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Abstract— This paper presents a result on the robust synchro- In this paper, we prove that under the same coupling
nization of outputs of statically interconnected non-identical assumption as in [8], the differences between the outputs of
cyclic feedback systems that are used to model, among other jnterconnected, non-identical CFSs will asymptoticaénd
processes, gene expression. The result uses incremental vemsio to finit ! I limits. To do thi
of the small gain theorem and dissipativity theory to arrive 'O 'INIt€, generally non-zero imits. 10 do this, we compare
at an upper bound on the norm of the synchronization error ~€ach CFS subsystem to a corresponding nominal subsystem
between corresponding states, giving a measure of the degree representing an ‘average’ of the corresponding subsystems
of convergence of the solutions. This error bound is shown to  Based on the monotonicity property of the defining function
be 2 funcion of the diference betveen the parameters of 1 of each CFS subsystem, we Show thal each subsysiem s
systems are identical, thus retrieving an earlier synchronization _incrementally output semipassive with an assoc'f"_‘md pesit
result. scalar quantity, henceforth referred to as the ‘incrementa

secant gain’. From here we relate the output synchronizatio

I. INTRODUCTION error to the coupling strength. We do this in two ways:

Networks of interconnected oscillating dynamical systems We first present a small-gain theorem result that shows
often exhibit some convergence property in terms of ththat in a network of_lnterconnected, nonldgntlc_al CFSs, if
values of their states or frequencies, leading to statetggac the product of the incremental secant gains is less than
nization or phase-locking. Whether or not this phenomend#nity, which can always be achieved by strengthening the
takes place depends on the coupling structure, the strefigthcoupling, then the differences between correspondingstat
this coupling and the similarity of the interconnected eyss  Of the different CFSs of the network will be upper-bounded
in terms of structure and parameters. by a constant. _ _ _

This paper investigates the relationship between the degre The second method directly employs the incremental dis-
of output synchronization in networks of parametrizgdlic ~ Sipation inequalities defining the incremental output semi
feedback systenf€FSs) and the variation of their parametergassivity of each subsystem. Using the tools in [6] and [8],
under the assumption that the CFSs are structurally the.sarié show that if the coupling is larger than a certain threshol

CFSs represent a class of dynamical systems that has bé@@termined by the incremental secant gains), the entire
widely studied in the literature and has been used to mod@gtwork becomes incrementally output semipassive, wih th
gene expression [1], [2], [3], [4], [5]. CFSs have a commonesult that the corre_sppndm_g outputs of the interconmecte
overall structure composed of a unity-gain negative feeklba CFSs converge to within a finite distance of each other.
around a cascade of subsystems. The last subsystem in th&ach method leads to different sufficient conditions (the
cascade is generally a bounded, monotonically increasitfter being less conservative) allowing to prove that,arnd
nonlinearity. strong co_upllng, the differences between correspondmtg_st

In [5] it was shown that the solutions of the above define@f the different CFSs of the network are asymptotically

class of systems are limited to a number of scenarios: agin%pper-bounded by a constant. Furthermore we show that in
equilibrium, a single (non-constant) periodic solutionzar POth cases the value of this constant tends towards zero as

combination of equilibria with homoclinic and heteroctini the difference between the CFSs reduces, thereby recgverin

orbits. The more recent work [6] presents a necessary aHe result presented in [8].
sufficient condition for the existence of a diagonal Lya- Il. NOTATION

f i i he gl | i ili f
punov function proving the global asymptotic stability 04 This section introduces the notation that will be used in

the system. This result was obtained using the passivi . o .
y g b éﬂar sections. We shall be considering networksvofyclic

properties of the subsystems making up the cascade and t LS .
interconnection structure. The condition obtained plaaed '€€dback systems (CFSs). Each individual CFS is composed
gf a cascade of: scalar subsystem&/;, i = 1,--- ,n, in

upper bound on the product of the individual subsystem ; : . . i aes)
‘S%F():ant gains’, see [7F])_ As is seen in [1], limit cyclizs ard1egative feedback with a unity gain, as illustrated in Feglir
typically observed when stability is lost due to the bregkin
of the above described secant gain condition.

