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Computational design approaches and tools for synthetic biologyw
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A proliferation of new computational methods and software tools for synthetic biology design has

emerged in recent years but the field has not yet reached the stage where the design and

construction of novel synthetic biology systems has become routine. To a large degree this is due

to the inherent complexity of biological systems. However, advances in biotechnology and our

scientific understanding have already enabled a number of significant achievements in this area.

A key concept in engineering is the ability to assemble simpler standardised modules into systems

of increasing complexity but it has yet to be adequately addressed how this approach can be

applied to biological systems. In particular, the use of computer aided design tools is common in

other engineering disciplines and it should eventually become centrally important to the field of

synthetic biology if the challenge of dealing with the stochasticity and complexity of biological

systems can be overcome.

Introduction

Synthetic biology involves the application of engineering

principles to the science of biology. In the first instance, being

able to design and build biological systems is a good test of

our current understanding of how these systems work but

ultimately the aim is to engineer biological systems to carry

out economically valuable tasks. These tasks could include

the engineering of bacteria to invade and kill cancer tumours,1

the cheap synthesis of drugs by metabolic engineering,2 the

production of biofuels,3 the production of commodity

chemicals,4,5 bioremediation,6,7 the engineering of biosensors,8–10

and the rational design of enzymes that catalyse novel

reactions.11,12 Synthetic biology aims to not just tinker with

naturally occurring biological systems but to rationally

construct complex systems from well understood components

in the way that, for example, an electronic circuit may be

designed. Given this aim there is a clear need for computer

aided design (CAD) tools together with a set of standardised

parts and composition rules.

CAD for electronic engineering is a mature field but this is

not yet the case for synthetic biology. While the analogy

with electronic engineering is useful there are important

differences. For example, unlike electronic components,

biological components are generally not physically separated

from each other making the reuse of modules in the same

system more difficult. There is also a lack of a standard

modelling framework based on the simple composition of

parts. This is due to the difficulty of unambiguously defining

‘‘signal/information’’ exchanges between biological parts. In

particular, the following questions still need to be appropriately
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Our technical ability to physically engineer biological

systems is progressing rapidly but our ability to rationally

design these systems has not kept pace. Engineers have

long had to deal with the types of challenges synthetic

biology designers are now confronted with. The use of

computer aided design (CAD) tools and modelling is

widespread in other engineering disciplines and has enabled

the design and manufacture of complex systems with a

large number of interacting parts. This review examines the

role engineering concepts and techniques can play in

synthetic biology and the tools that have already been

developed.
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addressed: What are the signals that allow biological parts to

be connected?13 How will the behaviour of individual parts

change upon connection? In which context (e.g., chassis) are

the interconnected parts going to work?

Another difference with other engineering disciplines is the

lack of a catalogue of quantitatively characterised biological

components although this is beginning to be addressed.14 It

has been proposed that standardised and comprehensive

datasheets be produced to provide quantitative descriptions

of biological parts as is commonly used in other engineering

disciplines.

The building of complex systems from the interconnection

of parts or devices15 can be significantly facilitated by using a

forward-engineering approach relying on the separation of the

design from the actual implementation. In this approach,

various designs are first optimised and tested in silico and

their properties are assessed using mathematical analysis and

model-based computer simulations.

Using a model-based approach, the design of synthetic

systems can be made more efficient through the use of CAD

tools allowing in silico optimisation and testing of the design

before the actual wet-lab implementation.

Model-based design of synthetic biology systems

As the requirements of synthetic biological systems have

become more complex the need for new modelling methods

and software design tools has become more acute. This can

refer to both the specification of the structure of the system,

i.e. constituent parts and their connections, and to the set of
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parameters describing its kinetics (production and decay rates

for example). It has been noted that the complexity of

synthetic biological systems (as measured by the number of

promoters in the system) being published over the past

10 years seems to have reached a plateau.16 In part this could

be due to limitations in our current ability to mathematically

model biological systems accurately.

A mathematical model is a representation of the essential

aspects of an existing system (or a system to be constructed)

that presents knowledge of that system in a usable form.

Mathematical modelling plays a crucial role in the efficient

and rational design of complex synthetic biology systems as it

serves as a formal mathematical link between the conception

and physical realisation of a biological circuit.

It is important to understand that there is no such a thing as

‘‘the model.’’ A model can only be defined based on the type of

questions that one seeks to answer. These questions determine

the level of abstraction or granularity and type of model that

should be built. Therefore, building ‘‘good’’ models takes

practice, experience and iteration. The goal of a ‘‘good’’ model

is to appropriately capture the fundamental aspects of the system

while leaving out the details that are irrelevant to the questions

that are asked. With this goal in mind, the modelling process

needs to take into account the appropriate time and spatial scales

that need to be considered, the type of data available, and also

the types of simulation and analysis tools to be applied.

