
Part IIB/EIST Part II, Module 4F2

Robust Multivariable Control

Guy-Bart Stan

HANDOUT 3

H∞ optimal control

G. Stan 2009

References

1. M. Green and D. Limebeer, “Linear Robust Control”, Prentice Hall,
1995

2. T. Başar and P. Bernhard, “H∞-Optimal Control and Related
Minimax Design Problems”, Birkhäuser, Second Edition, 1991

3. T. Başar and G. J. Olsder, “Dynamic Non-cooperative Game Theory”,
Academic Press, Second Edition, 1995 (SIAM Classics in Applied
Mathematics, number 23, 1998)

Contents

3 H∞ optimal control 1
3.1 Calculating the H∞-norm . . . . . . . . . . . . . . . . . . . 2
3.2 H∞ optimal control . . . . . . . . . . . . . . . . . . . . . . 4
3.3 The H∞ loop-shaping controller . . . . . . . . . . . . . . . 9



3.1. CALCULATING THE H∞-NORM 2

3.1 Calculating the H∞-norm

Consider the stable linear system G(s) with state-space realization

ẋ = Ax + Bu

y = Cx

x(0) = 0

where A has all its eigenvalues in the left half plane.

Recall that the H∞ norm of G, ‖G‖∞ has two interpretations:

• ‖G‖∞ = sup
ω

σ̄
(
G(jω)

)

• ‖G‖∞ = sup
û 6=0

‖Gû‖2

‖û‖2
= sup

u 6=0

‖y‖2

‖u‖2
where ŷ(s) = G(s)û(s).

The H∞ norm could be estimated numerically using the first interpretation,
e.g. by griding over frequency. For proofs it is better to use the second
definition.

Assume we want to know whether the H∞ norm is smaller than γ > 0

‖G‖∞ ≤ γ ⇐⇒ ‖y(t)‖2 ≤ γ‖u(t)‖2 for all u ∈ L2,[0,∞)

⇐⇒ ‖y(t)‖2
2 − γ2‖u(t)‖2

2 ≤ 0 for all u ∈ L2,[0,∞)
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3.1. CALCULATING THE H∞-NORM 3

Let V = xT Xx for some X = XT > 0. If we can ensure somehow

dV

dt
≤ γ2uT u − yT y

for all u ∈ L2,[0,∞), then we would have

∫ ∞

0

dV

dt
dt = V (∞)

︸ ︷︷ ︸

→0

− V (0)
︸︷︷︸

=0

≤ γ2‖u‖2
2 − ‖y‖2

2 =⇒ ‖y‖2 ≤ γ‖u‖2

Now,

V̇ + yT y−γ2uT u =

= (Ax + Bu)T Xx + xT X(Ax + Bu) + xT CT Cx − γ2uT u

=

[
x
u

]T [
AT X + XA + CT C XB

BT X −γ2I

] [
x
u

]

So,

max
u

(

V̇ + yT y − γ2uT u
)

= xT
(
AT X + XA + CT C +

1

γ2
XBBT X

)
x

Therefore, if the Riccati equation

AT X + XA + CT C +
1

γ2
XBBT X = 0

has a solution X = XT > 0 then

‖G‖∞ ≤ γ.

The condition turns out to be “if and only if” (“only if” proof omitted).
This condition is easily checked algebraically. A bisection algorithm can then
be used to find the smallest γ for which this Riccati equation has a solution.
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3.2. H∞ OPTIMAL CONTROL 4

3.2 H∞ optimal control

Consider the generalised plant P with realization:

ẋ = Ax+B1w1 + B2u

z =

[
C1x
u

]

y = C2x+w2

x(0) = 0

or





ẋ
z
y



 =







A
[
B1 0

]
B2[

C1
0

]

0

[
0
I

]

C2
[
0 I

]
0











x
w
u





x(0)= 0

Assumptions: (same as for H2 case)

A, B2 controllable
A, C1 observable

}
appropriate to the state-feedback /

full information problem

A, B1 controllable
A, C2 observable

}
appropriate to the estimation /

(dual) problem

Objective: Find a stabilising K such that

‖Fl(P (s), K(s))‖∞ ≤ γ

(i.e. Fl(P (s), K(s)) is stable and ‖z‖2
2 ≤ γ2‖w‖2

2 for all w ∈ L2,[0,∞).)
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3.2. H∞ OPTIMAL CONTROL 5

Solution: Let V = xT Xx, X = XT . If we can ensure somehow that

dV

dt
≤ γ2wT w − zT z

for all w ∈ L2,[0,∞), then we would have

∫ ∞

0

dV

dt
dt = V (∞) −

=0
︷︸︸︷

V (0) ≤ γ2‖w‖2
2 − ‖z‖2

2.

