition an be satis�ed i� the minimal eigenvalue of Γ has an algebrai multipliity equal to one.86



4.2. SECOND RESULT OF THIS THESIS - NETWORKS OF PASSIVE OSCILLATORSenter-unstable manifold equation writes4
ẏi = ǫyi − κ′y3

i +
N∑

j=1

αjwj + O
(
y4

i

)
,where κ′ > 0 and wj represents the jth omponent of the network external input vetor W . Thus, ifwe augment the one-dimensional enter-unstable manifold of the original system (without adaptation)with the adaptation equation, we obtain

ẏi = ǫyi − κ′y3
i − bRi + O

(

|(yi, Ri)|4
)

, κ′ > 0, b > 0

Ṙi = δ (−Ri + yi) ,
(ǫ̇ = 0,

δ̇ = 0),

(4.11)where δ = τ−1. The dynamis (4.11) are idential to those obtained in the SISO ase (see (3.38)).The loal part of the proof is thus similar to the SISO ase.The global part of the proof follows as in Theorem 4.5: for δ > 0 and ǫ = 0, the equilibrium
(x,Ri) = (0, 0) is globally asymptotially stable beause the augmented storage V = δS+ 1

2R
2
i satis�esthe dissipation inequality V̇ = δṠ+ṘiRi = −δY T Φ(Y )−δyiRi +δRi (−Ri + yi) ≤ −δY T Φ(Y ) whihis analogous to (4.10).Remark 4.10 If the forward system Ξ is linear, strongly passive and detetable and the repeatednonlinearity φ(·) satis�es the assumptions of Setion 3.3.1 and is monotone inreasing, then ultimateboundedness results from Theorem 4.3 sine the adaptation dynamis are passive.4.2.3 Relaxation of the assumptions of Theorem 4.5 - Use of multipliersThe key to our results is the absolute stability of the feedbak system at ritiality. The strongpassivity of Ξk∗

network
is a su�ient ondition for suh a property. Nevertheless, it is rather restritivesine it requires that Ξk loses stability and passivity for the same value of the parameter k. Multipliersan be used to extend the results of Theorem 4.5 to more general situations. In Theorem 4.11, wepresent an extension of Theorem 3.11 that provides su�ient onditions for absolute stability of thefeedbak system of Figure 4.2.Theorem 4.11 Consider the system shown in Figure 4.2 with W ≡ 0. Assume that Ξ and itslinearization are zero-state detetable and that the feedbak interonnetion of Ξ and Φk(·) is ultimatelybounded. Then eah of the following onditions is su�ient for global asymptoti stability of theequilibrium X = 0 of the feedbak system.

• Φ(·) = diag{φ(·)} with φ(·) in the setor (0,∞) and there exists γ > 0 suh that (1 + γs)INΞkis strongly passive;4The strong passivity of Ξ (and gΞ full rank) implies that Ξ has relative degree one at X = 0. This, in turn,implies that for X in a neighborhood of the origin, the input V of Ξ diretly enters the Ẏ dynamis, i.e. Ẏ = ∂hΞ

∂X
Ẋ =

LfΞ
hΞ(X) + LgΞ

hΞ(X)V with LgΞ
hΞ(0) = ∂hΞ

∂X

˛

˛

˛

X=0
gΞ(0) being a symmetri positive de�nite matrix.87



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS
• Φ(·) = diag{φ(·)} with φ(·) monotone in the setor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN with M(s) in the form (3.39), z(t) ≥ 0, suh that Ξ̃k = H1INΞkH

−1
2 IN isstrongly passive;

• Φ(·) = diag{φ(·)} with φ(·) odd, monotone in the setor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN withM(s) in the form (3.39) suh that Ξ̃k = H1INΞkH

−1
2 IN is strongly passive.ProofFor Popov MIMO multipliers, the assumption that (1+γs)INΞk is strongly passive implies that Ṡ ≤

− (Φ(Y ))T
(

Y + γẎ
). A Lyapunov funtion for the interonnetion is V = S + γ

∑N
i=1

∫ yi

0 φ(s) ds,whih satis�es V̇ ≤ − (Φ(Y ))T Y .For Zames-Falb MIMO multipliers M(s)IN , with M(s) in the form (3.39), su�ient onditions forthe strit positivity (strit passivity) of the MIMO nonlinearity Φ̃(·) = H2INΦ(·)H−1
1 IN are given in[SK00, Theorem 1℄ :

Φ(0) = 0,
∫ +∞

−∞
(r(t) − s(t))T (Φ(r(t)) − Φ(s(t))) dt ≥ 0,

(
dΦ

ds
(s)

)

−
(
dΦ

ds
(s)

)T

= 0.These onditions are satis�ed for a repeated monotone nonlinearity Φ(·) = diag{φ(·)} with φ(·)monotone inreasing and satisfying φ(0) = 0. The rest of the proof diretly follows as the one ofTheorem 3.11.We now present Theorem 4.12. It is an extension of Theorem 3.12 that generalizes the results ofTheorem 4.5 through the use of multipliers.Theorem 4.12 The statements of Theorem 4.5 hold if the strong passivity assumption on Ξk∗
networkis replaed by one of the following onditions:

• Φ(·) = diag{φ(·)} with φ(·) in the setor (0,∞) and there exists γ > 0 suh that (1 +
γs)INΞk∗

network
is strongly passive;

• Φ(·) = diag{φ(·)} with φ(·) monotone in the setor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN withM(s) in the form (3.39), z(t) ≥ 0, suh that Ξ̃k∗

network
= H1INΞk∗

network
H−1

2 INis strongly passive;
• Φ(·) = diag{φ(·)} with φ(·) odd, monotone in the setor (0,∞) and there exists M(s)IN =
H1(s)H2(−s)IN with M(s) in the form (3.39) suh that Ξ̃k∗

network
= H1INΞk∗

network
H−1

2 IN isstrongly passive.ProofThe proof is similar to that of Theorem 3.12. An expliit proof in the MIMO framework an be foundin [SS05b℄. 88



4.3. ILLUSTRATIVE EXAMPLESRemark 4.13 Suppose that a passive osillator is onstruted through the use of a multiplier M(s)as desribed in Theorem 3.12. Consider a network of suh idential passive osillators representedaording to Figure 4.1. We would like to use the MIMO repeated version of this multiplier M(s)INto onlude about bifuration with the help of Theorem 4.12. A su�ient ondition is that the repeatedmultiplier also preserves the positivity of the oupling (sine the MIMO repeated multiplier M(s)INalready ensures that diag{Σk} is strongly passive for k ≤ k∗network). For this ondition to be satis�ed,the oupling F (Y ) has to be the gradient of a onvex funtion (see [SK00℄). In the ase of linearoupling F (Y ) = ΓY , a su�ient ondition is Γ = ΓT ≥ 0.4.3 Illustrative examplesIn this setion, we illustrate the results of Theorems 3.8 or 4.12 by examples of networks ofidential passive osillators of order 3. These passive osillators were presented in Setion 3.5.1. Inthese osillators, the forward blok appearing in Figure 3.8 is �lled with a passive linear system whoseorresponding transfer funtion is
G(s) =

s
(
τs+ ω2

n

)

s3 + 2ζωns2 + (τ + ω2
n) s+ ω2

n

, (4.12)with
2ζ ≥ ωn

τ
> 0, (4.13)and the stati nonlinearity is

φk(y) = y3 − ky. (4.14)As mentioned in Setion 3.5.1, the presene of a single zero at s = 0 fores the Hopf bifurationsenario desribed in Theorem 3.8. The ritial values k∗ and k∗passive of Gk(s) are given in (3.48)and (3.49) respetively.Using Theorem 3.8 or 3.12, we have shown in Setion 3.5.1 that, for partiular values of theparameters, this system satis�es the de�nition of a passive osillator given in Setion 3.3.4 for k & k∗,i.e.1. the feedbak system satis�es the dissipation inequality Ṡ ≤
(

k − k∗passive

)

y2 − y4 + uy;2. when isolated, this system possesses a global limit yle for k & k∗.We now illustrate some network topologies whih allow for a diret appliation of Theorem 4.5 (or 4.12,depending on the parameters values). We suessively onsider networks omposed of an inreasingnumber of osillators: N = 2, N = 3, and N > 3.4.3.1 Case 1: N = 2Consider the positive (resp. negative) feedbak oupling of 2 idential passive osillators of type(4.12)-(4.14) as illustrated in Figure 4.4. The interonnetion matries orresponding to these asesare respetively Γ1 =

(
0 −1
−1 0

) for olumn (a) and Γ2 =

(
0 1
1 0

) for olumn (b). The networkis unhanged by the shifts Γ′ = Γ + k0IN and k′ = k + k0. In both ases, hoosing k0 = 1, the89



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSshifted matries Γ′
1 =

(
1 −1
−1 1

) and Γ′
2 =

(
1 1
1 1

) are positive semide�nite with rank 1. ByProposition 4.8, the dimension of the enter manifold of the network is 2. The ritial bifurationvalue for the network is k∗network = k∗ − 1. From Theorem 4.5 (or Theorem 4.12, depending on theparameters values), we onlude that the network possesses a limit yle for k & k∗network. This isillustrated by the simulation results presented in Figure 4.4. In this simulation, the hosen parametervalues are the same as in Setion 3.5.1.1, i.e. ωn = 1, ζ = 1.25, τ = 2. For these parameter values, weobtain k∗ = k∗passive = 1 (see Setion 3.5.1.1) and k∗network = 0. As an be seen on these simulationresults, the interonnetion de�ned by Γ1 leads to synhrone osillations while the interonnetionde�ned by Γ2 leads to anti-synhrone osillations.4.3.2 Case 2: N = 3We onsider now a network of 3 osillators of type (4.12)-(4.14) onneted aording to the hainstruture of Figure 4.5.The orresponding interonnetion matrix is
Γ =





3 1 1
1 2 0
1 0 2



 > 0 (4.15)The eigenvalues of Γ being 1, 2 and 4, the shift k0 required to transform Γ into a positive semide�nitematrix of rank 2 is k0 = −1. The shifted matrix Γ′ is then  2 1 1
1 1 0
1 0 1



 ≥ 0. By Proposition 4.8, thedimension of the enter manifold is 2. The ritial bifuration value for the network is k∗network = k∗+1.From Theorem 4.5 (or Theorem 4.12 aording to the parameter values), we onlude that the networkpossesses a limit yle for k & k∗network. This is illustrated by the simulation results presented in Figure4.6. For this simulation we onsidered a network of 3 idential passive osillators of type (4.12)-(4.14)oupled aording to (4.15). One again, we hosed the parameters values ωn = 1, ζ = 1.25, τ = 2.These parameter values lead to a ritial bifuration value k∗network = 2.4.3.3 Case 3: N > 3As an illustration for a large number of osillators, we �rst onsider a SN symmetry (all-to-all)network of passive osillators of type (4.12)-(4.14). The SN symmetry oupling orresponds to theinteronnetion matrix
Γ =








(N − 1)K −K · · · −K
−K (N − 1)K · · · −K... ... . . . ...
−K −K · · · (N − 1)K








(4.16)where K is the oupling strength haraterizing the SN symmetry network. The eigenvalues of Γ are
NK with a multipliity N − 1 and 0. As a onsequene, the rank of Γ is N − 1. By Proposition4.8, the dimension of the enter manifold is 2. The ritial bifuration value for the network is
k∗network = k∗. From Theorem 4.5 (or Theorem 4.12 aording to the parameter values), we onlude90



4.3. ILLUSTRATIVE EXAMPLES
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2. In this simulation, we see that all the osillators synhronize. We will return to the synhronizationbehavior in Setion 4.4.2.The same results hold for DN symmetry networks, i.e. bidiretional rings of osillators. In thease of DN symmetry networks, the matrix Γ has the form

Γ =














2K −K 0 · · · 0 −K
−K 2K −K 0 · · · 0

0 −K . . . . . . . . . ...... 0
. . . 2K −K 0

0
... . . . −K 2K −K

−K 0 · · · 0 −K 2K














. (4.17)
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4.4. THIRD RESULT OF THIS THESIS - INCREMENTAL PASSIVITY ANDSYNCHRONIZATION
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(a) (b)Figure 4.7: Simulation results for a network of 5 idential osillators of type (4.12)-(4.14) oupledthrough S5 symmetry. The parameters values are ωn = 1, ζ = 1.25, τ = 2, k = 2, and K = 1. Theritial bifuration value for an isolated osillator is k∗ = 1 and the orresponding bifuration valuefor the network is k∗network = 1.This matrix is yli and its eigenvalues an be alulated analytially (see e.g. [Hop86℄): λj(Γ) =

