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2.1. INFINITE HORIZON LINEAR QUADRATIC REGULATOR

2

2.1 Infinite Horizon Linear Quadratic
Regulator

Plant:

Cost Function:

J (o, ul-)) =

Assumptions:

A, B controllable

A, C' observable

Solution:

From the finite horizon results, and our understanding of the Riccati
equation, we would expect the solution to be of the form

u(t) = =BT Xz(t)
where X = X7 solves the Control Algebraic Riccati Equation

0=CTC+XA+ATX - XBB"X  (CARE)

The closed-loop dynamics would then be governed by

i = Az + Bu=(A—BB'X)x

— we might hope that (A — BB X) is stable (i.e. has all its eigenvalues in

the left half plane.)
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2.1. INFINITE HORIZON LINEAR QUADRATIC REGULATOR 3

Fact: Under the assumptions, the CARE
0=Ccto+xA+ATX - xBBlX

has a unique, symmetric, positive definite solution X = X7 > 0, and this
solution is stabilising (i.e. (A — BBT X) stable).
Furthermore, this solution can be obtained as lim;—, o X(t), where X (¢)

solves
Xty =clo+XxwA+AT'X(t) - X#t)BBTX (1)

for any final condition X (T) = XT(T) > 0.

Summary: Let X = X7 be the stabilising solution to CARE. Then the
optimal control is given by u(t) = —BT X z(t) and the optimal cost is
2(0)T X x(0).

Alternative Derivation: (more direct, but you have to already know the
answer!)
Let X = X7 be the stabilising solution to CARE, and consider

aVv

V) =2 () Xz(t) = = L X+ 2t X

So,

dV

= (Azx + Bu)TX:IJ + ZIZTX(AZE + Bu) + LoTor + vl
— (u+ BT X2) (u+ BT X2) + 27 (XA+ ATX +cTC - XBBTX) 2

\ 7
-~

Integrating both sides of this expression, from ¢t = 0 to oo, gives
2 T 2
V(o) = V(0) +lzll2 = [[(u+ B Xx)l|3
——

513%ij0
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2.1. INFINITE HORIZON LINEAR QUADRATIC REGULATOR 4

Or
12[13 = 2(0)T Xz(0) + ||(u + BT X2)|)3

Note: If all the states are not available for measurement (i.e. we are not in
the state feedback situation), then we see that we have to make

[(w+ BT Xx)||5 small. To do this we use a Kalman filter to estimate

— BT X - this leads to LQG (linear quadratic Gaussian) control, which is a
special case of Ho optimal control.
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2.2. THE Hy-NORM 5

2.2 The Hy>-norm

Consider the stable linear system

z = Ax + Bu
y=Cz

where A has all its eigenvalues in the left half plane. This system has a
transfer function

G(s)=C(sI —A)~'B
The H9 norm of this system is defined as

A

1G53 = /OO trace{G*(jw)@(jw)} dw

— 00
and so
IGI5 = > 11Gil3
1
One can show that |
Wlloo < —=IIGl2llull2
27
where
[9lloo = sup Vol (y(t)
and

ulle = \//O:O ul (t)u(t)dt

The aim of Ho optimal control is to minimise the Ho norm of some
closed-loop transfer function matrix.
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2.3 Calculating the Hs-norm

Let the impulse response matrix of G(s) be G(t). Recall that

G(t) = L71G(s)

= Ce'B
Parseval's Theorem implies that
: IG(s)ll2 = 1G]
JE— S — ,
Ne: ’ ’

where

IG@I3 = G013

Since G(t) is the impulse response matrix, G;(t) is the response to an
impulse on the ith input with 2(0™) = 0.

Therefore, G;(t) = 0 for t < 0, whereas for ¢t > 0 it is equal to the response

of the system starting at
z(01) = B;

under input u = 0.
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So the problem reduces to computing the response of the system under
u = 0 starting at appropriate initial conditions z(0) = x.

