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Abstract. We introduce an algorithm based on semidefinite programming that yields increas-
ing (resp., decreasing) sequences of lower (resp., upper) bounds on polynomial stationary averages
of di↵usions with polynomial drift vector and di↵usion coe�cients. The bounds are obtained by
optimizing an objective, determined by the stationary average of interest, over the set of real vectors
defined by certain linear equalities and semidefinite inequalities which are satisfied by the moments
of any stationary measure of the di↵usion. We exemplify the use of the approach through several ap-
plications: a Bayesian inference problem; the computation of Lyapunov exponents of linear ordinary
di↵erential equations perturbed by multiplicative white noise; and a reliability problem from struc-
tural mechanics. Additionally, we prove that the bounds converge to the infimum and supremum
of the set of stationary averages for certain SDEs associated with the computation of the Lyapunov
exponents, and we provide numerical evidence of convergence in more general settings.
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1. Introduction. Stochastic di↵erential equations (SDEs) and the di↵usion pro-
cesses they generate are important modeling tools in numerous scientific fields, such
as chemistry, economics, physics, biology, finance, and epidemiology [22]. Stationary
measures are to SDEs what fixed points are to deterministic systems: if the SDE
is stable, then its stationary measures determine its long-term statistics. More con-
cretely, both the ensemble averages and the time averages of the process converge to
averages with respect to a stationary measure (which we call stationary averages). For
the majority of SDEs, there are no known analytical expressions for their stationary
measures. Consequently, large e↵orts have been directed at developing computational
tools that estimate stationary averages and, more generally, at developing tools that
can be used to study the long-term behavior of SDEs. Among these, most promi-
nent are Monte Carlo discretization schemes, PDE methods (finite-di↵erence, finite-
element, and Galerkin methods), path integral methods, moment closure methods,
and linearization techniques (see, e.g., [39, 6, 43, 45]).

The purpose of this paper is to introduce a new algorithm that provides an al-
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ternative approach to the analysis of stationary measures. It uses semidefinite pro-
gramming to compute hard bounds on polynomial stationary averages of polynomial
di↵usions. Our approach has distinct advantages: (i) it returns monotone sequences of
both upper and lower bounds on the stationary averages, hence quantifying precisely
the uncertainty in our knowledge of the stationary averages; (ii) no assumptions are
required on the uniqueness of the stationary measures of the SDE; and (iii) the avail-
ability of high quality semidefinite program (SDP) solvers and of the modeling package
GloptiPoly 3 drastically reduces the investment of e↵ort and specialized knowledge
required to implement the algorithm for the analysis of a given di↵usion process.

1.1. Problem definition. We consider Rn-valued di↵usion processes X :=
{X

t

: t � 0} satisfying SDEs of the form

(1.1) dX

t

= b(X
t

) dt+ �(X
t

) dW
t

, X

0

= Z,

where the entries of the drift vector b : Rn ! Rn and the di↵usion coe�cients � :
Rn ! Rn ⇥ Rm are polynomials. In the above, W := {W

t

: t � 0} is a standard Rm-
valued Brownian motion, and the initial condition Z is a Borel measurable random
variable. We assume that the underlying filtered space (⌦,F , {F

t

}
t�0

,P) satisfies the
usual conditions.

A Borel probability measure ⇡ on Rn is a stationary (or invariant) measure of the
dynamics (1.1) if

Z ⇠ ⇡ ) X

t

⇠ ⇡ 8 t � 0,

where we use the notation Y ⇠ ⇡ to mean that the random variable Y has law ⇡.
The set of stationary measures of (1.1) is denoted P.

The problem we address here is how to estimate stationary averages of the form

(1.2) ⇡(f) :=

Z

f(x)⇡(dx)

in a systematic, computationally e�cient manner. We present an algorithm that
yields bounds on averages (1.2) when f is a polynomial. Hence, our algorithm can be
used to bound the moments of the stationary measures of (1.1).

More precisely, the algorithm returns lower and upper bounds on the set
(1.3)
B

d

f,G := {⇡(f) : ⇡ 2 P has finite dth order moments and support contained in G} ,
where G is a given real algebraic variety

(1.4) G := {x 2 Rn : g
1

(x) = 0, . . . , g
`

(x) = 0}
for given polynomials g

1

, . . . , g

`

. The case G = Rn corresponds to ` = 0.
Stationary averages of the form (1.2) and the set (1.3) are of broad interest: if X

enjoys some mild stability and regularity properties [32], the stationary averages (1.2)
provide succinct, quantitative information about the long-term behavior of X. In
particular, for almost every sample path t 7! X

t

(!) (that is, P-almost every ! 2 ⌦),
there exists a ⇡ 2 P such that

(1.5) lim
t!1

1

t

Z

t

0

f(X
s

(!))ds =

Z

f(x)⇡(dx);

see Theorem 2.2 for a formal statement. Furthermore, for appropriately chosen d, the
set Bd

f,G is the set of limits (1.5) where t 7! X

t

(!) is any sample path contained in G:

(1.6) B

d

f,G =

⇢

lim
t!1

1

t

Z

t

0

f(X
s

(!))ds : ! 2 ⌦G

�

,
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where ⌦G is the subset of samples ! 2 ⌦ such that X
t

(!) belongs to G for all t � 0; see
[32, section 8]. Similar considerations also apply to the ensemble averages E [f(X

t

)]
(see the remark after Theorem 2.2). Therefore, bounds on the set B

d

f,G equip us
with quantitative information on the long-term behavior of the paths of X that are
contained in G.

Remark (linking the long-term behavior to the stationary measures). Although
our work is motivated by the study of the long-term behavior of a di↵usion X, the
scope of this paper is restricted to the problem of bounding the stationary aver-
ages (1.2) and the associated set (1.3). It is important to remark that to connect the
long-term behavior of X with the set Bd

f,G (and the bounds our algorithm returns) it
is necessary to establish the following separately:

(a) the existence of stationary measures of (1.1) with support contained in G and
the finiteness of their moments up to order d;

(b) the convergence of the time averages; i.e., verify that the limit (1.5) holds for
the di↵usion at hand;

(c) that, for the initial conditions of interest, X takes values in G.
A straightforward way to verify (c) is to apply Itô’s formula and check that

dg

1

(X
t

) = dg

2

(X
t

) = · · · = dg

`

(X
t

) = 0.

If the initial condition Z takes values in G, then X clearly takes values in G as well.
Establishing (a) and (b) typically requires additional proofs beyond the scope of this
paper and has been studied extensively elsewhere (see [32, 33, 20]). We point out
that whether or not conditions (a)–(c) hold, the algorithm still yields bounds on
B

d

f,G . Without proving (a)–(c), it may simply be that the set (1.3) is empty, or that
the relationships (1.5) or (1.6) do not exist. To make the paper self-contained, we
recall briefly in section 2.2 some simple conditions that we use in our later examples
to establish (a) and (b).

1.2. Brief description of algorithm. Mathematically, our approach consists
of four steps:

(1) We derive a finite set of linear equalities satisfied by the moments of any
stationary measure of (1.1) (see Lemma 2.3 and section 3.1). Such a system
of equalities is often underdetermined (see Example 3.3) and therefore admits
infinitely many solutions.

(2) To rule out spurious solutions, we exploit the fact that the solutions must be
the moments of a probability measure and hence must satisfy extra constraints
(e.g., even moments cannot be negative). We use well-known results [25] to
construct semidefinite inequalities (so-called moment constraints) that are
satisfied by moments of any probability measure with support contained in
G. This is done in section 3.2.

(3) Exploiting the fact that f is a polynomial, we rewrite the stationary average
⇡(f) as a linear combination of the moments of ⇡.

(4) By maximizing (resp., minimizing) the linear combination over the set of
all vectors of real numbers that satisfy both the linear equalities and the
semidefinite inequalities, we obtain an upper (resp., lower) bound on the set
B

d

f,G .
Computationally, to find the upper (or lower) bound, we solve an SDP, a particu-

larly tractable class of convex optimization problems for which high-quality solvers are
freely available online. The semidefinite constraints in (2), popularized by Lasserre
and coauthors (see [25] and references therein), can be implemented via the freely
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available, user-friendly package GloptiPoly 3 [13], which makes the approach described
here accessible to nonexperts.

Remark (convergence of the algorithm). Concerning moment approaches, a ques-
tion that often arises is that of convergence of the algorithm. In the context of this
paper, this question takes the following form. Suppose that we want to obtain bounds
on the set

B

1
f,G :=

1
\

d=d

f

B

d

f,G ,

where d
f

is the degree of f . Note that if G is compact, then any measure with support

on G has all moments finite, and thus B
d

f

f,G = B

d

f

+1

f,G = · · · = B

1
f,G ; hence B

1
f,G is the

only set of interest. As will become clear later, repeated applications of our algorithm
yield both an increasing sequence of lower bounds and a decreasing sequence of upper
bounds on B

1
f,G . The algorithm is said to converge if these sequences converge to the

infimum and supremum, respectively, of B1
f,G . In general, the algorithm presented in

this paper is not guaranteed to converge in the above sense. However, our numerics
indicate that the algorithm often converges in practice (see Examples 3.4, 4.1, and 4.3).
In section 4.2, we do prove convergence for SDEs related to the Lyapunov exponents of
linear ordinary di↵erential equations (ODEs) perturbed by multiplicative white noise.
The question of convergence is of theoretical interest, but regardless of its answer, the
bounds computed are still valid and are often still appropriate for the application in
question (e.g., see the examples in section 4).

1.3. Related literature and contributions of the paper. Computational
methods that yield bounds on functionals of Markov processes by combining linear
equalities (arising from the definitions of the functional and the process) and moment
constraints have appeared in the literature. We refer to this class of methods as gen-
eralized moment approaches (GMAs). The various GMAs di↵er in the type of Markov
processes and moment constraints they consider. The ideas underlying GMAs were
first discussed in [4, 5], where they were used to obtain analytical bounds on moments
for measure-valued di↵usions. The first GMA was presented in Schwerer’s Ph.D. thesis
[40] in the context of jump processes with bounded generators and reflected Brow-
nian motion on the nonnegative orthant. In [15, section 12.4], the authors present
a GMA that yields bounds on the moments of stationary measures of discrete-time
Feller Markov chains. In [12], analogous techniques are used to bound the moments
of the stationary measures of di↵usion approximations of the Wright–Fisher model on
the unit simplex. GMAs have also been proposed to solve optimal control problems
[14, 11], to estimate exit times [10, 26], and to price financial derivatives [27, 7].