2K
(

1 − cos
(

2πj
N

))

≥ 0, j = 1, . . . , N . The rank of Γ is one again equal to N − 1 and the resultsof Theorems 4.5 (or 4.12 aording to the parameter values) may be diretly applied.4.4 Third result of this thesis - Inremental passivity and synhro-nizationAfter having determined the existene and stability of sustained osillations in a network of inter-onneted passive osillators, the next step is to haraterize their relative osillating behavior, i.e.one with respet to the other ones. The question of global synhronization among the osillators ispartiularly relevant. Synhronization refers to the tendeny of interonneted osillators to produeensemble phenomena, that is, to phase lok as if an invisible ondutor was orhestrating them. Syn-hronization is a onvergene property for the di�erene between the solutions of di�erent systems.Convergene properties for the di�erene between solutions of a losed system are haraterized bynotions of inremental stability [Ang02, LS98, PPvdWN04℄. For open systems, the orrespondingnotion is inremental passivity.In the next setion, we de�ne the notion of inremental passivity and give su�ient onditionsunder whih passive osillators are inrementally passive. In Setion 4.4.2, we show the impliationsof inremental passivity for synhronization and derive su�ient network topology onditions forthe existene of globally asymptotially stable synhrone osillations in networks of osillators. Theresults onern the interonnetion of N idential passive osillators with network topologies thatinlude SN symmetry (all-to-all topology), DN symmetry (bidiretional ring topology), ZN symme-try (unidiretional ring topology) and open hain symmetry. Exploiting the properties of passiveosillators, we additionally show that the network solutions are bounded and that the global limityle stability analysis arried out for an isolated osillator extends to the network. These results are93



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSrelated to other reent synhronization results in the literature [SW03, Pog98, Ang02℄ that are allbased on inremental stability notions.4.4.1 Inremental passivityConsider two di�erent solutions xa(t) and xb(t) of the input-a�ne system Σ given in (3.16) withorresponding inputs and outputs (ua(t), ya(t)) and (ub(t), yb(t)). Denote the inremental variablesby ∆x = xa − xb, ∆u = ua − ub, and ∆y = ya − yb. The system is inrementally dissipative if itsatis�es a dissipation inequality of the forṁ
∆S ≤ w (∆u,∆y) (4.18)for the salar inremental storage funtion ∆S(∆x) ≥ 0 with the inremental supply rate w (∆u,∆y).Inremental dissipativity (4.18) with the inremental supply rate w (∆u,∆y) = (∆u)T ∆y is alledinremental passivity.Passivity implies inremental passivity for linear systems, that is, if the quadrati stor-age S(x) = xTPx satis�es the dissipation inequality Ṡ ≤ uT y then the inremental storage

∆S(∆x) = (∆x)T P∆x satis�es the inremental dissipation inequality ∆̇S ≤ (∆u)T ∆y. Passivityalso implies inremental passivity for monotone inreasing, stati nonlinearity: if φ(·) is monotoneinreasing, then (s1 − s2) (φ (s1) − φ (s2)) = ∆s∆φ(s) ≥ ∆sψ(∆s) ≥ 0, ∀∆s = s1 − s2 for somestati nonlinearity ψ(·).Passive osillators made of the feedbak interonnetion of a linear system Σk with a monotoneinreasing nonlinearity φ(·) are thus also inrementally passive. In the following setions we restritourselves to linear passive systems Σ and to nonlinearities φ(·) that are monotone inreasing.4.4.2 SynhronizationConsider a network of N idential passive osillators of type (3.16),(3.17),(3.18). We assume thatthe only nonlinearity in eah passive osillator is due to the nonlinear monotone inreasing funtion
φ(·) appearing in the de�nition of φk(·). The dynamis for osillator i = 1, . . . , N write

{
ẋi = Axi −Bφk (yi) +Bui

yi = Cxiwhere ui represents the external input of osillator i. The dynamis of the network are easily repre-sented with the help of the Kroneker produt (see Setion 2.7 for a reminder of the main propertiesof the Kroneker produt).
{
Ẋ = (IN ⊗A)X − (IN ⊗B) Φk(Y ) + (IN ⊗B)U
Y = (IN ⊗ C)X

(4.19)where X =
(
xT

1 , . . . , x
T
N

)T ∈ R
nN , Y = (y1, . . . , yN )T ∈ R

N ,
Φk(Y ) = (φk (y1) , . . . , φk (yN ))T ∈ R

N , and IN represents the N by N identity matrix.We assume linear oupling, i.e. the topology of the network is de�ned by the input-output relation
U = −ΓY. (4.20)Furthermore, we make the following network topology assumptions:94



4.4. THIRD RESULT OF THIS THESIS - INCREMENTAL PASSIVITY ANDSYNCHRONIZATION
• We assume that Γ is real and positive semide�nite, and that 1 (the vetor (1, . . . , 1)T ∈ R

N )belongs to the kernel of Γ. This is equivalent to the assumption that all rows of Γ sum tozero whih implies that the oupling between the osillators disappears when synhronizationis reahed.
• We assume that the rank of Γ is equal to N − 1, i.e. Γ has only one zero eigenvalue. This isequivalent to the assumption that the network is onneted.
• We do not require the interonnetion matrix Γ to be symmetri but we assume that ker (Γ) =

ker
(
ΓT
)

= range (1).Theorem 4.15 gives su�ient onditions for the existene of a globally asymptotially stable osillationin a network of idential passive osillators satisfying the above made assumptions.De�nition 4.14 We denote by λmin 6=0
(Γs) the smallest nonzero eigenvalue of the symmetri part of

Γ.Theorem 4.15 Consider the MIMO system (4.19)-(4.20) representing a network of N idential in-rementally passive osillators. Assume that (A,C) is observable, φ(·) is monotone inreasing andeah isolated osillator (ui ≡ 0) possesses a globally asymptotially stable limit yle in R
n\Es(0)where Es(0) denotes the stable manifold of the origin. If the interonnetion matrix Γ is a real, pos-itive semide�nite matrix suh that ker (Γ) = ker

(
ΓT
)

= range (1) then for λmin 6=0
(Γs) > k − k∗passive(strong oupling), the network has a limit yle whih attrats all solutions exept those belonging tothe stable manifold of the origin, and all the osillators of the network exponentially synhronize.ProofWe ompare the solution of eah osillator in the network to that of an isolated referene osillator.The isolated referene osillator dynamis are

{
ẋ0 = Ax0 −Bφk (y0)
y0 = Cx0where x0 ∈ R

n and y0 ∈ R. Consider the inremental dynamis
{

∆Ẋ = (IN ⊗A) ∆X − (IN ⊗B)∆Φk(Y ) + (IN ⊗B)U
∆Y = (IN ⊗ C) ∆X

(4.21)where ∆X = X − 1 ⊗ x0 with X satisfying the dynamis (4.19), 1 ∈ R
N and ∆Φk(Y ) =

Φk(Y ) − 1 ⊗ φk (y0). Sine eah passive osillator is inrementally passive, the inremental system(4.21) satis�es the inremental dissipation inequality
Ṡ∆ ≤ (k − k∗passive)∆Y

T ∆Y − ∆Y T ∆Φ(Y ) + ∆Y TU

≤ k̄∆Y T ∆Y + ∆Y TU

≤ k̄∆Y T ∆Y − ∆Y T Γ∆Y,

(4.22)where k̄ = k − k∗passive and S∆ = 1
2∆XT (IN ⊗ P ) ∆X with P = P T > 0 de�ning the storagefuntion assoiated to eah inrementally passive osillator (i.e. Si = xT

i Pxi). S∆ is the sum of theinremental storage funtions of the inrementally passive osillators. The seond inequality omes95



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORSfrom the monotone inreasing property of φ(·). The third inequality omes from the properties of Γ,i.e. U = −ΓY = −Γ (∆Y + 1 ⊗ y0) = −Γ∆Y sine 1 ∈ ker (Γ).Deompose (uniquely) the vetor X into two omponents belonging respetively to the kernel of
Γ ⊗ In and to its orthogonal omplement, i.e. X = Xker + Xker⊥ where Xker ∈ ker (Γ ⊗ In) and
Xker⊥ ∈ ker (Γ ⊗ In)⊥ =

{
V ∈ R

nN : V TW = 0, ∀W ∈ ker (Γ ⊗ In)
}. The orresponding outputdeomposition is Y = Yker + Yker⊥with Yker = (IN ⊗ C)Xker ∈ ker (Γ) and Yker⊥ = (IN ⊗ C)Xker⊥ ∈

(ker (Γ))⊥ (this is obvious from the Kroneker produt properties, see Propositions A.6 and A.7 inAppendix A). From the assumption ker (Γ) = range (1), we have Xker = 1⊗xker and Yker = 1⊗ yker,with 1 ∈ R
N . We thus write ∆X = 1⊗ (xker − x0)+Xker⊥ and ∆Y = 1⊗ (yker − y0)+Yker⊥ . Underthe assumption that ker (Γ) = ker

(
ΓT
), it an be shown that −∆Y T Γ∆Y ≤ −λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2where λmin 6=0

(Γs) represents the smallest nonzero eigenvalue of the symmetri part of Γ (see Propo-sition A.5 in Appendix A). The inremental passivity inequality (4.22) then writes
Ṡ∆ ≤ k̄ |1 ⊗ (yker − y0)|2 +

(
k̄ − λmin 6=0

(Γs)
) ∣
∣Yker⊥

∣
∣2 (4.23)Assume that the initial ondition of the referene osillator x0(0) is hosen to be equal to the initialondition of the kernel omponent of X, i.e. x0(0) = xker(0). The invariane of the kernel dynamis(see Appendix A) implies that x0(t) = xker(t), ∀t ≥ 0 and thus that yker(t) − y0(t) = 0, ∀t ≥ 0. Theinremental passivity inequality now writes

Ṡ∆ ≤
(
k̄ − λmin 6=0

(Γs)
) ∣
∣Yker⊥

∣
∣2 . (4.24)From the strong oupling assumption, we have

γ = λmin 6=0
(Γs) − k̄ > 0. (4.25)Integrating (4.24) over [t0, t0 + δ] where δ > 0 is arbitrarily hosen, we obtain

∫ t0+δ

t0

Ṡ∆dτ ≤ −γ
∫ t0+δ

t0

∣
∣Yker⊥(τ)

∣
∣2 dτ

≤ −αγ
∣
∣Xker⊥ (t0)

∣
∣2 , α > 0, (4.26)for all Xker⊥ (t0), t0 ≥ 0. The last inequality omes from the observability of the pair (A,C)(see Appendix A). Global exponential stability (GES) of Xker⊥(t) is then dedued from lassialexponential stability theorems (see, for example, [SB89, Theorem 1.5.2℄). This means that with apartiular hoie of initial ondition for the referene osillator, we were able to show that ∆X(t) = 0is GES. GES of the solution ∆X = 0 for the di�erene system (4.21) implies that all solutions of thenetwork (4.19) exponentially onverge to the invariant subspae

{
X ∈ R

nN : x1 = · · · = xN = x0

} (4.27)where the dynamis are deoupled. Beause the dynamis of the network deouple in the invariant96



4.4. THIRD RESULT OF THIS THESIS - INCREMENTAL PASSIVITY ANDSYNCHRONIZATIONsubspae (4.27), GES of the solution ∆X = 0 for the di�erene system (4.21) implies that all boundedsolutions onverge to the ω-limit sets of the deoupled system and that all osillators synhronizeasymptotially.Combining GES of the di�erene system (4.21) and global boundedness of the solutions (see Setion4.2.1), we onlude that, for strong oupling, all solutions of the network (4.19) onverge to the ω-limitsets of the unoupled dynamis, i.e. all solutions exept those belonging to the stable manifold of theorigin of the network onverge towards a unique limit yle.Remark 4.16 The result still holds if the observability assumption on the pair (A,C) is relaxed to adetetability assumption.Remark 4.17 The GES result of ∆X = 0 may be viewed as an inremental input-to-state stability(δ-ISS) property of the network with S(X) being the orresponding δ-ISS Lyapunov funtion [Ang02℄.Remark 4.18 Theorem 4.15 is losely linked to reent synhronization results by Slotine [SW03℄and Pogromsky [Pog98℄. This may easily be notied from the normal form of passive systems. Thenormal form for osillator i of the network is [SJK97℄
(
żi
ẏi

)

=

(
Q e

fT g

)(
zi
yi

)

+

(
0

CB

)

(kyi − φ (yi))