The modelling process is considered successful when the

obtained model possesses the following characteristics:

� Accurateness: the model should attempt to accurately

describe current observations.

� Predictability: the model should allow the prediction of

the behaviour of the system in situations not already observed.

� Reusability: the model should be reusable in other,

similar cases.

� Parsimony: the model should be as simple as possible.

That is, given competing and equally good models, the

simplest model should be used.

When appropriately developed, ‘good’ mathematical

models allow design decisions to be taken regarding how to

interconnect subsystems, choose parameter values and design

regulatory elements. Model analysis and model design can be

seen as two facets of the same coin. Mathematical analysis

when realised at a high enough level of generality can provide

the modeller with important information about the funda-

mental limits of a particular class of models and therefore

inform the design of the types of model structures that need to

be considered if a particular behaviour is sought after.

Types of models (ODEs, PDEs, SDEs, MJPs)

As in other disciplines, synthetic biology systems can be

modelled in a variety of ways and at many different levels of

resolution and time scales (Fig. 1). For example, we can

attempt to model the molecular dynamics (MD) of components

of the cell, in which case we attempt to model the individual

proteins and other species and their interactions viamolecular-

scale forces and motions. At this scale, the individual interactions

between proteins, nucleic acids, and other biomolecules are

resolved, resulting in a highly detailed model of the dynamics

of these subunits.

Most of the time, however, such a level of resolution is both

computationally intractable and too quantitatively inaccurate

to answer the questions that one is interested in during

the design of synthetic biology systems. Therefore, more

coarse-grained models using Ordinary Differential Equations

(ODEs), Partial Differential Equations (PDEs), Stochastic

Differential Equations (SDEs), or Markov Jump Processes

(MJPs) are typically used to model simple synthetic biology

circuits (Fig. 2). These coarse-grained models can be used as

simplifications as long as their corresponding assumptions are

satisfied.

One typical assumption, for example, is homogeneity (either

within the cell or at the population level). Under the assumption

of a spatial homogeneity, ODE models are most commonly

used. In ODEs, each variable (e.g., biochemical species

concentration) can only depend on time but not on space

(e.g., Fig. 2A, where the variables p(t) and m(t) are only

function of time). If spatial variations or inhomogeneities need

to be explicitly taken into account, then the modelling may

Fig. 1 Levels of abstraction typically used in the modelling process

(inspired by Del Vecchio and Murray http://www.cds.caltech.edu/

Bmurray/amwiki/index.php/Supplement:_Biomolecular_Feedback_

Systems).
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require the use of PDEs where the variables can depend on

time and on space (see Fig. 2B where the variable u(t,x,y) is a

function of time and of the spatial coordinates x and y (in this

model we only consider two spatial coordinates, i.e., u is

assumed to be evolving on a plane)).

Another distinction occurs based on the type of modelling

framework used, i.e., deterministic versus stochastic. The

deterministic framework is appropriate to describe the mean

behaviour (i.e., averaged across a large number of molecules)

of a biochemical system. Deterministic models implicitly

assume that the underlying quantities, i.e., concentrations or

molecule numbers, vary in a deterministic and continuous

fashion. On the other hand, the stochastic framework

takes into account the random interactions of biochemical

Fig. 2 The different types of models typically used in systems and synthetic biology. (A) Using ordinary differential equations to model gene

transcription regulation by repressors. The model possesses two variables, m(t) and p(t). m(t) represents the concentration of mRNA obtained

through transcription of the considered gene and p(t) represents the concentration of protein obtained through translation of the mRNA, at time t.

The proposed model contains several parameters: the maximal transcription rate k1, the repression coefficient K, the Hill coefficient n, the mRNA

degradation rate d1, the protein translation rate k2, and the protein degradation rate d2. In this model, R is considered as an external input

representing the concentration of transcriptional repressor. Based on this simple model for gene transcription regulation by repressors a more

complex model of a toggle switch (composed of two mutually repressing genes) was designed and experimentally built in E.coli.115 (B) Using partial

differential equations to model biological pattern formation using the reaction-diffusion equation. The model considered here possesses a single

variable u(t,x,y) which depends on time t and on the planar spatial coordinates x and y. The change in local concentration of each chemical species

over time is a sum of a term proportional to the Laplacian of the local concentration (to account for diffusion) and a function of the local

concentration of the chemical species (to account for chemical reactions).116–118 The parameter m is the diffusion coefficient (a measure of how fast

molecules diffuse from regions of high concentration to regions of low concentration) while the function f(u) is defined based on the specific details

of how the molecules in the system react with each other. (C) Stochastic differential equations for the p53 oscillation model,119 where dW is the

increment of the Wiener process (also known as Brownian motion – the stochastic element of the equation) and X, Y0 and Y represent the numbers

of p53, Mdm2 precursor and Mdm2 respectively. O represents the volume of the system and a, b represent the production and degradation rates.