The contributions of this paper are as follows. Whereas [40, 12, 11] consider only
stationary averages of specific SDEs, we introduce GMAs to the setting of general
polynomial di↵usions over unbounded domains—this requires setting up the technical
background of Lemma 2.3. Also, in contrast with [40, 12, 11], we employ moment
constraints that lead to SDPs instead of linear programs. In section 4.2, we prove
convergence of our algorithm for SDEs related to the Lyapunov exponents of linear
ODEs perturbed by multiplicative white noise. To the best of our knowledge, this is
the first such result in the setting of stationary averages of di↵usion processes. The
remaining contributions are the applications of the algorithm to several examples of
interest. Section 4.1 explains how the algorithm can be combined with the ideas
underlying the Metropolis Adjusted Langevin Algorithm (MALA) (a Markov chain
Monte Carlo algorithm (MCMC)) to carry out numerical integration with respect to
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certain target measures and then applies it to a simple Bayesian inference problem.
In section 4.2, we use our algorithm to obtain bounds on the Lyapunov exponents
of linear di↵erential equations perturbed by multiplicative white noise, and we show
that in this case our approach is both su�cient and necessary (i.e., with enough
computation power, it yields lower (upper) bounds arbitrarily close to the minimum
(maximum) Lyapunov exponent; see Theorem 4.2). Finally, in section 4.3 we explain
how the algorithm can be extended to yield bounds on stationary averages ⇡(f), where
f is piecewise polynomial, and we use this extension to tackle a reliability problem
from structural mechanics.

2. Background and preliminaries.

2.1. Notation. Throughout this paper we use the following notation:
• E[·] denotes expectation with respect to the underlying probability measure
P, and we use X

t

and X(t) interchangeably.
• Given a function h : Rn ! R, @

i

h denotes its partial derivative with respect
to its ith argument; @

ij

h := @

i

@

j

h; rh denotes its gradient vector; and r2

h

denotes its Hessian matrix.
• Suppose that M is a smooth manifold. C2(M) denotes the set of real-valued,
twice continuously di↵erentiable functions on M.

• For any two matrices A,B 2 Rn⇥m,

hA,Bi :=
n

X

i=1

m

X

j=1

A

ij

B

ij

denotes the trace inner product of A and B, and ||A|| := phA,Ai denotes
the Frobenius norm of A.

• Let Nn be the set of n-tuples ↵ := (↵
1

, . . . ,↵

n

) of natural numbers ↵

i

2 N.
Let Nn

d

be the subset of n-tuples such that |↵| := ↵

1

+ · · · + ↵

n

 d. The
cardinality of Nn

d

is r(d) :=
�

n+d

d

�

. We define the sum of two tuples ↵,� 2 Nn

d

to be the tuple ↵+ � := (↵
1

+ �

1

, . . . ,↵

n

+ �

n

).
• The space of real-valued vectors indexed by Nn

d

, {y : y
↵

2 R,↵ 2 Nn

d

}, is
isomorphic to Rr(d), and we make no distinction between them. Similarly for
the space of real-valued matrices indexed by Nn

d

, {M : M
↵�

2 R,↵,� 2 Nn

d

},
and Rr(d)⇥r(d). With this in mind, we denote the standard inner product on
Rr(d) as

hy, zi :=
X

↵2Nn

d

y

↵

z

↵

, y, z 2 Rr(d)

,

and the standard outer product on Rr(d) as

(y ⌦ z)w := hz, wi y, y, z, w 2 Rr(d)

.

• Let ↵ 2 Nn

d

and x 2 Rn. Monomials are denoted as x

↵ :=
Q

n

i=1

x

↵

i

i

, and
m

d

(x) : Rn ! Rr(d) denotes the vector of monomials of degree d or less.
Hence the ↵th component of the r(d)-dimensional vector m

d

(x) is given by

(m
d

(x))
↵

:= x

↵

.

Let R[x]
d

denote the vector space of real polynomials on Rn of degree at most
d. The set {x↵ : ↵ 2 Nn

d

} is a basis (known as the canonical or monomial
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basis) of R[x]
d

, and so we can write any polynomial p 2 R[x]
d

as

p(x) =
X

↵2Nn

d

p

p

p

↵

x

↵ = hppp,m
d

(x)i 8x 2 Rn

,

where ppp := (ppp
↵

)
↵2Nn

d

in Rr(d) is the vector of coe�cients of p. We denote the
degree of any polynomial p with d

p

.
• Let µ be a Borel measure on Rn. A vector y in Rr(d) is the vector of moments

of order up to d of µ if, for any ↵ 2 Nn

d

, the ↵th component of y is given by

y

↵

= µ(x↵) :=

Z

Rn

x

↵

µ(dx),

assuming that the integrals are well defined.

2.2. Stability and regularity properties of X. We now briefly review well-
known properties of X and a relevant drift condition used in the examples below.
Throughout this section we assume that G is an (n � `)-dimensional smooth
submanifold of Rn. For this to be the case, it is su�cient that the vectors
rg

1

(x),rg

2

(x), . . . ,rg

`

(x) form a linearly independent set, for each x in G, where
the g

i

’s are as defined in (1.4).
First, smoothness of the components of b and � implies that (1.1) has a unique

strong solution X, which is defined up to a stopping time ⌧1 [47]. The generator (or
Kolmogorov operator) A associated with (1.1) is the second order di↵erential operator

Ah(x) := hrh(x), b(x)i+ 1

2

⌦r2

h(x), a(x)
↵

=
n

X

i=1

b

i

(x)@
i

h(x) +
1

2

n

X

i,j=1

a

ij

(x)@
ij

h(x)

for h 2 C

2(G), x 2 G, and where a := ��

T denotes the di↵usion matrix of (1.1).
It is well known that if A is a hypoelliptic operator on C

2(G) (see [16]), then (1.1)
generates a strong Feller Markov process. This is the regularity property of X we
use in our examples below. Although this condition can be replaced with weaker ones
(e.g., X being a T-process [32]), such alternative conditions usually require more work
to establish in practice. The stability properties we require are summarized as follows.

Condition 2.1 (see [32, 33]). Suppose that the paths of the di↵usion X are
contained in G (that is, P({X

t

2 G 8 0  t  ⌧1}) = 1), and that either one of the
following conditions holds:

(i) The manifold G is compact.
(ii) (Drift condition) There exist a function u 2 C

2(G) and a constant c > 0 such
that for each q 2 R the sublevel set

{x 2 G : u(x)  q}
is compact and such that

Au(x)  �cu(x)

holds for all x in G except those in a compact subset of G.
Theorem 2.2 (see [32, 33]). Suppose that A is hypoelliptic on C

2(G) and that

Condition 2.1 holds. Then the following hold:

(i) The solution of (1.1) is globally defined, that is, P({⌧1 = 1}) = 1.
(ii) The SDE (1.1) has at least one stationary measure with support contained in

G.
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(iii) If Condition 2.1(i) holds, then for any measurable f and almost every sample

path t 7! X

t

(!), the limit (1.5) holds, where ⇡ 2 P has support contained in

G and depends on the starting position of the path, Z(!). Furthermore, (1.6)
holds.

(iv) If G is not compact but Condition 2.1(ii) holds, then ⇡(u) < 1 for any ⇡ 2 P
with support contained in G, and the same as in Theorem 2.2(iii) is true for

every measurable f such that

sup
x2G

✓ |f(x)|
1 + |u(x)|

◆

< 1.

Proof. In case (i), it is easy to argue that the solution is globally defined. In case
(ii), global existence of the solution follows from [33, Theorem 2.1]. The rest follows
from Theorems 3.4 and 8.1 in [32], plus Theorem 4.7 in [33] in the case of the drift
condition.

Remark (the ensemble averages). If, additionally to the premise of Theorem 2.2,
the semigroup generated by (1.1) is aperiodic [32], then the analogous statements to
Theorem 2.2(iii) and (iv) hold for the ensemble averages E [f(X

t

)]. In this case, we
have that

lim
t!1

E[f(X
t

)] =

Z

f(x) ⇡̃(dx),

where ⇡̃ 2 P depends on the law of the initial condition Z; see [32, Theorem 8.1].

2.3. A relationship between the generator of (1.1) and its stationary
measures. The following technical lemma is necessary for the development of the
algorithm presented in this paper.

An application of Itô’s formula shows that, if h 2 C

2(Rn), then

(2.1) D

h

t

:= h(X
t

)� h(X
0

)�
Z

t

0

Ah(X
s

)ds

is a local martingale. The generator A evaluated at function h and point x describes
the rate of change in time of the expected value of h(X

t

) conditioned on the event
{X

t

= x}. If ⇡ is the law of X
t

, then ⇡(Ah) describes the rate of change in time of
E[h(X

t

)]. It follows that if ⇡ is a stationary measure of (1.1), then the law of X
t

does
not change in time, and thus we would expect that ⇡(Ah) = 0. Unfortunately, for
technical reasons, this is not always the case (see [8] for counterexamples). However,
it is not di�cult to find su�cient conditions on h such that ⇡(Ah) = 0. The following
lemma gives one such condition specialized for polynomial functions h, which are the
focus of this paper. For a proof of the lemma, see Appendix A.

Lemma 2.3. Let ⇡ be a stationary measure of (1.1) whose moments of order d

exist and are finite. Let h be polynomial with degree d

h

 d�max
i,j

{d
b

i

, d

a

ij

}, where
b is the drift vector and a := ��

T

is the di↵usion matrix of (1.1). Then

⇡(Ah) = 0.

3. The algorithm. Our algorithm constructs a tractable outer approximation

C

d

f,G of the set Bd

f,G defined by (1.3). As shown below, the approximation we derive
is the image of a spectrahedron (a set defined by linear equalities and semidefinite
inequalities) through a linear functional. Finding the infimum and supremum of
C

d

f,G reduces to solving two SDPs, which can be e�ciently carried out using one of
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several high-quality solvers freely available. Since Bd

f,G ✓ C

d

f,G , the computed infimum

(supremum) is a lower (upper) bound of Bd

f,G .

To introduce our method, we first take a closer look at the set B

d

f,G from two

alternative perspectives. First, note that the set Bd

f,G defined in (1.3) is the image of
the set

Pd

G := {⇡ 2 P : ⇡ has finite dth order moments and support contained in G}
through the linear functional (on the vector space of signed measures) ⇡ 7! ⇡(f). It
is straightforward to check that, as a subset of the vector space of signed measures,
Pd

G is convex. Consequently, its image B

d

f,G is a (possibly unbounded) interval, which

is fully described by its supremum and infimum (leaving aside whether or not B

d

f,G
contains its endpoints).

Alternatively, since f is a polynomial (with vector of coe�cients fff), the set Bd

f,G
is the image of the set

Yd

G := {y 2 Rr(d): y is a vector of moments up to order d of a measure in Pd

G}

through the linear functional (on Rr(d)) y 7! hy,fffi . We now see some concrete exam-
ples of these sets.

Example 3.1. To introduce our ideas, we use an example for which there is an
extensive body of results. Consider the two-dimensional SDE

(3.1) dX

t

= �1

2
X

t

dt+



0 �1
1 0

�

X

t

dW

t

, X

0

= Z.

