
Engineering Tripos Part IIB/EIST Part II FOURTH YEAR

Module 4F2: Robust Multivariable Control

Solution to Examples Paper 4F2/2

1. (a) Clearly we need a ≥ 0 (set x2 = 0) and c ≥ 0 (set x1 = 0). Notice that

ax2
1 + 2bx1x2 + cx2

2 =

(√
ax1 +

b√
a
x2

)2

+

(
c− b2

a

)
x2

2

Therefore, we also need c − b2

a
≥ 0 (set

√
ax1 + b√

a
x2 = 0), i.e. b2 ≤ ac, since a ≥ 0.

These conditions are also sufficient (from the above expression). Notice that a ≥ 0
and b2 ≤ ac in fact imply that c ≥ 0.

(b) By definition[
A B
BT C

]
> 0 ⇔

[
xT yT

] [ A B
BT C

] [
x
y

]
> 0

⇔ xTAx+ yTCy + xTBy + yTBTx > 0

for all

[
x
y

]
6= 0. Clearly we need A > 0 (set y = 0 and choose appropriate x). This

implies that A−1 exists. Therefore, the above inequality can be written as(
x+ A−1By

)T
A
(
x+ A−1By

)
+ yT (C −BTA−1B)y > 0

Since A > 0 this is true for all y if and only if C −BTA−1B > 0 (otherwise, pick y to
make the last term ≤ 0 and set x = −A−1By).

The other case is symmetric.

2. (a)

dV

dt
=
∂V

∂x1

dx1

dt
+
∂V

∂x2

dx2

dt
+ . . .+

∂V

∂xn

dxn

dt
+
∂V

∂t

dt

dt

which is the required expression (in an expanded form).
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(b)

∂V

∂x1

=
[

1 0 . . . 0
]
Xx+ xTX


1
0
...
0



= 2xTX


1
0
...
0

 since XT = X and the above quantities are scalar

⇒ ∂V

∂x
=

 2xTX


1
0
...
0

 2xTX


0
1
...
0

 . . . 2xTX


0
0
...
1




= 2xTX

(c) At t = T

min
u

{
xTQx+ uTRu+

∂V

∂x
(Ax+Bu)

}
= min

u

{[
xT uT

] [ Q+XTA+ ATXT XTB
BTXT R

] [
x
u

]}
= xT

(
Q+XTA+ ATXT −XTBR

−1BTXT

)
x

(using the lemma on quadratic forms in Handout 1).

This is a quadratic form in x. It therefore suggests the solution

V (x, t) = xTX(t)x⇒ ∂V

∂t
= xT dX

dt
x

where X solves

−dX
dt

= Q+XA+ ATX −XBR−1BTX

(notice that this formula holds for t = T , therefore the above argument extends to all
t).

3. ∂V
∂t

= 0 since the problem is time invariant: the minimum time it takes to bring the
mass to rest does not depend on when you start the process. c = 1 since this gives

J =

∫ T

0

cdt =

∫ T

0

dt = T
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Hence, minimising J minimises the total time it takes for the mass to come to rest, as
required. The HJB equation then becomes

min
u

(
∂V

∂x
ẋ+ 1

)
= 0

⇒ min
u

(
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + 1

)
= 0

⇒ min
u

(
∂V

∂x1

x2 +
∂V

∂x2

u+ 1

)
= 0

as required.

The optimal choice of u is u = +1 if ∂V
∂x2

< 0 and u = −1 if ∂V
∂x2

> 0. Any u is optimal

if ∂V
∂x2

= 0. Substituting back into the partial differential equation leads to

∂V

∂x1

x2 −
∣∣∣∣ ∂V∂x2

∣∣∣∣+ 1 = 0

By taking partial derivatives it is easy to show that the functions V (x) = x2 ±√
2x2

2 + 4x1 solve the HJB equation when u = −1. By the above discussion, u = −1
implies that ∂V

∂x2
> 0, which is a reasonable assumption based on the physics of the

problem. Notice that V > 0 is also required (since it makes no sense to say that the
mass stops in negative time).