As with the previous types of models described above, the variables X, Y0 and Y vary continuously (i.e. they cannot take discrete values).

(D) Chemical master equation for the simple stochastic gene expression model120 where R and P represent the number of RNA and protein

molecules respectively, and p(R, P, t) is the probability of observing R RNA and P protein molecules at time t. In contrast to the previous types of

equations, R and P are discrete integer values and change stochastically in discrete jumps over time according to the parameters of the model. The

parameters kR and kP are the production rates of mRNA and protein, while gR and gP are degradation rates of mRNA and protein respectively.
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species.17,18 More specifically, stochastic models are used

to mathematically capture stochastic variations and noise

inherent in biological systems. They are typically used when

the number of species involved is small and stochastic effects

can no longer be ‘‘averaged out’’, such as is the case for

transcription factors, which, in certain circumstances, can be

expressed at low levels (i.e. a few tens of molecules), or for

DNA, for which a single copy may exist in the cell. The

analysis of such stochastic models can occasionally be realised

by mathematically deriving the most important statistical

moments (e.g., mean and variance) though this is rarely

possible when the corresponding complexity (non linearity,

high dimensionality) of the derived models is high as is

typically found in realistic biological modelling.

Two main types of stochastic models (MJPs and SDEs) are

typically used in the literature to represent stochastic systems.

MJPs and SDEs differ in how the number of molecules is

treated. MJPs typically use a discrete state space and, in the

context of biochemical reactions, are referred to as Chemical

Master Equations (CMEs) (Fig. 2D). Exact numerical

simulations of CMEs can be achieved using stochastic

simulation algorithms (SSA) such as the Gillespie algorithm.19

An alternative approach approximates CMEs with a continuous

state space for the species number. Under this approximation,

CMEs can be transformed into SDEs (Fig. 2C) or equivalently

the Fokker–Planck equation. The time evolution of these

stochastic models can be simulated using numerical methods

such as the Euler–Maruyama algorithm.20 Typically simulation

of MJPs is very computationally expensive, especially if the

number of different biochemical species in the model is large or

the reaction rates are high. Numerical simulations from SDEs

are less computationally expensive but SDEs do not accurately

represent chemical processes at low numbers of molecules. For

this reason there has been an effort to develop hybrid models

that combine ODE, SDE and MJP modelling into a single

framework where each species is modelled most appropriately

while minimising computational time. One approach to obtain

such hybrid models is to dynamically partition the system into

‘‘fast’’ and ‘‘slow’’ subsets. The ‘‘fast’’ subsystem models

reactions that occur frequently using continuous Markov

processes while the ‘‘slow’’ subsystem models reactions that

occur infrequently using discrete Markov processes.21

Choosing the appropriate level of resolution in answering the

modelling question must also take into account the type of

experimental data that are or can be made available. Indeed, a

model with a very high resolution might not be very useful if the

amount and quality of data available to estimate the model

parameters is low. This also raises the question of identifiability

of models from data, i.e., what is the minimal amount

of information necessary in order to be able to estimate the

parameters of a given model?22 This question is not only

important for the appropriate design of models but also for the

design of experimental protocols according to the minimal

information required to answer the identifiability question.23–26

Parameter inference and model selection

Often models contain unknown parameters such as production

and degradation rates, binding affinities and other rate

constants that are difficult to directly measure experimentally.

Additionally there may be a number of competing models for

a given mechanism. Given experimental data, which usually

consist of time course measurements of the model species

under some conditions in vivo or in vitro, both these aspects

can be addressed. The first question refers to parameter

inference (also known as parameter estimation or model

calibration) and the second is known as model selection.