Applying Itô’s formula gives d ||X
t

|| ⌘ 0; hence, ||X
t

|| = ||X
0

|| for all t � 0. If the
initial condition Z takes values in the circle of radius R, S1

R

, then the paths of X
remain in S1

R

. Using Hörmander’s condition [16] it is easy to verify that, for each
R > 0, the generator A is a hypoelliptic operator on C

2(S1
R

). By compactness of S1
R

,
Condition 2.1(i) is satisfied, and Theorem 2.2 states that, for each R > 0, (3.1) has at
least one stationary measure with support contained in S1

R

. It is also well known [21]
that for each R, (3.1) has only one such measure ⇡

R

, which is the uniform distribution
on S1

R

. Therefore, for a given R and f

(3.2) ⇡

R

(f) =
1

2⇡

Z

2⇡

0

f(R cos(✓), R sin(✓))d✓.

Note that if R = 0, then X ⌘ 0; hence ⇡

0

:= �

0

, the Dirac measure at zero, is also a
stationary measure of (3.1). Consequently, for any d,

Pd

S1
R

= {⇡
R

}, Pd

R2 = {⇡
R

: R � 0}, Pd

G = ; 8 other varieties G.

By the symmetry of the measure ⇡

R

, it is easy to show that

y

(↵1,↵2)
:= ⇡

R

(x↵1
1

x

↵2
2

) =

8

>

>

<

>

>

:

R

2

⇡

3/2 2|↵|

|↵|! � � 1�↵1

2

�

�
�

1�↵2

2

�

�
⇣

1�|↵|
2

⌘ if ↵
1

and ↵

2

are even,

0 otherwise,

where �(·) denotes the gamma function. It is now straightforward to describe the sets
Yd

G . For instance, consider the sets containing the r(2)-dimensional vectors of moments
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up to order d = 2 defined as y := (y
(0,0)

, y

(1,0)

, y

(0,1)

, y

(2,0)

, y

(1,1)

, y

(0,2)

) 2 R6. Then
we have

Y2

S1
R

=

⇢✓

1, 0, 0,
R

2

2
, 0,

R

2

2

◆�

and Y2

R2 = {1}⇥ {0}⇥ {0}⇥ [0,1)⇥ {0}⇥ [0,1).

Using the above descriptions of the sets Pd

G together with the map ⇡ 7! ⇡(f) or,
alternatively, the sets Yd

G together with the map y 7! hy,fffi, we can deduce any
projection of interest Bd

f,G . For instance,

for f

1

(x) = x

1

x

2

, B

d

f1,S1
R

= {0} and B

d

f1,R2 = {0},

for f

2

(x) = x

2

2

+ 1, B

d

f2,S1
R

=

⇢

R

2

2
+ 1

�

and B

d

f2,R2 = [1,1),

for f

3

(x) = x

2

� 2x2

1

+ 3, B

d

f3,S1
R

=
�

3�R

2

 

and B

d

f3,R2 = (�1, 3].

In the above example, we could obtain the sets Pd

G , Yd

G and their projections Bd

f,G
directly from (1.1). However, this is di�cult in general. Indeed, results from real
algebraic geometry show that optimizing over the cone of vectors whose components
are moments of a measure is an NP-hard problem [25]. We believe that, except
for trivial cases, the same holds for Yd

G which is a subset of this cone. Instead, we
construct here a spectrahedral outer approximation Od

G of the set Yd

G . Optimizing
over Od

G consists of solving an SDP, a polynomial-time problem. Explicitly, Od

G is

a subset of Rr(d) defined by linear equalities and semidefinite inequalities such that
Yd

G ✓ Od

G . Because the outer approximation is a convex set, its image through the
linear functional y 7! hy,fffi is an interval that contains Bd

f,G :

(3.3) B

d

f,G ✓ C

d

f,G :=
�hy,fffi : y 2 Od

G
 

.

Hence our task is reduced to obtaining the outer approximation Od

G . We do this
in two steps:

• In section 3.1, we use Lemma 2.3 to construct a set of linear equalities satisfied
by the moments of any stationary measure of (1.1).

• In section 3.2, we construct a set of linear equalities and a semidefinite in-
equality satisfied by the moments of any unsigned measure with support on
G.

The outer approximation Od

G then consists of the set of vectors in Rr(d) that satisfy
both of the above.

3.1. Linear equalities satisfied by the moments of stationary measures.
By assumption, both the drift vector and the di↵usion coe�cients in (1.1) are poly-
nomials. Therefore, if h is a polynomial, Ah is also a polynomial. Suppose that y

belongs to Yd

G , and choose any measure ⇡ in Pd

G that has y as its vector of moments
of order d. From Lemma 2.3, if d � dA := max{d

b

i

, d

a

ij

}, then

hy,Ah

AhAhi =
X

�2Nn

d

(Ah)

(Ah)

(Ah)

�

y

�

=

X

�2Nn

d

(Ah)

(Ah)

(Ah)

�

⇡(x

�

) = ⇡

⇣ X

�2Nn

d

(Ah)

(Ah)

(Ah)

�

x

�

⌘
= ⇡(Ah) = 0 8h 2 R[x]

d�dA .

Since {x↵ : ↵ 2 Nn

d�dA
} spans R[x]

d�dA , checking that y satisfies the above is equiv-
alent to checking that

(3.4) hy,Ax

↵Ax

↵Ax

↵i = 0 8↵ 2 Nn

d�dA .
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In words, every vector in Yd

G satisfies the r(d� dA) linear equalities defined by (3.4).
At this point, it is worth remarking that the conditions on h and ⇡ in Lemma 2.3

are only su�cient but not necessary for ⇡(Ah) = 0 to hold, as the following example
shows.

Example 3.2. Let � be a positive even integer, and consider the one-dimensional
SDE

(3.5) dX

t

= (1� �X

t

)dt+
p
2X

t

dW

t

, X

0

= Z.

It is straightforward to verify that Condition 2.1(ii) holds with u(x) := x

� and G := R
and to use Hörmander’s condition to establish that the generator of (3.5) is hypoel-
liptic on C

2(R). From Theorem 2.2, it follows that (3.5) has at least one stationary
measure; that all of its stationary measures have moments up to order �; and that
(1.5) holds for any f 2 R[x]

�

. From (3.4), we deduce that given the moments of any
such stationary measure y 2 R�+1, then

(3.6) k (y
k�1

� (�+ 1� k)y
k

) = 0, k = 1, 2, . . . ,�� 2.

We are only interested in solutions to these equations that are moments of a prob-
ability measure. Hence we can append the normalization y

0

= 1 and solve (3.6) to
obtain

(3.7) y

k

=
k�1

Y

j=0

1

�� j

.

In fact, (3.7) holds for k = 1, . . . ,� (instead of only for k = 1, . . . ,� � 2). This
is easily deduced by solving the Fokker–Planck equation associated with (3.5) and
showing that the density of a stationary measure of (3.5) is given by the inverse
Gamma distribution 1

�!

x

���2

e

� 1
x . Indeed, the moments of this distribution are given

by (3.7) for k = 1, . . . ,�. Additionally employing the Support Theorem of Stroock
and Varadhan [2, Theorem 6.6], we can conclude that this is the only stationary
measure of (3.5). In conclusion, the moments of any stationary measure of (3.5)
satisfy (3.6) for k = 1, . . . ,�, although Lemma 2.3 only implies that they are satisfied
for k = 1, . . . ,�� 2.

For most SDEs, y
0

= 1 together with the equations (3.4) defines a set of under-
determined linear equations, as the following example illustrates.

Example 3.3. Consider the SDE

(3.8) dX

t

= (1� 2X3

t

)dt+
p
2X

t

dW

t

, X

0

= Z.

It is straightforward to verify that Condition 2.1(ii) is satisfied with u(x) := e

x

2
/2 and

G := R, and to use Hörmander’s condition to establish that the generator of (3.8) is
hypoelliptic on C

2(R). Theorem 2.2 then establishes that (3.8) has globally defined
solutions; that it has at least one stationary measure; that all stationary measures
have all moments finite; and that (1.5) holds for any f 2 R[x].

Equations (3.4) in this case read

k (y
k�1

+ (k � 1)y
k

� 2y
k+2

) = 0, k = 1, 2, . . . .

By appending y

0

= 1 to the above, we can only solve for y

3

= y

0

/2 = 1/2. The
set of equations formed by the first k̃ � 2 conditions (together with y

0

= 1) is
underdetermined, and no other moment can be solved for.
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3.2. Moment conditions. That the moment equations (3.4) are underdeter-
mined in the above example is essentially the same issue that moment closure meth-

ods attempt to address (see [39, section 3.4] for a review). These methods “close” the
equations (3.4) by heuristically removing the dependence of the first few equations
on higher moments. We do not follow this approach here. Instead, we overcome this
issue by exploiting the fact that we are not interested in all of the solutions to the
equations (3.4), but only in those that are the vector of moments of a probability
measure with support contained in G. There are various tractable conditions, known
as moment conditions, which are satisfied by the vector of moments of any measure
with support contained in G, but not in general by an arbitrary vector of real num-
bers. For example, trivially, the even moments of an unsigned Borel measure on Rn

must be nonnegative. We now describe in more detail the moment conditions we use
in the rest of this paper.

Let ⇡ be a measure with vector of moments y of order d, and let g be a polynomial
of degree d. If ⇡ has support contained in {x 2 Rn : g(x) = 0}, then

hy,gggi =
X

↵2Nn

d

g

g

g

↵

y

↵

=
X

↵2Nn

d

g

g

g

↵

⇡(x↵) = ⇡

⇣

X

↵2Nn

d

g

g

g

↵

x

↵

⌘

= ⇡(g) = 0.

By the definition (1.4), g
j

is zero everywhere in G for all j = 1, 2, . . . , `. Thus hy,g
j

h

g

j

h

g

j

hi =
0 for every j and h 2 R[x]

d�d

g

j

. Since {x↵ : ↵ 2 Nn

d�d

j

} spans R[x]
d�d

j

, checking

that y satisfies hy,g
j

h

g

j

h

g

j

hi = 0 for any given h 2 R[x]
d�d

g

j

is equivalent to checking that

y satisfies the following r(d� d

g

j

) equations:

(3.9) hy,g
j

x

↵

g

j

x

↵

g

j

x

↵i = 0 8↵ 2 Nn

d�d

g

j

.

To these linear equations, we append a semidefinite inequality that stems from the
fact that probability measures are unsigned. Let h be any polynomial of degree
s(d) := bd/2c. Then it follows that

(h(x))2 =
⌦

m

s(d)

(x),hhh
↵

2

=
⌦⌦

m

s(d)

(x),hhh
↵

m

s(d)

(x),hhh
↵

=
⌦

(m
s(d)

(x)⌦m

s(d)

(x))hhh,hhh
↵

.

