- Toggle Switch

$$
\left\{\begin{array}{l}
\dot{p}_{L}=\alpha_{L} \frac{K_{T}^{n_{T}}}{K_{T}^{n_{T}}+p_{T}^{n_{T}}}-d_{L_{2}} p_{L} \quad \begin{array}{l}
\text { Also, assume that } \\
\text { the parameter } \\
\text { values are chosen } \\
\text { such that the } \\
\text { toggle switch has } \\
\text { 3 fixed points, egg., } \\
\text { n=2, alpha= } 010 \\
k=1, d=1
\end{array}
\end{array}\right.
$$

Let's assume $\underbrace{\alpha_{L}=\alpha_{T}}, \underbrace{n_{L}=n_{T}}, \underbrace{K_{L}=K_{T}}, \underbrace{d_{L_{2}}}=d_{T_{3}}$

$$
\left.\begin{array}{rl}
=\alpha>0 \quad=n>0 \quad & =K>0 \\
\Rightarrow\left[\begin{array}{l}
\dot{p}_{L} \\
= \\
\dot{p}_{T}
\end{array}=\alpha \frac{k^{n}}{k^{n}+p_{T}}-d>0\right. \\
K^{n}+p_{L}^{n} & d p_{L}
\end{array}\right]
$$

Phase plane ondeyis

separatrix

$$
\begin{aligned}
& \begin{array}{l}
\mathbb{N}_{1}\left(\dot{P}_{L}=0\right): P_{L}=\frac{\alpha}{d} \frac{K^{n}}{K^{n}+P_{T}^{n}} \\
N_{2}\left(\dot{P}_{T}=0\right): P_{T}=\frac{\alpha}{d} \frac{K^{n}}{K_{m}^{n}+P_{T}^{n}} \\
\quad \frac{d}{\alpha} P_{L}=\frac{K^{n}}{K^{n}+P_{T}^{n}}
\end{array} \\
& \left(N_{2}\right) \Leftrightarrow K^{n}+P_{T}^{n}=\frac{k^{n}}{\frac{d}{\alpha} P_{L}} \\
& \left(N_{1}\right) \Rightarrow P_{T}=K \sqrt[M]{\frac{1-\frac{d}{\alpha} P_{L}}{\frac{d}{x} P_{L}}}
\end{aligned}
$$

In $N_{2}\left(\dot{P}_{T}=0\right)$, where do we have $\dot{P}_{L}>0$?

$$
\begin{aligned}
\dot{p}_{L}>0 & \Leftrightarrow \alpha \frac{k^{n}}{k^{n}+p_{T}}-d p_{L}>0 \\
& \left.\Leftrightarrow p_{L}<\frac{\alpha}{d} \frac{k^{n}}{k^{n}+p_{T}^{n}}\right)^{N_{1}}
\end{aligned}
$$

\Rightarrow For (1) on $\dot{p}_{T}=0$, we have $\dot{p}_{L}>0$
inilarly, on $N_{1}\left(\dot{p}_{2}=0\right)$, where do we have $\dot{p}_{T}>0$?

$$
\begin{array}{rl}
\dot{p}_{T}>0 & H \quad \alpha \frac{k^{n}}{k^{n}+p_{L}^{n}}-d p_{T}>0 \\
& \left.\Leftrightarrow p_{T}<\frac{\alpha}{d} \frac{k^{n}}{k^{n}+p_{L}^{n}}\right)^{N_{2}} \Rightarrow \text { For (2) on } \dot{p}_{L}=0, \\
\text { we have } \dot{p}_{T}>0
\end{array}
$$

So the "middle" fixced point seems to le unstable.
It can le shown that this point is a saddle. The stable eigendirection of this saddle defines (at least locally around the saddle point) a separatrix in the phase plane. This separatrix delimitates the basins of attraction if the other 2 stable fisced points.
Local stability analysis $=\operatorname{lin}_{1}$

$$
\binom{\dot{p}_{L}}{\dot{p}_{T}}=\underbrace{\left(\begin{array}{cc}
-d=\lim _{2} \\
\left.\alpha \lim \left(\frac{K^{n}}{k^{n}+p_{L}^{n}}\right)\right|_{F . P .} & -d
\end{array}\right)}_{=J}\binom{k^{n}+p_{T}^{n}}{\alpha \lim }\binom{p_{L}}{p_{T}}
$$