Parameter inference can be posed as an optimisation problem

where the objective function is some measure of how well model

simulations match the experimental data. In statistics the

maximum likelihood approach can be used with the likelihood

function as the objective.27 In physics and engineering often a

weighted sum of squares statistic is used, which is equivalent to

assuming normally distributed errors. The parameter estimates

are those that maximise the objective function. Usually an

exhaustive enumeration of parameter combinations is unfeasible

and thus optimisation algorithms try to move towards the

maximum in an informed way. Deterministic methods such as

gradient ascent (or gradient descent depending on whether one

wishes to minimise or maximise the objective function) use

the local neighbourhood of parameter space to determine the

direction of the next optimisation move.28 These methods are

efficient but can produce suboptimal solutions if the objective

function is multimodal and has local maxima. Stochastic

optimisation methods such as simulated annealing try to avoid

this problem by allowing the possibility of downhill moves in

parameter space thus providing the ability to move out of local

maxima. Other examples of optimisation techniques include

genetic and evolutionary algorithms.29

Model selection can also be performed in the maximum

likelihood framework. However, models with more parameters

will always fit the data better than models with fewer parameters

and this must be accounted for. In nested model comparisons

(where one of the two models being compared can be trans-

formed into the other model by imposing a set of constraints on

the parameters, thereby reducing the number of free parameters)

the Likelihood ratio test (LRT) can be used. For non-nested

models the Akaike Information Criterion (AIC) or Bayesian

Information Criterion (BIC)30 can be used which penalise the log

likelihood by the number of parameters.

Bayesian methods combine the likelihood function with a

prior distribution and give a probability distribution over the

estimated parameters known as the posterior distribution.31

As such they are an alternative to optimisation and while

being computationally more expensive can provide more

information on the correlation structure of the parameters

and whether there are multiple (sub) optimal regions of

parameter space. This is important when many combinations

of parameters can explain the data equally well and point

estimates can be misleading.32 One additional advantage of

Bayesian methods is that parameter estimation and model

selection are handled in the same framework which means

competing models can be assigned posterior probabilities.

Mathematical analysis of models

Once models have been created and all their parameters

determined, they can then be numerically simulated and
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mathematically analysed in order to characterise their behaviour

with respect to specific criteria of interest, e.g. which parameters

have the ‘‘largest impact’’ on the model behaviour? (this is

typically done through a parameter sensitivity analysis as we

will explain in more detail below); what types of behaviours

can be expected from the considered model and how can this

behaviour change when the parameter values are modified?

(bifurcation analysis); how robust is the behaviour/performance

predicted by the model to structural and dynamic perturbations?

(e.g. is the behaviour robust to nodes or edges removals in a

designed genetic or metabolic network?; is the behaviour

robust to unmodelled dynamic disturbances acting as inputs

to some of the nodes of this network?)

The mathematical analysis of models provides the designer

with important information regarding the possible types of

behaviours that can be expected from the implementation of a

particular model, and most importantly, the performance

limits that constrain the considered design.33,34

In the following sections, we briefly describe the main model

analysis techniques commonly used.

Bifurcation analysis. The goal of bifurcation analysis is to

characterise regions in the parameter space in which the

steady-state behaviour of the system is qualitatively the same.

At the boundaries of such regions, a qualitative change in

the steady-state behaviour occurs, e.g., increasing the value

of a single parameter while keeping the others constant,

leads to a transition from a unique asymptotically stable

equilibrium point to an asymptotically stable periodic

oscillation (e.g. through a Hopf bifurcation). The character-

isation of these regions provides crucial information for the

design as it allows the identification of the parameter regions

within which a desired behaviour can be obtained (e.g. for the

design of an oscillator35).

Numerical continuation analysis tools such as XPPAUT36

or MATCONT37 can be used to perform a bifurcation analysis

of a given model once an initial guess for its associated

equilibrium points is known.

Parameter sensitivity analysis. The goal of a parameter

sensitivity analysis is to determine the influence of the

parameters on the performance of the model.38–40 Loosely

speaking, a parameter sensitivity analysis consists of estimating

the variation of performance induced by a fixed parameter

variation. Local sensitivity analysis is used to analyse the effect of

small parameter perturbations and is usually carried out by

computing partial derivatives of the output or performance

function with respect to the model parameters. On the other

hand global sensitivity analysis is used to analyse the change in

performance over the whole admissible range of parameter

variations. This is of particular importance in biological models

for which parameters can vary within large intervals depending

on their meaning. Examples of sensitivity analysis software tools

developed specifically for biological systems include BioSens

(http://www.chemengr.ucsb.edu/Bceweb/faculty/doyle/biosens/

BioSens.htm), SensSB41 and SBML-SAT.42

Robustness analysis. Although several designs can lead

to the same behaviour, their ability to withstand structural

Fig. 3 The engineering design cycle (inspired by Chandran et al.).121 Design starts in silico and proceeds iteratively along the cycle with the