4. (a) We have Q = α2, R = 1, XT = 1, A = 1, B = 1. Hence V (x, t) = xTX(t)x =
x2X(t), where X solves

−Ẋ = α2 + 2X −X2, X(T ) = 1

Taking derivatives of the suggested X(t) it can be verified that it satisfies this equation.
Therefore, the optimal cost is

x2
0

(
1 +
√

1 + α2 tanh
(√

1 + α2T
))

and the optimal control is

u(t) = −X(t)x(t)

(b)

V̇ = 2xẋX = 2x(x+ u)X

Hence

V̇ + α2x2 + u2 = 2x2X + 2xuX + α2x2 + u2

= (u+ xX)2 + (α2 + 2X −X2)x2
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Integrating from 0 to ∞ leads to

lim
t→∞

V (t)− V (0) + J = ‖u+Xx‖22 + (α2 + 2X −X2)‖x‖22

where J =
∫∞

0
(α2x2 + u2)dt (recall that (α2 + 2X − X2) is a scalar). If X is the

stabilising solution to (α2 + 2X − X2) = 0 and if u is the corresponding stabilising
control, x(t)→ 0 as t→∞, therefore, limt→∞ V (t) = 0, and

J = V (0) + ‖u+Xx‖22
which is minimised at u = −Xx.

The solutions to (α2 + 2X −X2) = 0 are X = 1±
√

1 + α2. They result in the closed
loop system

ẋ = x+ u = x−Xx = ∓
√

1 + α2x

Therefore, the stabilising solution is X = 1 +
√

1 + α2 and the optimal cost is (1 +√
1 + α2)x(0)2.

(c) Indeed,

lim
t→−∞

X(t) = 1 +
√

1 + α2

5. Let Z = XY where

X =


x11 x12 . . . x1m

x21 x22 . . . x2m
...

...
...

...
xn1 xn2 . . . xnm

 Y =


y11 y12 . . . y1n

y21 y22 . . . y2n
...

...
...

...
ym1 ym2 . . . ymn

 Z =


z11 z12 . . . z1n

z21 z22 . . . z2n
...

...
...

...
zn1 zn2 . . . znn


Then zii = xi1y1i + xi2y2i + . . . =

∑m
j=1 xijyji. Therefore,

trace(Z) = z11 + z22 + . . .

= x11y11 + x12y21 + . . .

+x21y12 + x22y22 + . . .

The same expression is also obtained for trace(Y X), by rearranging the order of the
terms.

trace(BTLoB) = trace(LoBB
T )

= −trace(Lo(LcA
T + ALc))

= −trace(LcA
TLo)− trace(LcLoA)

= −trace(Lc(−CTC))

= trace(CLcC
T ))

The claim about the 2-norm of G follows by the definitions (see also Handout 4).
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6.

7. (a)

z1 = G1w1 +G2z2

z2 = w3 − u
y = z1 +W1w2

In block matrix form z1

z2

y

 =

 G1 0 G2 −G2

0 0 I −I
G1 W1 G2 −G2



w1

w2

w3

u


(b)

z1 = G1w1 +G2z2

z2 = w3 − u
y = z1 +W1w2

e = W2y −W2r

r = r

In block matrix form
z1

z2

e
y
r

 =


G1 0 G2 0 −G2

0 0 I 0 −I
W2G1 W2W1 W2G2 −W2 −W2G2

G1 W1 G2 0 −G2

0 0 0 I 0



w1

w2

w3

r
u


8. From the block diagram,

ẋk = Axk +H(y − Cxk) +B(−Fxk)

= (A−HC −BF )xk +Hy

u = −Fxk

For the closed loop system we have

ẋ = Ax−BFxk

ẋk = (A−HC −BF )xk +HCx
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Let e = xk − x. Then, ẋ = (A−BF )x−BFe and

ė = ẋk − ẋ = (A−HC)(xk − x) = (A−HC)e

i.e. [
ẋ
ė

]
=

[
A−BF −BF

0 A−HC

] [
x
e

]
The eigenvalues of this matrix are the eigenvalues of A − BF and the eigenvalues of
A −HC. Hence the closed loop system is stable if and only if A − BF and A −HC
are both stable.

G. Vinnicombe/ G.-B. Stan 2009