Since h

2 is a nonnegative function, we have that
(3.10)

0  ⇡(h2) = ⇡

⇣

⌦

(m
s(d)

⌦m

s(d)

)hhh,hhh
↵

⌘

=
⌦

⇡

�

m

s(d)

⌦m

s(d)

�

h

h

h,h

h

h

↵

=
⌦

M

s(d)

(y)hhh,hhh
↵

,

where the moment matrix

M

s(d)

(y) := ⇡(m
s(d)

⌦m

s(d)

) 2 Rr(s(d))⇥r(s(d))

denotes the elementwise integration of the matrix m

s(d)

⌦m

s(d)

. Note that the entries
of the moment matrix are a function of the moments of ⇡:

�

M

s(d)

(y)
�

↵�

:= y

↵+�

8↵,� 2 Nn

s(d)

.

Since (3.10) holds for all h 2 R[x]
s(d)

, M
s(d)

(y) is positive semidefinite:

(3.11) M

s(d)

(y) ⌫ 0.

We then combine (3.4), (3.9), (3.11), and the normalization y

0

= 1 to obtain our outer
approximation:

(3.12) Od

G :=

8

>

>

<

>

>

:

y 2 Rr(d) :

y

0

= 1
hy,Ax

↵Ax

↵Ax

↵i = 08↵ 2 Nn

d�dAhy,g
j

x

↵

g

j

x

↵

g

j

x

↵i = 08↵ 2 Nn

d�d

g

j

, 8j = 1, . . . , `

M

s(d)

(y) ⌫ 0

9

>

>

=

>

>

;

◆ Yd

G .
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From (3.3), it follows that the projection C

d

f,G =
�hy,fffi : y 2 Od

G
 

contains B

d

f,G .
Therefore, we have the following bounds:

(3.13) ⇢

d

f,G := inf Cd

f,G  inf Bd

f,G , supBd

f,G  supCd

f,G =: ⌘d
f,G .

Computing ⇢

d

f,G and ⌘

d

f,G can be e�ciently done by solving two SDPs with r(d) vari-
ables each.

Example 3.4. Consider again SDE (3.8) from Example 3.3, whose stationary mea-
sures have moments of all orders. Hence

B

1

x,R = B

2

x,R = · · · = B

1
x,R.

To find bounds on the mean of the stationary measures of the SDE we construct the
outer approximations of B1

x,R, as described above. The first few such approximations
are

C

1

x,R =
�

y

1

: y 2 R2

, y

0

= 1, y

0

� 0
 

,

C

2

x,R =

⇢

y

1

: y 2 R3

, y

0

= 1,



y

0

y

1

y

1

y

2

�

⌫ 0

�

,

C

3

x,R =

⇢

y

1

: y 2 R4

, y

0

= 1,



y

0

y

1

y

1

y

2

�

⌫ 0

�

,

C

4

x,R =

8

<

:

y

1

: y 2 R5

,

y

0

= 1,
y

0

� y

3

= 0,

2

4

y

0

y

1

y

2

y

1

y

2

y

3

y

2

y

3

y

4

3

5 ⌫ 0

9

=

;

,

C

5

x,R =

8

<

:

y

1

: y 2 R6

,

y

0

= 1,
y

0

� y

3

= 0,
y

1

+ y

2

� y

4

= 0,

2

4

y

0

y

1

y

2

y

1

y

2

y

3

y

2

y

3

y

4

3

5 ⌫ 0

9

=

;

,

C

6

x,R =

8

>

>

<

>

>

:

y

1

: y 2 R7

,

y

0

= 1,
y

0

� y

3

= 0,
y

1

+ y

2

� y

4

= 0,
y

2

+ 2y
3

� y

5

= 0,

2

6

6

4

y

0

y

1

y

2

y

3

y

1

y

2

y

3

y

4

y

2

y

3

y

4

y

5

y

3

y

4

y

5

y

6

3

7

7

5

⌫ 0

9

>

>

=

>

>

;

.

Since a matrix is positive semidefinite if and only if all its principal minors are non-
negative, it follows trivially that C

1

x,R = C

2

x,R = C

3

x,R = R. Hence optimizing over

these sets yields uninformative bounds: ⇢1
x,R = ⇢

2

x,R = ⇢

3

x,R = �1 and ⌘

1

x,R = ⌘

2

x,R =

⌘

3

x,R = 1. The higher order approximations d > 4, however, lead to nontrivial bounds

(Table 1). To obtain the endpoints of the higher order approximations C4

x,R, C
5

x,R, . . .
we used the SDP-solver SDPT3.

Table 1
Bounds on the mean of the stationary measures of the SDE (3.8). In total, 40 bounds were

computed, taking a total CPU time of 10.3 seconds, averaging 0.26 seconds per bound.

d  4 5 6 7 8 9 10 11 12 13
⇢

d

x,R �1 0.4133 0.4134 0.6202 0.6202 0.6365 0.6365 0.6376 0.6377 0.6377

⌘

d

x,R 1 0.8283 0.8282 0.6758 0.6757 0.6495 0.6495 0.6494 0.6494 0.6428

d 14 15 16 17 18 19 20 21 22 23
⇢

d

x,R 0.6377 0.6377 0.6377 0.6377 0.6377 0.6377 0.6377 0.6377 0.6377 0.6377

⌘

d

x,R 0.6428 0.6404 0.6404 0.6402 0.6402 0.6389 0.6389 0.6387 0.6387 0.6384
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For many SDEs, like those in Examples 3.2 and 3.3, all stationary measures have
moments of some order d. If G is compact, d = 1; otherwise, such a d can be found
by verifying a drift condition like the one in Condition 2.1. In such cases, Bk

f,G = B

d

f,G
for all d

f

 k  d. However, as Example 3.4 shows, this does not hold in general for
our outer approximations. Instead, we only have that Ck

f,G ◆ C

d

f,G for all d
f

 k  d.

Therefore {⇢k
f,G : d

f

 k  d} and {⌘k
f,G : d

f

 k  d} are monotone nondecreasing

(resp., nonincreasing) sequences of lower (resp., upper) bounds on B

d

f,G . In practice,

the best bounds are obtained by solving for the infimum/supremum of Ck

f,G for the
largest d

f

 k  d that can be handled computationally by the solver.

4. Applications. We now consider three applications of the algorithm. To com-
pute the bounds presented in this section we used the modeling package GloptiPoly 3
[13] to construct the SDPs corresponding to the outer approximations (3.12) and the
solver SDPT3 [46] to solve the SDPs. All computations were carried out on a desktop
computer with a 3.4 GHz processor and 16GB of memory running Ubuntu 14.04.

4.1. Langevin di↵usions, numerical integration, and an inference prob-
lem. The Metropolis Adjusted Langevin Algorithm (MALA) [37] is a popular Markov
chain Monte Carlo algorithm (MCMC). MALA can be used to estimate integrals with
respect to measures of the form

(4.1) ⇡

v

(dx) :=
e

v(x)

Z

v

dx,

where dx denotes the Lebesgue measure on Rn, v : Rn ! R is a smooth confining
potential, and Z

v

is the normalizing constant Z
v

:=
R

Rn

e

v(x)

dx. It is well known that
⇡

v

is the unique stationary measure of the Langevin di↵usion

(4.2) dX

t

= rv(X
t

) dt+
p
2 dW

t

, X

0

= Z.

The SDE (4.2) has globally defined solutions, and, regardless of the initial condition,
the limit (1.5) holds with ⇡ := ⇡

v

for all ⇡
v

-integrable functions f [37]. MALA pro-
ceeds by discretizingX, adding a Metropolis accept-reject step to preserve stationarity
of ⇡

v

, and simulating the resulting chain. The time averages of the simulation then
converge to the desired average [37].

Since ⇡

v

is the unique stationary measure of (4.2), we can use our algorithm to
directly compute bounds on ⇡

v

(f) when both f and v are polynomials, circumventing
any discretization or simulation. We illustrate this idea with the following simple
Bayesian inference problem.

Example 4.1. The scalar noisy time-varying recurrence equation

(4.3) z

k

= p

1

z

k�1

+ p

2

z

k�1

1 + z

2

k�1

+ p

3

cos(1.2(k � 1)) + ⇠

k

is often used to benchmark parameter and state estimation algorithms [9, 3]. For
simplicity, we assume that the state {z

k

: k = 1, . . . , N} is observable, and we focus on
the problem of estimating the parameters p

1

, p
2

, and p

3

. The additive noise {⇠
k

: k =
1, . . . , N} is typically taken to be an independent and identically distributed (i.i.d.)
sequence of normally distributed random variables. Since Gaussianity of random
variables is not important in our algorithm, we instead choose {⇠

k

: k = 1, . . . , N} to
be an i.i.d. sequence of random variables with bimodal law

µ

⇠

(dx) := ⇡

u

⇠

(dx) with u

⇠

(x) = 3x2 � x

4

,
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where ⇡

u

⇠

is as in (4.1); see Figure 1(a). Choosing parameters p := (p
1

, p

2

, p

3

) =
(0.5, 2, 1) and z

0

= 2, we use (4.3) to generate N samples z := {z
1

, z

2

, . . . , z

N

}; see
Figure 1(b). The inference problem is to use the generated samples z and the initial
condition z

0

to estimate the parameters p.
Taking a Bayesian perspective, we first choose a prior distribution µ

0

over the
parameters, and then we extract information from the posterior distribution µ

p|z; see
[42]. Our algorithm can be used to this end if the prior µ

0

is of the form (4.1) with a
polynomial potential:

µ

0

(dx) := ⇡

u0(dx) and u

0

is a polynomial.

From Bayes’s formula, the posterior also takes the form (4.1):

µ

p|z(dx) = ⇡

v

(dx) with v(p)

=
N

X

k=1

u

⇠

✓

z

k

�
✓

p

1

z

k�1

+ p

2

z

k�1

1 + z

2

k�1

+ p

3

cos (1.2(k � 1))

◆◆

+ u

0

(p).

We can then use our algorithm to yield lower and upper bounds on the posterior
means µ

p|z(p1), µp|z(p2), and µ

p|z(p3), and upper bounds on the total variance

var
p|z = µ

p|z
�

(p
1

� µ

p|z(p1))
2

�

+ µ

p|z
�

(p
2

� µ

p|z(p2))
2

�

+ µ

p|z
�

(p
3

� µ

p|z(p3))
2

�

of the posterior distribution µ

p|z. For simplicity, we chose our prior µ

0

to be a unit

variance zero mean normal distribution, i.e., u

0

(p) := � ||p||2 /2. The results are
shown in Figure 1(c),(d). For N � 15 samples, we obtain small upper bounds on
the total variance (two orders of magnitude smaller than the lower bounds on the
posterior means). For this reason, we expect the posterior distribution to resemble a
Dirac measure at the vector of posterior means, indicating that the posterior means are
appropriate estimators of the parameters (as confirmed in Figure 1(c)), thus solving
our inference problem.