The results herein extend those in [8] where incremental
dissipativity tools were employed to show that the diffe®s
between the outputs of interconnected, identical CFSsttend
zero under strong, linear, static coupling. Such increalent
stability analysis of signals was covered in [9], [10], [11] Fig. 1. Isolated cyclic feedback system.
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eachCFS,iex; =[ =i, -+ iy ]T. The inputto the®™™  arguments of the functiong;,(-) andg;,(-), the invariance
subsystem of thg'" CFS is given by.;, € R, and the vector of the positive orthant, the boundedness properties oand

of inputs to theit® subsystems is; = [ u;, --- u;, ]*. the monotonicity of these functions limit their domains and
The vector of outputs from theé'® subsystems isy; — N€nce images to

[ i - Yin }T, and the vector of all the outputs is

Y=y, Yo, = Yix " Ynn | . fi; () 2 0,24,] — [0, fi; (24;)] t=1,---,n

We define the operatdd asll = I — %IIT.’ N € Zy, 9i;(4) [0, Zi-1,] — [0, 94, (Zi-1,)] t1=1,---,n—1
Iy being theN x N identity matrix andl the V-dimensional . . N .
vector of ones. As described in [12], [8], the operafor In; (1) 110, Zn—1;] = [=0n;s Gn; (Tn-1;)] i=1,---,n—1
measures the lack of consensus between the elements of §enceforth we shall refer to the domain and image of
vectorz € R in the following sense: thg'" element of the fi,(-) or g;.(-) asD;, andZ;, respectively.
vectorIlz is the difference between thé" element ofz and ! ’ ’
the average of all the elements afNote thatlI’T1 = I1. A Coupling

For any real matrixl’, we denote byl', its symmetric We assume that network coupling is static and linear. This

part, i.e.T'y = 3 (I + I'"'). Finally, we use the notatiop- |  type of coupling is conveniently defined using a coupling

to denote the euclidian norm of a vector. matrix I' € R¥*N, The network coupling topology is thus
defined by the following relation between the inputs and
Ill. CycLIC FEEDBACK SYSTEMS outputs of the CFSs:
As illustrated in Figure 1, a CFS is defined as a cascade
of subsystems with a unity negative feedback. Uext = —Ty1 (4)

E_ach consti_tutive subsystef;; can be either dynamic or \ne further restrict the topology by assuming that:
static. Dynamic subsystems are assumed to have the sHuctur(Al) rank(l) = N — 1

{%J. :xij,c]( / ’ ) (A3) T'1 =T71 = 0, where1,0 € RY are vectors

o ! whose elements are alland0 respectively.
where f;,(-) is in C'(R>(), monotonically increasing and Note that from (A3),['TI = III" = I'. We refer to [8] Section
is such thatf; (0) = 0 ¥i,j. On the other hand, static |V.A for a graph interpretation of these assumptions.
subsystems are assumed to have the structure

H;

i

B. Incremental Systems & Incremental Storage Functions

H,, {mij = gi, (i) ) We assume that all corresponding subsystems have the
Yi; = Tiy same parametric structure and only differ by the parameters

of these structures, i.¢1;, andH;, have the same parametric

structure,vk,l € 1,--- , N. With each subsystent/; , j =

ke » N, we associate the incremental dynamic subsystem

whereg;, (-) is in C!(Rxp), monotonically increasing’, 7,
and, fors =1,--- ,n—1, g;,(0) = 0 Vj. The last subsystem
of the cascade is assumed to be static and represented by
monotonically increasing’! (R>o) map g, (-) : [0,00) —

