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3.1. CALCULATING THE Hso-NORM 2

3.1 Calculating the H,-norm

Consider the stable linear system G/(s) with state-space realization

= Ax + Bu
y=Cx
z(0) =0

where A has all its eigenvalues in the left half plane.

Recall that the Ho norm of G, ||G||sc has two interpretations:

o Gl = sup ()

e ||G|lcc = sup HGAUHQ = sup Iyl where §(s) = G(s)u(s).
a0 lalle o llull2

The Hoo norm could be estimated numerically using the first interpretation,
e.g. by griding over frequency. For proofs it is better to use the second
definition.

Assume we want to know whether the Hoo norm is smaller than v > 0

1Glloo <7 <= lly@®)ll2 < Allu(®)l]2 for all u € Lo g o)

= [ly®)13 = 7*[lu(®)]3 < 0 for all u € Ly g o)
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Let V = 27 Xz for some X = XTI > 0. If we can ensure somehow

dV
% < ’YQUTU - ?JT?J

forall u € Ly 1 ), then we would have
o dv 201, 112 p
—rdt =V(00) = V(0) < y7lullz = llyllz = llyll2 = vllull2
0 ——— N
—0 =0
Now,
1% +yT;y—72uTu =
— (Az + Bu)! Xz + 2T X(Az + Bu) + 27 T Cx — v*ul w
"TATX + xA+cTC XB ] :)3]
U

BTX —~2T
| 1
max (V +yTy — WQuTu> — 2T(ATX + XA+ CTC+ 5 XBB X)x
u Y

i
u

So,

Therefore, if the Riccati equation

1
Alx +xA+c'c+SXBB'X =0
t

has a solution X = X7 > 0 then
1Glloo < 7.

The condition turns out to be “if and only if” (“only if” proof omitted).
This condition is easily checked algebraically. A bisection algorithm can then
be used to find the smallest ~ for which this Riccati equation has a solution.
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3.2 'H, optimal control

Consider the generalised plant P with realization:

or

< ule
I

z(0)=0

T = Arx+Biwi + Bou

L [01:1:]
U
Yy = Cg:li—l—wg
z(0) =0

Assumptions: (same as for Ho case)

A, By controllable appropriate to the state-feedback /
full information problem

A, C7 observable

A, C9y observable

A, Bj controllable appropriate to the estimation /
(dual) problem

Objective: Find a stabilising K such that

1F1(P(s), K(s)lloo <

(i.e. F(P(s), K(s)) is stable and ||2[|3 < v?||w]|3
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Solution: Let V = 27Xz, X = XTI If we can ensure somehow that
dV

7 < szTw — 1
for all w & £2’[0,OO), then we would have
% gy .
| St = V(o) = V0) < 22l — 113

(V is actually the value function for the the continuous time version of the non-cooperative game (worst
disturbance) introduced on page 11 of Handout 1 and X solves a modification of the HJB equation
known as the Issacs equation - but we don’t need to know that here!)

Completing the squares, we can write

dv
— 4l WQwTw =

di
—aol(XA+ATXx + ¢l 0y — XByBY X + 47 2XB B X)a+
1 [BT 1 [BT
(u+B2TXx)T(u—|—B2TXx)—fy2(w——2 B()l Xx)T(w——2 Bol Xx) (%)
v v

So, if X is chosen to satisfy
(1) XA+ Al X +0{ 01 — X(BoBL —472B1B)X =0
(2) A-— BQBQTX stable, closed-loop “A” matrix
when u :—Bng
w =0 (best disturbance)

(as system must be stable when there is no disturbance)

(3) A-— BQBQTX + 7_2BlBlTX stable, closed-loop “A”" matrix
when u :—Bng

1 [BY
W =—5 [ 1 ]Xa: (worst disturbance)
41 0
and if we were able to choose u = —B%Xa: (state f/b) then we

would obtain 72 ||wl|3 — ||z[|3 > 0
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3.2. Hoo OPTIMAL CONTROL 6

Facts:

1) (=) At most one solution to (1) satisfies (3),
i) (=) (2) is then satisfied <= this solution satisfies X = X7 > 0.

iii) («<=) If there exists a stabilising K (s) such that || F;(P(s), K(s)) ||, <7,
then a solution to (1), (2) and (3) exists.