−
N∑

j=1

γij

(
0 0

T

0 CB

)((
zj
yj

)

−
(
zi
yi

))

,where CB is positive de�nite from the strong passivity assumption. Assume, as it is done by Slo-tine and Pogromsky, that γij ≤ 0 for i 6= j, and that γii =
∑N

j=1 |γij |, then the ouplings
−γij

(
0 0

T

0 CB

) are positive semide�nite. The symmetri part of the Jaobian of the unoupleddynamis, divided aording to the oupling struture, is given by
Jis =

(

Qs
1
2(e+ f)

1
2(e+ f)T g + CBk − CB

dφ(yi)
dyi

)

.It is then easily seen that the su�ient onditions given by Slotine [SW03, Remark 3 of Theorem2℄ are satis�ed, i.e.1. Qs is ontrating sine it is Hurwitz from the passivity and detetability assumptions;2. λmax(g + CBk − CB
dφ(yi)

dyi
) < g + CBk <∞ from the monotone inreasing assumption;3. σmax

(
1
2(e+ f)

)
=
∣
∣
∣
e+f
2

∣
∣
∣

2
<∞.Exploiting the speial struture of passive osillators, Theorem 4.15 additionally proves that thenetwork solutions are bounded and that the limit yle stability analysis arried out for an isolatedosillator extends to the network. 97



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS4.5 Examples and simulation resultsAs an illustration of Theorem 4.15 for a non symmetri interonnetion matrix, we onsider a ZNsymmetry network of passive osillators of type (4.12)-(4.14). In the ase of ZN symmetry networks,the matrix Γ has the form
Γ =











K −K · · · · · · 0
0 K −K · · · 0... 0 K

. . . ...... ... . . . . . . −K
−K 0 · · · 0 K











(4.28)and it an be easily shown that rank(Γ) = N − 15 and that all its eigenvalues have nonnegative realparts (this results from a simple appliation of the Gershgorin Theorem [GvL89℄). Indeed, it an beshown that λmin 6=0
(Γs) = K

(
1 − cos

(
2π
N

)). From the strong oupling ondition (4.25), this impliesthat synhronization is guaranteed if K > KZN
with KZN

=
k−k∗

passive

(1−cos( 2π
N ))

. Moreover, from Theorem4.15, we onlude that for K > KZN
, all solutions, exept those belonging to the stable manifold,onverge towards the ω-limit set of the unoupled system whih is a globally attrative limit yle for

k & k∗.
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Figure 4.8: Time evolution of the outputs in a network of 5 osillators oupled through Z5 symmetry.Simulation results for a Z5 symmetry network of passive osillators of type (4.12)-(4.14) arepresented in Figure 4.8. For this simulation, we have hosen the following values of the parameters:
τ = 2, ζ = 1.25 and ωn = 1. This leads to a ritial bifuration value k∗ = 1 while the loss ofpassivity ours at k∗passive = 1. The value of the bifuration parameter k has been hosen equal to
2. The initial onditions for this simulation have been hosen at random. For global synhronization,the ommon oupling strength K has to be strong enough (i.e., K > 2−1

1−cos( 2π
5 )

= 1.4472). For thissimulation, the value of K was equal to 2.5The harateristi polynomial is (K − x)N − KN whih has only one root equal to zero for any N .98



4.5. EXAMPLES AND SIMULATION RESULTS
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Figure 4.9: Superposition of the state spaes of the 5 passive osillators oupled through Z5 symmetry.In Figure 4.9, we learly see that the osillators synhronize around a ommon limit yle. Thislimit yle is idential to the one obtained for an isolated osillator.The same global synhronization results hold for DN and SN symmetry networks. For DN sym-metry networks, the oupling strength synhronization threshold is KDN
=

k−k∗
passive

2(1−cos( 2π
N ))

. For SNsymmetry networks, the oupling strength synhronization threshold is KSN
=

k−k∗
passive

N
.Finally, the ase of bidiretional open hain strutures is also inluded in Theorem 4.15. Considerthe network represented on Figure 4.10. The orresponding interonnetion matrix Γ is symmetritridiagonal and writes

Γ =














K −K 0 · · · 0 0
−K 2K −K 0 · · · 0

0 −K . . . . . . . . . ...... 0
. . . 2K −K 0

0
... . . . −K 2K −K

0 0 · · · 0 −K K












and it is easy to show that its eigenvalues are λj = 2K

(

1 − cos
(

jπ
N

))

, j ∈ {0, . . . , N − 1}. Theoupling strength threshold is KOpen hain =
k−k∗

passive

2(1−cos( π
N ))

.We see that the 'larger' the symmetry of the synhronizing interonnetion struture, the smallerthe oupling strength threshold, i.e. KSN
< KDN

< KZN
< KOpen hain. This is in aordane withthe results of Slotine [WS℄ whih predit that the synhronization rate is proportional to the numberof osillators in the network and to the symmetry of the network. The higher the number of osillatorsor the symmetry, the higher the synhronization rate. This is on�rmed by the simulations results inFigure 4.11 where we onsider four di�erent topologies with the same number of osillators, the sameinitial onditions and the same oupling strength. We see from Figure 4.11 that the synhronizationrate inreases with the symmetry of the network.99



CHAPTER 4. GLOBAL RESULTS FOR INTERCONNECTED OSCILLATORS
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() (d)Figure 4.11: Simulation results for networks of �ve idential passive osillators. (a) Open hain, (b)
Z5 symmetry, () D5 symmetry, (d) S5 symmetry. The parameters values are ωn = 1, ζ = 1.25,
τ = 2, k = 2. The ritial bifuration value for an isolated osillator is k∗ = 1 and the orrespondingbifuration value for the network is k∗network = 1. The oupling strength value is K = 3. The sameinitial onditions have been used for the di�erent network topologies.4.6 SummaryIn the previous hapter, we showed that dissipativity theory has impliation for the global stabilityanalysis of the limit yle solution of passive osillators. In this hapter, we extended the dissipative100



4.6. SUMMARYharaterization of passive osillators to networks. This was done by onsidering a MIMO feedbakrepresentation of the network that is similar to the feedbak struture of eah isolated passive osilla-tor. The main assumption was the passivity (positivity) of the oupling. Under this assumption, weobtained a dissipation inequality for the network that is similar to that satis�ed by eah isolated pas-sive osillator. Based on this dissipativity inequality, we showed that the results of Chapter 3 extendin a straightforward manner to networks of passive osillators (Theorems 4.5, 4.9, and 4.12). As aseond result, we showed that global synhronization is implied by an inremental dissipativity har-aterization of the network that we named inremental passivity. We provided su�ient onditionsunder whih passive osillators are inrementally passive and derived su�ient network topologyonditions for the existene of globally asymptotially stable synhrone osillations in networks ofidential osillators (Theorem 4.15). This synhronization result onerns network topologies thatinlude SN symmetry (all-to-all topology), DN symmetry (bidiretional ring topology), ZN symme-try (unidiretional ring topology) and open hain symmetry. We ompared our result with reentliterature results on global synhronization and showed that generially passive osillators satisfy therequired onditions.
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Chapter 5Synthesis of stable osillationsIn this hapter, we adopt a synthesis point of view for the generation of stable limit yle osil-lations. We examine how to design a simple ontroller that yields stable limit yle osillations ina stabilizable system. The problem of synthesis of stable osillations �nds many appliations. Forexample, in the �eld of robotis, it plays an important role for (underatuated) rhythmi task robotssuh as walking robots ([CAA+03, WGC02, TYS91℄), juggling robots ([SA93, SA94, BKK94, ZRB99,LB01, GS04, RLS04℄) or general dexterous robots (see e.g. [Wil99a℄). In Setion 5.1, we propose aproportional-integral ontroller to generate osillations in stabilizable systems. The proposed on-troller is diretly inspired from the theory introdued in the previous hapters. In Setion 5.2 weshow that this ontroller is a natural hoie for the generation of limit yle osillations in mehanialsystems. We also show that for onservative stabilizable (mehanial) systems in feedbak with ourontroller, the only assumption of our theorems that is not satis�ed is the low dimension of the entermanifold: these systems are generially haraterized by a degenerate bifuration. In Setion 5.3 wepropose a method to regularize the degenerate bifuration. We also show that this regularizationmethod is only possible for fully atuated, two degrees of freedom mehanial systems. In Setion5.4, we provide simulation results for the art-pendulum system as a typial example of an undera-tuated mehanial system for whih diret appliation of the proposed ontroller results in generationof stable limit yle osillations. Finally, as a seond illustration, we desribe the researh projetthat we have initiated with the Laboratoire d'Automatique de Grenoble. This projet onerns thebalaning ontrol of the bipedal robot RABBIT.5.1 A proportional-integral mehanism to generate osillations in astabilizable systemIn this setion, we onsider the problem of generation of limit yle osillations in stabilizablesystems. To this end, we introdue the de�nition of a stabilizable system.Consider an input-a�ne nonlinear system Σ represented by the state spae model
ẋ = f(x) + g(x)u, (5.1)where x ∈ R

n is the state and u ∈ R
m is the input.103



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSDe�nition 5.1 The input a�ne system (5.1) is alled stabilizable if there exists a ontrol law u(x)and a Lyapunov funtion V (x) whose time derivative is rendered negative de�nite by u(x).We also introdue the onept of a �ontrol Lyapunov funtion� (CLF) [SJK97, Setion 3.5.3℄, whihis strongly linked with de�nition 5.1.De�nition 5.2 [SJK97, Setion 3.5.3℄ A smooth, positive de�nite, and radially unbounded funtion
V (x) is alled a ontrol Lyapunov funtion (CLF) for the input a�ne system (5.1) if, for all x 6= 0,

LgV (x) = 0 ⇒ LfV (x) < 0. (5.2)By de�nition, any Lyapunov funtion whose time derivative an be rendered negative de�nite (byontrol) is a CLF.Proposition 5.3 If system (5.1) with Lyapunov funtion V (x) is stabilizable by the ontrol r(x),then it is passive and ZSD with respet to the input v = u− r(x) and the output y = (LgV (x))T .ProofThe time derivative of the Lyapunov funtion V (x) along the trajetories of system (5.1) is given by
V̇ = LfV (x) + LgV (x)u.Using feedbak ontrol u = r(x) + v, we obtaiṅ

V < yT v,whih implies passivity of the system w.r.t. input v and output y. Furthermore, by de�nition, V (x)is a CLF and thus satis�es (5.2). This diretly implies zero-state detetability of system (5.1) w.r.t.
y. Assume that the system (5.1) is stabilizable by the ontrol r(x). To generate stable limit yleosillations, we onsider the output y = (LgV (x))T ∈ R

m and lose the loop with the nonlinearproportional (P) and integral (I) ontroller
u(t) = r(x(t)) − Φk (y(t)) −KI

∫ t

0
y(τ) dτ, (5.3)where r(x) is referred to as the stabilization part, Φk (y(t)) as the �proportional part�, and

KI

∫ t

0 y(τ) dτ (with KI = KT
I > 0) as the �integral part� (see Figure 5.1). The nonlinear fun-tion Φk(·) = diag{φk(·)} de�ning the proportional part is a multivariable repeated nonlinearity. Therepeated nonlinearity φk(y) = −ky + φ(y) is assumed to satisfy the assumptions given in Setion3.3.1, and φ(·) is furthermore assumed to be monotone inreasing.To intuitively understand the e�et of this ontroller, onsider the SISO ase when u ∈ R and

y ∈ R. The proportional part is then denoted by φk(y). Its sign varies aording to the magnitudeof the output. For small values of the output, the proportional part is sign opposed to y whereas forlarge values of the output, the proportional part has the same sign as y. This means that the sign ofthe dissipation injeted into the system through the proportional part depends on the magnitude of104



5.1. A PROPORTIONAL-INTEGRAL MECHANISM TO GENERATE OSCILLATIONS IN ASTABILIZABLE SYSTEMthe output y. Sine the feedbak system dissipates energy for large values of the output and restoresit for small values, a limit yle is expeted to appear. As we have seen in Chapter 3, the integralpart generially fores a Hopf bifuration beause of the presene of a zero at the origin for thelinearized system. If the system already inludes an integral ation, the integral part of the ontrolleris unneessary and may be omitted. Stable systemfuntion V
with Lyapunovv

−

y = (LgV )T

Φk(·) + KIdiag{1
s
}Figure 5.1: Synthesis of osillations by nonlinear PI ontrol of a stable system.Controller (5.3) is inspired by lassial PI ontrollers u = r(x(t)) −KP y −KI