Consider the function V(¢) = x(t)! Lz(t), L = LT Note that, if v = 0,

V() +yt) yt) =

(Az(t)! La(t) + 2(0)" LAz (t) + z(t) T Cx(t)
e TATL+ LA+ CTO)x(t)

Choose I = LT such that
AT+ rna+cfo =0

(Aside: It can be shown that L > 0 iff the system is stable. Moreover, if
L > 0 then the system is also observable.)

V() +yt) y(t) =0
Integrating from t = 0 to ¢t = oo gives
V)] +llylz =0
Since A is stable and u = 0,
lim x(t) =0

t—o0

Therefore
lim V(t) = lim « (¢)La(t) =0

t—00 t—00
Moreover, V(0) = ngxo, and so
2 T
lyllg = =g Lo
Hence, the response to initial conditions is bounded, and

lyill3 = B LB; = > |lyi(t)|3 =Y (B LB;) = trace(B LB)

[ ]
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2.3. CALCULATING THE Ho-NORM 8

Summary:
1 A
1. —||G(s H = \/trace BTLB) where L = L solves
—] ], (BTLE)
AL+ LA+CTC =0 (L: observability grammian).
1 2 9
2 || Tums |, = 2 I @luy—essio 13

]

3. It can be shown that

1
= su Tyt < — || T, U
I9llo0 = S0 Ay (1) < =Ty 2l
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2.4. LINEAR FRACTIONAL TRANSFORMATIONS

2.4 Linear Fractional Transformations

Z(s)

w(s)

P(s)

|
VN
w
N——"
Nl
VS
VA
SN——

K(s)

Linear Fractional Transformations (LFT's) are a useful way of manipulating

closed-loop transfer functions, and of specifying norm-optimal control

problems. The lower LFT F;(P(s), K(s)) is defined as the closed loop
transfer function from w(s) to Z(s) in the above picture. That is

Fi(P(s), K(s)) = Tip(s)—3(s)

P(s) is called the Generalised Plant.
If P(s) has the block transfer function representation

][ e 26

P(s)

Neadl

\

(where the transfer functions P;;(s) may themselves be matrix-valued —
corresponding to vector-valued signals w(s) etc.) we then obtain

Z(s) = Pr1(s)w(s) + Pra(s)u(s)
y(s) = Pa1(s)w(s) + Paa(s)u(s)
u(s) = K(s)y(s)
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2.4. LINEAR FRACTIONAL TRANSFORMATIONS 10
— u(s) = K(s){
So,
2(s) = Fi(P(s), K(s))w(s)
where
—1

Fi(P(s), K(s)) = P11(s) + Pia(s) K (s) (I — Pa2(s)K(s))  Po1(s)
We now seek stabilisation controllers K(s) which make F;(P(s), K(s))
“small”.
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CASE) 11

2.5 'Hy optimal control - state-feedback
(a special case)

Let the generalised plant P have realization:
T = Az+Bjw + Bou
L [le]
u
y=ux (state-feedback)

which we can also write in the more compact form:

. A | By B i
=1%o Y] e
B 0 1
Y 7o o | LY
Assumptions:
A, B9 controllable
A, C'1 observable
Objective: Find K(s) that achieves
i F(P(s), K H
K(S)Isrtl;{)lilizing l( (5) (S)) 2

Solution: Recall that when z(0) = 2y # 0, w(t) = 0,
2113 = 2 Xxo + [|(u+ By X)3
where X = X7 is the stabilising solution to
0=XA+ATXx +clC; - XByBI X (CARE)

(i.e. the unique solution for which A — BngX is stable)
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Consider the situation (0™ ) = 0 and w(t) = ¢;d(t). This case is equivalent
to the one corresponding to x(0") = Bye; and w(t) = 0, for which

Hz(t)| HQ—eTBTXB e + ||(u+ Bl Xz) 2
w(t):eié(t) 9 - % 1 1€ 2 $(0+):Blei 5

and X = X1 is the stabilising solution of the same CARE.