following workflow: (1) The design begins by the definition of the design objectives, i.e., what dynamical phenotypic behaviour is sought after? with

what properties (e.g., robustness, yield, time response)? under which constraints (e.g., upper limits on output variability, chassis and environment

specifics)? (2) Based on these design specifications, different possible designs are envisioned.43,122 These designs differ by the choice of components

or parts used, and the way these parts are interconnected. (3) For each design a set of models is constructed, ideally by using a library of

composable models for the parts and considering the interconnection rules imposed by the considered design. (4) Model-based analysis and

simulations are performed to assess in silico the performance of each design with respect to the initial design specifications. At this stage, in silico

analysis and optimisation allows for the search for parameter values leading to the desired behaviour. Furthermore, using robustness analysis,

different models can be assessed with respect to their ability to withstand structural and dynamic perturbations. This typically leads to in silico

iterations whose goal is to eventually select a subset of design candidates for the wet-lab implementation. (5) The candidate in silico designs are

‘‘translated/compiled’’ into DNA sequences for in vitro or in vivo wet-lab implementation. (6) The in vitro or in vivo implementation is tested and

characterised to yield biological data that are then fed back into the model, thereby closing the engineering design loop.
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(e.g. removal of nodes or edges in a network) or dynamic

perturbations (e.g. unmodelled dynamics resulting from

circuit-chassis interactions or from cross-talk) may be very

different.43,44 Provided enough information is known about

the perturbation (e.g., at least the knowledge of an upper

bound on the energy of the perturbation), robust analysis of

the models45 allows the assessment of their relative immunity

to such perturbation. In particular, this step can prove very

informative for the robust design of models, and established

multivariable robust control techniques can be used to that

effect in the design process.45 A widely used tool for this type

of analysis is the Robust Control Toolbox (http://www.math

works.com/products/robust/) for Matlab. The SBML-SAT42

tool mentioned above also implements algorithms for

robustness analysis, as does the BIOCHAM46 modelling

environment.

A forward-engineering approach to the design of synthetic

biology systems

To ensure that models can be efficiently reused in the design of

increasingly complex systems, the models must be composable

and the behaviour resulting from their interconnection must

be predictable from the behaviour of the components and the

way they are interconnected. This last step is the goal of

systems and control theory and has led to many developments

in these fields.47–50 The definition of composable design

models and of their appropriate interconnection is a key step

in enabling the design of complex systems from the inter-

connection of several parts. This step is at the core of the

forward-engineering of synthetic biology systems in which,

aided by computer-aided-design tools, the designer uses the

workflow described in Fig. 3.

The use of CAD tools makes the iterations between the

different steps represented on Fig. 3 easier and more efficient.

CAD tools can be supplemented by Graphical User Interfaces

(GUIs), that allow for the construction of devices and systems

by graphically interconnecting components on a canvas

and building the corresponding models in the background.

Ultimately, these tools could also directly predict the DNA

sequence that is required for the implementation of the

designed model in vivo or in vitro.

The engineering design cycle (Fig. 3) enables the efficient

design of complex synthetic biology systems using a forward-

engineering approach very similar to the one successfully used

in many other engineering disciplines. In particular, in this

approach, system design and system fabrication are separated

(Fig. 4). The advantage of such a separation is that it saves

time, money and effort since the main burden of the design can

be done in silico.

Automated system design tools

A number of computational methods have already been

developed to facilitate system design. To date these have

concentrated mainly on the design of small transcriptional

circuits. Some have been packaged into downloadable

software tools. Common to most of the methods developed

so far is the use of ordinary differential equations (ODEs) to

model the dynamics of the system (though some can also

handle stochastic dynamics). These computational methods

differ in the way the networks are parameterised, how the

dynamics are approximated and how the optimisation is

formulated.

One approach is to use an evolutionary algorithm29 and this

has been achieved for a fixed network topology51 and for

simultaneous optimisation of topology and kinetic parameters.52

In the study by Francois and Hakim52 seven possible types of

reaction were considered including translation, activation and

repression and post-translational modifications. The growth

phase of the evolutionary algorithm either adds a gene, a new

reaction or modifies a dynamical parameter. The selection

phase calculates fitness scores for the population of networks

and removes the low ranking ones. Using this method the

authors investigate the possible topologies that give rise to a

bistable switch and to an oscillator.