∫ t

0 y(τ) dτ used inequilibrium point stabilization and regulation theory (see e.g. [CSB96, Chapter 2℄). These ontrollersare well-known for their robustness to onstant perturbations: for any KP = KT
P > 0, KI = KT

I > 0,the feedbak system is (globally) asymptotially stable. This is an immediate onsequene of Theorem2.15, Lemma 2.14 and Proposition 5.3: the feedbak interonnetion of system (5.1) with the integralpart of the PI ontroller yields a passive and ZSD system haraterized by the storage funtion
S = V + 1

2x
T
I KIxI where xI denotes the state of the integrator part of the ontroller. The wholefeedbak system is then haraterized by the dissipation inequality Ṡ < −yTKP y. This last inequalitytogether with ZSD implies global asymptoti stability of the system omposed of a forward passiveblok in feedbak with the lassial PI ontroller u = KP y +KI

∫ t

0 y(τ) dτ .Other solutions for the generation of osillation in stable systems have been proposed in theliterature. We lassify them mainly in two ategories:
• Output regulation where the idea is to fore the stable system with an external osillating input(see e.g. [Isi95, Chapter 8℄, [Pav04℄).
• Inversion and zero dynamis shaping where the idea is to design a partiular output suh that,when fored to zero, the remaining dynamis yield a stable limit yle osillation (see e.g.[GAGE03, BAGGE04, GEBAG05℄, [BM94, BM95a, BM95b, BMS96℄, [CEU02, SC04℄).Output regulation methods deal with asymptoti traking of presribed referene signals. The lassof referene signals onsists of solutions of some external autonomous system alled the exosystem.Referene signals generated by the exosystem are alled exosignals. The output to regulate is alledthe regulated output (e.g. the traking error in the traking problem). The output available formeasurement is alled the measured output. The idea is to �nd a measured output feedbak ontrollersuh that the losed loop system is internally stable and the regulated output tends to zero along105



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSsolutions of the losed loop system. The internal stability requirement roughly means that all solutionsof the losed loop system �forget� their initial onditions and onverge to some limit solution whihis determined only by the exosignal. To generate osillation the exosystem is designed to produea spei� osillating exosignal. The use of output regulation methods to produe stable limit yleosillations is generally not easy beause of the need to design spei� output and ontroller thatrender the losed loop system internally stable and at the same time allow to solve the regulationproblem. Their advantage is that they allow to trak a spei� orbit in the state spae.Inversion methods generally require preise models of the system. They use the ontrol to destroyunwanted (generally nonlinear) parts of the dynamis in order to feedbak transform the systeminto a spei�, easier to ontrol, system (e.g. partially linear system). To generate osillations, theontrol is used to fore the output of the transformed system to zero and simultaneously to induea zero dynamis that yields stable limit yle osillations. The main drawbak of these methods aretheir lak of robustness to unmodeled dynamis, and/or the di�ulty to perform the required zerodynamis shaping for omplex nonlinear systems.The main advantage of the PI ontroller (5.3) is that it relies on stabilization theory for equi-librium points. It is thus easy to implement: one a stabilizing, passive output has been designedfor the system, it is used to lose the loop with the ontroller in order to generate limit yle os-illations. The design of a stabilizing, passive output is a entral topi in nonlinear ontrol theoryand many methods already exist to solve this problem (feedbak passivation designs [vdS00, SJK97℄,ontrolled Hamiltonian and Lagrangian theory [BLM01, BCLM01, BOvdS02℄, energy shaping meth-ods [OvdSMM01, OvdSME02℄, et.). Furthermore, this passivity based ontroller is expeted to havegood robustness properties to model unertainties and perturbations beause it does not rely on theexat anellation of parts of the dynamis. The ounterpart is that it does not allow to trak aspei� orbit and, as we have seen in Theorem 4.51, that spei� assumptions have to be satis�ed:
• ultimate boundedness of the losed-loop system;
• absolute stability at ritiality, that is, when k = k∗.The ultimate boundedness assumption is a tehnial assumption. As we have seen in Chapter 3,it is always satis�ed when the forward blok is linear. For a general nonlinear forward blok, thisassumption is di�ult to verify. Nevertheless, for a passive, zero-state detetable, forward system,unbounded solutions are unlikely to happen. This is intuitively lear if one onsiders the sign of thedissipation added by the nonlinear proportional part of the ontroller. For large values of the output,the sign of the dissipation is positive leading intuitively to bounded solutions.The absolute stability assumption is thus the most ritial one. Numerous riteria have beendeveloped in order to verify absolute stability of a feedbak system: e.g. irle riterion, Popovriterion, Zames-Falb multipliers, and numerial methods (e.g. Integral-Quadrati-Constraints �see [MR97℄ for a general and reent treatment). In the next setion, we introdue and justify the useof a passivity based ontroller for the generation of limit yle osillations in mehanial systems.1In this hapter, Theorem 4.5 is used to haraterize osillations in MIMO feedbak systems. For this, we onsiderTheorem 4.5 where Ξ is not supposed to result from the interonnetion of several SISO systems as in Chapter 4, butfrom the interonnetion of the stabilizable MIMO system (5.1) with the integral part of ontroller (5.3). As suh,Theorem 4.5 is the diret and immediate extension of Theorem 3.8 to the feedbak interonnetion of a MIMO stronglypassive system Ξ with the multivariable repeated nonlinearity Φk(·). Sine the notion of network has no sense here, wedenote the ritial value of bifuration by k∗ instead of k∗

network. With these onsiderations in mind, the formulationof the Theorem is idential. 106



5.2. SYNTHESIS OF STABLE OSCILLATIONS IN MECHANICAL SYSTEMS5.2 Synthesis of stable osillations in mehanial systemsFor the generation of stable osillations in mehanial systems, the nonlinear PI ontroller (5.3)is natural for several reasons:
• The total energy of the mehanial system is generally a good Lyapunov funtion andidate.
• Passivity is a natural physial property between onjugated variables of the system.
• Even for unstable mehanial systems (e.g. the art-pendulum with pendulum in invertedposition), various energy shaping methods exist to feedbak transform the initial system into astable and onservative system.Using the PI ontroller (5.3), global limit yle osillations are obtained for k & k∗ if the assumptionsof Theorem 4.5 are satis�ed. As we have seen, the ritial assumption is the absolute stability of thefeedbak system at k = k∗. In order to satisfy this assumption, we may onsider systems for whih itis trivially satis�ed. This is the ase for general onservative systems whih typially loose stabilityand passivity simultaneously at k∗ = 0 when put in feedbak with ontroller (5.3). Unfortunately, theresulting feedbak system is generially haraterized by a degenerate bifuration, i.e. the number ofeigenvalues rossing the imaginary axis at k = 0 is typially greater than 2 (see Appendix B). Threesolutions may be onsidered at this stage:
• Solution 1: Take into aount Rayleigh dissipation in the model and hek if all the assump-tions of Theorem 4.5 are satis�ed (that is, mainly the absolute stability at ritiality).
• Solution 2: Regularize the bifuration by feedbak in order to return to the standard bifurationsenario.
• Solution 3: Generalize Theorem 4.5 to the ase of degenerate bifurations.Solution 3 is beyond the sope of this hapter and will be the subjet of future work. Solution 2is onsidered in Setion 5.3. The idea is to injet dissipation into the onservative system in orderto return to a non-degenerate bifuration situation. In Setion 5.3, we show that generially, thisregularization is possible only for fully atuated, two degrees of freedom mehanial systems.5.3 Fully atuated, two degrees of freedom mehanial systemsIn this setion we present a method to regularize the degenerate bifuration that generially ap-pears when onsidering the feedbak interonnetion of a linear, onservative system with ontroller(5.3). This method onsists in injeting spei� dissipation into the system in order to 'push' all eigen-values but two in the open left-half omplex plane, thus keeping the ritial value k∗ = 0 unhangedbut regularizing the bifuration. Su�ient onditions that allow for the feedbak implementation ofthis spei� dissipation are presented in Setion 5.3.1. We show that the proposed su�ient onditionsan be satis�ed only for fully atuated, two degrees of freedom mehanial system.107



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS5.3.1 Transforming a linear PCH system into a passive system that satis�es theassumptions of Theorem 4.5Consider the feedbak interonnetion of Figure 5.1 where the forward blok, denoted by Σ, islinear, strongly onservative and detetable. We denote by Ξ, the feedbak interonnetion of Σ withthe integral part of the ontroller. As feedbak interonnetion of two onservative systems, Ξ isonservative w.r.t. its input w and its output y. It is also easy to show that Ξ is detetable.Let z denote the state variable of Ξ. The dynamis of the linear system Ξ are given by
ż = Az +Bw (5.4)
y = CzSine Ξ is onservative, there exists a matrix P = P T > 0 suh that the Hill-Moylan onditions

ATP + PA = 0 (5.5)
C = BTP (5.6)are satis�ed. Taking J = AP−1, the �rst Hill-Moylan ondition (5.5) leads to J = −JT whihshows that J is a skew symmetri matrix and that the system (5.4) may be written as a port ontrolledHamiltonian (PCH) system (see [vdS00, setion 4.2.2℄).

ż = JPz +Bw = J
∂H

∂z
(z) +Bw (5.7)

y = BTPz = BT ∂H

∂z
(z) (5.8)where the Hamiltonian funtion H(z) is the storage funtion S(z) assoiated to the (strongly) on-servative system (5.4), i.e. H(z) = S(z) = 1

2z
TPz with P = P T > 0.We now present a method that transforms the linear PCH system (5.7),(5.8) into a system thatsatis�es the assumptions of Theorem 4.5. The intuitive idea is to injet dissipation into the systemin order to push all the eigenvalues but two into the open left-half omplex plane.Consider system (5.7),(5.8). There always exists a real orthogonal matrix Q that transforms itinto a blok triangular system, i.e. a system with a blok triangular Jaobian matrix (see [HJ85, p.82, theorem 2.3.4℄). Under this oordinate transformation, equations (5.7),(5.8) write

˙̃z = J̃ P̃ z̃ + B̃w (5.9)
y = B̃T P̃ z̃ (5.10)where z̃ = Qz, B̃ = QB, J̃ = QJQT = −J̃T , and P̃ = QPQT = P̃ T > 0 Sine passivity (onserva-tiveness) is a oordinate independent property, system (5.9),(5.10) is also onservative w.r.t. input wand output y. In these oordinates, the matrix J̃ P̃ writes
J̃ P̃ =

(
δ ⋆

0 ∆

)

, (5.11)108



5.3. FULLY ACTUATED, TWO DEGREES OF FREEDOM MECHANICAL SYSTEMSwhere δ is a 2 × 2 matrix, and both δ and ∆ have all their eigenvalues on the imaginary axis (seeAppendix B). The idea of the method is to design a dissipation matrix R = RT ≥ 0 suh that theresulting port ontrolled Hamiltonian system with dissipation (PCHD):
˙̃z =

(

J̃ −R
)

P̃ z̃ + B̃w (5.12)
y = B̃T P̃ z̃ (5.13)has only two eigenvalues on the imaginary axis, the other eigenvalues having stritly negative realparts.Thus, given P , we want to �nd R = RT ≥ 0 suh that (J̃ −R

)

P̃ has the form
(
δ ⋆

0 ∆ − ǫI

)

.This amounts to �nd a symmetri positive semide�nite matrix R suh that
R =

(
0 ⋆

0 ǫI

)

P̃−1.If we hoose ⋆ = ǫP12P
−1
22 , where P12 and P22 appear in the blok deomposition of P̃−1 orrespondingto the blok deomposition of J̃ P̃ , i.e. P̃−1 =

(
P11 P12

P T
12 P22

)

=
(

P̃−1
)T

> 0, then R is a symmetripositive semide�nite matrix. This is proved hereafter.ProofWith ⋆ = ǫP12P
−1
22 , we have R =

(
0 ǫP12P

−1
22

0 ǫI

)(
P11 P12

P T
12 P22

)

= ǫ

(
P12P

−1
22 P

T
12 P12

P T
12 P22

), whihis obviously symmetri. Moreover, it is positive semide�nite for ǫ > 0 sine ǫP22 is symmetri positivede�nite and its Shur omplement is positive semide�nite2 (see [HJ85, Theorem 7.7.6℄).Generially, the PCHD system (5.12)-(5.13) with the dissipation matrix
R = ǫ