[=Gn;»0), gn; > 0. Thereforeg,,(-) is boundedv; and Hiy {qu, —TIx, ()

g;.(-) existsVi, j. Note that with the above properties, the ) ;

positive orthant is invariant (see [6]), and so, assumitig &' the incremental static subsystem

initial conditions lie in the positive orthant, we need only Ix; =I1G;(u;)

consider signals:;, > 0, Vi, j. in {Hy, I (6)

The inputsu;, to each of these subsystems satisfy the ! '

following cyclic feedback interconnection rules: where Fi(x;) = [ fi,(zi)) - fix(ziy) ]T, Gi(u;) =

Ul; =Uext; — Yn, [ Giy (u’h) o Gin (uiN) ]Tl and Wherefij(') and g’LJ()

U =y =2 (3) satisfy the previous assumptions (see (1) and (2)). The
SR T incremental inputdIu; are given by
whereu.y, is the external input to thg® CFS, which can
be used to interconnect several CFSs. )
In the rest of the paper, we will use the following ultimate Mu; =My;1,i=2,---,n
boundedness assumption:
Definition 1 (Ultimate boundednessThe solution of a
cyclic feedback systenj is said to beultimately bounded fined in (5) or (6), we can write an incremental storage

i, 'IYrZ]eaggﬁﬁzﬁisugzntgit%é?dgeigligltfl)?fgrijéeveral classesfUnction V; which obeys a dissipation inequality of the form
of CFSs. For example the Goodwin model given in [3] is a Vi = —yx I TIM (%) + vix T T (8)
CFS which can be proven to be semipassive (see [13] for , .
a definition of semipassivity), and therefore its solutiane Where 7 is a posmve;F constant, M;(x;) =
bounded in the sense of Definition 1. However, even for somemi, (zi,) -+ miy(ziy) |7 and m; () : R — R
CFS models that are not semipassive, such as those discus§ed monotonically increasing function which equgis(-)
in [1], the boundst;, can be found for both the isolated andwhen H;; is defined as in (1) an@;l(-) when H;, is
the interconnected CFSs cases. Since the stateerm the defined as (2).

Hul :Huext - Hyn (7)

T
whereueyxt = [ Uext; -+ Uexty | -
Proposition 1: For the incremental subsysteid;, de-



Proof: Suppose the subsystem is of the dynamic type We now aim to write incremental dissipation inequalities

(1). Then usingV;
M;(x;) = F;(x;). For static subsystems, we u$e = 0

%x?HTHxi we obtain (8) with satisfied by the incremental subsystems of the CFSs and

refer the reader to [14], [15] for comprehensive treatments

as the storage function. This gives the dissipation inequadf passivity and the more general concept of dissipativity.

ity V; = 0 = —yix T TIM; (x;) + vix! T T,. with
_ _ _ T
M;(x;) = G (xi) = [ g3, (wi,) gid(@iy) ]

7

We now define anominal CFS to which each CFS in the

We will show that in general these inequalities will be such
that these subsystems are incrementally output semigassiv
that is, they are incrementally output passive outside h bal

network is compared. As notation, the nominal counterpfart &entered on the origifily;| = 0. To show this we make use

a set of functionsn,, (-), j = 1,--- , N is m;(-). Letm;(-) :

of the nominal systems defined above. Before proceeding,

D, — T;, whereD;,Z; C R, be a monotonically increasing however, we give a formal definition of incremental output

function that is a convex combination of the functions (-),
j=1,--- N:

N N
mi(x) = Zaijm@ (2), Zaij =1,04; €[0,1],V
j=1 j=1
9)

where m;, (-) is defined in Proposition 1 and the positive

scalarSai; are to be chosen. The domdin and imageZ;

of the functionsn,(-) are then respectively the unions of thewith #;(Ily;) > 0,

domains and the images of the constituent functionsg(-)
forj=1,---,N.