(V is actually the value function for the the continuous time version of the non-cooperative game (worst

disturbance) introduced on page 11 of Handout 1 and X solves a modification of the HJB equation

known as the Issacs equation - but we don’t need to know that here!)

Completing the squares, we can write

dV

dt
+ zT z − γ2wT w =

= xT (XA + AT X + CT
1 C1 − XB2B

T
2 X + γ−2XB1B

T
1 X)x+

(u+BT
2 Xx)T (u+BT

2 Xx)−γ2(w−
1

γ2

[

BT
1
0

]

Xx)T (w−
1

γ2

[

BT
1
0

]

Xx) (∗)

So, if X is chosen to satisfy

(1) XA + AT X + CT
1 C1 − X(B2B

T
2 − γ−2B1B

T
1 )X = 0

(2) A − B2B
T
2 X stable, closed-loop “A” matrix

when u =−BT
2

Xx

w =0 (best disturbance)

(as system must be stable when there is no disturbance)

(3) A − B2B
T
2 X + γ−2B1B

T
1 X stable, closed-loop “A” matrix

when u =−BT
2

Xx

w = 1

γ2

[

BT
1

0

]

Xx (worst disturbance)

and if we were able to choose u = −BT
2

Xx (state f/b) then we

would obtain γ2‖w‖2
2 − ‖z‖2

2 ≥ 0
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3.2. H∞ OPTIMAL CONTROL 6

Facts:

i) (⇒) At most one solution to (1) satisfies (3),

ii) (⇒) (2) is then satisfied ⇐⇒ this solution satisfies X = XT > 0.

iii) (⇐) If there exists a stabilising K(s) such that
∥
∥Fl

(
P (s), K(s)

)∥
∥
∞ < γ,

then a solution to (1), (2) and (3) exists.

Choose this X, and integrate (∗) from t = 0 to t = ∞

‖z‖2
2 − γ2‖w‖2

2 +

→0
︷ ︸︸ ︷

x(∞)T Xx(∞)−

=0
︷ ︸︸ ︷

x(0)T Xx(0) =

∥
∥
∥u + BT

2 Xx
∥
∥
∥

2

2
− γ2

∥
∥
∥
∥
w −

1

γ2

[

BT
1
0

]

Xx

∥
∥
∥
∥

2

2

State feedback case, choose u = −BT
2 Xx:

LHS ≤ 0 ⇐⇒ ‖Tw → z‖∞ ≤ γ

Partial info case:

RHS ≤ 0 ⇐⇒

∥
∥
∥
∥
∥
∥
∥
∥

T{

w − 1
γ2

[

BT
1
0

]

X x

}

→
{

u + BT
2 Xx

}

∥
∥
∥
∥
∥
∥
∥
∥
∞

≤ γ

So,

‖Fl(P, K)‖∞ ≤ γ ⇐⇒

∥
∥
∥
∥
∥
∥
∥
∥

T{

w − 1
γ2

[

BT
1
0

]

Xx

}

→
{

u + BT
2 Xx

}

∥
∥
∥
∥
∥
∥
∥
∥
∞

≤ γ
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3.2. H∞ OPTIMAL CONTROL 7

Furthermore

T{

w −
1

γ2

[

BT
1
0

]

Xx

}

︸ ︷︷ ︸

r

→
{

u + BT
2 Xx

}

︸ ︷︷ ︸

v

= Fl(P̃ , K)

where P̃ has the realization

ẋ = Ax +
[
B1 0

](

w
︷ ︸︸ ︷

r +
1

γ2

[

BT
1
0

]

Xx
)

+ B2u

v = u + BT
2 Xx

y = C2x +
[
0 I

](

w
︷ ︸︸ ︷

r +
1

γ2

[

BT
1
0

]

Xx
)

= C2x +
[
0 I

]
r

or 



ẋ
v
y



 =





Â
[
B1 0

]
B2

F 0 I
C2

[
0 I

]
0









x
r
u





where

Â = A +
1

γ2
B1B

T
1 X, F = BT

2 X

So,

‖Fl(P, K)‖∞ ≤ γ ⇐⇒

∥
∥
∥
∥
∥
∥
∥
∥

T{

w − 1
γ2

[

BT
1
0

]