(
P12P

−1
22 P

T
12 P12

P T
12 P22

)will satisfy all the assumptions of Theorem 4.5. In order to have a onstrutive way that allows toregularize the bifuration, we now present a method to implement this dissipation matrix by feedbak.5.3.2 Implementing spei� dissipation by feedbakThe following algorithm leads to the omputation of the feedbak law implementing the desireddissipation matrix R. This algorithm is derived from the more general mathing theorem of port-ontrolled Hamiltonian systems given in [OvdSMM01, OvdSME02, BOvdS02℄:1. Compute the image of B̃, i.e. W = Im(B̃) =
{

p ∈ R
n : B̃v = p, ∀v ∈ R

m
}2. Compute the left annihilator of W , i.e. W ◦ = Ann(W ) = {l ∈ R

n : lp = 0, ∀p ∈W}2The Shur omplement is 0. 109



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS3. If ∃l ∈W ◦ suh that lRP̃ z̃ = 0, ∀z̃ ∈ R
n, then −RP̃ z̃ ∈W for all z̃ ∈ R

n, whih in turn impliesthat there exists a ontrol w ∈ R
m suh that B̃w = −RP̃ z̃ for all z̃ ∈ R

n4. The ontrol law that implements the dissipation matrix R is w = −
(

B̃T B̃
)−1

B̃TRP̃ z̃ + w̃where w̃ denotes the new ontrol input of the system.For the partiular matrix R that we have hosen, the ondition ∃l ∈ W ◦ s.t. lRP̃ z̃ = 0, ∀z̃ ∈ R
namounts to verify that Im( P12

P22

)

⊆ Im(B̃). This is easily seen by partitioning the vetor l aordingto the partition of RP̃ . The ondition then writes ∃l ∈W ◦ s.t. ǫ ( l1 l2
)
(

0 P12P
−1
22

0 I

)(
z1
z2

)

=

0, ∀z ∈ R
n, whih amounts to verify that ∃l ∈ W ◦ s.t. ( l1 l2

)
(
P12

P22

)

= 0. This ondition issatis�ed if and only if Im( P12

P22

)

⊆ Im(B̃).The matrix ( P12

P22

) is a n× (n− 2) matrix. The matrix B̃ is a n×m matrix where n denotesthe dimension of the system and m the number of ontrol inputs. For fully atuated mehanialsystems, we have m = n
2 , where n

2 is an integer that denotes the number of degrees of freedom of themehanial system. It results that the ondition Im( P12

P22

)

⊆ Im(B̃) an generially be satis�edonly for n = 4 and m = 2, i.e. for a fully atuated mehanial systems with two degrees of freedom.This dissipation implementation method has been given here for the sake of ompleteness. Indeed,beause of its limited appliation �eld, and sine our �nal goal is to generalize Theorem 4.5 todegenerate bifurations, we hosed not to investigate further in this way but rather to have a �rstinsight into the qualitative behavior in the degenerate ase. In this ase, we annot onlude to theexistene, uniqueness and global asymptoti stability of limit yle osillations generated by ontroller(5.3). Nevertheless, we intuitively expet this ontroller to yield limit yle osillations when usedin feedbak with a stabilizable, onservative system. To show this, we provide, in the next setion,simulation results for the art pendulum system as a typial example of underatuated, onservativemehanial systems for whih diret appliation of our ontroller leads to limit yle osillations.These simulation results show that, even in the presene of a degenerate bifuration, a limit yleosillation with a large basin of attration is generated. This tends to on�rm that our results shouldhold even if the bifuration is degenerate, whih would allow to apply ontroller (5.3) diretly to anystabilizable, onservative system.5.4 Diret appliation to underatuated, mehanial systemsAs an illustration of the appliation of our theory to underatuated, mehanial systems weonsider the art-pendulum example and provide simulation results when the loop is losed with ourontroller. We have hosen this simple example beause it onstitutes a benhmark, underatuated,mehanial system for whih stabilization by energy shaping has already been solved. The limit ylegeneration method is explained in the next setions. The general idea is the following: �rst, we useenergy shaping to feedbak transform the system into a onservative, stabilizable system, and seond,we use the orresponding onservative output to lose the loop with our ontroller. This idea is used110



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMSto generate limit yle osillations both around the stable and the unstable position of the pendulum.As we have remarked in Setion 5.2, generially the bifuration is degenerate and Theorem 4.5 doesnot allow to draw onlusions about limit yle osillations. Nevertheless, simulation results showthat, even in the degenerate bifuration ase, limit yle osillations with large basin of attration aregenerated. The proof of this laim (Solution 3 in Setion 5.2) is beyond the sope of this hapter andwill be the subjet of future work. As a seond illustration, we present, in Setion 5.4.4, our urrentresearh projet in ollaboration with the Laboratoire d'Automatique de Grenoble (Frane) involvingthe problem of balaning ontrol of the bipedal robot RABBIT.5.4.1 Typial example of underatuated mehanial system: the inverted pen-dulum on a artWe onsider the art-pendulum system without frition. We derive a non-linear ontrol law aimedat produing limit yle osillations around the origin of the art axis. For the pendulum, twosituations are onsidered: osillations around the stable position of the pendulum and osillationsaround its unstable position.We denote by x the art position, by v = ẋ the art veloity, by θ the angle between the vertialaxis and the pendulum, by ω = θ̇ the angular veloity of the pendulum, and by F the lateral foreapplied to the art (see Figure 5.2). With these notations, the art-pendulum equations of motionare {
Jω̇ −mgl sin θ +mlv̇ cos θ = 0
Mv̇ +mlω̇ cos θ −mlω2 sin θ = F

(5.14)where J = ml2 is the moment of inertia with respet to the pivot point, m the mass of the pendulum,
mc the mass of the art and M = m+mc. Equivalently we have

{
Jω̇ −mgl sin θ +mlv̇ cos θ = 0

(

M −m (cos θ)2
)

v̇ −mlω2 sin θ +mg sin θ cos θ = FThe (nonsingular) feedbak transformation
(

M −m (cos θ)2
)

a−mlω2 sin θ +mg sin θ cos θ = Fyields the simpli�ed dynamis
{
Jω̇ −mgl sin θ +mla cos θ = 0

v̇ = a
(5.15)where the new input a diretly ontrols the art aeleration.The open-loop struture of this system is

{
ẍ = a

Ėpendulum = aẏ2 = a(−mlω cos θ)where Ependulum = 1
2Jω

2 +mgl cos θ and y2 = −ml sin θ.5.4.2 Around the stable position of the pendulumIn order to generate limit yle osillations around the stable position of the pendulum, we �rstdesign a onservative output y that allows stabilization of the system by damping injetion. We thenuse this output to generate osillations in the whole system by losing the loop with φk(y) = −ky+y3.111



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONS
θ

mc

x

+

+F

m

Figure 5.2: The art-pendulum system5.4.2.1 Design of a stabilizing outputThe total energy of the system is given by
Ẽ = Ependulum +

1

2
v2,whose derivative is

˙̃
E = ażwhere z = x+ y2 = x−ml sin θ.In order to reate a minimum at (x, ẋ, θ, θ̇) = (0, 0, π, 0), we perform (potential) energy shapingby onsidering the energy funtion

V = Ẽ +
1

2
Kpz

2, Kp > 0whose derivative is
V̇ = (a+Kpz)ż.Taking the ontrol input a to be a = −Kpz + u, we get

V̇ = uywhere y = ż is the output with respet to whih the system is onservative.5.4.2.2 Stabilization of the systemThe damping ontrol u = −Kdy, asymptotially stabilizes the pendulum at its stable positionand the art at the origin. The orresponding aeleration ontrol is given by
a = −Kpz −Kdy.112



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMS5.4.2.3 Creation of a limit yle osillationAfter feedbak transformation into a stabilizable, onservative system, we onsider the poles/zeroson�guration of the linearization around (θ, θ̇, x, ẋ) = (π, 0, 0, 0). This poles/zeros map is skethedon Figure 5.3. As an be seen the system already possesses a zero at the origin. The integral part ofthe ontroller is thus not neessary.
ℜ{s}

ℑ{s} zeropoleLEGEND

Figure 5.3: Poles/zeros on�guration for the art pendulum system after feedbak transformationinto a stabilizable and onservative system.For k & 0, the ontrol law u = ky− y3 is expeted to produe a limit yle osillation around thestabilized position of Setion 5.4.2.2. The orresponding aeleration ontrol is given by
a = −Kpz + ky − y3. (5.16)5.4.2.4 Simulation resultsIn this setion, we present the simulation results obtained with the ontrol law (5.16) for di�erentvalues of the ontrol parameter k. The physial parameters of the system have been hosen in order toorrespond to reality: m = 0.14 kg, mc = 0.44 kg, g = 9.81m/s2, l = 0.215m. The ontrol parameter

Kp was hosen equal to 10. The initial ondition was (arbitrarily) hosen as x(0) = 1, ẋ(0) = 0.3,
θ(0) = π+0.2, and θ̇(0) = 0.1. We then have onsidered three values of the parameter k, respetively
k = −1, k = 1, and k = 2.In Figure 5.4, we learly see that the origin of the system is asymptotially stable for k = −1,and unstable for k = 1 and k = 2. Moreover, as expeted, a limit yle whose radius depends on kappears for k > 0. The same steady state responses were obtained when other initial onditions wereused.5.4.3 Around the unstable position of the pendulumSimilarly to the idea presented in Setion 5.4.2, we �rst design a onservative output y that allowsstabilization of the system with pendulum in inverted position and art at the origin. As we did113
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(a) k = −1 (b) k = 1 () k = 2Figure 5.4: Cart-pendulum system: reation of osillations around the stable position of the pen-dulum. Column (a) k = −1, Column (b) k = 1, Column () k = 2. The �rst line represents theprojetion of the state spae on the pendulum state variables plane. The seond line represents theprojetion on the art state variables plane. The third line represents the temporal evolution of thestate variables.in setion 5.4.2, we then use this output to generate osillations in the whole system by losing theloop with φk(y) = −ky + y3. The stabilization part is diretly inspired by literature results (see[BLM01, BCLM01, BOvdS02℄).5.4.3.1 Design of a stabilizing outputIn the �rst step, the kineti energy of the pendulum is shaped by 1
2kpẏ

2
2 (kp < 0). In the seondstep, overall energy shaping is ahieved.

• Step 1We use the feedbak a = −kpÿ2 + w to obtain
{

z̈ = w
˙̃
Ependulum = wẏ2114



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMSwith z = x + kpy2, and Ẽpendulum = Ependulum + 1
2kpẏ

2
2. This leads to Ẽpendulum = 1

2Jθ̇
2 +

m cos θ
(

gl + 1
2Jkpθ̇

2 cos θ
).

• Step 2We perform overall energy shaping by onsidering the energy funtion
V = Ẽpendulum +

1

2
ż2 +

1

2
Kp (z + y2)

2 ,whose derivative is
V̇ = (ż + ẏ2) (w +Kp (z + y2)) .Taking the ontrol input w to be w = u−Kp (z + y2), we get

V̇ = uy,where y = ż + ẏ2 is the output with respet to whih the system is onservative.5.4.3.2 Stabilization of the systemThe damping ontrol u = −Kdy stabilizes the pendulum in the inverted position and the art atthe origin (see [BLM01℄). The orresponding aeleration ontrol is given by
a = −kpÿ2 −Kp (z + y2) −Kdy.Taking into aount the de�nitions of y2 and z, and the dynamis (5.15) for the elimination of ÿ2from the equation, we obtain

a =
kpmg sin θ cos θ − kpmlθ̇2 sin θ − Kp (x − (kp + 1) ml sin θ) − Kd

“

ẋ − (kp + 1) mlθ̇ cos θ
”

1 + kpm (cos θ)2
.5.4.3.3 Creation of a limit yle osillationAfter feedbak transformation into a stabilizable, onservative system, the poles/zeros on�gura-tion of the linearization around (θ, θ̇, x, ẋ) = (0, 0, 0, 0) is similar to that skethed in Figure 5.3. Thesystem being onservative w.r.t. the output y, the ontrol law u = ky − y3 is expeted to produe alimit yle osillation around the stabilized position of Setion 5.4.3.2 for k & 0. The orrespondingaeleration ontrol is given by

a = −kpÿ2 −Kp (z + y2) + ky − y3.Taking into aount the de�nitions of y2 and z, and the dynamis (5.15) for the elimination of ÿ2from the equation, we obtain
a =

kpmg sin θ cos θ − kpmlθ̇2 sin θ − Kp

`

x −
`

kp + 1
´

ml sin θ
´

+ k
“

ẋ −
`

kp + 1
´

mlθ̇ cos θ
”

−
“

ẋ −
`

kp + 1
´

mlθ̇ cos θ
”

