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Module 4F2: Robust Multivariable Control
Solution to Examples Paper 4F2/2

1. (a) Clearly we need a > 0 (set 2 = 0) and ¢ > 0 (set 27 = 0). Notice that

b\’ b2
axf + 2bx129 + cmg = (ﬁxl + %xg) + (c - E) x%

Therefore, we also need ¢ — % > 0 (set \/axy + \/La.ﬁl}'g =0), i.e. b¥* < ac, since a > 0.
These conditions are also sufficient (from the above expression). Notice that a > 0
and b? < ac in fact imply that ¢ > 0.

(b) By definition

{;T g]>0 o [ aT yT}{;T g}{;ﬂ>0

& 2'Az+y"Cy+ 2" By +y'BTr >0

for all [ z } # 0. Clearly we need A > 0 (set y = 0 and choose appropriate z). This

implies that A~! exists. Therefore, the above inequality can be written as
(a: + A_lBy)T A (a: + A_lBy) +y7(C -~ BT"A™'B)y >0

Since A > 0 this is true for all y if and only if C'— BTA™'B > 0 (otherwise, pick y to
make the last term < 0 and set x = —A‘lBy).

The other case is symmetric.
2. (a)

V. _oVdw  OVidr, = OVdr,  OVdi
dt — Oxry dt  Oxe dt Oz, dt Ot dt

which is the required expression (in an expanded form).
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(using the lemma on quadratic forms in Handout 1).

This is a quadratic form in x. It therefore suggests the solution
V(z,t) =o' X(t)r = — =27 —x

where X solves

X
_dd_t —Q+ XA+ ATX - XBR™'BTX

(notice that this formula holds for ¢ = T', therefore the above argument extends to all
t).

9V — () since the problem is time invariant: the minimum time it takes to bring the

mass to rest does not depend on when you start the process. ¢ = 1 since this gives

T T
J:/ cdt:/ dt =T
0 0



Hence, minimising J minimises the total time it takes for the mass to come to rest, as
required. The HJB equation then becomes

min <a—vx + 1) =0
u ox

. oV . aVv .
= min|{—o1+—=—22+1) =0

u (9961 8x2
. oV oV

= min| —z+—u+1] =0
u 8%1 8x2

as required.
The optimal choice of u is u = 41 if g—m‘g <0and u=—1if g—m‘g > 0. Any wu is optimal

if 37‘/2 = 0. Substituting back into the partial differential equation leads to

ov

833'1

ov

1=0
8332 +

By taking partial derivatives it is easy to show that the functions V(z) = x5 £
/213 + 4z, solve the HJB equation when u = —1. By the above discussion, u = —1
implies that g—;; > 0, which is a reasonable assumption based on the physics of the
problem. Notice that V' > 0 is also required (since it makes no sense to say that the
mass stops in negative time).

. (a) We have Q = o, R=1, Xp =1, A=1, B=1. Hence V(x,t) = 27 X(t)z =
22X (t), where X solves

—X=a+2X-X? X(T)=1

Taking derivatives of the suggested X (¢) it can be verified that it satisfies this equation.
Therefore, the optimal cost is

zl <1 + 1+ a2tanh (WT))

and the optimal control is

V =22iX =2z(z+u)X
Hence

V4ol +u? = 222X + 20uX + o2 + u?
= (u+2X)?+ (a® +2X — X?)2?



Integrating from 0 to oo leads to

lim V(£) = V(0) + J = [lu+ Xazl; + (o” +2X = X*) |3

where J = [*(a?2? 4+ u?)dt (recall that (a® +2X — X?) is a scalar). If X is the
stabilising solution to (a? + 2X — X?) = 0 and if u is the corresponding stabilising
control, z(t) — 0 as t — oo, therefore, lim; ., V' (t) = 0, and

J=V(0)+ |ju+ X2
which is minimised at v = —Xz.

The solutions to (a? +2X — X?) =0 are X = 1+ /1 + a2. They result in the closed
loop system

t=x4+u=x—Xr=FVI1+o2x
Therefore, the stabilising solution is X = 1+ v/1 + o2 and the optimal cost is (1 +

V1+a?)z(0)2.

(¢) Indeed,
tlir_n Xt)=1+V1+a?

5. Let Z = XY where

T11 T12 ... Tim Yin Y2 .- Yin 211 212 ... Zln
Y 113‘21 ?22 . . SUzm v — y?1 y.22 . . y?n 7 _ 2’?1 Z92 ... Zop
Tpl Tp2 -+ Tpm Ym1i Ym2 -+ Ymn Znl ”An2 .-+ Znn

Then z; = Ty + Tioyos + ... = Z;n:l x;;y;i- Therefore,

trace(Z) = z11+ 222+ ...
= TuYi1 + T2y + - -
+T21Y12 + Ta2Y22 + . ..

The same expression is also obtained for trace(Y X), by rearranging the order of the
terms.

trace(BTL,B) = trace(L,BB")
= —trace(L,(L. AT + AL,))
= —trace(L AT L,) — trace(L.L,A)
= —trace(L.(—C"C))
= trace(CL.CT))

The claim about the 2-norm of G follows by the definitions (see also Handout 4).



21 = lel—i‘Gng
Z9 = W3 —U

y = z1+Wiws

In block matrix form

Z1 G1 0 G2 _G2 51
ml=]0 0 I -I Uf
Y Gr W1 Gy —Gy u3
(b)
1 = lel + GQZQ
Z9 = W3 —U
= 21 + W1w2
e = Wyy—Wyr
r = r
In block matrix form
21 G1 0 G2 0 _GQ
29 0 0 1 0 —I
(& = W2G1 WQWl WQGQ —WQ —WQGQ
Gl Wl G2 0 _G2
r 0 0 0 1 0

8. From the block diagram,

t, = Az, + H(y— Cxy) + B(—Fxy)
— (A—HC - BF)z; + Hy

u = —Fuxy
For the closed loop system we have

t = Ax — BFuxy
&, = (A—HC—-BF)x,+ HCx



Let e =z — x. Then, & = (A — BF)x — BFe and
=t —2=(A—HC)(zxy —x)=(A—HC)e
ie.
t| | A-BF —BF x
e | 0 A—HC e
The eigenvalues of this matrix are the eigenvalues of A — BF' and the eigenvalues of

A — HC'. Hence the closed loop system is stable if and only if A — BF and A — HC
are both stable.
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