We also define the function,(-) : [0,Z,,,] — R to be
¢i; (i) = my; (xi;) — m4(zs;). In vector form, we have

O(x;) = [ i, (x1,) Gin (iy) 1"

with
(I)i (Xi)

= M;(x;) — M;(x;) (10)

where M;(x;) = [ mi(zs,) mi(ziy) 1" Finally we
define metrics on the differences between a signal(-)
and its nominal counterparfi; (-)

semipassivity:

Definition 2 (Incremental Output Semipassivityjystem
H;, is incrementally output semipassive with respect to
input u; and outputy; if there exists a positive definite
incremental storage functiol; : RY — R>(, a constant
0 > 0, and a functioriH;(-) such that

Vi < —H;(Iy;) + (Tuy) ™ (Iy;)

V[ILy;| > o.

As a result, if there is no incremental inpdiy; = 0), the
incremental output$ly; will decrease to an absolute value
of at leastp.

Lemma 2:Assume that the CFSs as defined in (1)-(3),
and coupled as in (4), are ultimately bounded in the sense of
Definition 1. Then the incremental subsystéfy, as defined
in (5) or (6) is incrementally output semipassive in the sens
of Definition 2 with o = ~;|®;] if

d?’hi (l‘l‘j)
dxij

Vi

inf >0

T eD;

where~; is theincremental secant gaiof the i*" nominal
subsystem andh;(-) is defined in (9).

bi, = i (Ti;) — my (g, 11 X X :
% wsjlgz)) ey (@i;) = M@, )] (11) Proof: Using the incremental storage functions sug-
R ) ) " gested in Proposition 1 with- = inf,, ep, d”{;’ﬁ"-?’), the
;= [ ¢y, (ws,) Din (Tin) ] (12) incremental dissipation equality then becomes:
Lemma 1:For M;(-) defined as aboves] TI" 1M (x;) > Vi = —~yx T TIM, (x:) + ysu! T TIx, (13)
0. Furthermore, if the CFSs, coupled as in (4), are ul-
timately bounded in the sense of Definition Iy Using II”TI = II and (10) we obtain
yix FTITIM; (x;) > xFTx;. ~ - "
Proof: By expandingx?TI)M;(x;) we obtain x; I TIM; (x;) =x; TIM;(x;) (14)
N N :X;THMz(Xz) =+ X?H‘pi (Xi)
T 1, 1 ~ -
x; IIM;(xi) = N Z (@i, = i,) (Mi(wi,) — ma(zi,)] Using (14) and Lemma 1,
=1 k=1
) T T T
Since 7m;(-) is monotonically increasing, we have Vi < =3 Ixi — yixi 124 (xq) + vy Tlxs
(i, — @) (Mi(wi;) — ma(wi,)) > 0, Vj, k. Therefore < —yi My; — vy N®i(y:) +viu/ My, (15)

For the second part simply le¢ = inf,ep,

dz

L ) , Where
the infimum is over the domain a#;(-) (which is closed and

< — |y, (|Hyz'\ - 'Yi|‘i)i‘) + 7;u} y;

The subsystem is therefore incrementally output semipas-

bounded because of the ultimate boundedness of the stgig in the sense of Definition 2 with= ~;|®;|.

z;;). Then, by the mean value theorem we hayer;, —

,T“)(ﬁlb(l‘z]) —ﬁLL(JJZk)) > (J}J —xik)Q,Vi,j and the result

follows since

T
x; 1Ix;

- %ZZ@% — )

j=1k=1

C. Synchronization and Incremental Stability

Definition 3 (Output synchronization)The i** output of
a collection of N CFSs is said to be synchronized when,

yij :y7k7v]7k€ 17 7N



Definition 4 (Output synchronization error)The Therefore after finite time,|Ily;| will decrease below
synchronization errov; of the i** outputy;, is defined as 5, (@” 4 |§,n|)_ Now consider the dissipation inequality

o = lim sup (\/(Hyi(t»T (Hyz—(t))> Va < —[Tys| (|Tys| — 92| ®a| — F2[TTy1])