3

1 + kpm (cos θ)2
. (5.17)115
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(a) k = −1 (b) k = 0.1 () k = 1Figure 5.5: Cart-pendulum system: reation of osillations around the unstable position of the pen-dulum. Column (a) k = −1, Column (b) k = 0.1, Column () k = 1. The �rst line represents theprojetion of the state spae on the pendulum state variables plane. The seond line represents theprojetion on the art state variables plane. The third line represents the temporal evolution of thestate variables.5.4.3.4 Simulation resultsIn this setion, we present the simulations results obtained with the ontrol law (5.17) for di�erentvalues of the ontrol parameter k. The values of physial parameters are the same as in Setion5.4.2.4. The value of the ontrol parameters kp and Kp are hosen equal to −80 and 2 respetively(see [BLM01℄). The initial onditions are x(0) = 10, ẋ(0) = 0.3, θ(0) = 0.2, and θ̇(0) = 0.1. Note thelarge initial deviation of position of the art with respet to the origin. One again we have onsideredthree values of the parameter k, respetively k = −1, k = 0.1, and k = 1.In Figure 5.4, we learly see that the origin of the system is asymptotially stable for k = −1,and unstable for k = 0.1 and k = 1. Moreover, as expeted, a limit yle whose radius dependson k appears for k > 0. Using di�erent initial onditions, we have obtained the same steady stateresponses, whih tends to on�rm that the reated limit yle has a large basin of attration.As a seond illustration of the appliation of our ontroller to the generation of stable limit yleosillations in mehanial systems, we present, in the next setion, our urrent researh projet in116



5.4. DIRECT APPLICATION TO UNDERACTUATED, MECHANICAL SYSTEMSollaboration with the Laboratoire d'Automatique de Grenoble (Frane).5.4.4 Balaning ontrol of RABBITRABBIT is a bipedal robot spei�ally designed to advane the fundamental understanding ofontrolled legged loomotion (see [CAA+03℄ for an exellent introdution to the RABBIT projet).A piture of RABBIT is displayed in Figure 5.6. A anonial problem in bipedal robots is the designof a ontroller that generates losed-loop motions suh as walking, running, or balaning, that areperiodi and stable (i.e. limit yles).
Figure 5.6: The bipedal robot RABBITDuring a balaning motion, RABBIT is modeled as a three link inverted pendulum (see Figure5.7): the stane leg is supposed to be rigidi�ed in suh a way that the tibia, femur and torso arealigned while the balaning leg is atuated at the hip and knee. The goal is to �nd a feedbak ontrollaw that indues a non-trivial, limit yle in the three-link inverted pendulum. As emphasized in[CAA+03℄: �what makes this ontrol problem quite di�erent from walking is that ground impats arenot onsidered in balaning. At �rst glane, this may seem to simplify the problem, but, upon furtherre�etion, this is not the ase. The di�ulty lies in the fat that the lass of stable, periodi motionsthat an be ahieved by balaning seems to be muh smaller than what an be ahieved throughallowing impats.� A solution to the balaning problem has been reently proposed in [CEU02, SC04℄.This solution is based on the onepts of zero dynamis shaping and virtual onstraints. It allows togenerate loally stable periodi orbits for the balaning motions of the three-link pendulum model ofRABBIT.
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Figure 5.7: Modelization of RABBIT as a three-link inverted pendulum.In ongoing researh, we envision to apply our nonlinear PI ontroller to generate stable balaningmotions for RABBIT. The aim is to illustrate our theory and to show that our PI ontroller provides a117



CHAPTER 5. SYNTHESIS OF STABLE OSCILLATIONSsimple and robust method to generate limit yle osillations in suh a omplex system as RABBIT. Tosupport this idea, we onsider some analogies with the problem of generating limit yle osillations inthe art-pendulum system. The modelization of RABBIT as a three-link inverted pendulum indiatesseveral similarities with this system. First, it onstitutes an underatuated system with one degree ofunderatuation. Seond, if we onsider small deviation of the stane leg (orresponding to the free linkof the three-link pendulum) w.r.t. the vertial axis, the movement of the hip is almost horizontal andmay be assimilated to the translational degree of freedom of the art. Preliminary works show that thedynamis of the three link inverted pendulum for small deviation around the inverted vertial position(free link in inverted position and atuated links hanging in stable position) is very similar to thatof the art-pendulum exept for some additional entrifugal terms in the (free) pendulum dynamis.Based on these analogies, appliation of our ontroller to the three-link pendulum is expeted to allowfor the development of a simple and robust ontrol law for the balaning ontrol of RABBIT.5.5 SummaryIn this hapter we adopted a synthesis point of view for the generation of stable limit yle osilla-tions in stabilizable systems. Based on the theory developed in the previous hapters, we presented aproportional-integral feedbak ontroller to answer the synthesis question and brie�y ompared it withother solutions proposed in the literature. Under some tehnial assumptions presented in the previ-ous hapters, we showed that this ontroller is useful to generate osillations in stabilizable systems.The main advantage of this ontroller is that it relies on existing stabilization theory for equilibriumpoints: one a stabilizing, passive output has been designed for the system, it is used to lose theloop with the ontroller in order to generate limit yle osillations with large basins of attration.The design of a stabilizing, passive output is a entral topi in nonlinear ontrol theory and manymethods already exist to solve this problem (feedbak passivation designs, ontrolled Hamiltonianand Lagrangian theory, energy shaping methods, et.). However, the use of the proposed ontrollerdoes not allow to diretly draw onlusions from the theorems presented in the previous hapter. Themain reason is the di�ulty of verifying the absolute stability assumption at ritiality. To guaranteethat this assumption is satis�ed, we have onsidered the lass of stabilizable, onservative systemsfor whih it generially holds. Unfortunately, we have shown that the orresponding bifuration isgenerially degenerate. To regularize the degenerate bifuration we have proposed a method basedon the feedbak injetion of spei� damping into the system. This solution has been shown to beappliable only to fully atuated two degrees of freedom mehanial systems. Even in the ase whenthe degenerate bifuration is not regularized, the proposed ontroller is expeted to yield stable limityle osillations thus providing a simple method to fore osillations by feedbak. As an illustrationof the proposed synthesis method to underatuated mehanial systems, we have shown simulationresults for the art-pendulum. In future work, we plan to extend our theorems to inlude degeneratebifurations and apply this ontroller to the balaning ontrol of the bipedal robot RABBIT.
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Chapter 6Conlusion and future work6.1 SummaryThe entral theme of this thesis is the global analysis and synthesis of osillators. Our aim hasbeen to develop a global analysis method for osillators whih is independent of their dimensionand provides an interonnetion theory. The proposed approah was to onsider a dissipativityharaterization of osillators whih �ts their desription by physial state spae models and, atthe same time, has impliations for their global stability analysis. This theory inludes two globalosillation mehanisms whih are illustrated in their simplest way in the elebrated low dimensionalmodels of Van der Pol and Fitzhugh-Nagumo. A �rst main ontribution has been the extensionof these global osillation mehanisms to high-dimensional systems omposed of a strongly passivesystem in feedbak with a slope parametrized, stati nonlinearity. Under some tehnial assumptions,we showed that, generially, this feedbak interonnetion undergoes either a superritial Hopf, or asuperritial pithfork bifuration. The global osillation results either diretly from the superritialHopf bifuration or from the addition of a slow adaptation dynami to the globally bistable systemreated by the superritial pithfork bifuration.As a seond ontribution, we have shown that the results obtained for an isolated passive os-illator extend to passive interonnetions of passive osillators. Moreover, we showed that globalsynhronization is implied by an inremental dissipativity haraterization of the network that wenamed inremental passivity. We also provided su�ient onditions under whih passive osillatorsare inrementally passive and derived su�ient network topology onditions for the existene of glob-ally asymptotially stable synhrone osillations in networks of idential passive osillators. Thisglobal synhronization result onerns network topologies that inlude SN symmetry (all-to-all topol-ogy), DN symmetry (bidiretional ring topology), ZN symmetry (unidiretional ring topology) andopen hain symmetry. We ompared our synhronization result with other reent results on globalsynhronization and showed that generially passive osillators satisfy the required onditions.Finally, based on these analysis results, we presented a proportional-integral feedbak ontrollerto answer the limit yle synthesis question and brie�y ompared it with other solutions proposed inthe literature. The main advantage of the proposed ontroller is that it relies on existing stabilizationtheory for equilibrium points: one a stabilizing, passive output has been designed for the system,it an be used to lose the loop with the ontroller in order to generate limit yle osillations withlarge basins of attration. The design of a stabilizing, passive output is a entral topi in nonlinearontrol theory and many methods already exist to solve this problem (feedbak passivation designs,119



CHAPTER 6. CONCLUSION AND FUTURE WORKontrolled Hamiltonian and Lagrangian theory, energy shaping methods, et.). As an illustration ofthe appliation of this ontroller to underatuated mehanial systems, we showed simulation resultsfor the art-pendulum for whih limit yle osillations with large basins of attration were suessfullygenerated.6.2 Future workIn future work, we plan to investigate the following open questions:
• Extension of the numerial method proposed in Setion 3.6 to pieewise linear passive osillatorsof order greater than two.This extension would lead to a global numerial analysis method for pieewise linear approxi-mations of passive osillators. Suh a method would be very interesting for testing numeriallythe existene and global stability of the limit yle for a partiular value of the bifurationparameter.
• Generalization of our theorems to the degenerate bifuration situation when more than twoeigenvalues ross the imaginary axis simultaneously at ritiality.This generalization would yield analytial results proving that, even if the bifuration is degener-ate, a globally asymptotially stable limit yle is reated. This result is partiularly importantfor the synthesis of global osillations in onservative systems.
• Appliation and experimental validation of our limit yle osillations synthesis method tounderatuated mehanial systems inluding the pendubot, the arobot, and the balaningontrol of the bipedal robot RABBIT.
• Extension of the synhronization results to networks of non idential passive osillators.
• Analysis of other feedbak osillation mehanisms through an input-output approah.The feedbak mehanisms presented in this thesis were based on bifurations aused by aninversion of the feedbak stati gain. Other feedbak mehanisms based on bifurations ausedby inversion of the phase are ommon in biohemistry. This phase inversion is generally due tothe presene of a delay in the feedbak loop. The use of an input-output approah to performanalysis of delay feedbak systems yielding globally stable limit yle osillations onstitutes animportant open question that is urrently investigated.
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Appendix AComplement to Chapter 4A.1 Real positive de�nite matriesIn this setion we give the de�nition of real positive de�nite matries. This de�nition does notimpliitly assume, as is often the ase in the literature, that the matrix is symmetri. This distintionis important in the ontext of interonnetion of passive osillators sine it allows for non symmetrinetwork topologies to be onsidered.De�nition A.1 A real matrix A is positive de�nite i� xTAx > 0, ∀x ∈ R
n\{0}.For positive semi-de�nite matries, the same de�nition holds exept that the inequality is non-strit.Note that these de�nitions of positive (semi) de�nite matries hold for non-symmetri matries. Infat, sine any matrix A may be written under the form As + Aa where As = 1

2

(
A+AT

) is thesymmetri part of A and Aa = 1
2

(
A−AT

) is the anti-symmetri part of A, we immediately see that
xTAx = xTAsx, for all x ∈ R if A is real. Thus a real matrix is positive (semi) de�nite if and only ifits symmetri part is positive (semi) de�nite.For a symmetri positive de�nite matrix the eigenvalues are positive. The orresponding propertyfor non symmetri positive de�nite matrix is given in Theorem A.2.Theorem A.2 The eigenvalues of a real positive de�nite matrix have positive real parts.ProofIf λ = (λR + iλI) ∈ C is an eigenvalue of A, then, by de�nition,

λv = Av, v ∈ C
n, (A.1)where v = vR + ivI denotes the orresponding eigenvetor.From equation (A.1), we get the system of equations

{
λRvR − λIvI = AvR

λIvR + λRvI = AvI
(A.2)Sine A is positive de�nite, we have 121



APPENDIX A. COMPLEMENT TO CHAPTER 4
{
vT
RAvR > 0
vT
I AvI > 0

(A.3)Injeting the equations appearing in (A.2) into (A.3), we obtain
{

|vR|2 λR − λIv
T
RvI > 0

|vI |2 λR + λIv
T
I vR > 0

(A.4)Summing these two inequalities, we get the following ondition whih has to be respeted for anyeigenvalue λ
λR |v|2 > 0.This ondition implies λR > 0.A.2 Synhronization topologiesThe synhrone osillation result of Theorem 4.15 requires some partiular assumptions on theinteronnetion matrix Γ. These assumptions are