Choose this X, and integrate (x) fromt =0to t = c©

—0 =0
2 2.2, T N N
1215 = " llw]|]3 + z(00)" Xz(00) —2(0)” Xx(0) =
2 1 BT
BT x H 2l — =P x
Hu+2x2fyw720x
2
State feedback case, choose u = —B%FX:)::
LHS <0 <= |[Tw — z|loo <7
Partial info case:
RHS <0 <= ||T BT <7
{w—i2 1}X:1;}—>{u—|—BgXx}
Y 0
0
So,
IFi(P K)o <7 = |T 7 <+
{ - L7 Xx}—>{u+BgXx}
v | 0 ~o
ENGINEERING: PART IIB/EIST PART II. Module 4F2
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Furthermore
T — F(P, K)
1 T I\
{w——2 Bi X:L’}—>{u+BQTXx}
L0 J e
where P has the realization
w
. r 1 BT Y
x:A:U+[Bl O}(r—l——z ! X:L’)+Bgu
v41 0
v:u—l—BQTXx
w
y = Coz + [0 I](;+i By X:;):ngﬂo Ir
L0
or A
E Al[B1 0] Bo| [=
v|=| F 0 I r
Y Co| [0 I] 0 u
where 1
A=A+ 5BiB{X, F=B3X
gl
So,
Hfl(P7K)Hoo <7y <= ||T BT <7
{ - L7 X:I;}—>{u+BgXx}
7“1 0 o

— FZ(P,K)H <y o= H]-"Z(PT,KT)H <~
(0. @]

e

Invoking duality.
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PT has the realization

. - AT | T ol 7 L
s T xr
=1%o |Y 7
_ | 0 I p
Y BT 0

Can now use the state-feedback results to show that, if there exists a

Y = YT > 0 which is the stabilising solution to
VAU ¢ Ay + ByB] —v(C3Cy —42FTF)y =0, F=Blx
(note that, contrary to the Ho case, Y depends on X)

then
~112 211 ~112 ~ ~112 21 ~ -2 ~112
19]|5 — Y775 = |a 4+ CaY z||5 — v*||F — v “FYZ|35

Furthermore (as in the Ho case, p 15-16 of Handout 2) we can achieve

u=—C9Y x
~—
gT

with the controller K7 with realization

{gﬁn }_ AT - pTpl —clp? | T
k|~

T,
—aT 0 J
So, one suitable K has the realization

ig | [ A= BoF —HCy | -H ][ =
u | F |0 Yy
and achieves || F;(P, K)|lx < 7.
(Glover et al, 1989)
Module 4F2
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3.3 The Hy loop-shaping controller

Consider the problem

(see handout 2, LFT)

So,
o)A )
z2 w2
where
0 0 [
P=|1 G G
I G @

( giving

Fi(P,K) = ? g] + H K(I-GK)™'[I @]

[K(I-GK)™' K(I-GK) G
(I -GK)"!  (1-a¢K)"'a ]
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If G has the state-space realization [ é ? ] then P has the state-space

realization

Ed [ A [O B] B |[z]
21 0 0 0 1 w1y
29| {C‘ I 0 {0‘ w9

K2 | C [[ O} 0 | [u]

This does not quite meet the assumptions (D11 # 0). However, define
4 o Lp| 1p]
8 B

I

¥ 0
c | [I 0o o0

where 3 = /1 —1/~42. Then it can be shown that
|F(P K)lloe <7 <= IF(P, K)lloc <7

o
[
22,

where K = ﬁ . (this is known as a loop-shifting transformation)

X = X7 must now be the stabilising solution to
XA+ Atx +cley—x(ByBY — BBl /42)x =0
i.e. the stabilising solution (4 — BBT X stable) to
XA+ ATX+cTc - xBBTX =0  (CARE)
and Y = Y71 must then be the stabilising solution to
VAT + Ay + BBl —v(C3Cy - FTF/4?)Y =0, F=Bix (31)

Finally, it can be shown that if Z = Z7 is the stabilising solution
(A — ZCTC stable) to

ZAT + AZ + BBT —2¢TCZ =0  (FARE)
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and if v > \/1 + Amaz (X Z) then there exists a suitable (i.e. stabilising) Y
satisfying (3.1). (actually if and only if)

Conclusion: There exists a controller satisfying
B 1 . :
b(G,K) = 7 PK o > 1/ if and only if ¥ > /1 4+ Apaz (X Z) where

X and Z are the stabilising solutions to (CARE) and (FARE).
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