The total output synchronization error is then given by ~ 'he incremental storage functior, is monotonically de-
creasing for allllys| > 42 (|®2| + |Iy1|). Since after finite

time |Ily1| < % (|<i>1| + \yn|), we know that|ITys| will,

N

o= tlggo sup [(I® 1,)Y (1) (I ® 1,)Y (1))]

n 3 also after finite time, decrease beldwy; (\(i)1| + |yn|) +
2 2 L . .
= (Z Ui) A2|®2|, and so an initial upper bound on the synchronization
=1 error for the second output is
We denote bys; and & an upper bound orr; and o

respectively. 62(1) = Yo (|‘i>1| + |$’n\) + Fa| s
Obviously, output synchronization implies zero output ) o o
synchronization errorof = 0, Vi). Therefore to prove This bound will place a limit on the synchronization error

asymptotic output synchronization, it is enough to prov€f the subsequent outputs. By repeating this method, the
that the signally; is asymptotically stable. Furthermore, if incremental statdly; obeys, after finite time, the initial
this signal is not asymptotically stable, we shall nevdetse UPper bounds;(1) on the synchronization errar;
prove that under certain conditions its magnitude will agym _ P N NN ,
totically decrease below a fixed value that will be referred t Myi| <0i(1) = G- A)lgn] + O (a7
as the upper bound on the asymptotic synchronization erraie then have an upper bound on the synchronization error
of each incremental output.
IV. MAIN RESULTS Specifically, if4; ---4, < 1, we have two upper bounds
In this section, we obtain bounds on the synchronizatioan |IIy,|, which arely,| and 6,,(1). The smaller upper
error using two approaches: an incremental small-gain-thebound is determined by the magnitude of the differences
rem approach and an approach based on incremental outputhe CFS parameters and the strength of the coupling: if
semipassivity. 0O, < |y»| then by making the coupling strengtky(T's)
) . large enough’; can be made sufficiently small so that
A. Aincremental small-gain theorem result Go(1) = Gn-51)[Fn] + On < |yn|. As a result, for
Theorem 1:Consider a network ofV non-identical CFSs the n'"" output, the upper bound is such thdly,| <
as defined in (1)-(3), satisfying the assumptions of Lemmain(|y,|, 5,(1)). If |y.| < 6,(1), then this upper bound
2, coupled as in (4) via a coupling matrixwhich satisfies cannot be reduced and the upper boundogris given by
the propertieg A1) — (A3), and such that each subsystem(17). However if6,,(1) < |§,| then substituting the bound
is incrementally output semipassive in the sense of Lemnun |Ily,,| into (16) yields
2. Defining~v; ( = 1,---,n) as in Lemma 2, lefy; = . )
Toemy where A5(Ts) > 0 is the second smallest Vi < — |y | ((1 + v1 22 (T)) Iy 1| — 71| P — vﬁn(l))
eigenvalue of the symmetric part @f, and lety;, = ~; o ) )
for i = 2,---,n. If the coupling is such thah,(I'y) > This iteration gives a new, reduced upper boén(2) on oy
—ltm%eedn thend, ---4, < 1 and an upper bouné; on . (s .
the sz/lnchronization errar; for the i output of the CFSs [y1] < 61(2) =% (q)l * U"(l)>

1S i As a consequence, the upper boundogiis also reduced to
o =T[5 +6; 5(2) = i+ 31)on(1) + 6,
=1
! o _ This iterative procedure yields a difference equation Far t
where we define®; = 377, [®;[][,_; 7% and T = «™ iteration of the synchronization error of ttig* output
" gy"|’ s On) Andgy =[Gy o g |7 Gilk+1) = (3 31)on (k) + ©; (18)
roof: Using the dissipation inequality (15), the inter-

connection rules (7) and the coupling (4) we have, for the€tting 6.(0) = |y|, it is easy to show that

first incremental dissipation inequality .
: A Ga(R) = (1 3n)"6a(0) + On D (1 -+ F)™ !
Vi < —|Ily| ((1 + 12 (T )|y 1| — y1 |1 — »mnyn|) P
(16)  and so clearly, ify; -4, < 1