Xx

}

→
{

u + BT
2 Xx

}

∥
∥
∥
∥
∥
∥
∥
∥
∞

≤ γ

⇐⇒
∥
∥
∥Fl(P̃ , K)

∥
∥
∥
∞

≤ γ ⇐⇒
∥
∥
∥Fl(P̃

T , KT )
∥
∥
∥
∞

≤ γ

Invoking duality.
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P̃T has the realization





˙̃x
ṽ
ỹ



 =







ÂT FT CT
2[

BT
1
0

]

0

[
0
I

]

BT
2 I 0











x̃
r̃
ũ





Can now use the state-feedback results to show that, if there exists a
Y = Y T > 0 which is the stabilising solution to

Y ÂT + ÂY + B1B
T
1 − Y

(
CT

2 C2 − γ−2FT F
)
Y = 0, F = BT

2 X

(note that, contrary to the H2 case, Y depends on X)
then

‖ṽ‖2
2 − γ2‖r̃‖2

2 = ‖ũ + C2Y x̃‖2
2 − γ2‖r̃ − γ−2FY x̃‖2

2

Furthermore (as in the H2 case, p 15-16 of Handout 2) we can achieve

ũ = −C2Y
︸︷︷︸

HT

x̃

with the controller KT with realization
[

˙̃xk

ũ

]

=

[
ÂT − FT BT

2 − CT
2 HT FT

−HT 0

] [
x̃k

ỹ

]

So, one suitable K has the realization

[
ẋk

u

]

=

[
Â − B2F − HC2 −H

F 0

] [
xk

y

]

and achieves ‖Fl(P, K)‖∞ ≤ γ.
(Glover et al, 1989)
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3.3. THE H∞ LOOP-SHAPING CONTROLLER 9

3.3 The H∞ loop-shaping controller

Consider the problem

h hG(s)

K(s)

- - ? -

��

6

-
w2

z1 u y

w1

z2

+

+++

(see handout 2, LFT)





z1
z2
y



 =





0 0 I
I G G
I G G









w1
w2
u





So, [
z1
z2

]

= Fl(P, K)

[
w1
w2

]

where

P =





0 0 I
I G G
I G G





(

giving

Fl(P, K) =

[
0 0
I G

]

+

[
I
G

]

K(I − GK)−1 [I G
]

=

[
K(I − GK)−1 K(I − GK)−1G

(I − GK)−1 (I − GK)−1G

] )
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If G has the state-space realization

[
A B
C 0

]

then P has the state-space

realization 





ẋ
z1
z2
y







=







A
[
0 B

]
B

[
0
C

]
0 0
I 0

[
I
0

]

C
[
I 0

]
0













x
w1
w2
u







This does not quite meet the assumptions (D11 6= 0). However, define

P̃ :=









A

[

0
1

β
B

]

1
β
B

[
0
C

]

0

[
I
0

]

C
[
I 0

]
0









where β =
√

1 − 1/γ2. Then it can be shown that

‖Fl(P, K)‖∞ < γ ⇐⇒ ‖Fl(P̃ , K̃)‖∞ < γ

where K̃ = 1
β
K. (this is known as a loop-shifting transformation)

X = XT must now be the stabilising solution to

XA + AT X + CT
1 C1 − X(B2B

T
2 − B1B

T
1 /γ2)X = 0

i.e. the stabilising solution (A − BBT X stable) to

XA + AT X + CT C − XBBT X = 0 (CARE)

and Y = Y T must then be the stabilising solution to

Y ÂT + ÂY + B1B
T
1 − Y

(
CT

2 C2 − FT F/γ2)Y = 0, F = BT
2 X (3.1)

Finally, it can be shown that if Z = ZT is the stabilising solution
(A − ZCT C stable) to

ZAT + AZ + BBT − ZCT CZ = 0 (FARE)
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3.3. THE H∞ LOOP-SHAPING CONTROLLER 11

and if γ >
√

1 + λmax(XZ) then there exists a suitable (i.e. stabilising) Y
satisfying (3.1). (actually if and only if)

Conclusion: There exists a controller satisfying
b(G, K) = 1

‖Fl(P,K)‖∞
> 1/γ if and only if γ >

√

1 + λmax(XZ) where

X and Z are the stabilising solutions to (CARE) and (FARE).
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