It is important to remark that Example 4.1 can be solved equally well with MCMC
methods—indeed, MCMC algorithms scale better than ours with the dimension of the
target measure ⇡

v

. However, our alternative approach presents some attractive fea-
tures: it is fast (see caption of Figure 1) and simple to implement; no tuning of the
algorithm is required (e.g., choosing the discretization step size in MALA); and it de-
livers deterministic bounds on the integrals of interest instead of stochastic estimates
(hence avoiding issues concerning the convergence of MCMC simulations). Our algo-
rithm can also provide useful information in situations where MCMC methods face
di�culties, in particular when the target distribution has several isolated modes. In
such cases, MCMC algorithms get stuck at one of the modes and do not explore the
rest of the target distribution. Our numerical observations suggest that our algorithm
is also a↵ected by the presence of isolated modes, producing a large gap between the
upper and lower bounds for the desired integrals (since each bound is stuck at a di↵er-
ent mode). The presence of such large gaps can alert the practitioner to the existence
of isolated modes, something which is often not obvious for target distributions of
dimension three or greater. Methods designed to deal with isolated modes, such as
simulated-tempering [3], can then be used instead of a standard Metropolis–Hastings
MCMC method.
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Fig. 1. (a) The density of the noise ⇠. (b) Sample path of length N = 250 generated to estimate
the parameters p. The noise was generated by inverting the cdf of µ

⇠

numerically (uniform grid on
[�10, 10] with step size of 10�4) and drawing independent samples from a uniform [0, 1] distribution.
(c) Upper and lower bounds on the means µ

p|z

(p
1

), µ
p|z

(p
2

), µ
p|z

(p
3

) of the posterior distribution
µ

z|p

(solid lines) plotted against the number of samples N = 10, 12, . . . , 250 of z used to generate the
posterior. The actual values of the parameters used to generate the samples are shown with dashed
lines. The upper and lower bounds were computed by solving (3.13) using d = 5 and the appropriate
objective f(x) = x

1

, x

2

, or x

3

. The gap between the upper and lower bounds was always smaller than
10�2, and hence the upper and lower bounds are indistinguishable in the plot. (d) Upper bounds on
the total variance of the posterior distribution, var

p|z

= µ

p|z

(p2
1

+p2
2

+p2
3

)�µ

p|z

(p
1

)2�µ

p|z

(p
2

)2�
µ

p|z

(p
3

)2. These were obtained by computing upper bounds on µ

p|z

(p2
1

+ p

2

2

+ p

2

3

) (solving (3.13)

with d = 5 and f(x) = x

2

1

+x

2

2

+x

2

3

) and combining these bounds with the lower bounds computed for
the posterior means. In total, 847 bounds were computed, taking a total CPU time of 720 seconds,
averaging 0.85 seconds per bound.

4.2. Lyapunov exponents of linear SDEs driven by multiplicative white
noise. In practical applications involving systems of linear ODEs, we are interested
in situations where the parameters are perturbed by Gaussian white noise. In those
cases, we obtain the following class of linear SDEs:

(4.4) dX(t) = AX(t) dt+
m

X

i=1

B

i

X(t) dW
i

(t), X(0) = Z,

where A 2 Rn⇥n, B
i

2 Rn⇥n, and W

i

:= {W
i

(t) : t � 0} are m independent standard
Brownian motions on R. It is well known that (4.4) has globally defined solutions.
Furthermore, there exists a jointly continuous process {Xx

t

: t � 0, x 2 Rn} such that
X

Z := {XZ

t

:= X

·
t

�Z : t � 0} is the unique solution of (4.4) (see [17, Theorem 21.3]).
In 1967, Khas’minskii [21] made the following observation. Applying Itô’s formula

twice, he found that the projection of XZ

t

onto the unit sphere, ⇤Z

t

:= X

Z

t

/

�

�

�

�

X

Z

t

�

�

�

�,
satisfies the SDE

(4.5) d⇤Z(t) = u

0

(⇤Z(t))dt+
m

X

i=1

u

i

(⇤Z(t))dW
i

(t), ⇤Z(0) = Z/ ||Z|| ,

where u
0

(x) := Ax�hx,Axix�Pm

i=1

( 1
2

||B
i

x||2 x+ hx,B
i

xiB
i

x� 3

2

hx,B
i

xi2 x), and
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u

i

(x) := B

i

x� hx,B
i

xix. In addition, �Z

t

:= ln
�

�

�

�

X

Z

t

�

�

�

� satisfies

(4.6) �Z(t) = ln ||Z||+
Z

t

0

Q(⇤Z(s))ds+
m

X

i=1

Z

t

0

⌦

⇤Z(s), B
i

⇤Z(s)
↵

dW

i

(t),

where Q(x) := hx,Axi + 1

2

P

m

i=1

||B
i

x||2 � hx,B
i

xi2 . It is not di�cult to argue [20,
Lemma 6.8] that

(4.7) lim
t!1

1

t

 

m

X

i=1

Z

t

0

⌦

⇤Z(s), B
i

⇤Z(s)
↵

dW

i

(t)

!

= 0, P-almost surely.

Suppose that the generator of ⇤Z := {⇤Z

t

: t � 0} is hypoelliptic on C

2(Sn�1),
where Sn�1 := {x 2 Rn : ||x|| = 1} denotes the unit sphere in Rn. Since ⇤Z ,
by definition, takes values in Sn�1, Theorem 2.2 tells us that (4.5) has at least one
stationary measure and, together with (4.6) and (4.7), that for P-almost every sample
path t 7! X

Z(t) there exists a stationary measure ⇡ of (4.5) such that

(4.8) lim
t!1

�Z(t)

t

= lim
t!1

1

t

Z

t

0

Q

�

⇤Z(s)
�

ds = ⇡(Q).

Typically, the above integral is estimated by choosing an appropriate discretization
scheme for (4.4), simulating the resulting chain, and computing the corresponding
time average [44]. We instead exploit the fact that u

0

, . . . , u

m

and Q are all polyno-
mials and apply our algorithm to (4.6) to compute bounds for ⇡(Q). In particular,
for any d � d

Q

we have that

⇢

d

Q,Sn�1  lim
t!1

�Z(t)

t

 ⌘

d

Q,Sn�1 , P-almost surely,

where ⇢

d

Q,Sn�1 and ⌘

d

Q,Sn�1 are as in (3.13) with notation adapted to (4.5). Note that

⇢

! 2 ⌦ : lim
t!1

�Z

t

(!)

t

< 0

�

✓
⇢

! 2 ⌦ : lim sup
t!1

�

�

�

�

X

Z

t

(!)
�

�

�

� = 0

�

,

⇢

! 2 ⌦ : lim
t!1

�Z

t

(!)

t

> 0

�

✓
n

! 2 ⌦ : lim inf
t!1

�

�

�

�

X

Z

t

(!)
�

�

�

� = 1
o

,

which implies that

⌘

d

Q,Sn�1 < 0 ) P
✓⇢

lim sup
t!1

�

�

�

�

X

Z

t

�

�

�

� = 0

�◆

= 1 for any initial condition Z,

⇢

d

Q,Sn�1 > 0 ) P
⇣n

lim inf
t!1

�

�

�

�

X

Z

t

�

�

�

� = 1
o⌘

= 1 for any initial condition Z;

i.e., the equilibrium solution X

0 ⌘ 0 of (4.4) is almost surely asymptotically stable
if ⌘d

Q,Sn�1 < 0 and almost surely asymptotically unstable if ⇢d
Q,Sn�1 > 0. Therefore,

our algorithm applied to (4.5) yields a su�cient test for the asymptotic stability or
instability of (4.4). The method also yields a necessary test for asymptotic stability
in the following sense.

Theorem 4.2. Suppose that the generator of ⇤Z

is hypoelliptic on C

2(Sn�1). Let

�(Z) := lim
t!1

log
�

�

�

�

X

Z

t

�

�

�

�

t

, �� := inf
Z

�(Z), �

+

:= sup
Z

�(Z),
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where the infimum and supremum are taken over the set of initial conditions Z that

are Borel measurable random variables on Rn

. For su�ciently large d,

⇢

d

Q,Sn�1 > �1, ⌘

d

Q,Sn�1 < 1.

Furthermore,

lim
d!1

⇢

d

Q,Sn�1 = ��, lim
d!1

⌘

d

Q,Sn�1 = �

+

.

Proof. Let A denote the generator of ⇤Z and not of XZ . The theorem is proved
only for the lower bounds ⇢d

Q,Sn�1 . The proof for the upper bounds is identical. The
proof proceeds in three steps:

1. We show that the set of limits

S := {�(Z) : Z is a Borel measurable random variable on Rn}

is the same as the set B
Q,Sn�1 := B

1

Q,Sn�1 = · · · = B

1
Q,Sn�1 .

2. We show that the equalities (3.4) fully characterize the stationary measures
of (4.5) in the sense that if ⇡ is a Borel probability measure with support
contained in Sn�1 such that

(4.9) ⇡(Ax

↵) = 0 8↵ 2 Nn

,

then ⇡ is a stationary measure of (4.5).
3. We then only have to apply Theorem 4.3 in [25], which shows that, for large

enough d, ⇢d
Q,Sn�1 > �1 and

lim

d!1

⇢

d

Q,Sn�1

= inf

⇢
⇡(Q) :

⇡ is a Borel probability measure with support contained in Sn�1

that satisfies ⇡(Ax

↵

) = 0 8↵ 2 Nn

�
.

Then (3.4) fully characterizes the stationary measures of (4.5), which implies
that

lim
d!1

⇢

d

Q,Sn�1 = inf B
Q,Sn�1 = inf S = ��.

For the detailed proof, see Appendix B.

Example 4.3. We exemplify the use of our algorithm in computing Lyapunov ex-
ponents through a classic example from [21]. The question of whether an unstable
linear system of ODEs could be stabilized by physically realizable multiplicative noise
(i.e., multiplicative noise in the sense of Stratonovich) received ample attention in
the 1960s. It was shown that this cannot be achieved in one-dimensional systems,
and it was hypothesized that it could not be achieved in higher dimensional systems
either [30]. Khas’misnkii [21] disproved this hypothesis with the following counterex-
ample:

(4.10)
dX

1

(t) = c

1

X

1

(t) � dt+ � (X
1

(t) � dW
1

(t) +X

2

� dW
2

(t)) ,
dX

2

(t) = c

2

X

2

(t) � dt+ � (X
2

(t) � dW
1

(t)�X

1

� dW
2

(t)) ,

where c
1

> 0, c
2

< 0, � > 0, and �d denotes the Stratonovich di↵erential. For this two-
dimensional SDE, the projection (4.5) lives in a one-dimensional manifold (the unit
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circle), and thus by changing to polar coordinates one can find analytical expressions
for its stationary measures. In this case there is a unique stationary measure and

(4.11) ⇡(Q) =

R

2⇡

0

⇣

�

2

2

+ c

1

cos2(�) + c

2

sin2(�)
⌘

e

(c1�c2)

�

2 cos

2
(�)

d�

R

2⇡

0

e

(c1�c2)

�

2 cos

2
(�)

d�

.