From this, observe that; = Ix{IIx; = Jy{lly;
: ; : 2% )
is monotonlgally decreasmg~ WI'[E’] time for allly;| > lim 6, (k) = ] o, (19)
iy (19104 Myal) =31 (191]+ [Ty, o 1=F1n

Since|Ily,| < |y.|, an initial bounds, (1) is given by Therefore ifé,,(1) < 6,(0) = |3.| then we can see from

) R (18) thaté (K1) — 6 () = (31 - - - )" (6 (1) — 62 (0)) <
61(1) =% (|‘1)1| + b’n|) 0 and hences, (x) decreasedo (19) ask — oo.



From this we infer that the minimum value 6f, is either Using the interconnection rules (7) we obtain:
|¥n| (in the caser, (1) > |y,[) or (19) otherwise. Letting 1
V<5 (M@ L)Y)" (I ® (DA + ATD)) (L® L,)Y) +

YT = min |§’n|, f@i
1- Y1 Yn n
then (18) implies that, after finite time i (0l T Ty + ky T Tyy) + > diviy) T14(y)
1 i—1
My, <6, =T[5 +€: Vi ' 1)
j=1

i ) Now we include the couplingiext = —I'y1. Note thatl'll =
which gives the result. B [II. We thus obtain
Remark 1:Note that if all the CFSs are identical, that is,

if ;, =0, Vi, j (from (11)), we obtain zero synchronization —y? 7T Tly, = —yT I T 7Ty, < —\y(T)yT 17 Ty,
error and hence full output synchronization. (22)
Another feature to note is that strengthening the couplingubstituting (22) into (21)

(by increasing the coupling gain and therefosgI's)) can 1

make the upper bound on the synchronization error for thg < - (I® In)Y)T (IN ® (DA + ATD)) (TeI,)Y)+
first outputsy, arbitrarily small and reduce the upper bound
on the synchronization error for thé" output, 5;, Vi =
2,---, N, arbitrarily close to5; = >=_, |®;][T,—; -

B. An incremental output semipassivity result

Theorem 2:Consider a network oV non-identical CFSs
as defined in (1)-(3), satisfying the assumptions of Lemma Ay -y < sec™ (I) (23)
2, coupled as in (4) via a coupling matrixwhich satisfies n
the properties(A1l) — (A3), and such that each subsystemolds thenDA + AT D < —el,, < 0 (see [6]). By increasing
is incrementally output semipassive in the sense of Lemma sufficiently, 7, can be made arbitrarilly small, and so
2. Let X\o(I's) be the second smallest eigenvalue of thghe secant gain condition is satisfied provided that>

symmetric part off. If X\o(T') > k* = ,1+w1~--7;fcos E) g - Do (3) ey k*, we thus can write
then the network of interconnected CFSs is incrementallyse incremental dissipation inequality in the followingywa
output semipassive with a finite total output synchronisati
error upper bound given by the right hand side of (25). V <—¢e((I® L,)Y)" (II1® 1,)Y) +

Proof: From (15), an incremental dissipation inequality n
of the form A1 (k= Xo(To))yl T yy + Y diyiy] TI®i(y:)

Vi < —yIMly; + yiu] Ty; — vy T®;(y;) =
can be written for theé'" subsystem of the CFSs. Scalifig

A1 (k= Ao (T))yi T Ty + Y diviy! TI®4(y:)

i=1

Note (from [6]) that if the secant gain condition

Finally, if the coupling strengths(T's) > k(> £*), we have:

