

So the "middle" fixed point seems to be unstable. It can be shown that this point is a saddle. The stable eigendirection of this saddle defines (at least locally eround the saddle point) a separatrioc in the phase plane. This separatrix delimitates the basins of ethraction of the other 2 stable fixed points.

Rocal stability analysis =
$$\lim_{K^n \to \infty} \frac{1}{|K|^n} = \lim_{K^n \to \infty} \frac{1$$

Eigenvalues of
$$J$$

$$(\lambda + d)^2 - \alpha^2 \lim_{x \to \infty} \lim_{x \to \infty} = 0$$

$$(\lambda + d)^2 - \alpha^2 \lim_{x \to \infty} \lim_{x \to \infty} \lim_{x \to \infty} \frac{1}{2} \lim_{$$

Slope of N_a (i.e. $p_T = 0$): $\frac{\alpha}{d}$ $\lim_{K^n + p_L} \left(\frac{K^n}{K^n + p_L}\right) = \frac{\alpha}{d} \lim_{k \to \infty} A = \lambda_a$

. Slope of
$$N_1$$
 (i. 2. $\rho_L = 0$) $\rightarrow \Delta$ we want the slope for the ρ_1 to ρ_L
 $N_1: \rho_L = \frac{\alpha}{d} \frac{K^n}{K^n + \rho_T^n}$
 $\rightarrow \frac{\text{det } s \text{ linearise}}{K^n + \rho_T^n} P_T$
 $= \lim_{N \to \infty} \frac{K^n}{K^n + \rho_T^n}$

A PT = d · 1 ling PL

 \Rightarrow slope of N_1 : $\frac{d}{\alpha} \cdot \frac{1}{\lim_{n \to \infty} d^n} = \lambda_1$

Wow: . at F.P. (b): ≥2 < ≥2 < 0

20, d>0 ling < 0 lin a < o

 $\exists \frac{\alpha}{d} \lim_{\alpha \to \infty} < \frac{d}{\alpha} \frac{1}{\lim_{\alpha \to \infty}} < 0$

Hein lina > da > 0 (since lina < 0)

⇒ · Vling lina > d > 0 $-\sqrt{\lim_{\alpha}\lim_{\alpha}} < -\frac{d}{\alpha} < 0$

⇒ l=-d+ ~ Vlinz linz > 0

· l=-d-~ Vlinz linz < 0

</p> (since $\alpha > 0$, d > 0)

=> F.D. b is a soddle print.

. at F. P. @ on at F. P. @: 0>A2 > A2

=> F.L. @ end F.P. @ are both stable nodes