Genetdes53 attempts to find an optimal network topology

and kinetic parameters given specified target dynamics. Genes

have an associated promoter that allows repression and activation

by two transcription factors with the interaction properties

defined by a library designed to give rise to common logic

operations. The optimisation is performed using simulated

annealing with moves in model space including addition and

deletion of both genes and regulatory interactions and the change

of kinetic parameters. The optimal model can be output in

SBML format54 for analysis in other programs. A C program

and many logic gate examples with varying complexity are

available online (http://www.enseignement.polytechnique.fr/

profs/biochimie/Alfonso.Jaramillo/genetdes.html).

RoVerGeNe55 takes an existing network topology as input

and desired dynamic behaviour is expressed through a set of

constraints. Regulation terms in the dynamical equations are

approximated using piecewise linear functions, which makes

analysis more efficient in comparison to the full nonlinear

ODE model. Desired network behaviour is expressed through

Linear Temporal Logic (LTL) and, given a parameter region,

RoVerGeNe uses abstraction and model checking56 to assess

whether the region is able to satisfy the constraints and therefore

the desired dynamical behaviour. If the region is valid for the

given constraints then it finds sets of parameters that give rise to

the specified dynamics. The method was used to tune a synthetic

transcriptional cascade and MATLAB code is available online

(http://iasi.bu.edu/Bbatt/rovergene/rovergene.htm).

The OptCircuit framework57 uses a predefined list of

promoters, protein molecules and inducers (small molecules

that can interact with transcription factors to alter gene

expression). Using this framework, systems are built to maximise

an objective function derived from the desired dynamics. Here

the full dynamics are approximated under the assumption that

fast reactions (rate constants on the order of seconds) are in

equilibrium.58 The optimisation is formulated as a mixed

integer dynamic optimisation problem59 and can be applied

to both system topology and kinetic parameters. The authors

demonstrate the method on the design of a toggle switch, a

genetic decoder and a concentration band detector.

An entirely different approach is to develop languages that

can then be compiled into sequences of standard biological

parts.60,61 In the simplest example, GenoCAD,60 this consists

of a context-free grammar that enforces a set of production
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rules that ensures that the user will produce a biologically valid

construct. A more elaborate approach is to allow the expression

of logical interactions between (possibly undetermined) biological

parts using a programming language specifically developed for

that purpose (the only example of this currently is the GEC

language61). A compiler can then take the program and a

database of standard biological parts with associated properties,

and produce a set of designs that satisfy the requirements

defined in the program. The resulting set of solutions can then

be simulated for further analysis and selection.

Despite the achievements of the methods described above

there is still need for further development in the design of

systems other than genetic circuits. Sophisticated applications

will require systems combining genetic, signalling and metabolic

circuits and the design and optimisation tools that can handle

this complexity.

Graphical user interface design tools

In parallel to the development of automated design methods,

a number of tools have been developed to enable users

to design genetic circuits in a graphical user interface (GUI)

by, for example, dragging and dropping components

on a canvas to compose a device by interconnecting selected

parts. In this context, the main burden of the design process

falls on the user’s experience and intuition. However, many

of these tools have either integrated simulation modules

or can call external programs in order to help the user

verify that their graphically designed circuits are predicted

to perform as expected. Some of the tools are available

as online web applications and some as downloadable

programs that run on the user’s personal computer. The

available tools also vary in that some are designed to allow

the user to directly design DNA constructs while others

merely allow users to design circuits by defining interactions

between constituent parts without specifying how this

higher-level abstraction would be implemented at the DNA

sequence level.

One of the first drag and drop graphical design tools to be

made available was BioJADE62 which provided the user

with the ability to both access databases of parts and run

simulations of the designed circuits using TABASCO.63

GenoCAD, implemented as an online web application,64

enables users to graphically design a DNA construct from

constituent parts (either user uploaded or from a pre-loaded

library) using a formal context-free grammar. The resulting

DNA sequence can then be automatically generated and

downloaded by the user. Another web application for graphically

designing DNA constructs is SynBioSS Designer65 which is

part of the broader downloadable software suite66 called

SynBioSS. SynBioSS Designer can export designed models

in SBML format54 for analysis. The downloadable portion of

the software, SynBioSS DS (Desktop Simulator) allows users

to then load the models and run hybrid stochastic simulations.

Given that computational design for synthetic biology is

still in its infancy and does not yet possess well-established

standard methods, some tools have incorporated a modular

approach to their software architecture to allow for future

extension. The developers of TinkerCell67 (the successor to a

software package called Athena by the same authors) have

created a modular plug-in architecture to permit third-party

developers access to its rich Application Programming

Interface (API), GUI and Python scripting features. ProMoT68

is another example of a flexible, modular GUI tool for CAD

with third-party add-ons.13

Finally, ClothoCAD (http://www.clothocad.org/) is an

ambitious large-scale project to develop a modular integrated

software platform for synthetic biology systems providing

graphical sequence editing, data management, algorithm man-

agement tools and a plug-in system. This software includes the

ability to interface with liquid handling robots for automated

production.