Khas’minskii then argued that one can always find a su�ciently large (in absolute
value) c

2

and � so that ⇡(Q) < 0, i.e., so that (4.10) is stable.
Instead, we can verify Khas’minskii’s findings for given c

1

, c
2

, and � by solving
for the bounds (3.13). As an example, we analyzed the system (4.10) with c

1

= 1
and c

2

= �30. From the bounds presented in Figure 2, we conclude that, for these
parameters, (4.10) is stable for 3 . � . 3.7 and unstable otherwise.

Fig. 2. Upper and lower bounds on the Lyapunov exponents of the SDE (4.10) with c

1

= 1
and c

2

= �30 computed for � = 0.2, 0.3, . . . , 4.5 by solving (3.13) with d = 16. The gap between the
lower and the upper bounds was always smaller than 10�3, and hence the two sets of bounds are
indistinguishable in the plot. In total 88 bounds were computed for a total CPU time of 364 seconds,
averaging 4.1 seconds per bound.

In Example 4.3, we could have evaluated (4.11) numerically instead of computing
(3.13). However, such analytical expressions for stationary measures of (4.5) are not
available in higher dimensions. As explained in [1] (see also [48]), “The direct use of
Khas’minskii’s method to higher dimensional systems has not met with much success
because of the di�culty of studying di↵usion processes occurring on surfaces of unit
hyperspheres in higher dimensional Euclidean spaces.” Our approach complements
Khas’minskii’s procedure: it is simple to implement; the number of stationary mea-
sures of (4.5) is not a limitation; and the fact that the measures have support on the
unit sphere is an advantage instead of a disadvantage, as Theorem 4.2 shows.

4.3. Piecewise polynomial averages, a noisy nonlinear oscillator, and
structural reliability problems. Our algorithm can be extended to bound sta-
tionary averages ⇡(f) where f is a piecewise polynomial of the type

(4.12) f =
N

X

i=1

f

i

1K
i

.

Here f

i

are polynomials, 1
A

is the indicator function of set A, and K
i

are N disjoint
sets in G defined by

(4.13) K
i

:=
�

x 2 G : pi
j

(x) = 0, j = 1, . . . , J
i

, q

i

k

(x) � 0, k = 1, . . . ,K
i

 

.
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This type of extension was first discussed in [24] and has been considered in [25, 27, 7].
Many stationary averages of interest can be written in the above form. For instance,
if f

i

:= 1 for all i, then ⇡(f) = ⇡([
i

K
i

) is the probability that event [
i

K
i

occurs.

4.3.1. Extension of the algorithm. We follow here arguments similar to those
presented in [25, 27, 7]. Let ⇡ be a stationary measure of (1.1) with support in G and
with moments of order d. Let ⇡

i

be the restriction of ⇡ to set K
i

, and let ⇡
0

denote
the restriction to Kc := G\[

i

K
i

, i.e., to the complement in G of the union of all K
i

s.
Clearly,

⇡ =
N

X

i=0

⇡

i

.

Let y

0

, y

1

, . . . , y

N 2 Rr(d) denote the (N + 1) vectors of moments of ⇡
0

,⇡

1

, . . . ,⇡

N

,
respectively. From the definition (4.12) it follows that

⇡(f) =
N

X

i=1

⇡

i

(f
i

1K
i

) =
N

X

i=1

⇡

i

(f
i

) =
N

X

i=1

⌦

y

i

, f

i

f

i

f

i

↵

,

assuming that d
f1 , . . . , dfN

 d. The normalization condition takes the form

(4.14)
N

X

i=0

y

i

0

= 1.

Similarly to (3.4), the proof of Lemma 2.3 tells us that the stationarity of ⇡ implies
that

(4.15)

*

N

X

i=0

y

i

,Ax

↵Ax

↵Ax

↵

+

= 0 8↵ 2 Nn

d�dA .

The vectors of moments y

i 2 Rr(d) also fulfill similar conditions to (3.9) and (3.10),
in particular,

(4.16)
⌦

y

i

, g

j

x

↵

g

j

x

↵

g

j

x

↵

↵

= 0 8↵ 2 Nn

d�d

g

j

, 8j = 1, . . . , `, 8i = 0, . . . , N,

(4.17) M

s(d)

(yi) ⌫ 0 8i = 0, . . . , N.

Furthermore, the definition (4.13) of the sets K
i

leads to two additional sets of
conditions. First, the vectors of moments yi 2 Rr(d) fulfill

(4.18)
⌦

y

i

, p

i

j

x

↵

p

i

j

x

↵

p

i

j

x

↵

↵

= 0 8↵ 2 Nn

d�d

p

i

j

, 8j = 1, . . . , J
i

, 8i = 1, . . . , N.

Second, using arguments similar to those leading to (3.10), we obtain additional mo-
ment conditions. Let q be a polynomial that is nonnegative on K

i

, and p is any
polynomial of degree s(d� d

q

). Then we have

q(x)(p(x))2 =
⌦

(q(x)m
s(d�d

q

)

(x)⌦m

s(d�d

q

)

(x))ppp,ppp
↵

.

Since ⇡

i

has support in K
i

,

(4.19) 0  ⇡

i

(q p2) =
⌦

⇡

i

(q m
s(d�d

q

)

⌦m

s(d�d

q

)

)ppp,ppp
↵

=
⌦

M

s(d�d

q

)

(✓
q

y

i)ppp,ppp
↵

,
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where ✓

q

: Rr(d) ! Rr(d�d

q

) is the shift operator (✓
q

y)
↵

=
P

�2Nn

d

q

q

q

q

�

y

↵+�

, and the

localizing matrix

M

s(d�d

q

)

(✓
q

y

i) := ⇡

i

(q m
s(d�d

q

)

⌦m

s(d�d

q

)

) 2 Rs(d�d

q

)⇥s(d�d

q

)

is the elementwise integration of the matrix q m

s(d�d

q

)

⌦m

s(d�d

q

)

. Since (4.19) holds
for all p 2 R[x]

s(d�d

q

)

, the localizing matrix M

s(d�d

q

)

(✓
q

y) is positive semidefinite.
From the definition (4.13), qi

k

is nonnegative on K
i

; hence we obtain our additional
set of moment conditions:

(4.20) M

s(d�d

q

i

k

)

(✓
q

i

k

y

i) ⌫ 0 8k = 1, . . . ,K
i

, 8i = 1, . . . , N.

Together, (4.14)–(4.18) and (4.20) provide computationally tractable necessary con-
ditions satisfied by the moments of any measure with support on K

i

. Thus we have
the following outer approximation of Bd

f,G :

(4.21)

C

d

f,G :=

⇢

N

X

i=1

⌦

y

i

, f

i

f

i

f

i

↵

: y0, . . . , yN 2 Rr(d)

�

�

�

�

(4.14), (4.15), (4.16), (4.17), (4.18), (4.20)

are fulfilled

�

.

The extended algorithm obtains bounds on B

d

f,G ✓ C

d

f,G by finding the infimum and

supremum of Cd

f,G , that is, by solving two SDPs with (N +1) times as many variables
as in our original algorithm.

Remark (support of ⇡0). Notice that C

d

f,G does not include conditions on y

0

related to the support of ⇡
0

. The reason is that, in general, Kc has no simple de-
scription of the form (4.13). If such a description exists, extra constraints can easily
be appended. If such constraints are lacking, there is an unfortunate consequence:
C

d

f,G always contains the origin, since (y0, y1, . . . , yN ) := (y, 0, . . . , 0) satisfies all the
constraints in (4.21). Consequently, our extended algorithm only yields informative
bounds if f is nonnegative (or nonpositive) and, in this case, only the upper (resp.,
lower) bound will be informative. However, for certain purposes this may be su�cient,
as the following example demonstrates.

Example 4.4. We consider the analysis of a noisy nonlinear oscillator in relation
to reliability problems of structural mechanics. Structures (e.g., buildings, bridges)
perturbed by random forces (e.g., waves, earthquakes) are often modeled with the
stationary response of a nonlinear oscillator driven by Gaussian white noise [6, 39].
A typical such model used in the literature is the Du�ng oscillator

(4.22) Ÿ

t

+ Ẏ

t

+ Y

t

+
1

2
Y

3

t

=
p
2dW

t

,

where Y

t

2 R describes the deviation of the structure from its standing point at time
t, and W := {W

t

: t � 0} is a standard Brownian motion. Structural reliability
examines whether the structure will bend past a critical value of deviation and how
often this event should be expected to occur [39]. First passage times (i.e., the amount
of time it takes for the structure to bend past the critical deviation) and extreme-
value probabilities (i.e., how likely the building is to bend past the critical deviation
in a given interval of time) are typically investigated. Passage times feature more
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prominently in the structural mechanics literature since they are more amenable to
analysis [6]. Here, we use our extended algorithm to find upper bounds on extreme-
value probabilities and on the average fraction of time the structure spends bent
beyond the critical deviation.

It is well known [31, section 3] that (4.22) has a unique stationary measure

(4.23) ⇡(dy ⇥ dẏ) = e

�
⇣

ẏ

2

2 +

y

2

2 +

y

4

8

⌘

dy ⇥ dẏ,

where dy ⇥ dẏ denotes the Lebesgue measure in R2. Throughout this section we
assume that the process is at stationarity, i.e., (Y

t

, Ẏ

t

) ⇠ ⇡ for all t � 0. We begin by
rewriting (4.22) in Itô form,

dX(t) :=



dX

1

(t)
dX

2

(t)

�

=



X

1

(t)
�X

2

(t)�X

1

(t)� 1

2

X

3

1

(t)

�

dt+



0p
2

�

dW

t

,

where X

1

:= Y and X

2

:= Ẏ . By Birkho↵’s ergodic theorem [2, section 3], the
average fraction of time that the building spends bent beyond the critical deviation
u converges to

(4.24) F

u

:= ⇡(1{x2R2
:x1�u}).

The extreme-value probability is defined as

(4.25) P

u

:= P
 (

sup
s2[0,T ]

X

1

(s) > u

)!

,

where [0, T ] is a given time interval of interest. For su�ciently high u, it is shown in
[29] that the upcrossing events become independent; hence, the number of upcrossings
in the interval [0, T ] has a Poisson distribution with mean v

u

T , where v
u

is the mean
threshold crossing rate of u. For su�ciently regular stationary processes, the mean
upcrossing rate can be obtained from Rice’s formula [34, 41]

(4.26) v

u

:= ⇡

�

x

2

1{x2R2
:x1=u,x2�0}

�

,

whence it follows that

(4.27) P

u

⇡ 1� e

�v

u

T

.

