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I. CHEMICAL REACTIONS

Molecules of type A and B are involved in the following chemical reaction
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The forward and backward reaction rates are k1 and k2, respectively. The Ordinary Differential Equations (ODEs)
describing this system are given by (using the law of mass action):
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dt
= −2k1A

2 + 2k2B (2)

dB

dt
= k1A

2 − k2B (3)

Starting with concentrations A(0) = 1 and B(0) = 0, and using rate constants k1 = 0.1 and k2 = 0.3, we want to
numerically obtain A(t) and B(t) for 0 ≤ t ≤ 10.

Question 1: Plot A(t) and B(t) vs. t for t from 0 to 10.
This code will help you integrate the ODE to give you the time evolution of the concentrations of A(t) and B(t)

1 import scipy.integrate

2 import numpy as np

3 def dydt(t,y,k1,k2):

4

5 A, B= y

6 dAdt = -2*k1*A**2 + 2*k2*B

7 dBdt = k1*A**2-k2*B

8 return (dAdt , dBdt)

9

10 dydt_withks = lambda t,y: dydt(t,y,k1,k2)

11 solution = scipy.integrate.solve_ivp(dydt_withks , t_span =(0 ,10), y0=(A0,B0), method=’RK45’, rtol=1e-6)

Question 2: What are the equilibrium points of this chemical reaction system? Does this make sense with respect to
what you obtained from Question 1?

II. AUTO-ACTIVATION AND BISTABILITY

Consider the following auto-activated gene expression system, including mRNA (m) and its associated protein (P ).
Transciption is cooperative, requiring two copies of the self-activating protein

dm

dt
=

P 2

1 + P 2
− bm, (4)

while translation is given by

dP

dt
= m− aP. (5)

The parameters a and b are the (positive) rate constants associated with the degradation of protein and mRNA,
respectively.
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Question 1: Compute the equilibrium points of the system. Show that the number of equilibrium points depends on
the parameter c = ab. Illustrate the dependence of the number of equilibrium points by plotting a bifurcation diagram
of the steady-state protein concentration P ∗ (obtained by setting the time derivatives of m and P to zero) as a function
of c = ab with c in a range from 0.1 to 0.5.

Hint: You need to solve a quadratic equation to obtain the steady states other than P ∗ = 0.

Question 2: For a = 0.7 and b = 0.6, plot the phase portrait, i.e., the vector ([dm/dt, dp/dt]) in an m versus p plot.

Also include on this plot the graphs of m∗ = aP ∗ and m∗ = 1
b

P∗2

1+P∗2 for both mRNA and protein concentrations at

steady state. Make sure to plot in a range which includes all steady states. What are the possible steady-state values of
the protein and mRNA concentrations? Hint: use the quiver command for plotting a vector field.

1 fig , ax = plt.subplots ()

2 q=ax.quiver(p,m,pdot ,mdot)

3 ax.quiverkey(q,X=0.3,Y=2.4, U=5,

4 label=’Quiver key , length = 5’, labelpos=’E’)

5 ax.plot(p,np.multiply(a,p))

6 ax.plot(p, np.divide( np.square(p), np.multiply(b,(1+np.square(p)))))

Question 3: Complete the script you have written in question 2 by adding the code that allows you to solve the ODE
system. Use this approach to simulate the system starting from two different initial conditions (m0, P0) = (2, 2) and
(m0, P0) = (0, 0.5) and add the corresponding phase plane trajectory to the plot you obtained in Question 2.
Question 4 (if you have time): Consider the auto-inhibiting system:

dm

dt
= 1

1+P 2 − bm, (6)

dP

dt
= m− aP. (7)

To find the equilibrium points (obtained by taking the time derivatives to zero), plot in an m vs p plot the two
functions m∗ = aP ∗ and m∗ = 1

b
1

1+P∗2 . The equilibrium points are found at the intersection of these two curves. How

many equilibrium points do you obtain? Redo the steps in question 2 for this system: Plot its phase portrait and include
the curves m∗ = aP ∗ and m∗ = 1

b
1

1+P∗2 . Looking at the phase portrait what seems to be the stability of the equilibrium

point? Solve the ODE system starting from the initial condition (m0, P0) = (2, 2) and add to the plot the corresponding
phase plane trajectory.

III. OPTIONAL EXERCISE: EULER INTEGRATION WITH NOISE

Gene expression is noisy as the biochemical reactions involved are random events involving low numbers of molecules.
Here we consider mRNA denoted by m and its associated protein denoted by P . When noise is relatively small, e.g.,
at large concentrations or large reaction volumes, one often makes the Langevin approximation, consisting in consider-
ing deterministic differential equations plus small noise terms. As an example, consider the case of constitutive gene
expression:

dm

dt
= a− bm+ ηm (8)

dP

dt
= cm− dP + ηP , (9)

where a is the (positive) rate constant of mRNA production, b is the (positive) rate constant of mRNA degradation, c
is the (positive) rate constant of protein production, and d is the (positive) rate constant of protein degradation. Also
included are noise terms ηm(t) for mRNA and ηP (t) for protein, consituting so-called Gaussian white noise with the
following properties: mean 〈ηm〉 = 0 and variance 〈ηm(t), ηm(t′)〉 = 2a · δ(t − t′) for mRNA, and mean 〈ηP 〉 = 0 and
variance 〈ηP (t), ηP (t′)〉 = 2ac/b · δ(t − t′) for protein (δ represents the Dirac function). The quantities in front of the
δ-functions describe the variances of the corresponding Gaussian noise distributions, and are technically valid only at
steady state.

Question 1: Obtain the time courses of mRNA and protein by numerically integrating Eqs. (8) and (9) using Euler’s
method and Gaussian-distributed random numbers. Create plots of the time courses for some initial values of the mRNA
and protein numbers. What are their steady states? Use parameters a = 3 (unit: M/s), b = 1 (unit: /s), c = 4 (unit:



3

/s), and d = 1 (unit: /s).

Question 2: Compare with the determinisitic solution in same plot.