Computational biomolecular design

It is likely that there already exists in Nature a large proportion

of the parts a bio-designer would require in order to build their

desired system,69 however it may sometimes be necessary to

design new parts at the nano-scale level. These new parts

could be proteins with modified or novel functions,10–12,70–76

synthetic ribosome binding sites with a specific translation

initiation rate,77 synthetic promoter sequences with specific

transcription rates,78,79 or three-dimensional biomolecular

structural scaffolds that can be finely controlled at the atomic-

level.80–82

Computational protein design is generally split into two

coupled problems.83 Firstly, one needs to find or generate a

backbone scaffold with a high degree of ‘designability.’ This

can be generated artificially or derived from experimentally

solved protein structures. The second problem, often referred

to as the ‘inverse folding problem’, is to find amino acid

sequences that are able to fold into the required backbone

structure, i.e. one needs to minimise the free energy of folding

(DGfolding). In order to do this one would need to evaluate the

potential energy of a given sequence over all backbone and

sidechain conformations in order to calculate the partition

function which is, of course, computationally intractable

unless one knows what the relevant alternative states are.

Therefore most popular methods take a ‘positive design’

approach where the aim is to find sidechain rotamers that

minimise the potential energy of a given backbone structure

Fig. 4 Using the engineering design cycle in Fig. 3, system design can

be separated from system fabrication. The use of CAD tools allows

for the in silico design, analysis and optimisation prior to wet-lab

implementation (inspired by Heinemann and Panke).123
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with some simple approximate heuristic to account for alter-

native states. This problem can either be solved by using a

stochastic method such as simulated annealing84,85 or by using

a deterministic method such as Dead-end elimination86–88 but

both methods tend to give similar results.

Using computational protein design methods it has now

been shown to be possible to rationally engineer enzymes with

novel catalytic functions that do not exist in Nature,11,12,89

albeit with much lower activities than for naturally occurring

enzymes and for relatively simple reactions. A key requirement

of computational enzyme design is the ability to place the

functional groups of sidechains with atomic-level accuracy.90,91

According to Transition State Theory, the activated

complex (i.e. the transition state) is in quasi-equilibrium with

its reactants and the rate of the reaction is proportional to the

concentration of the transition state. Therefore the aim of an

enzyme designer is to engineer a protein that can specifically

bind the substrates and catalyse the desired reaction by

lowering the free energy of the transition state.

One approach to the design of novel enzymes is to design

the enzyme from the inside out. In this approach one must

determine the geometric constellation of chemical functional

groups that are likely to stabilise the transition state, then

work outwards to find compatible sidechain conformations

(e.g. by an inverse rotamer method), and finally find compatible

backbone scaffolds.11,12,90 To determine the possible molecular

interactions that are capable of stabilising the transition

state one could either carry out quantum chemistry

calculations92,93 (as would be necessary for a novel reaction

not found in Nature) using programs such as GAUSSIAN

(http://www.gaussian.com/), or by studying the structures of

known enzymes. In the case of designing a novel ‘‘theozyme’’