In the computations below, we characterize this regime and consider crossings over
high deviations u (at least three times larger than the standard deviation of ⇡); hence
we assume that (4.27) holds exactly. From (4.24) and (4.26), it is clear that our
extended algorithm can provide upper bounds on v

u

and F

u

. These bounds are then
used with (4.27) to bound P

u

.
The standard deviation of ⇡ is � ⇡ 0.761, as computed directly from (4.23) or

using our unmodified algorithm. Following [6], we considered a time interval T = 100
and critical deviations u varying from 3� to 5�. The largest SDP successfully solved
by SDPT3 was d = 14, and we computed 14 bounds in a CPU time of 403 seconds,
averaging 29 seconds per bound. The upper bounds computed with our algorithm
are shown with the exact values computed using (4.23) in Tables 2 and 3. Although
the upper bounds are orders of magnitude greater than the true P

u

and F

u

, the
bounds could be useful for practical purposes. For instance, our bounds state that
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the probability of the structure bending further than five standard deviations at any
point over the interval of time [0, 100] is less than 0.011%, and that the structure will
spend less than 2 millionths of a percent of that interval bent beyond this deviation.

This example was chosen so that exact values of F
u

and P

u

could be computed
directly from (4.23), so as to evaluate the quality of the bounds. For most oscillator
models, no such analytical expressions are available, and it is often not even clear how
many stationary measures exist. Our method applies equally to these other oscillator
models.

Table 2
Computed upper bounds on P

u

and exact values from (4.27).

u/� 3 3 1

3

3 2

3

4 4 1

3

4 2

3

5

Upper bound 6.326⇥ 10�2 1.673⇥ 10�2 4.898⇥ 10�3 1.622⇥ 10�3 5.905⇥ 10�4 2.469⇥ 10�4 1.059⇥ 10�4

Exact value 4.581⇥ 10�2 4.280⇥ 10�3 1.974⇥ 10�4 4.015⇥ 10�6 3.126⇥ 10�8 7.978⇥ 10�11 5.639⇥ 10�14

Table 3
Computed upper bounds on F

u

and exact values from (4.25).

u/� 3 3 1

3

3 2

3

4 4 1

3

4 2

3

5

Upper bound 4.804⇥ 10�4 3.272⇥ 10�5 3.781⇥ 10�6 8.814⇥ 10�7 1.799⇥ 10�7 5.903⇥ 10�8 1.7954⇥ 10�8

Exact value 1.280⇥ 10�4 9.267⇥ 10�6 3.409⇥ 10�7 5.601⇥ 10�9 3.560⇥ 10�9 7.493⇥ 10�14 4.413⇥ 10�17

5. Concluding remarks. In this paper, we have introduced an algorithm based
on semidefinite programming that yields upper and lower bounds on stationary aver-
ages of SDEs with polynomial drift and di↵usion coe�cients. The motivation behind
our work is the study of long-term behavior of such SDEs. As explained in the intro-
duction, additional work is required to link the bounds obtained by our algorithm with
this long-term behavior. Typically, a drift condition must be verified by finding an ap-
propriate Lyapunov function [33]. For polynomial drift vectors and di↵usion matrices,
one can also employ semidefinite programming to search for these Lyapunov functions
(see sum of squares programming approaches [35, 36]). In many respects, these ap-
proaches are dual to the method we describe in this paper; see [28, 25, 8, 18, 19] for
more on the connections.

Our algorithm is also applicable to SDEs whose di↵usion coe�cients � are not
polynomial, but whose di↵usion matrix a := ��

T is polynomial (e.g., the Cox–
Ingersoll–Ross interest rate model in financial mathematics). We have concentrated
on polynomial di↵usion coe�cients for simplicity, in order to guarantee uniqueness of
solutions. Furthermore, our algorithm can be extended to SDEs with rational drift
vector and di↵usion matrix—one must just carefully choose polynomials h such that
Ah is still a polynomial.

Our choice of moment constraints was motivated by the convenience of use of the
modeling package GloptiPoly 3. However, there is a wide selection of moment con-
ditions, some of which lead to easier conic programs (e.g., linear programs or second
order cone programs) [25, 26]. We also restricted ourselves to stationary measures
with supports contained in algebraic varieties. We did this to simplify the exposition
and because the applications chosen did not require more generality. However, from
section 4.3 it is clear that a similar algorithm can be constructed for measures with
supports in so-called basic semialgebraic sets of the form (4.13) [25]. Such an approach
could be advantageous for Example 3.3—using Stroock and Varadhan’s Support The-
orem it is not di�cult to deduce that any stationary measure of those SDEs must
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have support on the nonnegative semiaxis [0,1).
Lastly, there is a practical issue relating to numerical aspects of our algorithm,

and of GMAs in general. In contrast with other approaches, our algorithm runs
in polynomial time—its computational complexity follows from that of primal-dual
interior point algorithms [23]. However, in our experience, the applicability of the
algorithm is a↵ected by certain numerical issues. Specifically, the SDPs that arise
from moment problems can be badly conditioned, causing the solvers to perform
badly for medium to large problems. We believe that this is a consequence of using
raw moments as the basis of the space of moment vectors, as is done in most GMAs.
Indeed, the order of magnitude of the moments of a distribution varies rapidly (e.g.,
see (3.7) in Example 3.2). Since the feasible set Od

G over which we optimize contains
such a vector of moments and these sets are often compact [25], we expect large
discrepancies in the order of magnitude of the entries of our feasible points y and
of the moment matrix M

d

(y). This can lead to a bad condition number of M
d

(y)
and consequently to poor performance of the solver. Improvements could be achieved
by using an orthonormal basis with respect to the measures of interest, but this is
not easy in practice; not only do we usually have little a priori information about
the measures to guide our choice of basis, but the necessary modifications of the
algorithmic implementation are substantial and the package GloptiPoly 3 could not
be used in its current form. In our experience, a simple way to mitigate the bad
conditioning is to scale the entries of the vectors y by ỹ

↵

:= y

↵

/z

↵, where z 2 Rn

+

.
This is equivalent to scaling by the moments of a Dirac measure at z, so z should
be chosen so that the entry z

i

is close to the absolute value of the ith component of
the mean of the measure of interest. A similar scaling was employed in [10]. It is
then straightforward to show that ỹ satisfies the same semidefinite inequalities as y,
and all that is left to do is to rewrite the equality constraints in terms of the rescaled
variables ỹ.

Appendix A. Proof of Lemma 2.3.

Proof of Lemma 2.3. Let X be a solution of (1.1) whose initial condition has law
⇡. Suppose that Dh (defined in (2.1)) is a martingale and not just a local martingale.
Then

E
⇥

D

h

t

⇤

= E
⇥

E
⇥

D

h

t

�

�F
0

⇤⇤

= E
⇥

D

h

0

⇤

= 0

for any t > 0. Since ⇡ is a stationary measure of (1.1), E [h(X
t

)] = E [h(X
0

)] = ⇡(h),
and so the above implies

E


Z

t

0

Ah(X
s

)ds

�

= 0.

Using Tonelli’s theorem and stationarity, we have

E


Z

t

0

|Ah(X
s

)|ds
�

=

Z

t

0

E [|Ah(X
s

)|] ds =
Z

t

0

⇡(|Ah|)ds = t⇡(|Ah|).

Since h is of degree less than or equal to d � max{d
b

i

, d

a

ij

}, our assumptions on ⇡

imply that ⇡(|Ah|) < 1. Thus, we have that Ah(X
s

) is integrable with respect to
P ⇥ �

t

, where �

t

denotes the Lebesgue measure on [0, t]. Choosing any t > 0 and
applying Fubini’s theorem, we obtain

t⇡(Ah) =

Z

t

0

E [Ah(X
s

)] ds = E


Z

t

0

Ah(X
s

)ds

�

= 0,
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from which it follows that ⇡(Ah) = 0.
We now need to argue that D

h is indeed a martingale. To show that D

h is a
martingale, it su�ces to show that E

⇥

D

h

t

�

�F
s

⇤

= D

h

s

for all t � s, or, equivalently,
that E

⇥

1
A

D

h

t

⇤

= E
⇥

1
A

D

h

s

⇤

for any A 2 F
s

and t � s. We do this by finding a sequence

of martingales {Dh

m : m 2 Z} such that for every t � 0, {Dh

m

t

: m 2 Z} is dominated
by a P-integrable random variable and such that {Dh

m

t

: m 2 Z} converges almost
surely to D

h

t

. With such a sequence at hand, we can use dominated convergence and
the martingale property of Dh

m to establish the desired result:

E
⇥

1
A

D

h

t

⇤

= lim
m!1

E
h

1
A

D

h

m

t

i

= lim
m!1

E
⇥

1
A

D

h

m

s

⇤

= E
⇥

1
A

D

h

s

⇤

.

Thus, all that remains is to construct the sequence {Dh

m : m 2 Z}. We do so by
using the fact that if g 2 C

2(Rn) is compactly supported, then D

g is a martingale;
see [38, section V]. For any natural number m let

h

m

(x) := �(x
1

/m)�(x
2

/m) . . .�(x
n

/m)h(x),

where � is the smooth compactly supported function

�(y) :=

(

exp
⇣

� y

2

1�y

2

⌘

if |y| < 1,

0 otherwise.

By definition of h
m

, we have that D

h

m

t

tends almost surely to D

h

t

, and so we just
need to show that Dh

m

t

is dominated by a P-integrable random variable.
Since @

z

�(z/m)|
z=y

= @

x

�(x)/m|
x=y/m

and @

zz

�(z/m)|
z=y

= @

xx

�(x)/m2|
x=y/m

,
and �, @�, and @

2

� are all bounded (since they are continuous functions nonzero only
on the compact set [�1, 1]), we have that

|Ah

m

|  �

0

@

n

X

i=1

(|hb
i

|+ |@
i

hb

i

|) +
n

X

i,j=1

(|ha
ij

|+ |@
i

ha

ij

|+ |@
j

ha

ij

|+ |@
ij

ha

ij

|)
1

A

where � is a constant that depends on the maximums of �, @�, and @

2

�. Since all
the polynomials on the right-hand side are of degree d or less, the right-hand side is
⇡-integrable. Thus, the sequence of random variables {Dh

m

t

}
m2Z+ is dominated by

|h(X
t

)|+ |h(X
0

)|+ �

Z
t

0

✓
nX

i=1

(|h(X
s

)b

i

(X

s

)|+ |@
i

h(X

s

)b

i

(X

s

)|)

+

nX

i,j=1

(|h(X
s

)a

ij

(X

s

)|+ |@
i

h(X

s

)a

ij

(X

s

)|

+|@
j

h(X

s

)a

ij

(X

s

)|+ |@
ij

h(X

s

)a

ij

(X

s

)|)
◆
ds.