Define

u(t) = u(t) + Bl Xa(t)

Let T3y — ¢ be the closed loop transfer function from w to v. Then

1 5 2
T — H / BT

g 1 = 013 = 32 o0y -eo [, = 3= e sfxal ooy |
therefore

1 2
o H]:l(P(S)’K(S))‘b = trace <B{XBl> o H w— u+ B X:):HQ
%,_/

Thw — ¢ can be made equal to 0 by choosing
i(s) = —Bd Xi(s)
which corresponds to chosing
K(s) = —B2TX (constant feedback gain)

Summary:

min
K (s) stabilizing

Fi(P(s), K(s)) H \/_\/trace B{ X By)

which is achieved by the constant feedback gain K = —BQTX. Notice that
K (s) is stabilising by the properties of CARE.
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2.6 H, optimal control - output

feedback

Consider the generalised plant P with realization:
T = Ax+Biwi + Bou
L [01:1;]
u
y = Cox+wy

or

Assumptions:

A, By controllable } appropriate to the state-feedback /

A, C7 observable

full information problem

A, By controllable } appropriate to the estimation /

A, C9 observable

Objective: Find K(s) that achieves

min
K (s) stabilizing
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14

Let X = X7 be the stabilising solution (i.e. the one such that

A — BQBQTX is stable) to

0=XA+ATX +cfc) — XByBIX (CARE)

1
— || 71 (P(s), K(s)) H; = trace <B{XBl> + %HT

and )
Tw — v =F(P K)

where P has realization

& A | [Bl 01 B9 x
v | =| F 0 I w
Y C9 [0 I] 0 U
and F = Bl X
Duality:

Note that [|G(s)[|l2 = |G (s)" |l2.

If G(s) = C(sI — A)"1B 4 D, then

AT | T
Bl | pt

ie. G(s) = [%’%] — G(s)! =
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2.6. Ho OPTIMAL CONTROL - OUTPUT FEEDBACK 15

Furthermore, ) )
F(P, K" = F(P" KT

Using duality, ) )
1F(P,K)2 = | F(PT, K)l2

and PT has the realization

. C oAl P by
xr T X

Sl=1 15 0 Y| |@
_ | 0 I p
Y BT o

(Note: &, 0, g, w and @ are fictitious signals, which bear no relation to the
original variables.)
We can now apply the state-feedback results to get

2

) 1
)= trace (FY FT) + Z—HT@ — U+ CQY.'I,'Hg

o ML OS] -

where Y = YT is the stabilising solution (i.e. the one such that
A —YC¥ Oy is stable) to

0=YA" + AY + BB —vc2" ¢,y (FARE)

Can we achieve « = — CyY 77
Jzdh
Note that
i=ATi+ Flo+cla
j=B3F+w
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2.6. Ho OPTIMAL CONTROL - OUTPUT FEEDBACK 16

So, let .
i =AT% + FT(j— BI#) + CTa
N——

Now, if Z1(t) = #(t) then . (t) = z(t)
So, if we let 7,.(07) = 2(07) =0, then Z.(t) = Z(t) for all . We can
then put

Hence, the optimal KT has realisation

- l |

and the optimal K for the original problem has the realisation

[&]_[A—BQF—HOM—H][%]

2
@zw
1

u F | 0 Y
where
F=pBIX
H=YCT

and X and Y are the stabilising solution of (CARE) and (FARE)
respectively.

This optimal K achieves

1
— | F; (P, K 2 = trace BTX31 +trace ( FY FT
o [ 2 1

7 7

ENGINEERING: PART IIB/EIST PART II. Module 4F2
Handout 2: Infinite horizons and the H9 norm.



2.6. Ho OPTIMAL CONTROL - OUTPUT FEEDBACK 17

Observer Form:
Another realisation of the optimal K (characterised by the same transfer
function) is

-t o

which has an observer form.

0 u A | By y
o
s of
o
' :@+/k ER=—reA
i

Closed-loop poles of optimal K = \; (A — BoF') U\ (A — HC9).

N 7 \ 7

stable stable
So it is a stabilising controller.
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