Eigenvalues of J

$$
\begin{gathered}
(\lambda+d)^{2}-\alpha^{2} \lim _{1} \operatorname{lin}_{2}=0 \\
\Leftrightarrow \lambda_{ \pm}=-d \pm \alpha \sqrt{\operatorname{lin}_{1} \cdot \lim _{2}}
\end{gathered}
$$

- Slope of $N_{v^{2}}\left(i \cdot e \cdot \dot{p}_{I}=0\right): \quad \frac{\alpha}{k^{n}} \operatorname{lin}\left(\frac{k^{n}}{k^{2}+p_{L}^{n}}\right)=\frac{\alpha}{d} \operatorname{lin}_{2}=s_{2}$

$$
N_{2}: P_{T}=\frac{\alpha}{d} \frac{K^{n}}{K^{n}+P_{L}^{n}}
$$

- Slope of $N_{\downarrow}\left(i\right.$, e $\left.\dot{P}_{L}=0\right) \rightarrow \Delta$ we wat the slope for the $P_{T} 15 P_{L}$

$$
\begin{aligned}
& \text { plat } \\
& N_{1}: \quad P_{L}=\frac{\alpha}{d} \frac{K^{n}}{K^{n}+P_{T}^{\pi}} \rightarrow \xrightarrow[\text { set's linearise } N_{1}]{ } \\
& P_{L}=\frac{\alpha}{d} \underbrace{\operatorname{lin}\left(\frac{K^{n}}{K^{n}+P_{T}^{n}}\right)}_{=\operatorname{lin} 1} P_{T} \\
& \Leftrightarrow P_{T}=\frac{d}{\alpha} \cdot \frac{1}{\operatorname{lin} n_{1}} P_{L} \\
& \Rightarrow \text { slope of } N_{1}: \frac{d}{\alpha} \cdot \frac{1}{\sin 1}=s_{1}
\end{aligned}
$$

Wow : . at F.R. (b): $s_{2}<s_{1}<0$

$$
\left(\begin{array}{cc}
\text { since } & \alpha>0, \\
& \operatorname{lin}_{1} \operatorname{lin} 2>0 \\
& >0
\end{array}\right)
$$

\Rightarrow F.P. (b) is a saddle paint

- at F.R. (6) or at F.P.(c): $0>A_{2}>s_{1}$

$$
\begin{aligned}
& \Leftrightarrow 0<\operatorname{lin}_{1} \operatorname{lin}_{2}<\frac{d^{2}}{\alpha^{2}} \\
& \Rightarrow \sqrt{\operatorname{lin}_{1} \operatorname{lin}_{2}}<\frac{d}{\alpha} \\
& \Rightarrow \lambda_{+}=-d+\alpha \sqrt{\operatorname{lin}_{1} \operatorname{lin}_{2}}<0
\end{aligned}
$$

(and agoin $\lambda_{-}=-d-\alpha \sqrt{\operatorname{lin}_{1} \operatorname{lin}_{2}}<0$ since $\alpha>0, \alpha>0, \lim _{1} \operatorname{lin}_{2}>0$)
\Rightarrow F.P. (a) and F.P. (c) are loth stable nodes

$$
\begin{aligned}
& \alpha>0, d>0 \\
& \lim _{1}<0 \\
& \lim _{2}<0 \\
& \Leftrightarrow \frac{\alpha}{d} \operatorname{lin}_{2}<\frac{d}{\alpha} \frac{1}{\operatorname{lin}_{1}}<0 \\
& \Leftrightarrow \operatorname{lin}_{1} \operatorname{lin}_{2}>\frac{d^{2}}{\alpha^{2}}>0(\text { since } \operatorname{lin} 1<0 \\
& \text { and } \operatorname{lin} 2<0 \text {) } \\
& \begin{aligned}
\Rightarrow \quad & \cdot \sqrt{\lim _{1} \lim _{2}}>\frac{d}{\alpha}>0 \\
\text { or } & -\underbrace{\sqrt{\lim _{1} \lim _{2}}}_{>0}<-\frac{d}{\alpha}<0
\end{aligned} \\
& \Leftrightarrow \quad \begin{array}{l}
\cdot \lambda_{ \pm}=-d+\alpha \sqrt{\operatorname{lin}_{1} \operatorname{lin}_{2}}>0 \\
\\
\\
\\
\lambda_{-}=-d-\alpha \sqrt{\operatorname{lin}_{1} \operatorname{lin}_{2}}<0
\end{array}
\end{aligned}
$$