• Γ ∈ R
N×N is positive semide�nite, i.e. Y T ΓY ≥ 0, ∀y ∈ R

N ;
• ker (Γ) = ker

(
ΓT
)

= range (1).Note that these assumptions do not require the interonnetion matrix Γ to be symmetri.We will onentrate on the ker (Γ) = ker
(
ΓT
) assumption. This assumption is essential for provingthat Y T

ker⊥
ΓYker⊥ > λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2 for any Yker⊥ belonging to the orthogonal omplement of

ker (Γ), i.e. for any Yker⊥ ∈ (ker (Γ))⊥ =
{
Y ∈ R

N : Y TZ = 0, ∀Z ∈ ker (Γ)
}. First of all, we notesome propositions onerning the impliations of this assumption.Proposition A.3 If ker (Γ) = ker

(
ΓT
), then Y ∈ ker (Γ) ⇒ Y ∈ ker (Γs).ProofObvious.This property is important for the ZN symmetry ase.Proposition A.4 If ker (Γ) = ker

(
ΓT
) and Y = Yker + Yker⊥ where Yker ∈ ker (Γ) and Yker⊥ ∈

(ker (Γ))⊥, then Y T ΓY = Y T
ker⊥

ΓsYker⊥.ProofObvious from proposition A.3.We are now ready to prove the main result. This result is summarized in Proposition A.5.122



A.3. INVARIANCE OF THE KERNEL DYNAMICSProposition A.5 If Γ is a real, positive semide�nite matrix suh that ker (Γ) = ker
(
ΓT
)

=range (1) and Y = Yker + Yker⊥ where Yker ∈ ker (Γ) and Yker⊥ ∈ (ker (Γ))⊥, then Y T
ker⊥

ΓYker⊥ ≥
λmin 6=0

(Γs)
∣
∣Yker⊥

∣
∣2 where λmin 6=0

(Γs) denotes the smallest nonzero eigenvalue of (Γs).Proof
Y T

ker⊥
ΓYker⊥ = Y T

ker⊥
ΓsYker⊥ where Γs = 1

2

(
Γ + ΓT

). Sine Γs is symmetri, there always existsan orthogonal matrix L that diagonalizes Γs, i.e. LΓsL
T = Λ where Λ = diag (0, λ2, . . . , λN ) with

0 < λ2 ≤ · · · ≤ λN . We thus have
Y T

ker⊥
ΓsYker⊥ = Y T

ker⊥
LT ΛLYker⊥

= λ2z
2
2 + · · · + λNz

2
N

≥ λ2

(
z2
2 + · · · + z2

N

)

= λ2

∣
∣LYker⊥

∣
∣2

= λ2

∣
∣Yker⊥

∣
∣2 ,where zi, i = 1, . . . , N denotes the ith omponent of LYker⊥ . The third equality omes from z1 = 0whih results from the de�nition of Yker⊥ .Finally, we give two propositions allowing to ompare ker (Γ) and ker (Γ ⊗ In).Proposition A.6 If w ∈ ker (Γ), then (IN ⊗B)w ∈ ker (Γ ⊗ In), ∀B ∈ R

n×1.Proof
(Γ ⊗ In) (IN ⊗B)w = (IN ⊗B) Γw = 0, ∀w ker (Γ).This proposition diretly implies that Yker⊥ = (IN ⊗ C)Xker⊥ ∈ (ker (Γ))⊥, ∀Xker⊥ ∈
(ker (Γ ⊗ In))⊥ sine ∀w ∈ ker (Γ) we have (Yker⊥

)T
w =

(
Xker⊥

)T (
IN ⊗ CT

)
w = 0.Proposition A.7 If X ∈ ker (Γ ⊗ In), then (IN ⊗ C)X ∈ ker (Γ), ∀C ∈ R

1×n.Proof
Γ (IN ⊗ C)X = (IN ⊗ C) (Γ ⊗ In)X = 0, ∀X ∈ ker (Γ ⊗ In).This proposition diretly implies that Yker = (IN ⊗ C)Xker ∈ (ker (Γ)), ∀X ∈ (ker (Γ ⊗ In)).A.3 Invariane of the kernel dynamisIn this setion, we prove invariane of the kernel dynamis orresponding to equation (4.19).Let Xker belong to the kernel of Γ ⊗ In. Aording to (4.19), Xker satis�es the dynamis

{
Ẋker = (IN ⊗A)Xker − (IN ⊗B)Φk (Yker) + (IN ⊗B)U
Yker = (IN ⊗ C)Xker

(A.5)Assume linear oupling, i.e. U = −ΓYker. Sine, by de�nition, (Γ ⊗ In)Xker = 0, we obtain U =
−Γ (IN ⊗ C)Xker = − (IN ⊗ C) (Γ ⊗ In)Xker = 0. It is now easy to see that the kernel dynamis(A.5) are invariant sine

(Γ ⊗ In) Ẋker = (IN ⊗A) (Γ ⊗ In)Xker − (IN ⊗B) ΓΦk (Yker) = 0,123



APPENDIX A. COMPLEMENT TO CHAPTER 4for any Xker ∈ ker (Γ ⊗ In).A.4 Impliation of observability for linear systemsProposition A.8 For linear systems satisfying the state-spae model
{
ẋ = Ax+Bu

y = Cx
(A.6)observability of the pair (A,C) implies ∃β1 > 0, β2 > 0 suh that ∀t̄ > 0

β1 |x0|2 ≤
∫ t̄

0
|ỹ(τ)|2 dτ ≤ β2 |x0|2 .ProofObservability of the pair (A,C) implies

∀t̄, Wo(0, t̄) =

∫ t̄

0

(
eAt
)T
CTCeAt dt > 0,where Wo(0, t̄) denotes the observability Grammian (see [AM97, p. 253℄). Thus, for an observablelinear time-invariant system, Wo(0, t̄) is a symmetri positive de�nite matrix, for any t̄ > 0. Thismeans that for any t̄ > 0, there exists β1 > 0 and β2 > 0 suh that

β1I ≤Wo (0, t̄) ≤ β2I (A.7)The output of the linear system is given by
y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ) dτwhere x0 = x(0). Consider the �input-free� output ỹ(t) = y(t) −

∫ t

0 Ce
A(t−τ)Bu(τ) dτ = CeAtx0.This yields xT

0Wo (0, t̄)x0 =
∫ t̄

0 x
T
0 e

AT τCTCeAtx0 dτ =
∫ t̄

0 |ỹ(τ)|
2 dτ . Now, the ondition (A.7)equivalently writes

β1 |x0|2 ≤
∫ t̄

0
|ỹ(τ)|2 dτ ≤ β2 |x0|2 (A.8)for any t̄ > 0. In partiular, for an unfored linear time-invariant system (u ≡ 0), we have ỹ(t) = y(t)and inequalities (A.8) express bounds on the output energy as funtions of the initial ondition energy.
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Appendix BDegenerate bifuration in linear,onservative and detetable systemsIn this appendix, we haraterize the omplex plane position of poles and zeros for a linear on-servative system. Furthermore, we show that, the feedbak interonnetion of a onservative systemwith a proportional gain is suh that generially, all the poles ross the imaginary axis simultaneously.This shows that the bifuration is generially degenerate for onservative systems.B.1 Poles/zeros map of linear onservative systemsIn this setion we onsider the feedbak interonnetion of Figure 5.1 where the forward blok,denoted by Σ, is linear, strongly onservative, and detetable. We denote by Ξ, the feedbak inter-onnetion of Σ with the integral part of the ontroller. Being the feedbak interonnetion of twoonservative systems, Ξ is onservative w.r.t. its input w and its output y. It is also easy to provethat Ξ is detetable.We now show that the ritial bifuration value of the feedbak system is k∗ = 0 and thatgenerially a degenerate bifuration appears at k∗ = 0.The dynamis of the linear system Ξ are given by
ż = Az +Bw (B.1)
y = CzFrom the assumption that Ξ is a onservative system, there exists a matrix P = P T > 0 suh thatthe Hill-Moylan onditions

ATP + PA = 0 (B.2)
C = BTP (B.3)are satis�ed. From the �rst Hill-Moylan ondition (B.2), we may dedue that all the eigenvaluesof A lie on the imaginary axis.Proposition B.1 The poles of a linear, onservative system are all loated on the imaginary axis.125



APPENDIX B. DEGENERATE BIFURCATION IN LINEAR, CONSERVATIVE ANDDETECTABLE SYSTEMSProofLet e be an eigenvetor of A and λ the orresponding eigenvalue i.e. Ae = λe with λ = σ + jω. Wehave thus e∗ (A∗P + PA) e = λ̄e∗Pe + λe∗Pe = 2σe∗Pe where ∗ denotes the onjugate transposeoperator and λ̄ the onjugate of λ. Sine A is a real matrix we have A∗ = AT . This proves that σ = 0sine P = P T > 0. Thus every eigenvalue of A has a zero real part.Moreover, Ξ being a onservative system we know that it is weakly minimum phase (see Setion2.1.7). Thus the zeros of Ξ are loated in the losed left-half omplex plane. In fat all zeros of Ξ lieon the imaginary axis. We prove this statement hereafter.Proposition B.2 The zeros of a linear, onservative system are all loated on the imaginary axis.ProofFrom the seond Hill-Moylan ondition (B.3) it follows that the matrix CB = BTPB is positivede�nite; hene system (B.1) has relative degree one. A linear hange of oordinates
(
ξ0
Y

)

=

(
T

C

)

zexists suh that TB = 0. In these oordinates, system (B.1) is expressed in normal form:
ξ̇0 = Q11ξ0 +Q12y

ẏ = Q21ξ0 +Q22y + CBwThe system Ξ expressed in the new oordinates (ξ0, y) is still onservative sine passivity is aoordinate independent property. The zero dynamis are ξ̇0 = Q11ξ0. Partitioning the orrespondingpassivity matrix P̃ = P̃ T > 0 aording to the state partition (ξ0, y) the seond Hill-Moylanondition ( 0T (CB)T
)
P̃ =

(
0T 1

) yields
P̃12 = P̃ T

21 = 0

P̃22 = (CB)−Twhereas the �rst Hill-Moylan ondition P̃ ( Q11 Q12

Q21 Q22

)

+

(
QT

11 QT
21

QT
12 QT

22

)

P̃ = 0 redues to
P̃11Q11 +QT

11P̃11 = 0, P̃11 = P̃ T
11 > 0.This equality shows that all eigenvalues of Q11 are loated on the imaginary axis.We thus have proved that the (MIMO) transfer funtion of a linear onservative system has allits zeros and poles on the imaginary axis.Remark B.3 The poles/zeros position of a linear, onservative, and detetable system may be furtherharaterized: poles and zeros alternate on the imaginary axis. This is proved hereafter.126



B.2. DEGENERATE BIFURCATIONDenote by Ξk the (positive) feedbak interonnetion of Ξ with the stati gain k. Being the feedbakinteronnetion of a onservative, and detetable system (Ξ) with a stati, stritly input passive system(w = −ky), Ξk must be asymptotially stable for k < 0 sine it is output stritly passive and detetable(Lemma 2.14). Analyzing the poles/zeros on�guration leading to an asymptotially stable system fornegative values of k, a root lous argument shows, that the only possibility is to have a simple alternaneof zeros and poles on the imaginary axis. To illustrate this, onsider the three following systems
Ξa =

s
(
s2 + 4

)

(s2 + 1) (s2 + 9)

Ξb =
s
(
s2 + 1

)

(s2 + 4) (s2 + 9)

Ξc =
s
(
s2 + 9

)

(s2 + 1) (s2 + 4)The orresponding root loi of their (positive) feedbak interonnetion with the stati gain k, i.e. Ξik ,
i = a, b, c, are represented on Figure B.1. On this Figure we learly see, that only Ξak

is asymptotiallystable for any negative value of k.
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. Legend: × represent a pole, ◦ represents a zero.The solid urves represents the root lous.B.2 Degenerate bifurationNow that we know the normal position of the zeros and poles of a onservative system in theomplex plane, we perform the bifuration analysis for Ξk. We show that generially the bifurationat k = 0 is degenerate, i.e. all eigenvalues ross the imaginary axis simultaneously at k = 0.Proposition B.4 The positive feedbak interonnetion of a linear, onservative, and detetable sys-tem Ξ with the proportional gain k is haraterized by a degenerate bifuration at k = 0.ProofConsider two systems. The original system Ξ