by 147, k > 0, we then add and subtragty—y{ 1" Tly; - n .
to it and usinglI”TI = II we obtain V<—e(MeL)Y) (Mel,)Y)+ Y dvy! T®i(y:)
i=1
’ TT ~ T T ~ L1717 (24)
Vi < -y 1P Ilyy +Jrup IF Ilyy + k3 y; I 1Ty . ) ) ) )
- ’yly{HTHq)l(yl) De;lr;ﬁ (I)d: [ ¢|11 IA (bzll { " (blN U ¢n1\r ];
. . _ L and the diagonal matrid = dia , , s Yn b
whered;, = 13—;% Notice that we can mak&, arbitrarily \ye can equ%valently rewrite (2%) ;; e R
small by increasingk. We then take as an incremental _
storage functiori/ for the entire network of CFSs the linear V<—-e(I® ],L)Y)T (MI®I1,)Y)+
combination of the incremental storage functidrisof the T -
individual subsystems: V = """ | d;V; whered; > 0. (T 1,)Y)" (Iy ® DA)®)
The values ofd; are the same as those in [6], With=" pareforel < 0 for all
(T2 vm) ™ PR
X
T2 7“4 7"2"’_2 |(H ® IT?)Y| > K(N—e)” (25)
d1:17d2:727d3: 27"'adn:72 . ..
3 (7273) (y2+ ) showing that the network of CFSs is incrementally output

(20)  semipassive and that it achieves an upper bound on the total

Let D = diag{ d1, ---, dn }and output synchronisation error given ly= [(Ux@PAE)]
[ -1 0 -+ 0 —A ] [ ]
. Remark 2:Note that if all the CFSs are identical, that
v -1 0 w0 is, if ¢;; =0, Vi,j (from (11)), the earlier result in [8] is
A= 0 5 -1 ° 0 retrieved, as strong coupling ensures that the network then
becomes incrementally output strictly passive, resuliimg
e .0 zero synchronization error and hence full output synchro-
o 0 - v -1 nization.




V. EXAMPLE

The example we will consider here consists &f =
2 interconnected Goodwin model oscillators [3]. Thi#
oscillator is given by the following model:

j"lj = _x4j - bjxlj +uextj
.’1?2] = bjl’lj — bszj
.’iﬁgj = bj(L‘gj — bj.fﬂgj
1

Ta; = =7 p;

L+ a3

whereuey, = —k (Nz1, — N x1, ). Since the system is
J J =1 l

semipassive, its solutions are bounded with or without the
coupling, as required by Theorems 1 and 2. The oscillator
parameters are as followly = by, = % p1 = 17 and

p2 = 20. We take as the nominal system the first oscillator
(where j = 1) and so the second oscillator's deviation

f[om the first is such that, = ¢2, = ¢3, = 0 and

¢4, = 0.0358. The incremental secant gains of the nominal

system are thery; o 1, 95 = & and
Y4 = sup,, (ﬁ (—ﬁ ) = 4.6385. With a coupling
gain ¥ = 10 we haved192939, = 0.2263 < 1, thus

satisfying the conditions of both Theorems 1 and 2. With
these parameters, and applying Theoremwe see that the
upper bounds on the synchronization errors are as follows;

&1 = 0.0052
03 = 0.0105

&9 = 0.0052

64 = 0.2144

The time evolutions and the error bounds for the states 1]

andz,,, for j = 1,2 are shown in Figures 2(a) and 2(b).

The upper bound on the total synchronization is then givenz]

by

[3]

. . [4]
Using the passivity approach of Theorem 2 however, we

find that the upper bound on the total output synchronizatiorES]

error is given by (25)5 = 0.2182.

G=|[61 62 63 64| =0.2148

(6]

V1. DISCUSSION& FUTURE WORK

We have presented two methods for deriving upper boundg]
on the synchronization error of cyclic feedback systems thal8]
are interconnected via static, linear coupling. In the azfse
the example given in the previous section we saw that using
either method gives a similar upper bound on the total outpul®l
synchronization errof. The advantage of the method given
in Theorem 1 is that bounds on the synchronization error
of individual outputsy; may be found. The disadvantage of(11]
that approach is that it requires the secant gain product to
be less than unity whereas Theorem 2 requires that quantjy;
to satisfy (23), a less conservative condition as highéight
in [6]. [13]
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