Using Tonelli’s theorem, and stationarity of X as we did before, we have that the
above is P-integrable, and the lemma follows.

Appendix B. Proof of Theorem 4.2.

Proof of Theorem 4.2. As explained in the main text, all we have to do is carry
out Steps 1 and 2.
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Step 1. Equation (4.8) tells us that S ✓ B

Q,Sn�1 . Conversely, suppose that ⇡ is
a stationary measure of (4.5) with support contained in Sn�1, and choose an initial
condition Z with law ⇡. Since ⇤Z(0) = Z/ ||Z|| = Z, stationarity of ⇡ and the Markov
property of ⇤Z implies that ⇤Z is a stationary process with one-dimensional law ⇡.
Thus

�(Z) = lim
t!1

1

t

Z

t

0

Q(⇤Z(s))ds = ⇡(Q), P-almost surely,

where the first equality follows from (4.6) and (4.7), and the second is a consequence
of Birkho↵’s ergodic theorem (for instance, see [2, section 3]). So B

Q,Sn�1 ✓ S, and
we have the desired S = B

Q,Sn�1 .
Step 2. Suppose that ⇡ is a Borel probability measure with support contained

in Sn�1 that satisfies (4.9). We have to argue that ⇡ is a stationary measure of
(4.5), that is, that if Z has law ⇡, then P

�

⇤Z

t

2 A

�

= ⇡(A) for each t � 0 and each
Borel measurable set A ✓ Sn�1. By approximating indicator functions with smooth
functions, it is enough to argue that E

⇥

h(⇤Z

t

)
⇤

= ⇡(h) for each t � 0 and each smooth
function h : Rn ! R.

We first show that ⇡(Ah) = 0 for all smooth functions h. By linearity, (4.9)
implies that ⇡(Ap) = 0 for all polynomials p. Using Weierstrass’s approximation
theorem it is straightforward to argue that for any smooth h and " > 0 there exists a
polynomial p such that
(B.1)

max
x2Sn�1

0

@|h(x)� p(x)|+
n

X

i=1

|@
i

h(x)� @

i

p(x)|+
n

X

i,j=1

|@
ij

h(x)� @

ij

p(x)|
1

A  ";

see Lemma B.1 below. Using the above, we have that

|Ah(x)�Ap(x)|  "

0

@ max
x2Sn�1

0

@

n

X

i=1

|b
i

(x)|+
n

X

i,j=1

|a
ij

(x)|
1

A

1

A 8x 2 Sn�1

.

Since ⇡(Ap) = 0, ⇡ has finite mass, and " was arbitrary, it follows that ⇡(Ah) = 0.
Let us return to arguing that E

⇥

h(⇤Z

t

)
⇤

= ⇡(h), where Z is any initial condition
with law ⇡. Since the drift vector and di↵usion coe�cients of (4.4) are linear, we
can find a modification of {Xx

t

: t � 0, x 2 Rn} such that for every t � 0, the map
Rn 3 x 7! X

x

t

2 Rn is smooth, P-almost surely; see Proposition 2.2 in [47, section 5].
Consequently, for every t � 0, the map x 7! ⇤x

t

is also smooth, P-almost surely. Now
choose any smooth function h : Rn ! R. Itô’s formula tells us that

h(⇤Z

t

) = h(⇤Z

0

) +

Z

t

0

(Ah)(⇤Z

s

)ds+

Z

t

0

⌦

U(⇤Z

s

)rh(⇤Z

s

), dW
s

↵

, P-almost surely,

where U is the matrix with columns u

1

, . . . , u

m

. By definition, the paths of ⇤Z are
contained in a compact set; thus, applying the dominated convergence theorem, we
have that

(B.2) M

t

:=

Z

t

0

⌦

U(⇤Z

s

)rh(⇤Z

s

), dW
s

↵

is not just a local martingale, but a martingale. Thus

E
⇥

h(⇤Z

t

)
⇤

= ⇡(h) + E


Z

t

0

(Ah)(⇤Z

s

)ds

�

.
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Because for any x 2 Sn�1 the paths of ⇤x are contained in Sn�1, and because both the
drift vector and the di↵usion matrix are continuous functions, the map [0,1)⇥Sn�1 3
(t, x) 7! (Ah)(⇤x

t

) 2 R is bounded. Thus we can apply Fubini’s theorem to obtain
that

E


Z

t

0

(Ah)(⇤Z

s

)ds

�

=

Z

t

0

E
⇥

(Ah)(⇤Z

s

)
⇤

ds.

So it is clearly enough to argue that E
⇥

(Ah)(⇤Z

t

)
⇤

= 0 for each t � 0. Deconvolving
the expectation, we have that

E
⇥

(Ah)(⇤Z

t

)
⇤

=

Z

E [(Ah)(⇤x

t

)]⇡(dx).

Let u
t

(x) := E [h(⇤x

t

)]. Since Sn�1 3 x 7! h(⇤x

t

) 2 R is bounded, we can di↵erentiate
under the expectation sign. Thus, for each t � 0, smoothness of h and of x 7! ⇤x

t

implies that x 7! u

t

(x) is a smooth function too. If we can show that E [(Ah)(⇤x

t

)] =
(Au

t

)(x) for each t � 0, then we are done since ⇡(Au

t

) = 0. Arguing this fact is
routine; see Lemma B.2 below.

We find it convenient in the proof of the following lemma to write @

↵

f as short-
hand for

@

↵1
@

↵2
. . . @

↵

n

f

@x

↵1
1

@x

↵2
2

. . . @x

↵

n

n

,

where ↵ is any tuple in Nn.

Lemma B.1. Suppose that M is a compact smooth embedded submanifold of Rn

and that h : G ! R is smooth, and choose " > 0. Then, there exists a polynomial

p : Rn ! R such that (B.1) holds (with Sn�1

replaced by M).

Proof. Let h̃ be any compactly supported smooth extension of h on Rn. Choose l
such that the support of h̃ is contained in the hypercube [�l, l]n. For any real-valued
continuous function f on Rn, define

G

i

f(x) :=

Z

x

i

�l

f(x
1

, . . . , x

i�1

, y, x

i+1

, . . . , x

n

)dy, i = 1, . . . , n,

and

G

↵

f(x) := G

1

G

1

. . . G

1

| {z }

↵1 times

G

2

G

2

. . . G

2

| {z }

↵2 times

. . . G

n

G

n

. . . G

n

| {z }

↵

n

times

f(x), ↵ 2 Nn

.

Now choose any " > 0. By the Weierstrass approximation theorem there exists a
polynomial p : Rn ! R such that

sup
x2M

�

�

�

@2h̃(x)� p(x)
�

�

�

 ",

where 2 := (2, 2, . . . , 2) is the tuple in Nn whose entries are all 2. Let q(x) := G2p(x),
and choose any ↵ 2 Nn

2

. Since @

↵

h̃ has support in [�l, l]n, applying repeatedly the
fundamental theorem of calculus, we have that @

↵

h̃ = G2�↵

@2h̃. Applying repeatedly
the Leibniz integral rule, we then have that

@

↵

h̃� @

↵

q = G2�↵

@2�↵

@

↵

h̃� @

↵

G2p = G2�↵

(@2h̃� p).
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Since for any continuous function f and i = 1, . . . , n it is the case that |G
i

f |  G

i

|f |,
we have that

sup
x2M

|@
↵

h(x)� @

↵

q(x)| = sup
x2M

�

�

�

@

↵

h̃(x)� @

↵

q(x)
�

�

�

 sup
x2M

⇣

G2�↵

�

�

�

@2h̃� p

�

�

�

(x)
⌘

 G2�↵

✓

sup
x2M

�

�

�

@2h̃(x)� p(x)
�

�

�

◆

.

From the definition of p we have that the right-hand side of the above is less than or
equal to (2l)|2�↵|

". Since the " was arbitrary, (B.1) follows.

Lemma B.2. Under the conditions of Theorem 4.2 we have that, for every t � 0
and x 2 Rn

,

E [(Ah)(⇤x

t

)] = (Au

t

)(x).

Proof. Choose any t, s � 0 and x 2 Rn. For typographical convenience we use ⇤x

t

and ⇤(t, x) interchangeably in this proof. If µx

s

denotes the law of ⇤x

s

, by definition
of u

t

we have that

E [u
t

(⇤x

s

)] =

Z

E [h(⇤y

t

)]µx

s

(dy) = E [h(⇤(t,⇤(s, x)))] .

By the Markov property of ⇤ we have that

E [h(⇤(t,⇤(s, x)))] = E [h(⇤(t+ s, x))] .

Applying Itô’s rule, we have that

h(⇤(t+ s, x)) = h (⇤(t, x)) +

Z

t+s

t

(Ah)(⇤x

v

)dv +

Z

t+s

t

⌦

U(⇤Z

v

)rh(⇤Z

v

), dW
v

↵

.

Since the paths of ⇤ take values in a compact set, the rightmost term above is a
martingale (as a function of s). Taking expectations and applying Fubini’s theorem,
we have that

E [u
t

(⇤x

s

)] = u

t

(x) +

Z

t+s

t

E [(Ah)(⇤x

v

)] dv.

Thus,

(B.3) lim
s!0

E [u
t

(⇤x

s

)]� u

t

(x)

s

= E [(Ah)(⇤x

t

)] .

Next, applying Itô’s rule, we have that

u

t

(⇤x

s

) = u

t

(x) +

Z

s

0

(Au

t

)(⇤x

v

)dv +

Z

s

0

⌦

U(⇤Z

v

)ru

t

(⇤Z

v

), dW
v

↵

.

Similarly, since the paths of ⇤ take values in a compact set, the rightmost term is a
martingale. Thus, taking expectations of the above, we have that

E [u

t

(⇤

x

s

)]� u

t

(x) = E
Z

s

0

(Au

t

)(⇤

x

v

)dv

�
= s(Au

t

)(x) + E
Z

s

0

(Au

t

)(⇤

x

v

)� (Au

t

)(⇤

x

0

)dv

�
.

Applying Itô’s rule, taking expectations, exploiting compactness of the paths of ⇤,
and applying Fubini’s theorem, we have that
����E

Z
s

0

(Au

t

)(⇤

x

v

)� (Au

t

)(⇤

x

0

)dv

����� =
����E

Z
s

0

Z
v

0

A2

u

t

(⇤

x

w

)dw

�����  s

2

✓
max

x2Sn�1

��
(A2

u

t

)(x)

��
◆
.

Consequently,

lim
s!0

E [u
t

(⇤x

s

)]� u

t

(x)

s

= Au

t

(x).

Comparing the above with (B.3) gives the desired result.
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