ż = Az +Bw

y = Cz127



APPENDIX B. DEGENERATE BIFURCATION IN LINEAR, CONSERVATIVE ANDDETECTABLE SYSTEMSand its anti-stable ounterpart Ξ̃ whose dynamis are given by
ż = −Az +Bv

y = CzBoth Ξ and Ξ̃ are onservative sine they satisfy the Hill-Moylan onditions (B.2)-(B.3) for thesame matrix P = P T > 0. For k < 0, Ξk and Ξ̃k are output stritly passive and detetable. FromLemma 2.14, they are both asymptotially stable for k < 0. This means that the matries A+kBBTPand −A+kBBTP are both Hurwitz for k < 0, or that A−kBBTP is anti-Hurwitz and A+kBBTPis Hurwitz for k < 0. Thus, we have proved that a degenerate bifuration appears at k∗ = 0 sineall the eigenvalues ross the imaginary axis simultaneously at k = 0.
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Appendix CAppliation of Mees results to our lassof systemsThe approah we present in Chapter 3 is related to the work of Mees [MC79, Mee81℄. In hiswork Mees presents a �frequeny-domain� Hopf bifuration theorem and graphial onditions or-responding to rigorous versions of the desribing funtions method to onlude about loal stabilityof limit yles in feedbak loops. In this appendix, we reall the graphial interpretation of the Hopfbifuration theorem given by Mees and use it to prove that if a Hopf bifuration ours in systemssatisfying the assumptions of Theorem 3.8 then this bifuration is superritial and leads to a loallyasymptotially stable limit yle.C.1 The frequeny domain Hopf bifuration theoremThe results of Mees are an extension of Allwright's proof of the Hopf bifuration theorem[All77℄ whih is based on an appliation of the method of harmoni balane. This approah providesa desribing funtion-like graphial interpretation of the Hopf bifuration theorem. This graphialinterpretation is based on the harateristi lous idea1. For a system parametrized by a real number
µ, the graphial Hopf theorem shows how harmoni balane with harmonis zero to two is enoughto determine whether the system undergoes a Hopf bifuration, and to say whether the limit yleis stable or unstable. It shows how to onstrut estimates of the frequeny and amplitude of thelimit yle, the error in frequeny being O

(

|µ− µ0|2
) and that in amplitude being O

(

|µ− µ0|
3
2

).The estimates of frequeny ω and �rst harmoni amplitude θ may be read diretly from a graph. Inthis appendix, we apply Theorem C.1 to the feedbak system represented in Figure 3.8 and onludeabout the existene of a superritial Hopf bifuration for values of k & k∗.The main result of Mees is summarized in Theorem C.1.Theorem C.1 (Frequeny domain Hopf bifuration theorem) [Mee81℄Let S be an autonomous feedbak system desribed by
gf(e) + e = 0,1A harateristi lous orresponds to the (generalized) Nyquist lous of a harateristi funtion. The de�nitionand theory of harateristi funtions is given in [Mee81, page 76℄. In the SISO ase, the harateristi lous simplyorresponds to the Nyquist lous. 129



APPENDIX C. APPLICATION OF MEES RESULTS TO OUR CLASS OF SYSTEMSwhere g is a linear operator with proper rational transfer funtion G suh that G(s) ∈ C
l×m and

f : R
l → R

m is C4 in e. Suppose ê is a solution of G(0)f (ê) + ê = 0, and write D1 for (Df)ê.Let G(s)D1 have harateristi funtions λk(s) (k = 1, . . . , p) and suppose g and f depend ona real parameter µ in suh a way that as µ passes through µ0, the lous of a single harateristifuntion λ̂(jω) passes through −1 at a unique frequeny ω0, and the derivative ∂λ̂
∂ω

and ∂λ̂
∂µ

exist at
(µ0, ω0), where they are nonzero and are not parallel.De�ne L1(θ, ω) as below (Table C.1) and suppose that when µ = µ0, the lous of L1 (θ, ω0) as θvaries is transverse to the λ̂ lous where they interset at −1.Then for µ = µ0 +χδ2, where χ = −1 or χ = +1 and δ > 0 is small, the L1 (θ, ω0) lous intersetsthe λ̂(jω) lous transversely at, say λ̂(iω1), when θ = θ1. If δ is su�iently small the nonlinear systeman support osillations of the form

e(t) = ê+ ℜ
2∑

k=0

ake
jkvt + O

(
δ3
)
,where

v = ω1 + O
(
δ3
)
,

a0 = θ2
1v0 + O

(
δ3
)
,

a1 = θ1v1 + O
(
δ2
)
,

a2 = θ1v2 + O
(
δ3
)
,and eah vk, de�ned below (Table C.1), is O(1) in δ as δ → 0. Moreover, e(t) is the unique periodisolution in a neighbourhood of ê.Suppose the linearized feedbak system (with D1 replaing f) has two more poles in the right half-plane when µ = µ0+ψδ

2 (ψ = ±1) than when µ = µ0−ψδ2. If ψχ = +1 the bifuration is superritialwhile if ψχ = −1 it is subritial; in partiular, the periodi solution is stable if there are no poles in
ℜ{s} > 0 for µ = µ0 − ψδ2 and ψχ = +1.The statements about derivatives of λ̂ just say that the λ̂ lous moves through −1 �in a generi way�.In pratie, one needs only draw the loi for a given value of µ as in �gure C.1, and use the frequeny
ωR at whih λ̂(jω) intersets the negative real axis near −1 (i.e. ℜ

{

λ̂(jω)
} is losest to −1 and

ℑ
{

λ̂(jω)
}

= 0) in plae of ω0. Mees shows that |ωR − ω0| = O
(
δ2
) and thus the approximationonsisting in taking ωR instead of ω0 is valid.The statements about stability are easiest to understand in the ase where the linearized systemis stable before bifuration, in whih ase χ = +1 implies a superritial bifuration to a stable limityle. This means that the losed-loop system has two poles in ℜ{s} > 0 and the L1 lous pointsoutwards, towards the region of stable feedbak gains (see Figure C.1). This is a rigorous version ofa heuristi test often used with desribing funtions [Ath75℄, and there is an obvious generalizationin terms of right half-plane poles and numbers of enirlements of the point L1 (θ, ω0) by all the loi.Essentially, Mees is saying that the behavior within the enter manifold is desribed by the hange inthe number of poles with positive real part as µ inreases through µ0, while the question of whetherthe manifold is itself attrating an be answered by looking at those poles whih do not ross theimaginary axis as µ inreases through µ0. However, the proof of Mees does not depend on entermanifold theory. 130



C.1. THE FREQUENCY DOMAIN HOPF BIFURCATION THEOREM
L1(θ, ωR)

ℜ

ℑ

λ1(jωR) = −1 + i0

λ1(jω)

λ2(jω)

Figure C.1: Theorem C.1 in the ase when p = 2. The harateristi loi are only shown for positive ω.The L1 lous is the heavy straight line emanating from −1: if the system was stable before bifuration,and the λ1 lous moves outwards to engulf −1 after bifuration, the bifuration is superritial andthe limit yle is stable.Summing up, then, the L1(θ, ω) lous behaves very like a desribing funtion lous − 1
N(θ) : itallows us to read o� the values of frequeny and amplitude of osillation and to see, very easily howhanges in the system will a�et the limit yle. The general proedure to ompute the lous of points

L1(θ, ω) as θ varies is summarized in Table C.1.Remark C.2 The symbol ⊗ appearing in Table C.1 denotes the tensor produt. The formulas givenat point 2 an be understood in the following way:1. f : R
l → R

m : X → Y = f(X).2. D1f = ∂f(X)
∂X

is a m× l matrix and thus G(s)D1 is a l × l matrix.3. D2f = ∂2f(X)
∂X2 is a m× l× l tensor and thus Q =

(
D2f

)∣
∣
X̂
E = D2E (where E is a l×1 vetor)is a m× l matrix s.t. Qjk =

∑l
p=1 f

j
pkEp.4. D3f = ∂3f(X)

∂X3 is a m × l × l × l tensor and thus L =
(
D3f

)∣
∣
X̂
E ⊗ E = D3E ⊗ E is a m × lmatrix s.t. Ljk =

∑l
p=1

∑l
q=1 f

j
pqkEpEq.5. D2E ⊗ Ē = Q.Ē and D3E ⊗ E ⊗ Ē = L.Ē where . denotes the matrix produt.The lous of L1 for �xed ω is just a straight line emanating from −1 and pointing in the diretion

−z1. If z1 = 0 then the lous is degenerate, but this is exluded by transversality.131



APPENDIX C. APPLICATION OF MEES RESULTS TO OUR CLASS OF SYSTEMSSuppose G(0)f(ê) + ê = 0 and Dk =
(
Dkf

)

ê
for k = 1, 2, 3. Identify λ̂ as in Theorem C.1 and let uTand v be the left and right eigenvetors of G(jω)D1 belonging to λ̂(jω).Write GD1(jω) = (I +G(jω)D1)

−1G(jω).1. Normalize v so that |v| = 1 and u so that uT v = 1 (so |u| ≥ 1).2. Let
v0 = −1

4
GD1(0)D2v ⊗ v̄,

v1 = v,

v2 = −1

4
GD1(2jω)D2v ⊗ v,where the kth element of D2v ⊗ v̄ is (D2v ⊗ v̄)k =

∑m
r,s=1

∂2fk(e)
∂er∂es

∣
∣
∣
e=ê

vrv̄s where k = 1, . . . ,mand where v̄ denotes the omplex onjugate of v.3. Let p(ω) = D2

(
v0 ⊗ v + 1

2 v̄ ⊗ v2
)

+ 1
8D3v ⊗ v ⊗ v̄ where the kth element of D3v ⊗ v ⊗ v̄ is

(
v0 ⊗ v + 1

2 v̄ ⊗ v2
)

k
=
∑m

r,s,t=1
∂3fk(e)

∂er∂es∂et

∣
∣
∣
e=ê

vrvsv̄t.4. Let z1(ω) = uTG(jω)p(ω).5. Then L1(θ, ω) = −1 − θ2z1(ω).Table C.1: Calulation of L1(θ, ω) [Mee81℄.In the SISO ase where G(s) ∈ C and f : R → R is C4, the only harateristi funtion is G(s)D1.Its lous orresponds to the Nyquist diagram of G(jω)D1. Sine G(jω)D1 is a salar, the right andleft eigenvetors for λ̂ (jω0) are given by v = 1 and u = 1.
C.2 Appliation of Theorem C.1 to our lass of systemsConsider the feedbak system represented in Figure 3.8 where Σ represents a linear system and
φk(·) satis�es the assumptions of Theorem 3.8. To fore the Hopf bifuration senario, we onsiderthat Σ is the feedbak interonnetion of a linear, passive system H with a simple integrator (seeChapter 3). Using the notations of Mees (see Theorem C.1) we have f(·) = φk(·) and G = Σ.Calulating the quantities appearing in Theorem C.1, we get G(s) = sH(s)

s+H(s) ∈ C where H(s) is thetransfer funtion of the passive system H and D1 = φ′k(0) = −k, D2 = 0 and D3 = φ′′′k (0) = κ > 0.Thus, 132



C.2. APPLICATION OF THEOREM C.1 TO OUR CLASS OF SYSTEMS
λ(s) = G(s)D1 = −kG(s),

GD1(jω) =
G(jω)

1 − kG(jω)
,

v0 = 0,

v1 = 1,

v2 = 0,

p(ω) =
κ

8
,

z1(ω) =
κ

8
G(jω),

L1(θ, ω) = −1 − κ

8
θ2G(jω).The harateristi lous of λ(jω) is the Nyquist diagram of −kG(jω). Sine G(s) is the transferfuntion of a passive system, the Nyquist plot of −kG(jω) lies entirely in the left half-plane for

k > 0. When k inreases the Nyquist plot of −kG(jω) orresponds to that of G(jω) dilated by
−k. Sine the feedbak system beomes unstable at k = k∗ ≥ 0 we know that the Nyquist plot of
−kG(jω) engulfs the point −1 when k = k∗. Thus, ψ = +1.

ℜ

L1(θ, ω0)

−1

ℑ−k∗G(jω)

Figure C.2: Charateristi lous of −kG(jω) for passive osillators. The harateristi lous (i.e. theNyquist plot) is only shown for positive ω.At k = k∗, the Nyquist plot of −kG(jω) rosses the real axis at −1 for ω = ω0 and thus
G (jω0) = 1

k∗ . We onlude that L1 (θ, ω0) = −1 − 3
4k∗ θ

2. Thus, L1 (θ, ω0) is a vetor starting at −1and pointing towards −∞ along the real axis (see Figure C.2). We thus have χ = +1. We onludefrom Theorem C.1 that the Hopf bifuration is superritial and leads to a loally stable limit yle.
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