(theoretical enzyme), the transition state of the reaction must

first be determined (e.g. using the Hartree–Fock method,

density functional theory or semi-empirical methods) and then

the geometry of stabilising functional groups placed around

this transition state can be optimised.93

DNA assembly

Once the synthetic biology designer has produced a design

in silico it is then necessary to translate the in silico design into

something that can be tested experimentally. In the vast

majority of cases this will involve some form of assembly of

smaller sections of DNA to form a larger section of DNA that

implements the design. This can range in scale from assembling a

gene optimised to efficiently express a protein with a given

amino acid sequence ,94–96 to assembling a set of genes to form

a pathway, and up to assembling an entire bacterial genome.97

For PCR-based assembly methods computational tools can

help design reliable thermodynamically-balanced primers with

minimised hairpin formation.94,95 Furthermore, computational

algorithms can help eliminate human error as well as minimise

the time and cost of experiments with the ultimate aim of high-

throughput fully automated assembly by liquid handling

robots.98

At the pathway assembly level the BioBrick standard

provides a set of simple rules to allow physical composition

of parts by a restriction enzyme-based mechanism and is

accompanied by a registry of user submitted parts (http://

partsregistry.org/Main_Page). This is highly used due to

its simplicity and due to the requirements of the popular

International Genetically Engineered Machine student

competition (iGEM) for competing teams to submit parts to

the registry (http://www.igem.org). The disadvantages of this

method include its serial step-wise assembly of parts making it

more time-consuming to assemble large constructs than

parallel one-pot methods, its non-combinatorial nature and

the fact that it leaves an 8 base pair ‘‘scar’’ region between the

assembled parts. For these reasons, new and improved DNA

assembly methods (such as the isothermal assembly (Gibson)99

and Golden-gate100 methods) are vitally important for

synthetic biology, and constitute a rapidly developing field

(see review by Ellis et al., also in this issue101).

Future developments

Synthetic biology holds the promise of cleaner, cheaper and

less energy intensive technology. Its potential applications

include energy production, bioreactors, biosensors, medical

devices, smart materials, and perhaps even terraforming

planets to make hostile environments habitable by humans.

In order to fulfil this potential a number of key enabling

technologies need to be improved and developed.102 One of the

most important is the creation of a registry of professionally

characterised biological parts, which is one of the main goals

of BIOFAB (http://www.biofab.org/; an allusion to the ‘‘chip

fab’’—the technology for the engineering of semiconductor

chips). In contrast, the BioBrick parts deposited in the Registry

of Standard Biological Parts (http://partsregistry.org/) are of

varying quality and often uncharacterised. Without a catalogue

of standard parts with well characterised behaviours in the

context of known chassis the dream of being able to rationally

engineer biological systems will be seriously impeded.14

Advancements in other key enabling technologies are also

required such as DNA assembly techniques, automated

fabrication technology, microfluidics, more sophisticated

modelling methods, simplified synthetic chassis,103 standards

for data exchange and better ways to measure the behaviours

of biological systems. As these technologies improve and

mature, synthetic biologists will be able to spend more time

thinking about engineering whole systems rather than worrying

about low-level implementation details.

Modelling biological systems is especially difficult given the

degree of unpredictable crosstalk between components, the

stochasticity, and the context dependence of parameters.

Future automated design methods will have to find ways of

dealing with these issues, perhaps by designing heterogeneous

redundancy into the system and developing design methodologies

where stochastic variations and crosstalk are features rather

than undesired behaviours. Crosstalk and other unexpected

interactions could be minimised by the development of

libraries of orthogonal parts and perhaps by the use of

a ‘‘minimal cell’’ (a cell containing only those functions

necessary for basic life) as the chassis.104 For example, the

design and use of orthogonal ribosomes105 could help reduce

the risk of unintended crosstalk by allowing the creation of

gene expression pathways that are unreadable by the host’s
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native cellular machinery. This creates the possibility of boot-

ing up a number of orthogonal ‘‘parallel operating systems’’

within the cell that are freed from the constraint of also having

to carry out the cell’s essential functions.106

While a large number of computational design tools have

been developed (Table 1), most existing automated design

methods have concentrated on the design of synthetic

transcriptional networks. However potential applications are

much broader than this.107 For example, one may wish to

re-create, in an automated way, a biosynthetic pathway that

exists in a slow growing organism in a faster growing organism

with a higher yield. Such a method would have the ability

to automatically determine the reaction steps required to

synthesise a given small molecule, retrieve suitable enzymes

from online databases and assemble the genes into a de novo

biosynthetic pathway.108

New data exchange standards for synthetic biology will

greatly assist the task of automated design and is an area of

active development. SBOL (Synthetic Biology Open Language;

http://www.sbolstandard.org) is a collaborative effort to

develop standards for the exchange of biological parts data

including standard visual representations of the parts. The aim

is to facilitate the integration of different software tools and

allow the easy transfer of information between synthetic

biologists.

To accompany methods of forward-engineering systems

there will also be a need for debugging tools such as methods

for network reconstruction from data23,26 to test if the

(dynamical) structure of the wet-lab implemented synthetic

biology circuit corresponds to the one originally intended by

its designer.

Finally, given all the uncertainties in modelling biological

systems it may be necessary to optimise in silico designs with

directed evolution methods. Such an approach would be useful

both for optimising individual designed components, such as

designed enzymes,109,110 and for optimising pathways.111–113

Developments in microfluidics could help increase throughput

dramatically114 and allow the development of the lab-on-a-chip

technology.

Despite the significant progress in synthetic biology in the

past few years it is clear there is still a long way to go before we

can routinely engineer biological systems. It is also clear that

developments in our ability to design biological systems

in silico will play an increasingly central role in this process.
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